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ABSTRACT 

Extended-Spectrum β-Lactamase and plasmid mediated AmpC (ESBL/pAmpC)-producing 

Escherichia coli (E. coli) has during the last decades emerged worldwide and is now an 

increasing problem in both human and animal health. In order to slow down the spread it is 

important to study success factors and transmission routes so that preventive measures can be 

efficient. 

In paper I we studied what sectors that contribute to human carriage and human clinical 

infections by investigating the molecular epidemiology of ESBL/pAmpC-producing E. coli in 

leafy greens, meats, farm animals, human community carriers and human blood stream 

infections. We found that different ESBL/pAmpC-genes, plasmids and E. coli MLST 

lineages dominated in isolates from humans compared to isolates in farm animals, foods and 

meats, but some traits overlapped. All in all, we concluded that a very small proportion of 

human bloodstream infections with ESBL/pAmpC-producing E. coli could have originated 

from the foods we consume.  

To better understand the prevalence of ESBL/pAmpC-producing E. coli in the community we 

performed two carrier studies described in papers II and III. In paper II we found that 4.7% 

of the Swedish population carried ESBL/pAmpC-producing E. coli in their intestine. Risk 

factors associated with carriage was travel to countries in Asia and Africa and a diet that did 

not include pork. In paper II we also explored which E. coli populations that accumulated in 

clinical infections compared to carriers and found that the ESBL-gene blaCTX-M-15 and E. coli 

ST131 and its subclone H30-Rx/C2 were overrepresented in bloodstream infections.   

In paper III we joined forces with our neighbouring countries around the Baltic Sea, Finland, 

Latvia, Russia, Poland and Germany to investigate the prevalence of ESBL-producing E. coli 

and K. pneumoniae in specific populations in all participating countries. We found large 

differences in prevalence between countries with the highest in Russia (23.4%) and the 

lowest in Latvia (1.6%). No carbapenemase producing isolates were identified in any of the 

investigated countries.  

In paper II E. coli ST131 was identified as the most common ST to cause bloodstream 

infections in Swedish patients. This lineage is internationally wide-spread and commonly 

cause severe infections. In paper IV we explored the Swedish epidemiology of this highly 

pathogenic ESBL-producing E. coli lineage by conducting a phylogenetic comparison 

between Swedish and international isolates. We found, in accordance with our hypothesis, 

that several introductions from the international lineage have shaped the Swedish ST131 

population. Tight genetic relationships between isolates in clonal clusters makes it difficult to 

perform outbreak investigations with ST131. In addition, we identified highly conserved 

plasmids in all clusters with Swedish isolates even though they had been separated for several 

years indicating a strong co-evolution of plasmids in some ST131 lineages.  

 



 

 

Taken together our studies show that although there is a high prevalence of ESBL/pAmpC-

producing E. coli, particularly in poultry and chicken meat products, the major source for 

ESBL/pAmpC producing E. coli causing human infections is humans to human transmission. 

Although we do not see a great contribution from the animal and food sector in Sweden it 

could change in the future if an epidemiological shift to more human pathogenic strains take 

place in e.g. poultry. This is why a multi-sectorial approach to reduce the levels of 

ESBL/pAmpC-producing E. coli in all sectors is needed.  

Of particular interest is the highly pathogenic E. coli lineage ST131 that is responsible for a 

large proportion of infection with ESBL/pAmpC-producing E. coli. Carriers of ST131 could 

therefore be at greater risk of getting an infection and there might be incentive for considering 

them as high risk carriers. The high clinical relevance of ESBL-producing E. coli ST131 

prompts further monitoring since this lineage has large potential to accumulate resistance to 

last resort drugs such as carbapenems and colistin.   
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PREAMBLE 

"Nothing in Biology Makes Sense Except in the Light of Evolution" is a 1973 essay by the 

evolutionary biologist Theodosius Dobzhansky1. Evolution theory is a fundamental concept 

in order to understand how antibiotic resistance arises and spreads. Yet today, 160 years 

after the publication of Charles Darwin’s “Origin of Species”, we are struggling to manage 

the effects of the natural selection process we have induced by using antibiotics. Our 

antibiotic use is actively changing the population structure of bacterial communities in and 

on our bodies as well as in the environment around us. As we move in an increasingly 

connected world, visualized by the global airline routes on the front page, antibiotic 

resistant bacteria travel with us.  

Already in 1945, the “father of penicillin”, Sir Alexander Fleming, warned about antibiotic 

resistance. But after the Second World War we entered the “golden age of antibiotic 

discovery” and between 1950 and 1970 most classes of antibiotics still used today were 

discovered2,3. The abundance of new antibiotics together with the good treatment efficacy 

made us pay little attention to the gathering evidence that antibiotic resistance was 

becoming a problem.  

Today we are dependent on antibiotics – not only for the treatment of primary bacterial 

pathogenic infections such as Mycobacterium tuberculosis and Neisseria gonorrhoeae – but 

also for stopping infections related to many fundamental medical procedures such as 

surgery, cancer treatment and neonatal care. In addition, many countries have created 

animal production systems that are dependent on antibiotics for the animals to grow up fast 

and healthy.  

Antibiotic resistance is not a problem that can be solved, as long as we use antibiotics we 

will continue to exhort a selection pressure which will in the end lead to resistance. 

However, the way we currently use antibiotics must change if we want to continue using 

them in the future. 

Figure 1. Sir Alexander Fleming and Charles Darwin. Photos by Davies Keystone and Lock and 

Whitfield.  
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1 INTRODUCTION 

 

1.1 WHAT IS ANTIBIOTIC RESISTANCE? 

Antibiotic resistance is defined as the ability of a bacterium to resist an antibiotic that the 

majority of that bacterial species would be otherwise susceptible to. Natural selection will 

favour bacteria with mutations which give them resistance to the antibiotic they are subjected 

to. In simple terms, during antibiotic treatment, the susceptible bacteria are killed leaving the 

resistant bacterial population to expand. Antibiotic resistance can be gained through different 

evolutionary pathways, but is brought on by the use of antibiotics which create a selection 

pressure on the bacterial population.  

During the years, we have successfully developed treatment strategies based on plasma 

concentration needed to cure the patient and the Minimal Inhibitory Concentration (MIC) of 

an antibiotic. MIC refers to the dose needed to inhibit further growth of the specific bacterium 

causing the infection. The MIC values are determined and measured in laboratory conditions 

that might not be an ideal representation of in vivo conditions. We know today that bacterial 

in vivo populations are far from homogenous, for example they form biofilms which allows 

them to survive antibiotics better and some bacterial cells can be persisters, which means that 

they survive antibiotic by temporary growth arrest4,5. Recent evidence also suggests that 

heteroresistance, i.e. “the presence of a resistant subpopulation in a main population of 

susceptible cells”, can play a role in treatment failures of an, according to MIC, otherwise 

susceptible population6. 

 

1.1.1 Evolution of resistance in real time 

To demonstrate bacterial evolution, from susceptible to resistant against antibiotics, in real 

time researchers created a microbial evolution and growth arena (MEGA) plate with 

increasing concentration of antibiotics towards the middle of the plate, Figure 2. The top 

layer of the plate allowed bacteria to move and grow into a higher concentration of 

antibiotics, and gain more nutrients, if they developed resistance. In addition to creating 

innovative time-lapse movies of evolution they could also study mechanisms such as 

adaptation, fitness, mutation rates and expansion patterns showing that evolution is not 

always driven by the most resistant and fittest mutants but rather by the mediocre specimens. 

It took the sensitive Escherichia coli (E. coli) strain 12 days to reach a 3,000-fold phenotypic 

resistance increase from the initial wild-type concentration of the antibiotic7. Experiments 

like this shows us how unchallenging it is for E. coli to develop high levels of resistance, after 

all they have had thousands of years to practice.  
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Figure 2. The microbial evolution and growth arena plate with inwards increasing levels of 

trimethoprim 12 days after inoculation with a sensitive E. coli strain (dark blue). The dots and colours 

represent pheno- and genotypically different clonal lineages. Rights to reprint Elsevier7.  

1.2 ENVIRONMENTAL RESISTANCE 

Antibiotic resistance is a natural occurring phenomenon and resistance genes are ubiquitous 

in the environment. Many of our most common antibiotics, such as penicillin, are naturally 

produced by soil dwelling fungi and bacteria to compete over resources with other soil 

microorganism. To fight back bacteria developed their own defence – antibiotic resistance.  

A recent metagenomic study on 189 soil samples representing terrestrial regions from all over 

the world revealed a correlation between abundance of fungi and high content of antibiotic 

resistance genes. The researchers also saw that in soils with high content of antibiotic 

resistance genes the phylogenetic diversity of the bacterial populations was lower8.  

Naturally occurring resistance creates a problem when the genes coding for the resistance 

transfers to pathogenic bacteria that cause human or animal infections. Some of the most 

widely spread and problematic resistance genes, such as blaCTX-M encoding resistance to third 

generation cephalosporins, are believed to originate from soil bacteria of the Kluyvera spp. 
9,10. By extension, this means that all naturally occurring antibiotics likely already have 

resistance genes in the natural habitat of the organism that produces the antibiotic. The fact is 

that resistance has developed to all major classes of antibiotics ever discovered, which is 

slightly discouraging11. In addition, the time between when the antibiotic is taken into clinical 

practice to when resistance emerges has been less than 10 years for several antibiotics12,13.   

In later years antibiotics as well as antibiotic resistance genes have also come to be 

considered as environmental pollutants14. Overuse and misuse during the last half century in 

both the human and agricultural sector have created an abundance antibiotic substances 

which can exert selection pressure when released into the environment15. There is a great 

concern around what effect antibiotics released into the environment will have on microbial 

communities and their ability to perform fundamental functions16,17.  

The presence of antibiotics also has an effect on the microbial communities on our body and 
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in later years research around our microbiome and how it is affected by antibiotics has 

increased rapidly.    

 

1.3 MECHANISMS OF ACTION FOR ANTIBIOTICS AND ANTIBIOTIC 
RESISTANCE 

 

1.3.1 Mechanisms of action for antibiotics 

Antibiotics are compounds that bind to specific targets in the bacterial cell. In order for an 

antibiotic to be efficient it needs to target an essential bacterial cell function which will lead 

to growth arrest (bacteriostatic) or cell death (bactericidal). Antibiotic classes have different 

targets within the cell, some displayed in Figure 3A.  

β-lactam antibiotics, including cephalosporins, attacks the cell wall synthesis by binding to 

penicillin-binding proteins and thereby inhibit the formation of the bacterial peptidoglycan 

layer18. This leads to growth arrest because of a weaker cell wall which often results in cell 

death. Other important cell targets for antibiotics are the DNA/RNA synthesis, protein 

synthesis and the folate metabolism, Figure 3A. For example fluoroquinolone antibiotics, 

inhibits DNA replication by binding to DNA gyrase and topoisomerase IV, which are 

involved in the uncoiling of DNA before replication, and induce double-stand breaks in front 

of the DNA polymerase19. Aminoglycosides inhibit protein synthesis by binding to the 30S 

subunit which causes misreading of the mRNA and/or early termination of protein 

synthesis20.  

 

Figure 3. A. Antibiotics targets different essential functions in the bacterial cell. B. Mechanisms for 

intrinsic and acquired resistance. Rights to reprint from Elsevier21. 
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1.3.2 Mechanisms of antibiotic resistance 

Antibiotic resistance can be intrinsic or acquired. Intrinsic resistance is the bacterial capability 

to resist a specific antibiotic naturally. It can be because the antibiotic lack the ability to enter 

through the cell wall or that the bacterium simply does not have the target receptor that the 

antibiotic uses to exercise its effect. For example, Gram-negative bacteria are intrinsically 

more resistant to several antibiotics since its outer membrane makes it less permeable22-24. 

Acquired resistance is when a bacterium develop or acquire resistance through gene mutation 

or horizontal gene transfer. Mutants can then be selected by antibiotics. Acquired resistance 

can be achieved by several mechanisms, some displayed in Figure 3B, which can be divided 

into three main categories; i) decreased uptake and increased efflux of antibiotics from the 

bacterial cell, ii) target modification by mutation and iii) modification or hydrolysis of the 

antibiotic which makes it inactive. In Table 1 some common antibiotics and resistance 

mechanisms have been summarized.  

Sometimes intrinsic resistance can become acquired resistance, one example is multidrug 

resistance (MDR) efflux pumps, an example of resistance due to increased efflux of drug. All 

bacteria carry genes encoding efflux pumps, with different substance spectrums, on their 

chromosomes which is classically considered an intrinsic resistance mechanism. However, 

some efflux pumps have moved onto plasmids making them transmissible between bacteria. 

For example, an MDR efflux pump was found on a plasmid co-harbouring the 

carbapenemase NDM-1 (New-Delhi Metallo-β-lactamase) in a Citrobacter freundii strain25. 

Transferrable MDR efflux pumps like these have a large potential to become clinically 

important since they can transmit to pathogenic bacteria and cause resistance to several 

antibiotics at once.   

Modification of target by mutation means that the bacterial target is modified by e.g. point 

mutation or uptake of a different but homologous allele by recombination. On example is 

methicillin resistance in Methicillin-Resistant Staphylococcus aureus (MRSA) which is 

gained by uptake of a genetic element, including the mecA gene. The mecA gene produces an 

enzyme which makes the synthesis of the peptidoglycan layer possible even during exposure 

to penicillins22,26.   

Inactivation by hydrolysis consists of thousands of different enzymes and is clinically the 

most important resistance mechanism. It includes a large group of different β-lactamases 

which hydrolyse a range of important antibiotics like penicillins, cephalosporins and 

carbapenems. The mechanism of action of β-lactamases towards penicillin is hydrolysis of 

the β-lactam ring, which is the structure on the penicillin responsible for the drug activity. 

Bacteria that are resistant to penicillin because of β-lactamase production can be treated by 3rd 

generation cephalosporins. However the Extended-Spectrum β-Lactamases (ESBL) can also 

hydrolyse 3rd generation cephalosporins22,27.  
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Table 1. Mechanisms of resistance to different classes of antibiotics. Table adapted from Kumar et al 

2013 with permission from Nexus Academic publishers28  

Antimicrobial class 
Mechanism of 

Resistance 

Specific means to 

achieve resistance 
Examples 

β–lactams 

Degradation of 

antibiotic 

Destruction of lactam ring by β-

lactamases making it incapable 

to bind with penicillin binding 

protein (PBPs). 

Resistance to penicillins, 

cephalosporins and 

carbapenems.  

Altered target Mutational changes PBPs 
Methicillin and oxacillin 

resistant staphylococci. 

Decreased uptake 
Decreased porin channel 

formation. 

Imipenem resistance of 

K. pneumoniae, 

E. aerogenes, and P.  

aeruginosa. 

Aminoglycosides 

Enzymatic 

modification 
Acetylation 

Aminoglycoside 

resistance in Gram-

negative and positive 

bacteria 

Decreased uptake 
Change in number or character 

of porin channels. 

Aminoglycoside 

resistance in Gram- 

negative bacteria. 

Altered target 
Modification of ribosomal 

proteins or 16S rRNA. 

Streptomycin resistant 

Mycobacterium spp. 

fluoroquinolones 

Decreased uptake 

and increased 

excretion 

Alterations in the outer 

membrane diminishes uptake of 

drug. Activation of efflux 

pumps to excrete drug. 

Fluoroquinolones 

resistant Gram-negative 

bacteria and staphylo-

cocci. 

Altered target Changes in DNA gyrase. 

Fluoroquinolone resistant 

Gram negative and 

positive bacteria 

Glycopeptides Altered target 

Alteration in cell wall precursor 

which decreases the binding of 

vancomycin and teicoplanin. 

Vancomycin resistant 

enterococci. 

 

1.3.3 Transferrable resistance – with plasmids in focus  

Once genetic antibiotic resistance has developed in one bacterial strain, it can transfer to other 

bacteria via horizontal gene transfer, which can take place between bacteria of the same or 

different species. There are three mechanisms of horizontal gene transfer which are 1) 

conjugation, 2) transduction and 3) transformation, Figure 429.  

Plasmids are circular extra chromosomal DNA elements which replicate independently in the 

cytoplasm of the bacterium. They often contain non-essential genes that sometimes gives the 

bacterium a selection advantage, like antibiotic resistance genes. Plasmids are inherited 

vertically, from mother to daughter cell, at replication. Many plasmids also have the ability to 

transmit horizontally between bacterial cells and are called conjugative plasmids Figure 4. To 

ensure stable inheritance many plasmids contain toxin-antitoxin addiction systems which kills 

the new daughter cell if it does not contain the plasmid30. Because plasmids are self-

replicating units that have an individual evolutionary history some scientist consider them 

living organisms31. 
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One of the main transmission routes for ESBL genes is via conjugative plasmids. The 

plasmids can be characterised by separation into different incompatibility groups depending 

on differences in replicon types present on the plasmids. The most common incompatibility 

groups in connection to ESBL/pAmpC genes are IncF, IncI1, IncK and IncN32,33. The success 

of the global epidemic E. coli clone ST131 is tightly linked to conjugative IncF plasmids. 

Transduction via bacteriophages has also been shown to have an impact on the diversity of 

the ST131 genome34.  

 

Figure 4. Mechanisms for horizontal transfer of genetic material in bacteria. Rights to reprint via 

Elsevier35. 

 

1.4 WHAT ARE ESBLs? 

ESBLs are enzymes, produced by bacteria, which have the ability to hydrolyse extended-

spectrum cephalosporin antibiotics (as well as penicillins). In the classical definition of ESBL 

the gene also has to be transmissible horizontally between bacteria on some sort of mobile 

element like a plasmid36,37. ESBLs were first detected in a clinical isolate of Klebsiella 

ozaenae in the beginning of the 1980s38. A rapid development and spread of several different 

classes of ESBLs followed39,40.  

There are different ways of classifying ESBL and β-lactamases. One commonly used system 

is Ambler classification that divides β-lactamases based on the amino acid sequence, and 

what mechanism that is used for hydrolysis (serine- vs metalloenzymes), into four categories 

A, B, C and D41-44. In Sweden we tend to use the definition ESBLA (enzymes like CTX-M, 

TEM, SHV which are inhibited by clavulanic acid), ESBLM (a miscellaneous category 

including enzymes like plasmid mediated AmpC β-lactamases) and ESBLCARBA (enzymes 
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giving carbapenem resistance like NDM and KPC)36,37. The focus of this thesis is on ESBLA 

and ESBLM expressed as ESBL/pAmpC for clarity.  

The most common ESBL-enzymes worldwide are CTX-M, TEM, SHV and OXA45. The 

CTX-M are both the largest group and the most prevalent enzymes in human bacterial 

pathogens. Since 2009 a variant called CTX-M-15 has dominated but also CTX-M-14, CTX-

M-1 and CTX-M-27 are commonly identified46.  

 

1.4.1 Clinically important bacterial species associated with ESBL/pAmpC 

A plenitude of different bacterial species can carry ESBL/pAmpC. However, the most 

important species for human clinical infections is in the Enterobacterales family. In addition, 

Acinetobacter baumannii and Pseudomonas aeruginosa are sometimes identified with ESBL. 

These two species also feature high intrinsic resistance to many antibiotics making them 

clinically hard to treat and therefore of high public health interest. In Sweden only ESBL 

identified in Enterobacteriaceae are notifiable according to the communicable disease act. 

This thesis is focused on ESBL/pAmpC-producing E. coli because of their diverse ecology 

and great zoonotic potential. ESBL/pAmpC-producing Klebsiella pneumoniae is also an 

important pathogen but mainly associated with nosocomial transmission. In two of the papers 

included in this thesis we also investigated community carriage of ESBL-producing K. 

pneumoniae but positive carriers were only identified in paper III. When investigating 

transmission routes for ESBLs connected to foods and community carriage, E. coli will have 

the most important role as vehicle for expansive dissemination. 

 

1.4.2 E. coli biology and typing 

Already back in 1893 a Danish veterinarian hypothesised that some E. coli species were 

pathogenic while others were not, contrary to Koch's postulate (1884) that bacterial species 

are either pathogenic or non-pathogenic47.  

Today E. coli can be divided into three separate categories depending on their level of 

pathogenicity34,48. The first is commensals that most of the time lack virulence factors and are 

therefore not pathogenic. In many humans these are part of the natural gut microbiota. The 

second is extra-intestinal pathogenic E. coli (ExPEC) which can infect humans and cause e.g. 

urinary tract infections (UTI) and/or bloodstream infections (BSI). These can be part of the 

normal human gut microbiota but also possess virulence factors necessary to cause infections 

outside of the intestinal tract. The third one is pathogenic intestinal E. coli which are not 

normally present in healthy humans. These have been divided into six different pathotypes, 

one of them including EHEC (Enterohemorrhagic E. coli)34.     

Pathogenic E. coli has a wide range of virulence factors which allows them to attach and 

interact with mucosal membranes, invade and later multiply in our bodies. To attach to 
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surfaces E. coli uses different types of adhesins such as fimbriae which are tail-like structures 

on the outside of the bacterium. Fimbriae, and other adhesins, help E. coli to colonise the 

intestine but also to form colony-like structures by attaching to each other49. Some E. coli 

also produce toxins the most famous being the shiga toxin originating from Shigella 

dysenteriae but also produced by STEC (Shiga Toxin producing E. coli).      

The E. coli genome consists of one chromosome around 5 Mb in size and often one or several 

plasmids. The content of the genome is extremely variable depending on which type of E. 

coli you are looking at.  

Attempts have been made to characterize the pan- and the core genome of E. coli. The 

fundamental behaviour of the pan- and core genome are that as you add more strains one will 

increase (pan) while the other decreases (core). One study using whole genome sequences 

from 61 different E. coli (including Shigella spp) found that the pan-genome consisted of 

around 15,741 gene families while the core genome had 993 gene families. This means that 

on average a minority of gene families, only around 6%, are present in every E. coli which 

makes the accessory genome vast in comparison50. With this information at hand we have to 

question the set-up and usefulness of one single core genome as a typing tool for E. coli.    

Typing techniques of E. coli strains that causes infections have since around 10 years back 

been centered on Multi Locus Sequence Typing (MLST). In this method 7 housekeeping 

genes are sequenced, and each unique allelic sequence is given a distinct number. Together 

the numbers from the allelic sequences are organized in sequence types (STs), where each 

unique allelic barcode translates to a unique ST51. In recent years, due to the increasing 

availability of WGS-data, the classical MLST scheme has been expanded to core genome 

MLST (cgMLST) which follows the same principle. The idea with cgMLST is to define a set 

of genes that are present in all bacteria of the species of interest. Also schemes for whole 

genome MLST (wgMLST) including both core and accessory genes have been developed for 

several bacteria52,53. Both cgMLST and wgMLST can and are widely used as the basis for 

SNP-calling to generate SNP-alignments to use for phylogenetic analysis.   

 

1.5 ESBL/pAmpC-PRODUCING E. COLI IN HUMANS 

The epidemiology of ESBL/pAmpC-producing E. coli in humans is multi-sectorial and fast 

changing. Several possible transmission routes in combination with different transmission 

entities (i: genes, ii: plasmid with genes or iii: bacteria with genes and/or plasmids) makes it a 

challenging task to understand the bigger picture. Figure 5 represents a simplified example of 

how ESBL/pAmpC-producing E. coli disseminates. In the centre of the story we find human 

community carriers that work as transmission mediators for ESBL/pAmpC-producing E. coli, 

from different sources, to clinical infections in humans. The transmission is faecal-oral and 

you can become a carrier by consuming bacteria from contaminated food or by interaction 

with contaminated environments or other carriers. ESBL/pAmpC-producing E. coli 

disseminate both via clonal transmission of successful bacterial lineages and via plasmids 
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between bacteria. When we consume antibiotics, we select for the bacteria harbouring the 

ESBL/pAmpC genes in our gut microbiome. Far from all ESBL/pAmpC-producing E. coli 

carriers get infections from their unwanted passengers, which makes most carriers non-

symptomatic. This adds a layer of complexity since the transmission between relatively 

healthy community carriers takes place in silence.     

 

Figure 5. Schematic drawing representing the quintessential examples of how ESBL/pAmpC-

producing E. coli are established and spreads among humans and in our environment. Right to reprint, 

CDC Stacks12.  
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1.5.1 Risk behaviours connected to community carriage of  
ESBL/pAmpC-producing E. coli 

Intestinal carriage can be detected if a patient is screened e.g. upon admittance to hospital or 

in specific screening studies. There are no regular surveillance systems that monitor intestinal 

carriage of ESBL/pAmpC producing E. coli in the community in Sweden. However, several 

studies have been done especially in connection to investigating foreign travel as a risk factor 

for becoming a carrier. The results suggest that travel to high prevalence countries, especially 

in northern Africa and Southeast Asia is a risk factor for becoming a carrier54-61.  

It is clear that travels contribute to the prevalence of community carriers in Sweden, however 

it is difficult to estimate how this population effects the overall prevalence in society since 

other factors such as health-care association, food intake and antibiotic use contributes to 

carrier prevalence. In paper II, we investigated the risk factors connected to carriage on a 

community level as opposed to only studying travellers.  

International surveillance initiatives are lacking when it comes to community carriage but 

local studies on carriers exist in some countries59. An increasing trend of carriage of 

ESBL/pAmpC producing E. coli has been described since the beginning of the 2000s and the 

prevalence ranges between a few percent and up to 60-70% for populations investigated in 

Thailand and Egypt59,62,63. A review and calculation on pooled prevalence based on studies 

reporting faecal carriage concluded an average worldwide carrier prevalence of 14% with an 

annual increase of 5.4% between 1991 and 201464. Taking this evidence into account one can 

only conclude that the carriage prevalence of ESBL/pAmpC-producing E. coli is significant 

and that it likely contributes to community acquired infections that are hard to treat and could 

lead to treatment failures. This makes it urgent to better understand the epidemiology of 

ESBL/pAmpC-producing E. coli in society so that prevention measures to curb the 

dissemination can be put into place. To investigate the epidemiology of ESBL/pAmpC-

producing E. coli in Northern Europe we combined efforts with five other countries and 

conducted a prevalence study on carriers in Finland, Latvia, Germany, Poland, Russia and 

Sweden, Paper III.      

There has been much debate in recent years regarding the prevalence of ESBL/pAmpC -

producing E. coli, including carbapenemase-producing E. coli in refugees seeking asylum. 

The debate both concerns the dissemination in the community but also how to apply 

screening strategies towards this group. People seeking asylum in Sweden often originate 

from countries with suspected high prevalence of ESBL/pAmpC-producing E. coli in the 

community, like Syria, Afghanistan, Iraq, Somalia and Eritrea. However, because studies 

from these countries are limited it is impossible to make evidence-based conclusions. In a 

recent study from Germany, including 1,544 asylum seekers, 294 i.e. 19% tested positive for 

ESBL but zero carbapenemase resistant isolates was identified. The most common ESBL 

genes identified were blaCTX-M-15 (79%) and blaCTX-M-27 (10%) and ST131 accounted for 24% 

of MLSTs among carriers65. As a comparison approximately 20-30% of tourists visiting 
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Southeast Asia are positive for ESBL when they return from their trip54,55,61. Annually about 

200,000 Swedes visit Thailand66.  

 

1.5.2 Trends in surveillance of invasive infections caused by ESBL/pAmpC 
producing E. coli  

On a European level EARS-Net monitors the prevalence of antibiotic resistance to several 

important antibiotics, in isolates from BSI67. Since the surveillance began in 2000, in total 31 

countries have joined and are reporting data each year. The monitoring uses phenotypic 

resistance and the proxy for estimating ESBL/pAmpC is resistance to 3rd generation 

cephalosporins. In Figure 6 a summary of the resistance to 3rd generation cephalosporins in E. 

coli causing BSI reported by members since 2005 shows a steady increase over time. The 

monitoring is sensitive to cultivation numbers, which forms the denominator, and varies 

greatly between countries because of the use of different clinical indications on when to take 

a blood culture. If only severe cases are cultured the probability of the isolate causing the 

infection being resistant increases, which inflates the proportion of resistance isolates. This 

can be seen in Figure 6 where the proportion of resistant isolates varies greatly from one year 

to another for some countries. In Sweden, where blood cultures are taken generously, the 

estimated ESBL/pAmpC proportion in E. coli BSI has increased from 1.7% in 2005 to 7.7% 

in 201768-70. Central Asia and Eastern Europe has a similar network called CAESAR71. 

 

 
Figure 6. General trend shows an increase in resistance to 3rd generation cephalosporins in 

European countries during the last 12 years.  

 

According to Swedish recommendations cephalosporins are part of the first line treatment for 

BSI, and it is therefore important to monitor trends since a high share of resistance can lead to 
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treatment failures72. One important risk factor for having a BSI with ESBL-producing 

Enterobacteriaceae is previous ESBL-positive culture (carriage and/or infection)73-75. The 

number of people at risk for ESBL-BSI could therefore increase if community carriage 

increases75.  

 

1.6 ESBL IN RESISTANCE EPIDEMICS 

Sometimes an antibiotic resistance gene end up in a genetic environment, like close to an 

active transposon or get moved onto a successful plasmid, which allows it to spread fast to 

several different bacteria. Some well-known examples of this are the blaCTX-M-15 association 

with an active ISEcp1 transposase and the colistin resistance gene mcr-1 which has 

disseminated to a range of plasmids via its association to the ISApl1 transposon76-78. When a 

successful resistance gene end up in a bacterial host with favourable traits the combination 

can make the bacteria very successful because of its ability for rapid dissemination, 

colonisation and persistence. These bacteria are known as high-risk clones. The high-risk 

clones are responsible for epidemic spread leading to endemic situations in some settings.  

One example is the nosocomial spread of KPC-producing K. pneumoniae ST258 which has 

been ongoing since the beginning of 200079. Which exact traits that defines a high-risk clone 

are under debate but they are generally described as a combination of virulence factors and 

multidrug-resistance34,77,79,80. 

 

1.6.1 E. coli ST131 and its subclones 

In 2008 a new E. coli sequence type called ST131 was discovered in clinical isolates at 

several places simultaneously80-83. A few years later it was, and still is, the most common 

sequence type in human clinical infections with ESBL-producing E. coli84.  

ST131 is a lineage of E. coli that can cause extra-intestinal infections (ExPEC) and almost 

exclusively belong to phylogenetic group B280. The lineage is mainly connected to the gene 

blaCTX-M-15 and plasmids with replicon type IncF and is often multidrug-resistant. Almost all 

clinical strains of ST131 are also resistant to fluoroquinolones which means that the 

widespread use of this substance, for treating common infections such as UTIs, has likely 

contributed to selection for this sequence type76,77,81,85,86. In Sweden the share of ST131 has 

been around 30-40% in UTIs caused by ESBL-producing E. coli in national surveillance 

since 200787. In manuscript IV we performed a modulation of the ST131 emergence which 

supports the observation of a stable proportion of ST131 in infections since 2005. 

Two studies suggested in 2013-2014 that the spread of ST131 was due to the dissemination 

of one single highly pathogenic sub-clone called H30-Rx or C2 (referred to as C2)88,89. The 

evidence presented was based on Whole Genome Sequencing (WGS) (Illumina) and the 

construction of maximum likelihood and maximum parsimony phylogenies. The clade C2 
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was separated by few SNPs, and almost exclusively contained blaCTX-M-15. The conclusion 

was that instead of several independent acquisition events of plasmids of IncF replicon type 

containing the gene blaCTX-M-15 the emergence was connected to a single clone. The 

calculations regarding when this emergence took place differed somewhat with one study 

suggesting the mid-1980s88 and the other before 200089. 

Further investigations of the evolutionary history of this clone has been done with a time-

scale phylogeny using BEAST (Bayesian Evolutionary Analysis Sampling Trees). The 

authors concluded that the C2 clone had emerged around 1987 and that the geospatial 

patterns were weak86,90. The mutation rate was determined to around 1 SNP per year per 

genome. In the analysis, a strict clock model was assumed together with constant population 

size90. Another modulation, using the same method, gave similar results but used a different 

model for the mode of mutations as well as the prior tree model the data was fitted to. 

However, the overall result regarding tree topology, clade separation and approximate time of 

emergence were similar between the studies86. None of the global phylogenetic studies have 

included ST131 from Sweden. In manuscript IV we investigated the introduction patterns of 

ST131 producing ESBL in Sweden and how the Swedish isolates relate to the global 

epidemiology.  

 

1.7 ESBL AND pAmpC IN FOODS AND FARM ANIMALS 

Total antibiotic use and resistance emergence are closely linked to the use of antibiotics in 

agriculture. By overuse and misuse in the agricultural sector we are accelerating the evolution 

and emergence of resistance. Tackling antibiotic resistance therefore becomes a “One Health” 

project since the majority of antibiotic usage globally are in agriculture and animal 

husbandry. Actions are taken, for example in the United States, where use of antimicrobials 

as growth promoters to healthy animals is legal, new legislation has decreased the use of 

clinically important antibiotics usage to farm animals by 43% between 2015 and 201791. 

However a study estimated that the antimicrobial consumption in livestock production will 

increase by 67% between 2010 and 2030. About a third of the increase is estimated to be due 

to changing production in middle-income countries since the demand for meat is on the rise92.  

ESBL/pAmpC-producing E. coli has a history of presence in farm animals and a specifically 

intimate relationship with poultry production93-96. However, reports of ESBL/pAmpC in pig 

and cattle farms show that the problem is far from isolated to poultry production97-99.  

The poultry production is organized in a pyramidal structure where few individuals at the top 

of the pyramid (called pedigree and Great Grandparents Stock) gives rise to several 

generations before reaching the broiler level at the bottom, which are the chickens we 

consume. Studies have shown that transmission downward in the pyramid can take place100-

103. Because of this structure it is very hard to get rid of the resistant bacteria once they have 

been introduced. 
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In late 2015 a study from China described plasmid-mediated colistin resistance for the first 

time which was found to have emerged from use of this substance in pig production for many 

years104. This was especially devastating (even if not unexpected) since colistin is nowadays 

often the last resort treatment option for carbapenem resistant Gram-negative bacilli.  

In 2011 the European Food Safety Authority (EFSA) Panel on Biological Hazards released a 

scientific opinion on “the public health risks of bacterial strains producing Extended-

Spectrum β-lactamases (ESBL) and/or pAmpC β-lactamases (pAmpC) in food and farm 

animals”105. The panel concluded that the most important genes for possible dissemination 

between animals and humans are blaCTX-M-15, blaTEM, blaSHV and blaCMY. They also concluded 

that although the prevalence of ESBL/pAmpC in farm animals is largely unknown it has been 

connected with the production pyramid in poultry and efforts should be taken on a European 

level to reduce the use of antibiotics in animal production. The panel further wrote that there 

is a possible risk for transmission of ESBL/pAmpC producing bacteria from farm animals 

(mainly poultry) to humans via the food chain105.  

High levels of ESBL/pAmpC-producing E. coli in poultry has been reported globally and 

from several European countries106. Prevalences often ranges from 40 to 100%95,100,107. The 

bacteria are present throughout the broiler production pyramid and disseminate despite the 

absence of selection pressure from antimicrobial usage100,108,109.  

In 2010 the Swedish National Veterinary Institute (SVA) discovered a 34% prevalence of 

ESBL/pAmpC-producing E. coli among Swedish broilers in the surveillance program 

(SVARM) despite very low antibiotic use in the sector. This indicated that imported breeding 

stock could be part of the problem110. The genes present on broilers in Sweden are mainly 

blaCTX-M-1 and blaCMY-2
69.  

 

1.7.1 Transmission of ESBL/pAmpC from foods and farm animals to humans 

One important question to answer is if transmission of ESBL/pAmpC-producing E. coli from 

farm animals via the food chain to humans occur. If the answer is yes, a follow-up question 

is; to what extent does this transmission contributes to disease in humans? That transmission 

likely can occur has been reported in several studies111-113. However, evidence suggests that 

the spread might be via plasmids and not clonal lineages and might vary depending on the 

local epidemiology in poultry111,112. In Sweden 44% of chicken filets are contaminated with 

ESBL/pAmpC producing E. coli, so we obviously consume these bacteria on a regular 

basis114,115. 

In 2011 a study from the Netherlands showed a large genetic overlap in ESBL genes from E. 

coli isolated from chicken meat, human faecal samples and human blood cultures and 

concluded that the increase in ESBL/pAmpC seen in humans could be due to transmission 

via the food chain96. Further analysis identified E. coli MLST ST10, the ESBL-gene blaCTX-M-

1 and plasmid replicon type IncI1 as the most common overlapping isolates between chicken 
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meat and human isolates111. This, and other studies, inspired a range of similar investigations, 

including our paper I, since the authors concluded that the prevalence in poultry could be the 

reason for the increase seen in human infections.  

Several studies have shown that farmers have a higher risk of being colonised with 

ESBL/pAmpC-producing E. coli97-99,116. This is not surprising considering the high 

prevalence of ESBL/pAmpC in especially poultry. However, a recent study compared 

ESBL/pAmpC-producing E. coli carrier rates in poultry, farmers and non-farmers in rural 

Vietnam and found juxtapose results, here farmers had significantly lower carrier prevalence. 

In fact, the chickens had a much lower carrier prevalence, of 14.7%, compared to humans at 

40.2% in average. In this setting the chicken production was non-intensive which indicates 

that the increased risk for becoming carrier as a farmer might only apply to farmers working 

in specific poultry production systems. On the other hand, carrier prevalence was altogether 

very high for humans, 31.9% for farmers compared to 49.5% in non-farmers, which might 

dilute the effect of the contribution from the chickens117.  

There is a great concern that one of the clinically most problematic E. coli lineages, ST131, 

will establish a reservoir in poultry because of its human pathogenicity and because it is often 

associated with ESBL. Unfortunately, there are already some indications that this is taking 

place. In 2012 researchers in the US collected and typed isolates, using NGS, from chicken 

meat and human Urinary Tract Infection (UTI) in a prospective study. They found that ST131 

with a specific type of fimbriae, fimH22, was present in both chicken and the human clinical 

samples, accounting for 2% of the clinical infections118. All in all, 2% is not an overwhelming 

number but still an unwelcome contribution from chicken meat to human clinical infections. 

There are also case reports of the ST131/fimH22 causing human BSI119. The fimH22 allele is 

associated with clade B in the ST131 phylogeny which is not closely associated with ESBL-

production118. In addition, ST131 was also detected on chicken meat in Italy in 2015120.   

In 2017 the European Centre for Disease Control, European Food Safety Authority and 

European Medicines Agency (ECDC/EFSA/EMA) released a report (JIACRA) where they 

used statistical modelling (Partial Least Squares Path Modelling) to determine which 

transmission routes that are the most important for the resistance seen in humans. The model 

included antibiotic resistance and antibiotic consumption in farm animals and humans and 

was performed for several different pathogens. The result showed that for ESBL-producing 

E. coli the main reason for antibiotic resistance in humans was antibiotic consumption in 

humans and not prevalence of resistance or consumption of antibiotics in animals. However, 

for Salmonella spp and Campylobacter jejuni, which are spread by clonal transmission, there 

were clear connections between antibiotic resistance in animals and humans121. Even though 

these results are modulation the results are interesting. However, the authors concluded that it 

remains to be elucidated how plasmid spread effects models like these.      

One worry from the very successful dissemination of ESBL/pAmpC in humans and animals 

is that a similar spread with carbapenemase-producing bacteria will take place if prevention 

measures are not taken. 
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1.8 PHYLOGENETIC ANALYSIS 

Mutations arise constantly and randomly across the bacterial genome when the DNA 

polymerase makes mistakes which are not corrected or wrongly corrected. This gives rise to 

changes like single nucleotide polymorphisms (SNPs). The SNPs can have several different 

effects on the protein being expressed but can also be silent, i.e. no phenotypic effect is seen 

because of the mutation. If the SNP gives rise to an amino acid change that may affect the 

ability of the bacteria to survive and grow in its environment. If a SNP is beneficial it can 

eventually be fixated in the population i.e. every individual in the population or 

subpopulation will have it. Also non-beneficial mutations can be fixated because of genetic 

drift. Anyhow the differences in accumulated SNPs are used to make phylogenetic inference 

on relatedness between individuals. The basic idea is that the more SNPs that have 

accumulated the longer time the organisms have been separated. In reality it is not that 

simple, mutations can reverse, occur at different rates and since there are only 4 bases, A, T, 

C and G, several mutations can sequentially happen and the final nucleotide could still be the 

same as the reference. Different mathematical substitution models have been developed for 

modelling purposes which assumes different patterns and rates, some examples are JC122, 

HKY123 and GTR124 that are all commonly used in phylogenetic modelling125.  

For many years, phylogenetic inference was done on differences in single conserved genes in 

the organism/s that you wanted to examine. However, the introduction of WGS in 

surveillance now allows us to perform very fine-tuned phylogenetics on bacteria in outbreak 

situation utilising SNPs accumulated over the shared genomic parts between the isolates in an 

outbreak. It would not have been possible to analyse outbreaks with bacteria, with 

phylogenetics, using single conserved genes since not enough variation in form of SNPs exits 

to draw conclusion on relatedness close in time. In manuscript IV we performed a 

phylogenetic analysis of ESBL-producing E. coli ST131 using a SNP alignment from the 

shared genome of the dataset as input data.  

Time-scale phylogeny, is a powerful tool in outbreak investigations since you can calculate 

the time point of the most recent common ancestor (MRCA). This means that you can 

determine approximately when an epidemic started and how it has spread from that time 

point. A story that demonstrated how powerful such an analysis can be is that of the 

“Bulgarian nurses affair” that took place in Libya from 1999 to 2007. Six foreign aid workers 

were imprisoned and sentenced to death after being accused of deliberately spreading HIV to 

more than 400 children in the hospital where they worked 

(http://news.bbc.co.uk/2/hi/europe/6192599.stm accessed on 2019-03-04). Suspicions were 

that this epidemic had already started before the aid works arrived in March 1998 and to 

corroborate this hypothesis, sequences from the hospital outbreak were compared to already 

published HIV sequences. The results of the time-scale phylogenetics showed that the strains 

from the children had a MRCA before 1998 and that the epidemic had already been spreading 

for quite a while before the foreign workers arrived to the hospital126. These scientific results 

together with other evidence made it possible for the European Union to feel secure when 
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negotiating for the release of the workers which eventually happened after almost 10 years of 

imprisonment.     

Phylogenetics as a tool to investigate outbreaks is a relatively new field for public health 

microbiologists and still under development. Many questions remain to be answered, such as 

defining cut-offs on the number of SNPs that can be allowed to include isolates in an 

outbreak with a common source. Often straight and easy answers are demanded where there 

are none to be found. This is also the reason why I have chosen to make a more 

comprehensive description of this method. 

 

1.8.1 Phylogenetic inference using Bayesian Evolutionary Analysis 
Sampling Trees (BEAST) 

One way to perform time scale phylogeny is to use Bayesian inference. Bayesian statistics is 

separated from the classical frequentist statistics in several ways which is beyond the scope of 

this thesis. However, a fundamental difference relevant for the work within this thesis is that 

you use a prior probability distribution, referred to as just prior, that you draw samples from 

in order to make conclusions about the distribution in your data. Bayesian statistics was not 

popular during the 20th century but was revitalised toward the end of the 20th and beginning 

of the 21th century because of the introduction of the Markov Chain Monte Carlo (MCMC) 

algorithm. The MCMC allows sampling from the prior distribution, even if complex, in a 

computationally efficient way. The Monte Carlo refers to a stochastic method to generate 

numerical values from a probability distribution that is tested (e.g. an exponential population 

growth). The Markov Chain will link these stochastic draws so that the probability of a new 

event depends on the value of the previous event. The MCMC will generate a trace 

representing sampling events that is used to determine how well the data fits the tested prior.  

BEAST is a software package that uses Bayesian inference and via MCMC infer time-scale 

phylogenetic trees, mutation rates and population sizes. To find the best fitting model for a 

dataset there are several different substitution models, molecular clocks and coalescent tree 

priors to select from127,128.  

Regarding molecular clocks, a strict clock is the most basic model, which assumes that the 

evolutionary rate is the same for all branches in the tree. Hence one clock parameter will be 

estimated129. A strict clock is always the basic parameter that is used to compare more 

complex models towards in order to estimate the best fit for the data. A more complex clock 

model is the uncorrelated relaxed clock, which allows the evolutionary rate to be different 

between the branches in the tree. This means that the evolutionary rate of one branch can be 

separated from the others. The relaxed clock therefore allows a more heterogeneous evolution 

where changes can happen fast in some lineages and slower in others129.      

The tree priors are used as the prior model that the MCMC samples from and they are all 

based on the theory of coalescence. The theory of coalescence refers to a model which traces 
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back alleles retrospectively to the last common ancestor, otherwise known as the most recent 

common ancestor (MRCA), for two individuals which have the allele under investigation. In 

the simplest model, the coalescent constant size prior assumes no population growth, no 

natural selection, no recombination and no gene flow which means that each allele is 

inherited to the next generation at a constant rate127. There is of course no natural population 

that behaves in this way but it is useful as a baseline for comparisons with other more 

complex tree priors. Other coalescent tree priors assume that some sort of population growth 

and/or decline has taken place, e.g. the exponential growth tree prior where we assume that 

natural selection has increased the frequency of the allele and/or the population. The different 

tree priors are used to see which of the models that fit the data best. For example, there are 

models referred to as non-parametric, e.g. Skyride and Skygrid, which use multiple time 

points to describe the dynamics of a population where several changes has occurred. These 

are helpful when modelling e.g. influenza epidemics or for epidemics where host immunity 

affects population size130. 

 

Figure 7. Schematic representation of population size over time in an exponential (A) and a constant 

(B) tree prior, copyright via CC BY 4.0131. The tree priors are used as models to test if the investigated 

population has spread in a similar manner. 

 

When doing genealogies on bacteria that has recombinant regions, like E. coli, it is important 

to remove these regions prior to analysis. Failing to do so can disrupt the clock signal and 

lead to an overestimation of the evolutionary rate. Horizontally transferred genetic material 

could have evolved under a different selection pressure and therefore accumulated mutations. 
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When a recombinant region is introduced in a genome it can contain several SNPs, but it only 

represents one evolutionary event. This is also the basis of recognizing recombinant regions, 

you study parts of the shared genome that has a concentration of mutations compared to the 

reference genome or genomes132.  
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2 AIMS 

The general aim of the thesis was to investigate the epidemiology of ESBL/pAmpC-

producing E. coli with a specific focus on community carriers and their role in the 

transmission chain. The prevalence of community carriers will affect the resistance burden on 

primary care and hospitals when an increasing share of patients that seek health care will be 

carrying ESBL/pAmpC-producing E. coli.  

ESBL/pAmpC genes are widely disseminated globally in nature, among animals, in foods 

and in humans and we wanted to better understand what sectors and what type of 

ESBL/pAmpC-producing E. coli that contributes to sever clinical infections in humans. Our 

working hypothesis was that people that consume foods with high levels of ESBL/pAmpC-

producing E. coli could become carriers of these bacteria in their intestine to a higher degree 

compared to people not consuming these foods to the same extent. Since intestinal carriage is 

a risk factor for clinical infection with ESBL/pAmpC-producing E. coli in humans133,134, we 

further hypothesised that resistant bacteria from intestinal carriage also could contribute to 

severe infections. To answer these questions, we investigated the prevalence of 

ESBL/pAmpC-producing E. coli in different foods and compared the molecular 

characteristics of identified isolates to human isolates (paper I).  

Since we wanted to study the epidemiology of ESBL/pAmpC-producing E. coli in 

community carriers we needed baseline information on how many in the community in 

general that carry these bacteria as well as information on important risk factors for being a 

community carrier. In paper II we aimed to investigate the general prevalence of 

ESBL/pAmpC-producing E. coli and K. pneumoniae in Sweden as well as risk factors 

associated with being a carrier. We hypothesized that consumption of chicken meat and 

foreign travel would be risk factors for being a community carrier.  

In paper III we instead aimed to investigate the prevalence in specific study populations in 

Sweden and our neighbouring countries Finland, Latvia, Russia, Poland and Germany. We 

hypothesised that there would be differences in carrier prevalence between countries. 

Many people are carriers without getting infections. Several patient risk factors, such as age 

and underlying diseases, make some patient more prone to get infections. However the 

pathogenicity of the E. coli bacteria might also play a role in why some get infections while 

others do not. We hypothesised that there are some types of ESBL/pAmpC-producing E. coli 

which more often cause clinical infections. We investigated this by comparing the molecular 

characteristics of ESBL/pAmpC-producing E. coli isolates from community carries and BSI 

(paper II).  

In the comparison of molecular traits in paper II we identified several genetic characteristics 

that accumulated in BSI compared to carriers. Most of them were connected to the wide 

spread E. coli clone ST131. To understand the origin of the Swedish E. coli ST131 

population we performed a comparative phylogenetic analysis with the international lineage 

in manuscript IV. Since the ST131 lineage is common in human infections knowing the 
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expected genetic variation is helpful when performing outbreak investigations. We 

hypothesised that several introductions from the international lineage would be present in 

Sweden. In addition, we expected that resistance genes would be located on both plasmids 

and chromosomes. We also wanted to investigate if one could detect similar plasmids in 

Swedish ST131 clusters, which would be helpful to guide future implementation of plasmid 

sequencing for transmission tracking.  
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3 METHODS 

 

3.1 STUDY DESIGN AND SAMPLING METHODS  

Several large national sample collections, from various sources, forms the basis of the data 

for the papers included in this thesis. The sample collections for paper I, II and IV were 

organised and carried out in a collaboration between the Public Health Agency of Sweden, 

the National Food Agency and the National Veterinary Institute. The collection of samples 

from foods (leafy greens and different kind of meats), farm animals and humans was 

coordinated both in time and geographically. Included non-human samples were leafy greens 

(n=522), meats (n=708) and farm animals (n=1082) (paper I).  

In paper II we performed a population-based cross-sectional study to determine the 

prevalence of community carriers of ESBL/pAmpC-producing E. coli in Sweden in 2012-

2013. A questionnaire based approach was used to collect information on possible risk 

behaviours associated with carriage of ESBL/pAmpC-producing E. coli. The study base was 

persons with a Swedish civil registration number between the age 18-72. In total 2134 

individuals answered a questionnaire and provided faecal samples for screening.  E. coli, with 

decreased susceptibility to cefotaxime and/or ceftazidime, from patients with BSI (n=418) 

were collected from Swedish clinical microbiological laboratories. Biases included response 

rate and recall bias. 

In paper III we performed a cross-sectional study on the prevalence of ESBL-producing E. 

coli in defined cohorts (students, elective surgery, primary care visitors and web-based 

recruited volunteers) in Sweden, Finland, Latvia, Russia, Poland and Germany in 2015-2017. 

The cohorts were defined in order to collect comparable data between countries. A 

questionnaire was used to collect information on exposure to possible risk factors. The study 

base was people in the defined countries and cohorts between the age of 18-65 that had 

resided in the country for at least 1 year and not taken antibiotics during the last 3 months 

prior to sampling. For all participating countries 1211 faecal samples with accompanying 

questionnaire were collected in total. 

Limitations included the use of different study populations in the participating countries, 

sample size, no information on response rates and recall bias.   

The use of different sampling methodologies also makes it difficult to compare the Swedish 

prevalence results from paper II and III.  

 

3.2 CLASSICAL TYPING METHODS  

In our studies we have used both classical methods, such as phenotypic characterisation, 

molecular characterisation by PCR and Sanger sequencing of specific genes, as well as newer 

methods such as NGS of whole genomes. Phenotypic characterisation with disc diffusion and 

gradient tests were used on all isolates in our studies against extensive panels of antibiotics. 
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Furthermore, molecular characterisation was done with specific PCRs and Sanger sequencing 

to determine the MLST (Achtman) of isolates as well as the sequence of resistance genes.  

 

3.3 NGS-METHODS 

During the last five years molecular typing of antibiotic resistance has evolved from gene 

detection with PCR and Sanger sequencing to NGS based WGS, or amplicon sequencing, to 

detect regions coding for resistance, virulence factors or any other genetic element of interest 

as well as for MLST.  

In this thesis we used long-read sequencing (PacBio) on a dataset of ESBL-producing E. coli 

ST131 (n=29). The PacBio methodology was developed by Pacific BioScience and is a 

single-molecule real-time (SMRT) sequencing method. The sequencing takes place in SMRT 

cells that contain wells called zero-mode waveguide (ZMW). In each well a DNA 

polymerase is fixated at the bottom which performs replication with fluorescent nucleotides. 

The DNA target is circularised by hairpin adaptors ligated to the ends, which allows multiple 

rounds of replication of a single target molecule. The long-reads allows for de-novo 

assemblies and can be used to map repetitive regions. It can also be used for transcript 

sequencing and provide information on base modulations such as methylation. The 

downsides of using PacBio is the high cost per base that is in part connected to the low 

throughput. It also has a higher error rate than short-read technologies135. We used PacBio in 

order to assemble plasmids and chromosomes fully (manuscript IV). The assembly allowed 

us to map the location of resistance genes within each genome which could be visualised 

together with the phylogenetic analysis of ESBL-producing E. coli ST131.  

Some institutes, like the Public Health Agency of Sweden have created in-house pipelines to 

analyse gene content and the relatedness of isolates in a suspected outbreak. There are also 

several online tools that uses unprocessed short read data to analyse the presence of different 

genes as well as to perform phylogenies. One commonly used online tool to detect acquired 

antibiotic resistance genes, that we used, is ResFinder136. The tool allows you to upload raw 

reads from Illumina and Ion torrent or assembled genomes/contigs directly into a web 

application and then it identifies which resistance genes that are present in you data. The 

ResFinder database is based on resistance genes found in NCBI nucleotide database and is 

curated and updated regularly to include new resistance variants136. Historically ResFinder 

was focused on acquired resistance but since implementation of PointFinder it can also detect 

chromosomal point mutations known to be associated with antibiotic resistance137. In 2017 

EFSA made a benchmarking study on different bioinformatics tools to detect AMR genes and 

concluded that several good tools exist. However none of the tools could detect chromosomal 

blaAmpC mutations mediating β-lactam resistance138.  

The Center for Genomic Epidemiology (https://cge.cbs.dtu.dk/services/ accessed on 2018-01-

14) that harbours ResFinder also has additional detection tools and the repertoire is constantly 

expanding. At the time of writing (March 2019) they also supply analysis to detect plasmid 

https://cge.cbs.dtu.dk/services/
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replicon type, perform MLST and plasmid MLST, find virulence or phage-associated genes, 

assemble genomes, conduct SNP analysis, and construct phylogenetics.   

 

3.4 STATISTICS AND PHYLOGENETICS  

We have used several statistical methods in our research but the two main methods were 

logistic regression, to analyse what risk factors that contributed to being a carrier of 

ESBL/pAmpC-producing E. coli, and Bayesian inference for the phylogenetic analysis.  

Logistic regression is used to model categorical dependent variables with e.g. a yes or no 

outcome, or in our case carrier or non-carrier of ESBL/pAmpC-producing E. coli. We use 

univariate and multivariate logistic regression to calculate odds ratios with confidence 

intervals for each of the risk factors we have asked our study subjects to report in 

questionnaires (paper II and III).     

For the phylogenetic analysis we used the BEAST package to infer the E. coli ST131 

genealogy (manuscript IV)128,139. In this analysis we used an international published E. coli 

ST131 dataset (Illumina) as comparison to our Swedish PacBio dataset89. An SNP alignment 

of the shared dynamic core genome between all isolates and the reference EC958140 was used 

as input for the analysis. We used the shared genome to call SNPs from, instead of a cgMLST 

or wgMLST scheme, to achieve the highest possible resolution. Together the E. coli ST131 

isolates shared 79% of their genomes, if we would have used a cgMLST scheme including 

2000 genes as basis for SNP-call we only would have covered 30-40% of the genome. We 

also used SNP-call on plasmids in Swedish clusters to investigate the similarities in plasmid 

composition in clonal clusters. External reference plasmids were identified via BLAST at 

NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on 2019-03-26) using the assembled 

plasmids as input data. If no external plasmid was identified an internal was used as reference 

in the SNP-call.  

 

3.5 ETHICAL CONSIDERATIONS  

This thesis includes research with humans as study subjects. Ethical permission was sought 

and granted for each of the studies (registration numbers EPN 527/2012-4.1.2 and 

2015/1893-31/1).  

The most important ethical consideration when performing this type of research is the 

emotional impact on study participants when they find out that they are carriers of an 

antibiotic resistant bacterium. This can cause severe reactions and some individuals can take 

extreme measures to protect others from being exposed to their bacteria. Interview studies 

with carries show that some carriers alienate themselves and suffer severe anxiety141. Also, it 

could be difficult for carriers to come to terms with that nothing was done to eradicate the 

resistant bacteria and no follow-up screenings were offered.      

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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To ensure that study participants could make an informed decision, information about the 

procedure and what it means to be a carrier were included in both the information before and 

after enrolment. The study participants that turned out to be carriers were given additional 

information and the opportunity to talk to one of our expert clinicians connected to the study 

either over phone or in person. We also adapted the information to make it easy to understand 

for the general public as well as objective and avoiding emotional statements that are often 

used in media to describe the problem with antibiotic resistance. Even though carriage of 

ESBL/pAmpC-producing E. coli is undesirable it is important to remember that it is common 

especially worldwide. We are, at least in some countries, in a situation where a large part of 

the population could be carries59,117,142.  

Recommendations for future studies is to include the possibility to get counselling since some 

participants were helped by this. It could also be an option to offer follow up screening for 

individuals who wish it, this is however complicated as we cannot say that you are not a 

carrier even if a sample is negative and that there are no guidelines regarding this in Sweden. 

Also, it is unclear how additional screenings would affect, or even help, the participant if they 

keep being positive carriers. Although most carriers lose their ESBL/pAmpC-producing E. 

coli after some time some individuals carry the bacteria for years, particularly those who have 

had a clinical infection143.  

Even though study participants can find it upsetting and challenging to receive the 

information that they are carriers of antibiotic resistant bacteria we still consider the studies 

justifiable. The studies contribute with information of public health importance regarding the 

epidemiology of ESBL/pAmpC-producing E. coli and K. pneumoniae. In addition, the 

majority of participants did not express any worries to us after receiving the message 

(although this does not mean that they did not worry). For the two Swedish studies around 

2,400 individuals were enrolled resulting in around 120 carriers, of these two participants 

wished to get individual counselling with our expert clinician. Therefore, the extreme anxiety 

cases must be considered as quite rare events. 
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4 RESULT AND DISCUSSION 
 

4.1 PAPER I 

Limited Dissemination of Extended-Spectrum β-Lactamase- and Plasmid-Encoded AmpC-

Producing Escherichia coli from Food and Farm Animals, Sweden. 

 

Rationale  

The motivation for performing this study was that more information was needed on how 

much of the ESBL/pAmpC-population that is shared between humans, foods and farm 

animals in Sweden. Without this information it is difficult to design effective prevention 

strategies to decrease the burden of ESBL/pAmpC-producing E. coli in human infections. If 

the transmission route of ESBL/pAmpC-producing E. coli to humans from foods like chicken 

meat is over- or underestimated this could lead to interventions without the desired effect of 

decreasing the burden of ESBL/pAmpC-producing E. coli in human infections.  

This study was performed as a baseline for understanding how much resistance in farm 

animals and foods could contribute to humans becoming carriers and getting severe infections 

with ESBL/pAmpC-producing E. coli. We estimated the shared ESBL/pAmpC-producing E. 

coli population by studying basic molecular parameters such as type of ESBL genotype, 

plasmid replicon and plasmid MLST, and chromosomal MLST of the E. coli isolated from 

farm animals, meats, leafy greens, human community carriers and human BSI.  

 

Main findings 

Our main finding was that the population structure of ESBL/pAmpC-producing E. coli in 

foods and animals were mostly different from the population in community carriers and BSI. 

ESBL/pAmpC-producing E. coli isolated from mainly broilers, laying hens and chicken meat 

carried the ESBL genes blaCMY-2 and blaCTX-M-1 on different IncI1 and IncK plasmids. On the 

other hand isolates from humans mainly carried the ESBL genes blaCTX-M-15 and blaCTX-M-14 

on different IncF plasmids. The E. coli MLST type in foods and animals was mainly ST10 

while ST131 dominated among human isolates. E. coli ST10, IncI1plasmids and the genes 

blaCTX-M-1 and blaCMY-2 were identified in both human, foods and farm animal isolates. 

Possible clonal overlap, i.e. the same E. coli ST, plasmid replicon and MLST and 

ESBL/pAmpC-gene between humans and animal/foods were found for one combination, 

ST155-IncI1 (ST3)- blaCTX-M-1, in one community carrier and in one isolate from chicken 

meat.  

 

Discussion 

We conclude that the ESBL/pAmpC-producing E. coli found on farm animals, meats and 

leafy greens in Sweden have a limited effect on the prevalence of these bacteria in human 

community carriers and human BSI. The development seen within the human healthcare 
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sector, where the share of ESBL/pAmpC positive clinical E. coli infections have increased 

the last 10 years68,70, is likely due to spread among humans. With that said we did identify 

some plasmids in isolates from both meats and humans that could potentially have 

disseminated from foods to humans but these plasmids were rarely identified in human BSI 

making the possible contribution from foods low. However, if plasmids and strains with a 

greater human pathogenicity becomes more prevalent in foods in the future they could serve 

as a potential reservoir for resistance plasmids and E. coli strains that cause clinical infections 

in humans.  

Numerous studies on animals and foods as source for ESBL/pAmpC-producing E. coli have 

been performed, in different countries, with contradictory results and conclusions113. The 

reasons for this are multifactorial since different settings, animals, study designs and 

molecular methods were used. One example is studies in low- and middle-income countries 

where farming practices differs from the large-scale production we have in the western 

world117,144. There also seem to be a difference in how researchers interpret and angle their 

findings depending on if the scope of the study was to detect any transmission or to determine 

the overall level of contribution.  

A recent joint source attribution study in the Netherlands analysing ESBL/pAmpC producing 

isolates from 22 different sources (e.g. humans, companion and farm animals, surface water, 

clinical infections, meats etc) isolated between 2013 and 2017, showed similar results as our 

study concluding that the contribution from the environment, animals and meats to humans 

were limited145. The exception were farmers that did have ESBL/pAmpC-producing E. coli 

with the same profiles as their livestock. In total, observations from 35 studies were included 

in this meta-analysis giving the result high external validity. Earlier studies, which suggested 

a large overlap of ESBL/pAmpC-producing E. coli between poultry and human clinical 

infections, likely overestimated the shared population. This because only basic genetics 

(gene, plasmid replicon and E. coli MLST) were used to draw the conclusions96,111.  

One can only speculate in why we do not become carriers or get infections from poultry 

associated ESBL/pAmpC-producing E. coli to a higher extent. One reason could be that the 

animal-associated E. coli types that carry the ESBL/pAmpC-genes are not adapted to 

colonise the human intestine and lack the necessary virulence factors to cause human 

infections. If the E. coli cannot colonise our intestine the opportunity for plasmid spread 

would also be limited. However, more research is needed to establish these connections.     

The high prevalence of ESBL/pAmpC-producing E. coli in poultry and chicken meat on the 

Swedish and international market is still highly problematic since it forms a reservoir of 

resistance that is difficult to get rid of. It is possible that if the molecular epidemiology of E. 

coli in poultry changes to more human adapted E. coli the contribution could be greater in the 

future. One example is the emergence of ST131 reported in poultry118.   
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4.2 PAPER II 

Community carriage of ESBL-producing Escherichia coli is associated with strains of low 

pathogenicity: a Swedish nationwide study. 

 

Rationale  

The motivation to perform this study was to investigate the nationwide prevalence of 

ESBL/pAmpC -producing E. coli and K. pneumoniae carriers in the general community and 

risk factors associated with becoming a carrier. Knowing the community prevalence gives us 

better understanding of how widely disseminated ESBL/pAmpC are in the Swedish 

community and forms baseline data to compare to in the future. Risk factors and behaviours 

associated with carriage on a community level is valuable to know in order to adjust 

recommendations and interventions for different purposes like indications for taking 

screening samples before hospitalization.         

Clinical infections like UTI with ESBL/pAmpC-producing E. coli will usually be preceded 

by intestinal carriage133,134,146. However, depending on the pathogenicity of the E. coli that 

harbour the ESBL gene some patients might be at higher risk for acquiring an UTI which in 

turn could lead to more severe infections such as BSI. We wanted to identify bacterial 

characteristics that were associated with BSI in humans by comparing molecular 

characteristics of ESBL/pAmpC-producing E. coli isolated from carriers and BSI.  

 

Main findings 

We found that the prevalence of ESBL/pAmpC-producing E. coli carriers in the Swedish 

community population was 4.7%. No carriers of ESBL/pAmpC-producing K. pneumoniae 

were identified. Independent risk factors, from the multiple regression analysis, for being a 

carrier were travel to Asian and African countries the last 6 months and a diet that excluded 

pork meat.  

Characteristics connected to pathogenicity of the E. coli bacteria, phylogenetic group B2, 

ST131 and its subclone C2 (called H30-Rx in paper II), were overrepresented in BSI 

compared to community carriers where the share of these traits were lower. The ESBL 

genotype blaCTX-M-15 was associated with BSI while the genotypes blaCTX-M-14 and blaCTX-M-1 

were associated with community carriers. Also, higher levels of clinically relevant phenotypic 

resistance were associated with BSI.  

 

Discussion 

The prevalence of Swedish ESBL/pAmpC-producing E. coli at 4.7% will be a useful baseline 

number for future prevalence studies. Travelling to high prevalence regions was identified as 

a risk factor also on a community level, which was expected since this has been seen in other 

studies on travellers before and after travel54,55,61. The result that having a diet that included 

pork were protective against being an ESBL carrier was a surprising since there is no obvious 
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biological connection. Having a diet that included chicken was not a significant risk factor 

which was also surprising since we know that chicken meat on the Swedish market often 

contain ESBL/pAmpC-producing E. coli114. We therefore conclude that the non-pork eaters, 

which had a higher risk, have something else in common that we did not measure e.g. travel 

to high prevalence regions further back in time than 6 months.  

Our results clearly showed that some molecular characteristic connected to the pathogenicity 

of the E. coli were overrepresented in isolates from BSI compared to carriers. This suggests 

that it might be clinically relevant to categorize carriers as high- or low-risk depending on 

what type of E. coli strain that they carry. This might be useful in future scenarios if the 

community prevalence increases, or in places where the community prevalence is already 

high, and not all positive ESBL/pAmpC carrying patients can be isolated. We also saw that 

the globally spread E. coli ST131 subclone C2 was present in both carriers and BSI. This 

subclone alone cause an estimated 26% of all BSI infections with ESBL/pAmpC-producing 

E. coli in Sweden. This is a very large burden caused by one single clone which prompts 

further investigation into the connection between the Swedish and global epidemiology of the 

C2 lineage.  

The patient group that get BSI is mainly elderly patients often with several comorbidities. It is 

therefore possible that the accumulation effect was partially due to a circulation of more 

pathogenic strains among vulnerable patients in e.g. hospitals and long-term care facilities. A 

multi-resistant strain like ST131 would certainly have an advantage in these types of 

environments where the selection pressure from antibiotics would be high. A screening study 

aimed at this patient group would therefore be an interesting addition and add information 

regarding the population structure of ESBL/pAmpC producing E. coli in high-risk groups. 

It is difficult to find studies to compare our results to because i) few studies on community 

carriers have been performed and ii) most studies on risk factors for BSI focuses on patient 

factors such as different comorbidities, antibiotic consumption and presence of devices like 

urine catheters134,146,147. Studies performed on cohorts representing the community from other 

European countries reported prevalences close to 6% which is in a similar range as the 4.7% 

identified in our study56,148-150. 

A large screening study performed on persons with close contact to gastroenteritis patients in 

Germany from 2009 to 2012 showed similar distribution of ESBL genes with blaCTX-M-15 

being the most common148. In addition meta-analysis clearly showed that the blaCTX-M genes 

are the dominating ESBL genes in carriers globally which further supports our findings59.  

To conclude both collections (carriers and BSI) used to compare molecular characteristics are 

large and representative for the entire population in Sweden which is why we consider the 

results to have high external validity.  
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4.3 PAPER III 

Large variation in ESBL-producing Escherichia coli carriers in six European countries 

including Russia. 

 

Rationale 

The motivation to perform this study was to collect baseline data on the prevalence of ESBL-

producing E. coli and K. pneumoniae carriers in Northern Europe represented by Finland, 

Latvia, Russia, Germany, Poland and Sweden. Carriers have a central role in the 

epidemiology of ESBLs and previous studies show that the prevalence can vary a lot 

depending on which population and which country you study. Travel to high prevalence 

countries is a known risk factor for becoming a carrier and much of the travels we make are 

to our neighbouring countries54,55,61. Even though carriers have an important role in the 

transmission of ESBLs as a link between environment, community and clinical infections 

structured surveillance are missing in both national and international initiatives. We 

performed a prevalence study on specific study populations, screened for ESBL-producing E. 

coli and K. pneumoniae using the same methods, in Finland, Latvia, Germany, Poland, 

Russia and Sweden. Capacity building to improve the ability to perform studies on carriers 

was a secondary aim of the study.    

 

Main findings 

Our main finding was that the prevalence varied between the investigated countries. It was 

highest in Russia (23.5 %) and lowest in Latvia (1.6%). The other countries in the study had 

prevalences of 2.3% for Germany, 4.7% for Finland, 6.6% for Sweden, 8.0% for Poland 

summarizing to 8.1% for all countries in total. Carriers of ESBL-producing K. pneumoniae 

were identified in three of the six countries, Finland, Russia and Sweden, but in low numbers 

(<2%). None of the countries identified carriers of carbapenemase-producing E. coli or K. 

pneumoniae. The study populations varied somewhat between countries and included 

students, primary care visitors, elective surgery patients, and volunteers recruited via a 

website. A risk analysis was performed from the questionnaires that each study participant 

answered. Positive risk factors were only seen for Russian study subjects where the age 

groups 31-50 and 51-65 were at higher risk of being carriers compared to 18-30 years. In 

addition, hospitalization the last 6 months was also a risk factor for being a carrier of ESBL-

producing E. coli in Russia.   

 

Discussion 

Our results suggest that there could be a large difference in carrier prevalence of ESBL-

producing E. coli in neighbouring countries in the Northern Europe. The most notable 

difference was that between the prevalence in Russia and Latvia at 23.5% vs 1.6% 

respectively. We cannot exclude that the difference was due to study population differences 

with variations in underlying risk factors. However, nothing in the baseline characteristics 
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suggested that this was the case since the study populations in Russia and Latvia had similar 

mean age, antibiotic consumption history and hospitalization proportions. It could be that our 

results reflected two different country situations where Latvia has not had a wider 

introduction of ESBL-producing E. coli in their community. This could be due to differences 

in historic antibiotic use and what type of antibiotics that were commonly used.  

The Swedish result with a prevalence of 6.6% was slightly higher but in a similar range 

compared to our earlier study that gave a prevalence of 4.7%. Since different collection 

strategies and study populations were used the numbers are not directly comparable.  

Very few carriers of ESBL-producing K. pneumoniae were identified even in population with 

high prevalence of ESBL-producing E. coli which indicates that these are not common in the 

community. In addition, we did not identify a single carbapenemase-producing isolate which 

also indicates that these are not widely disseminated in carriers in our study populations yet. 

A recent large study on asylum seekers, from countries suspected to have a high prevalence 

of both ESBL/pAmpC and carbapenemase-producing E. coli, did not identify any 

carbapenemase-producing isolates65. This strengthens our conclusion that these bacteria are 

still not widely disseminated in the community. 

In conclusion, more studies are needed on study populations representing the community in 

order to establish that the differences seen in our study are valid.  

 

4.4 PAPER IV 

Genome and plasmid diversity of ESBL-producing Escherichia coli ST131 – tracking 

phylogenetic trajectories with Bayesian inference. 

 

Rationale  

We performed this study to investigate the ESBL-producing E. coli ST131 population and its 

subclones in Sweden more closely. As concluded in paper II, ST131 and its subclone C2 are 

responsible for a large proportion of Swedish BSI with ESBL-producing E. coli. To better 

understand their emergence, epidemiology and resistance gene structure could be important 

to detect and design interventions towards this problematic lineage. The aim of the study was 

to determine if the Swedish ESBL-producing E. coli ST131 population originates from single 

or multiple introductions from the globally disseminated clone. This would help in e.g 

outbreak investigations since it is at the moment hard to know what amount of variation that 

can be expected within the different ST131 clonal groups. We also wanted to investigate the 

relatedness of plasmids in identified clusters to see if single or multiple plasmids co-evolve 

with some of the clones. 

In order to get a better view of the location of the resistance genes within the genome and to 

obtain fully assembled plasmids, we used PacBio long-read sequencing on a subset of isolates 

from the collections of BSI and community carriers collected in paper II. We also used an 
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external published dataset of international E. coli ST131 strains as comparison for the 

phylogenetic analysis89.      

 

Main findings 

We found that the Swedish ESBL-producing E. coli ST131 were distributed in the three 

previously identified clades A, C1 and C2 in the international ST131 phylogeny. The 

majority of our isolates belonged, as expected, to the C2 lineage. We identified three Swedish 

clusters, with a MRCA, in the A, C1 and C2 clades. Plasmid SNP calling amongst plasmids 

in Swedish transmission clusters displayed conserved plasmid lineages in all clades as well as 

some completely unrelated plasmids in clade A. The full assembly and mapping of resistance 

genes, to plasmids and/or chromosomal regions, for each strain revealed a heterogeneous 

distribution of the resistance genes that were often found in two locations in the genome 

either in two different plasmids or in one plasmid and in a chromosomal region.  

 

Discussion 

Our main finding was that multiple introductions have shaped, and continue to shape, the 

Swedish population of ESBL-producing E. coli. With that said, we did not quantify the 

national versus international dissemination and their respective contribution to the burden of 

infections caused by ESBL-producing E. coli ST131 in Sweden. Even though continuous 

introductions contributed to infections it is very possible that the greatest burden is caused by 

local dissemination, especially among vulnerable patient groups.  

The BEAST analysis supports the previous conclusion that the ST131 clade C2 increased 

exponentially during the 1990s and after that reached a plateau86. This emergence pattern 

coincided with the introduction of the fluoroquinolone ciprofloxacin in the late 1980s which 

supports the conclusion of several experts and studies that fluoroquinolone resistance has 

been a major reason for the successfulness of ST13181,82,86,88.    

Isolates from especially two ST131 lineages, clade C2 with blaCTX-M-15 and clade C1 with 

blaCTX-M-27, circulating in Sweden are genetically very similar. This was not a surprising 

result since we know that they originate from single clones which emerged not long 

ago86,88,89. However, it complicates outbreak investigations with these lineages since it makes 

it hard to separate direct transmission from isolates that are just part of the clonal lineage. In 

for example the C1 transmission cluster the Swedish isolates were likely separated from a 

MRCA 10 years ago and differ from each other with around 30 SNPs.  

In the case of the C1 clade with blaCTX-M-27 we also identified a highly conserved plasmid in 

all isolates, which very likely has co-evolved with the lineage for at least 10 years. This was a 

major difference to the C2 lineage where several different IncF plasmids were identified in 

our data. This could be due to that we have a limited number of isolates in total and more 

isolates from the C2 clade compared to the C1 clade. However, previous studies on ST131 

and the C2 clade have also concluded that several plasmids are associated with this 

clade76,151. Further investigation is needed to determine reasons for the strong co-evolution of 
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the IncF plasmid in the C1 blaCTX-M-27 clade. Possible explanations could be a potent toxin-

antitoxin system or an early loss of mobility so that the plasmid cannot move horizontally. 

One reason could also be that the selective pressure from antibiotics acts only on that 

particular plasmid if the blaCTX-M-27 is not mobile by connection to an active transposon, like 

blaCTX-M-15. This could also explain the theoretical lack of co-evolving plasmids in the C2 

clade since blaCTX-M-15 is connected to an active ISEcp1 transposon and therefore move to 

both chromosomal regions and other plasmids76,77. It would be interesting to further 

investigate these theories, as well as a larger dataset of the C1 blaCTX-M-27 clade to confirm if 

the co-evolving plasmid is present in the whole or just a sub-set of the clade.  

As hypothesised we found resistance genes in both plasmids and chromosomal regions. All 

chromosomal integrations were connected to the blaCTX-M-15 gene. Previous theoretical 

modelling suggested that chromosomal integration, of beneficial plasmid genes, should be 

evolutionary favoured under high selection pressures since the cost for carrying the plasmid 

would be evaded152,153. However most of our isolate with chromosomal integrations also 

carried resistance plasmids with the same or additional resistance genes.  

These highly pathogenic and common clonal lineages are important to monitor by national 

surveillance since they have a very high propensity to accumulate resistance genes and are 

under constant selection pressure from the antibiotics we humans consume. In a not too 

unlikely scenario these clones will acquire resistance to last resort drugs such as carbapenems 

and colistin, which will increase the burden on vulnerable patient groups and healthcare even 

more.   
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5 CONCLUSION  

This thesis investigated the epidemiology of ESBL/pAmpC-producing E. coli with a focus on 

describing possible sources and risk factors for human community carriage. Furthermore we 

investigated which traits that were overrepresented in isolates from BSI compared to carriers 

to identify what defines high-risk pathogenic isolates. In addition we performed a study of the 

emergence of the particularly problematic ESBL-producing E. coli clone ST131, in Sweden.  

The overall conclusion from this work is that human to human transmission of 

ESBL/pAmpC-producing E. coli is the main contributor to the burden of infections in 

humans with these bacteria. The results from our study suggests that the contribution to 

severe infections in humans from especially the poultry sector, where high prevalence of 

ESBL/pAmpC is detected, is limited.  

Community carriage of ESBL/pAmpC producing E. coli was around 5% in Sweden and we 

identified large variation in carrier prevalence in our neighbouring countries around the Baltic 

Sea. For Swedish carriers we saw that travel to high prevalence regions was a major risk 

factor for being a carrier of ESBL/pAmpC producing E. coli on community level. We did not 

identify carriers of carbapenemase-producing E. coli, in any of our studies.  

We concluded that there was an overrepresentation of the most pathogenic E. coli isolates in 

BSI compared to carriers, where the most dominant type was ST131. Phylogenetic modelling 

on Swedish ESBL-producing E. coli ST131 showed that several introductions from the 

international epidemic have shaped, and continuously shape, the Swedish population. 

However, the main contributing factor to infections with ESBL/pAmpC producing E. coli in 

Sweden could still be, and likely is, national dissemination.  

Overall, our studies contribute to a deeper understanding of how ESBL/pAmpC-producing E. 

coli circulate in Sweden and what factors that contribute to increased carrier prevalence and 

severe infections with these bacteria. This type of epidemiological surveillance is necessary 

in order to design efficient intervention strategies with the aim to reduce clinical infections 

with ESBL/pAmpC in humans.      
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6 FUTURE STUDIES ON CARRIERS  

It is challenging to study community carriage of ESBL/pAmpC-producing E. coli and other 

species for several reasons. First, it is difficult to reach a study population that is 

representative for the general community. Second, response rates are usually low which 

might give a skewed representation since we do not know why some participants decline to 

take part in the study. These factors affect both the internal and external validity of the 

results. Often the focus is on having a high number of participants in order to achieve enough 

power to make the results valid. Although power is an important factor it is often the poor 

representativeness, of the population you want to draw conclusions about, that is the main 

issue.  

One way to get around this could be to stop focusing on generalizing findings to the 

community and put more effort towards investigating specific vulnerable groups such as 

long-term care facility residents. A key factor to increase the response rate is that you cannot 

rely on the participants goodwill, but have to offer something in return for their participation. 

Another interesting study would be to perform prospective cohort studies to determine the 

incidence in specific populations. In the case of carriers there would be two rates that are 

interesting to study, 1) the rate of new cases in a population and 2) the rate of loss of cases in 

the same population. However, it is important to consider the benefits and what is gained by 

investigations such as these since they are often demands a lot of resources and could be 

ethically challenging.  
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7 POPULAR SCIENCE DESCRIPTION 

 

Djuren, människan och antibiotikan 

De senaste åren har antibiotikaresistens seglat upp på dagordningen hos politiker och 

beslutsfattare världen över. Anledningen; antibiotikaresistensen ökar snabbt och något måste 

göras för att hindra dess framfart. Men hur sprids antibiotikaresistens och vilka faktorer är 

det som ligger bakom ökningen av resistenta infektioner?  

Antibiotikaresistens är ett komplext problem som involverar många olika aktörer såsom 

sjukvården, jordbruket, reningsverken, läkemedelsbolagen, läkemedelstillverkarna samt dig 

och mig. Det finns idag ett flertal sjukdomsframkallande bakterier som har utvecklat alvarliga 

former av resistens såsom Mycobacterium tuberculosis och Neisseria gonorrhoeae som 

orsakar tuberkulos respektive gonorré.  

Den här avhandlingen handlar dock om en annan typ av antibiotikaresistens som kallas ESBL 

(Extended-Spectrum β-Lactamase). ESBL syftar på en grupp med gener som kodar för 

resistens mot β-lactam antibiotika med utvidgat spektrum. Bakterier som har en ESBL gen 

blir därför resistenta mot viktiga antibiotika som penicilliner och cefalosporiner. Eftersom 

ESBL gener kan spridas mellan bakterier kan en uppsjö av olika bakteriearter bära på ESBL. 

En av de mest problematiska ESBL-bildande bakterierna är Escherichia coli som kan orsaka 

urinvägsinfektioner och blodinfektioner. År 2017 orsakade ESBL-bildande E. coli ca 100 

infektioner per 100 000 invånare i Sverige vilket är en kraftig ökning från 40 infektioner per 

100 000 invånare år 2009154.  

ESBL-bildande E. coli har en fekal-oral spridningsväg och när vi får i oss bakterierna blir 

vissa av oss bärare, dvs de stannar kvar ett tag i vår tarmflora. Därifrån kan bakterierna orsaka 

infektioner som människor är olika mottagliga för beroende på vår allmänna hälsostatus och 

vårt immunförsvar samt hur benägen E. coli-bakterien är att orsaka infektioner. De allra flesta 

som är bärare vet inte om det och påverkas inte heller av sitt bärarskap. Dock bidrar bärarna 

med att sprida bakterier vidare till andra människor och miljöer vilket ökar utbredningen av 

resistenta bakterier i samhället. Man kan därför se bärarna som en form av indikator för hur 

spridda ESBL-bildande E. coli är i samhället. 

I två av studierna i denna avhandling undersökte vi andelen bärare i Sverige samt i våra 

grannländer runt Östersjön; Finland, Lettland, Ryssland, Tyskland och Polen (artikel II och 

III). I Sverige bär ca 5% av befolkningen på ESBL-bildande E. coli och en riskfaktor för att 

bli bärare är att resa till länder i Asien eller Afrika.  

Årligen gör svenskarna ca 200,000 resor till Thailand66. Enligt tidigare studier är ungefär 20-

30% av resenärer till sydöstra Asien bärare av ESBL-bildande bakterier när de kommer 

hem54,55,61. Detta beror på att länder som Thailand, Indien och Kina har en högre förekomst 
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av ESBL-bildande E. coli i samhället som vi sannolikt får i oss via kontakt med människor, 

föremål och livsmedel.  

Tidigare studier har visat att ESBL-bildande E. coli är vanliga inom kycklingproduktionen 

såväl i Sverige som i resten av världen. Kycklingarna bär bakterien i sina tarmar och när de 

slaktas kontamineras köttet som vi sedan äter. Ungefär 40% av all kyckling i svenska 

matbutiker är kontaminerad med ESBL-bildande E. coli. Enligt Jordbruksverket 

konsumerade Svensken år 2017 23,2 kg kyckling per person155. Alltså konsumerar vi 

regelbundet en hel del ESBL-bildande E. coli från djur.  

Vi vet alltså från våra och andras studier att vi får i oss och bär på ESBL-bildande E. coli från 

olika källor. Men är det samma bakterier på kycklingköttet som vi får alvarliga infektioner 

av? För att ta reda på detta gjorde vi en genetisk jämförelse mellan isolat av ESBL-bildande 

E. coli från djur och livsmedel med de från bärare och bakterier isolerade från blodinfektioner 

(artikel I). Resultaten visade tydligt att olika typer av genetiska profiler dominerar hos 

livsmedel (främst kyckling) jämfört med människor (bärare och blodinfektioner). Vi kan 

alltså inte skylla den ökande andelen ESBL i infektioner hos människor på att det finns en 

hög andel ESBL-bildande E. coli på kyckling.  

När vi genetiskt jämför ESBL-bildande E. coli isolat från bärare med blodinfektioner ser vi 

att en viss typ av speciellt sjukdomsframkallande E. coli, kallade ST131, är vanligare i 

blodinfektioner (artikel II). Denna typ av E. coli bakterie är spridd globalt och vanlig i 

infektioner världen över. När vi undersökte den genetiska variationen hos den ESBL-bildande 

E. coli ST131 populationen i Sverige (manus IV) såg vi att den introducerats flera gånger i 

Sverige från den globalt spridda ST131 populationen. Troligen sker introduktionen via 

resenärer som är bärare och sedan sprider bakterien vidare till sjukvården och individer som 

är mottagliga för blodinfektion. 

Sammantaget visar forskningen i denna avhandling att riktade insatser för att minska 

spridning mellan människor är den viktigaste åtgärden för att minska andelen ESBL-bildande 

E. coli i infektioner. Särskilt sjukdomsframkallande typer av ESBL-bildande E. coli som 

orsakar en stor andel infektioner behöver övervakas specifikt. I dagsläget är det inte troligt att 

vi kommer minska andelen ESBL-bildande E. coli i alvarliga infektioner hos människa 

genom att minska andelen av liknande bakterier hos kyckling. Det är dock fortfarande 

problematiskt och icke önskvärt att vi har en hög andel ESBL-bildande E. coli på framförallt 

kycklingkött bland annat eftersom det skulle kunna ske skiften till mer sjukdomsframkallande 

bakterier. I så fall kan denna spridningsväg få en mycket större klinisk betydelse.  
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