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ABSTRACT 

Diabetes is an increasing public health problem affecting a breathtaking number of people 

worldwide. The knowledge about modifiable lifestyle factors influencing diabetes risk is 

extensive for type 2 diabetes, but limited for autoimmune forms of diabetes such as type 1 

diabetes. Latent autoimmune diabetes in adults (LADA) is a hybrid form of diabetes with 

characteristics of both type 1 and type 2 diabetes. Diet has an important role in the development 

of type 2 diabetes but its role in autoimmune diabetes is largely unknown. The aim of this thesis 

was to study the risk of LADA in relation to intakes of fish and sweetened beverages, two 

commonly consumed foods hypothesized to play a role in the development of both type 1 and 

type 2 diabetes. 

Analyses were based mainly on ESTRID, a Swedish case-control study with incident cases of 

LADA and type 2 diabetes, and population-based controls. All participants in ESTRID were 

aged ≥ 35 years and LADA was defined by the presence of glutamic acid decarboxylase 

autoantibodies (GADA) and a level of C-peptide indicating remaining insulin secretion. Data 

on intakes of fish and sweetened beverages were available from questionnaires and investigated 

in relation to risk of LADA and type 2 diabetes. One study was based on data from EPIC-

InterAct, a case-cohort study with prospective data from eight European countries. In EPIC-

InterAct, we assessed the interaction of baseline GADA positivity and self-reported dietary fish 

or plasma n-3 PUFA in relation to the risk of adult onset diabetes. 

Based on ESTRID, weekly fatty fish intake was associated with 49% reduced risk of LADA 

(odds ratio [OR] 1.51, 95% confidence interval [CI] 0.30-0.87), whereas no association was 

found for type 2 diabetes (OR 1.01, 95% CI 0.74-1.39). These findings were supported by the 

results from EPIC-InterAct; low fatty fish intake was found to interact with GADA positivity 

on the risk of adult onset diabetes (attributable proportion due to interaction [AP] 0.48, 95% CI 

0.24-0.72), and findings were similar for plasma n-3 PUFA. In ESTRID, sweetened beverage 

intake was positively associated with both LADA and type 2 diabetes. For LADA, the 

increased risk was evident only among carriers of low/intermediate risk HLA genotypes (OR 

per one daily serving 1.32, 95% CI 1.06-1.64). BMI was suggested to only partly mediate the 

associations between sweetened beverages and risk of LADA and type 2 diabetes, indicating 

that there may also be direct effects on glucose homeostasis. 

In conclusion, these results suggest that long-chain n-3 PUFAs from fish may decrease the risk 

of LADA whereas intake of sweetened beverages may increase the risk. Importantly, these 

findings indicate that diet may be a modifiable lifestyle factor influencing the development of 

LADA and hence be a target for preventive strategies.  

  



SAMMANFATTNING PÅ SVENSKA 

Diabetes är en kronisk sjukdom och ett stort folkhälsoproblem. Idag beräknas 1 av 11 vuxna 

vara drabbade av sjukdomen världen över och siffran förväntas öka. Det finns olika former av 

diabetes men gemensamt för alla är att blodsockernivån är för hög, detta på grund av att 

kroppens eget system förlorat förmågan att genom hormonet insulin hålla blodsockret på rätt 

nivå. Personer med diabetes löper även högre risk att drabbas av flera allvarliga sjukdomar 

såsom hjärtinfarkt och stroke. Den vanligaste formen är typ 2-diabetes (vanligaste formen hos 

vuxna), som kännetecknas av att kroppens celler har minskad förmåga att känna av insulinets 

signaler om att ta upp socker från blodet, så kallad insulinresistens. Typ 1-diabetes är en 

autoimmun form av diabetes (vanligaste formen hos barn), vilket innebär att kroppens 

immunförsvar av okänd anledning attackerar och förstör cellerna som ska producera insulin 

vilket leder till insulinbrist. Latent autoimmun diabetes hos vuxna (LADA) har drag av både 

typ 1- och typ 2-diabetes och kännetecknas av både autoimmunitet och insulinresistens. 

Kunskapen om vad som påverkar risken för LADA är mycket begränsad. I den här 

avhandlingen undersöks om konsumtion av fisk och sötade drycker påverkar risken att utveckla 

LADA, något som inte studerats tidigare. Avhandlingen innefattar fyra delstudier, där tre 

baseras på svensk data från ESTRID-studien och en baseras på europeiska data från studien 

EPIC-InterAct. 

I delarbete I undersökte vi sambandet mellan konsumtion av fet fisk och risken att utveckla 

LADA och typ 2-diabetes. Fisk innehåller särskilda omega-3-fettsyror (EPA och DHA) som 

har visats vara fördelaktiga för många olika processer i kroppen. I vissa studier har man sett en 

minskad risk för typ 1-diabetes bland barn med ett högt intag av omega-3-fettsyror. Att äta fisk 

har även föreslagits minska risken för typ 2-diabetes, men studier har visat blandade resultat. I 

ESTRID-studien fann vi att personer som uppgav att de åt fet fisk minst en gång i veckan löpte 

omkring 50% lägre risk för LADA jämfört med dem som åt fet fisk mer sällan. Vi såg inget 

samband mellan fet fisk och typ 2-diabetes. Dessa resultat skulle kunna tyda på att fet fisk kan 

minska risken för LADA genom effekter kopplade till autoimmunitet. 

I delarbete II använde vi data från EPIC-InterAct-studien för att forsätta studera sambandet 

mellan fiskkonsumtion och autoimmun diabetes. Vi fann att personer som vid studiens start 

hade GAD-antikroppar i blodet (påvisar autoimmunitet och är en riskfaktor för diabetes) löpte 

särskilt hög risk om de samtidigt hade lågt intag av fisk. Liknande samband sågs för dem med 

låga nivåer av omega-3-fettsyror (särskilt DHA) i blodet. Dessa resultat ger ytterligare stöd för 

att omega-3-fettsyror från fisk minska risken för diabetes, även hos personer som redan 

utvecklat autoimmunitet. 

I delarbete III undersökte vi sambandet mellan konsumtion av sötade drycker (främst läsk) 

och risken för LADA och typ 2-diabetes baserat på ESTRID-data. Sötade drycker har kopplats 

till ökad risk för typ 2-diabetes i många studier, och ett par studier har även visat en koppling 

till typ 1-diabetes. Läsk innehåller vanligtvis stora mängder socker som dels kan öka risken för 

övervikt men även bidra till insulinresistens. Läsk som innehåller sötningsmedel (light-läsk) 

innehåller inga kalorier men det finns hypoteser kring att light-läsk ändå skulle kunna bidra till 



 

 

diabetesrisk. Vi fann att hög konsumtion (mer än två glas/dag) av sötade drycker var kopplat 

till en fördubblad risk för både LADA och typ 2-diabetes. För varje extra glas läsk per dag 

ökade risken med 15-20 %. Detta gällde både ”vanlig läsk” och light-läsk, men den ökade 

diabetesrisken kopplad till light-läsk har eventuellt andra förklaringar än att den drycken i sig 

skulle öka risken. Dessa resultat talar för att sötade drycker ökar risken för LADA och att 

LADA delvis har samma riskfaktorer som typ 2-diabetes. 

I delarbete IV ville vi ta reda på hur stor del av sambandet mellan sötade drycker och LADA 

och typ 2-diabetes som förklaras av effekter på BMI, samt om sambandet påverkas av riskgener 

för diabetes. Baserat på ESTRID-studien fann vi att BMI förklarar ungefär hälften av 

sambandet mellan sötade drycker och typ 2-diabetes, och 17% av sambandet för LADA. När 

vi delade upp studiedeltagarna med avseende på genetik, såg vi att den ökade risken för LADA 

kopplad till sötade drycker endast fanns bland personer utan högrisk-varianter av HLA-gener 

(kopplade till autoimmunitet). Däremot verkade inte genen TCF7L2 (riskgen för typ 2-

diabetes) påverka sambanden. Dessa resultat föreslår att konsumtion av sötade drycker ökar 

risken för både LADA och typ 2-diabetes genom mekanismer kopplade till ökad kroppsvikt 

men även att andra mekanismer har betydelse.  

 

Sammanfattningsvis tyder resultaten på att omega-3-fettsyror från fisk minskar risken för 

LADA medan läskkonsumtion är förenat med en ökad risk. Kostfaktorer tycks alltså kunna 

påverka utvecklandet av LADA. Kunskap om riskfaktorer är viktigt eftersom den kan användas 

för att förebygga diabetes. Fler studier behövs dock för att bekräfta de samband som påvisats 

här. 
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1 INTRODUCTION 

Diabetes is a common, chronic disease that manifests when the pancreatic beta cells can no 

longer meet the body’s need for insulin to maintain glucose homeostasis, resulting in 

hyperglycemia. Since there is no cure for diabetes, prevention is key to reduce the number of 

affected individuals. Knowledge about risk factors is necessary for effective disease 

prevention. Lifestyle modifications have been shown to be effective in prevention of type 2 

diabetes [1, 2]. For autoimmune forms of diabetes, such as type 1 diabetes, there is a lack of 

established risk factors suitable as targets for preventive actions [3] and the role of lifestyle is 

largely unknown. For latent autoimmune diabetes in adults (LADA), an autoimmune form of 

diabetes with adult onset, studies are scarce. 

Diet constitutes a major component in primary prevention of type 2 diabetes [2, 4] and several 

dietary risk factors have been identified including sweetened beverages [5]. The role of diet in 

the etiology of autoimmune diabetes is less clear. However, in children, a reduced risk of type 

1 diabetes has been reported in relation to intake of fish, including fish-originated fatty acids 

[6, 7], whereas intake of sweetened beverages has been associated with excess risk [8, 9]. 

Latent autoimmune diabetes in adults (LADA) is a common (9-12% of all adult onset diabetes 

[10, 11]), autoimmune form of diabetes with features of both type 1 and type 2 diabetes. Risk 

factors are largely unknown and the aim of this doctoral thesis was to investigate, for the first 

time, the risk of LADA in relation to dietary fish and sweetened beverage consumption. 

Analyses were based on data from the Swedish ESTRID Study, which is the largest population-

based study of LADA to date, and the European EPIC-InterAct Study, which is a prospective 

study with data on dietary factors, autoantibodies, and incident adult-onset diabetes. The 

overall aim was to contribute to an increased understanding of the etiology of LADA.
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2 BACKGROUND 

2.1 DIABETES 

Diabetes is one of the most common chronic diseases and among the top ten causes of deaths 

worldwide [12]. The prevalence is estimated at 9% in the adult population globally and 7% in 

Sweden [13, 14]. The number of affected individuals has increased tremendously over the past 

decades, from 151 million to 425 million adults with diabetes since the year 2000, and the 

prevalence is projected to continue to rise [13]. The increase is explained by a combination of 

several factors, including changes into a more sedentary lifestyle combined with unhealthy 

dietary habits [15] but also increased life expectancy [16] and improved diabetes survival [14]. 

Diabetes often poses a heavy burden on the individual and also constitutes large healthcare 

costs for society, primarily due to risk of common complications such as cardiovascular 

diseases and problems related to the kidneys (nephropathy), eyes (retinopathy), and the nervous 

system (neuropathy) [15]. Better understanding on how modifiable lifestyle factors, such as 

diet, may impact the development of diabetes is crucial for primary prevention. 

2.1.1 Diagnosis 

Diabetes is characterized by hyperglycemia as a consequence of insulin resistance, insulin 

deficiency, or a combination of the two [17]. The inability to maintain normal blood glucose 

levels may be due to autoimmune destruction of beta cells, or that the insulin production is 

unable to meet the increasing demands due to insulin resistance [18]. Diagnosis is based on 

measurements of fasting plasma glucose, 2-hour plasma glucose after oral glucose tolerance 

test, random plasma glucose together with symptoms of hyperglycemia, or HbA1c [19-21]. 

2.1.2 Subtypes 

Diabetes is a disease with broad manifestation, all characterized by raised blood glucose levels 

but with different pathogenesis. There has traditionally been a division into type 1 diabetes and 

type 2 diabetes, but its heterogeneity has been increasingly recognized and about 25 years ago, 

the term LADA was introduced to describe a subgroup of type 2 diabetes patients with 

autoantibodies [22], similar to type 1 diabetes. Since then the field has been evolving further 

and new diabetes classifications addressing the heterogeneity of type 2 diabetes have recently 

been proposed [23]. In this thesis, I will refer to type 1 diabetes, type 2 diabetes, and LADA as 

the three main subtypes of diabetes. In addition to these, there are a number of monogenic 

diabetes subtypes (e.g. forms of MODY; maturity onset diabetes of the young), gestational 

diabetes, and secondary diabetes which will not be further discussed in this thesis. 

2.1.2.1 Type 1 and type 2 diabetes 

Type 2 diabetes is the most common subtype of diabetes and constitutes about 75-85% of all 

patients [23, 24]. Type 2 diabetes used to be a disease almost exclusively occurring in adults, 

but has become an increasing health concern also among younger age groups [25]. Type 1 
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diabetes is an autoimmune form of diabetes most commonly thought of as affecting children 

and adolescents, but it may also occur in adulthood. 

2.1.2.2 Latent autoimmune diabetes in adults (LADA) 

The term LADA was first presented in 1993 by Tuomi et al [22], although presence of 

autoantibodies in adult patients diagnosed with type 2 diabetes was described already in 1977 

[26] and a latent form of adult type 1 diabetes was described in 1986 [27]. LADA is by many 

considered to be a hybrid form of diabetes because of the presence of autoantibodies similar to 

type 1 diabetes but presenting with a phenotype more similar to type 2 diabetes [18]. LADA 

constitutes about 9-12% of all adult-onset diabetes in Europe [10, 11] and may be the most 

common form of autoimmune diabetes in adults. According to data from the ANDIS (All New 

Diabetics in Scania) study, where newly diagnosed diabetes patients are classified into different 

subtypes based on genetic and clinical features, LADA accounts for about 5% of all incident 

cases (Figure 2.1) [24]. Among all autoimmune diabetes with an adult onset, more than 80% 

may be classified as having LADA [28]. 

There are no unified criteria for LADA classification, but three criteria commonly applied at 

diagnosis are i) adult onset (usually ≥30 or 35 years), ii) autoantibody positivity (predominantly 

GADA), and iii) remaining insulin secretory capacity (absence of insulin therapy 6-12 months 

after diagnosis) [18]. However, the insulin therapy criterion has been questioned as it is open 

to subjectivity [29] and an alternative approach is to use C-peptide levels above a certain cut-

off, as a measure of remaining insulin secretion [23]. The antibody criterion separates LADA 

from type 2 diabetes and the criterion about remaining insulin secretion distinguishes LADA 

from type 1 diabetes. The World Health Organization (WHO) and American Diabetes 

Association however consider LADA as a slowly progressing form of type 1 diabetes [30]. 

 

Figure 2.1. Distribution of different subtypes of diabetes in the ANDIS registry, adapted from the 

ANDIS website [24].  

 

LADA 4.8% (including 1.1% LADA mild)

Type 1 diabetes in adults 0.6%

Type 1 diabetes with relative insulin deficiency 0.7%

Type 1 diabetes with absolute insulin deficiency 6.0%

Type 2 diabetes in youth 2.1%

Type 2 diabetes with relative insulin deficiency 10.7%

Classical type 2 diabetes 72.5%

Secondary diabetes 1.3%

Unclassified 1.3%
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2.1.3 Pathogenesis 

2.1.3.1 Type 2 diabetes 

Type 2 diabetes is characterized by insulin resistance of skeletal muscle, liver, and adipose 

tissue [17], a metabolic condition also related to obesity [31]. Insulin resistance imposes an 

increased insulin demand and hyperglycemia manifests when the capacity of the pancreatic 

beta cells to increase insulin secretion is compromised. Insulin resistance in the liver leads to 

increased gluconeogenesis resulting in fasting hyperglycemia. This, in combination with 

muscle insulin resistance and other impairments in glucose metabolism such as beta cell 

resistance to incretin hormone signaling [32], results in postprandial hyperglycemia [17]. 

Furthermore, the presence of systemic inflammation mediated by pro-inflammatory cytokines 

and macrophage infiltration in adipose tissue is an additional contributor to insulin resistance 

[17]. 

2.1.3.2 Type 1 diabetes 

Type 1 diabetes is a disease where autoimmune processes, mediated by T cells [33], lead to 

destruction of the pancreatic insulin-producing beta cells. This results in insulin deficiency and 

subsequent hyperglycemia. For most patients, the situation rapidly becomes acute and lifelong 

insulin therapy (injections) is needed [34]. Presence of autoantibodies is a hallmark of type 1 

diabetes, but seroconversion, i.e. development of detectable autoantibodies in the blood, may 

have started already earlier in life [35]. There are four major types of autoantibodies related to 

type 1 diabetes; autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), a 

tyrosine phosphatase-like protein (islet antigen-2 [IA-2A]), and zink transporter 8 (ZnT8A) 

[33]. Recently, also autoantibodies against tetraspanin 7 (TSPAN7A) has been described [36]. 

Positivity to multiple autoantibodies is associated with a markedly increased risk of progression 

to type 1 diabetes compared to single autoantibody positivity [37]. IAA usually appears as 

primary antibody (the first occurring autoantibody) among patients who become antibody 

positive early in life, whereas GADA is more frequent as primary antibody in children with 

later seroconversion [38]. 

2.1.3.3 LADA 

Similar to type 1 diabetes, LADA is characterized by the presence of autoantibodies. The 

predominantly occurring autoantibody is GADA which is present in 90% of all autoantibody-

positive adult patients [18]. Many LADA patients are positive for a single autoantibody, 

whereas in type 1 diabetes multiple autoantibodies are usually present at time of diagnosis [37]. 

The autoimmune processes are progressing more slowly in LADA than in classic type 1 

diabetes and the patient’s own insulin production is preserved for a longer period of time [11, 

29]. Autoantibodies are prevalent also in the diabetes-free population and positivity confers an 

increased risk of diabetes [39]. 

Despite autoantibody positivity, patients with LADA are phenotypically similar to those with 

type 2 diabetes. In populations where LADA is not routinely diagnosed, about 5-14% of adults 
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diagnosed as type 2 diabetes are autoantibody positive and would fall within the framework of 

LADA [18]. The most important shared feature is insulin resistance, although this may be less 

pronounced than in type 2 diabetes patients [40, 41]. The relative contribution of insulin 

resistance is likely to differ depending on the degree of autoimmunity; those with high GADA 

levels tend to be less insulin resistant whereas those with low GADA levels display a higher 

degree of insulin resistance [28]. The presence of both autoimmunity and insulin resistance is 

likely to have implications for the etiology of LADA and risk factors may be related to either 

one, or both, of these characteristics. 

2.1.3.4 Diabetes treatment 

The aim of diabetes treatment is to target hyperglycemia in order to minimize the risk of 

complications. Common treatments for type 2 diabetes include lifestyle interventions, oral 

glucose-lowering agents and injectable medications [42]. For type 1 diabetes patients, daily 

injections of insulin forms the basis of therapy [43]. For patients with LADA however, there 

are currently no specific treatment guidelines. Hence, patients may not receive the optimal 

treatment, which may lead to adverse effects such as more rapid beta cell loss [44]. 

2.1.4 Genetics 

2.1.4.1 Type 2 diabetes 

More than 400 susceptibility loci have been associated with type 2 diabetes [45], most of them 

related to insulin secretion rather than insulin resistance [46]. The strongest genetic determinant 

of type 2 diabetes is TCF7L2 [47]. TCF7L2 encodes transcription factor 7-like 2 which is a key 

effector in the Wnt signaling pathway and suggested mechanisms for its role in type 2 diabetes 

development include impaired insulin secretion and enhanced rate of hepatic glucose 

production [48]. Another important risk gene is the fat-mass and obesity-associated (FTO) 

gene, for which carriers of common risk variants are predisposed to develop obesity and type 

2 diabetes [49]. Underlying mechanisms are believed to include changes in satiety perception 

and energy intake [50, 51]. Despite the large number of identified type 2 diabetes susceptibility 

genes, they collectively still only explain a small part of the heritability [46]. 

2.1.4.2 Type 1 diabetes 

The strongest genetic determinants for type 1 diabetes risk are located in the human leukocyte 

antigen (HLA) region on chromosome 6. The system covers several genes related to the 

immune system and is highly polymorphic and HLA genotypes are estimated to be responsible 

for about half of the genetic risk in type 1 diabetes [52]. The strongest association with type 1 

diabetes is found with HLA DR and DQ, which encode cell surface receptors involved in 

antigen-presentation for T-lymphocytes. HLA DR and DQ are tightly linked and risk is 

conferred by specific combinations, or haplotypes. The haplotypes most strongly associated 

with type 1 diabetes are DRB1*04:xx-DQA1*03:01-DQB1*03:02 also referred to as DR4-

DQ8, and DRB1*03:01-DQA1*05:01-DQB1*02:01 also referred to as DR3-DQ2. The 

heterozygous DR4-DQ8/DR3-DQ2 genotype confers the highest risk with odds ratio (OR) of 
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16. Some HLA haplotypes are associated with protective effects, such as DRB1*15:01 (DR2)-

DQA1*01:02-DQB1*06:02 [53]. 

In addition, there are more than 50 non-HLA genes associated with type 1 diabetes. Important 

non-HLA polymorphisms include the insulin gene (INS), protein tyrosine phosphatase non-

receptor type 22 gene (PTPN22), interferon-induced with helicase C domain 1 (IFIH1) [54], 

and cytotoxic T-lymphocyte associated protein (CTLA-4) [53]. The risk variant of TCF7L2, 

conferring the strongest genetic risk of type 2 diabetes, is more frequently found among non-

carriers of high risk HLA genotypes compared to risk genotype carriers among childhood type 

1 diabetes patients [55]. 

2.1.4.3 LADA 

Studies conducted to date indicate that LADA shares most of its genetic background with type 

1 diabetes. This was highlighted in the first genome-wide association study (GWAS) of LADA 

published recently [56]. The strongest genetic determinants for LADA are the HLA genes [57] 

and, similar to type 1 diabetes, the haplotypes conferring the strongest risk are DRB1*04-

DQB1*03:02 (DR4-DQ8) and DRB1*03:01-DQB1*02:01 (DR3-DQ2), albeit with attenuated 

effect size [57, 58]. In addition, high risk HLA genotypes seem to correlate with GADA level 

[59]. The protective HLA-DQB1*06:02/X and HLA-DQB1*06:03/X seem to be more frequent 

among individuals with LADA compared to type 1 diabetes [57, 58]. A number of non-HLA 

type 1-related genes have also been associated with LADA, including variants in PTPN22 and 

INS [57]. The LADA GWAS also confirmed a genetic overlap with type 2 diabetes, but less 

clear than for the autoimmune-related genes [56]. An association with the type 2 diabetes risk 

gene TCF7L2 could not be confirmed at the genome-wide significance level, but has been 

demonstrated in several other studies [60] including two based on Swedish data [58, 61]. With 

regard to the FTO gene, one study based on data from the Norwegian HUNT Study have 

reported an association for LADA, especially among patients with low GADA levels [62], but 

replication is needed for verification. Based on the genetic background, autoimmunity seems 

to be the major driving force in the development of LADA. In line with this, family history of 

type 1 diabetes is a stronger risk factor for LADA than family history of type 2 diabetes [63]. 

2.1.5 Environmental and lifestyle risk factors 

2.1.5.1 Type 2 diabetes 

The contribution of environmental and lifestyle factors in the development of type 2 diabetes 

is substantial and much is known when it comes factors affecting risk of disease. Lifestyle plays 

an important role and excess adiposity, indicated by high body mass index (BMI), is the 

strongest single risk factor by its contribution to insulin resistance. In addition, increased 

abdominal fat has been shown to be a risk factor independent of BMI [15]. Other important 

risk factors include low quality diet which will be further discussed below (Section 2.2.1.1), 

but also low physical activity [64], sedentary lifestyle [65], cigarette smoking (in a dose-

dependent manner) [67], air pollution [67], sleep duration [68], and psychological stress [69]. 

All of these risk factors are thought to influence risk of type 2 diabetes through mechanisms 
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contributing to impaired insulin sensitivity. Lifestyle interventions including modifications in 

diet and physical activity have been shown effective for weight loss and subsequent reduction 

in type 2 diabetes risk [2, 70]. 

2.1.5.2 Type 1 diabetes 

Europe has the highest incidence of childhood type 1 diabetes, where Finland is in the top and 

Sweden comes second with an annual incidence of 40 new cases per 100,000 children aged 

<15 years [71]. A dramatic increase in incidence has been seen over the past decades; a 

doubling of childhood cases in Europe during the past 20 years [72]. This increase is unlikely 

to be explained by genetic changes but rather by an increased prevalence of environmental risk 

factors. Such factors could potentially act by triggering autoimmunity or promote the 

progression from islet autoimmunity to type 1 diabetes, or both. 

Established environmental risk factors are lacking despite large efforts. However, exposure to 

enteroviruses is the factor most consistently associated with type 1 diabetes risk [73-75]. Other 

factors that have been proposed to increase the risk are respiratory infections [76], maternal 

age at delivery, high birthweight [77], accelerated weight gain early in life [78], and childhood 

adiposity [54, 79], but also serious life events and psychological stress [80]. Furthermore, there 

has been an increasing interest in the gut microbiota and its potential role in type 1 diabetes 

development [81], and is even discussed as a potential target for preventive interventions [82]. 

Alterations in gut microbiota (e.g. lower diversity) may be induced by several factors including 

diet (further discussed in Section 2.2.1.2), birth delivery mode (Ceasarian section) [83], 

antibiotics use, low exposure to viral infections, or excessive hygiene (’the hygiene 

hypothesis’) [84, 85], which are all candidate factors for modulating type 1 diabetes risk [75]. 

It has proven difficult to replicate findings across studies and so far, attempts to prevent type 1 

diabetes through lifestyle modification has been unsuccessful [3]. 

2.1.5.3 LADA 

Given the hybrid nature of LADA, risk factors may have underlying mechanisms related to 

autoimmunity or/and insulin resistance. At present, there is a paucity of studies on 

environmental and lifestyle risk factors for LADA. One probable reason is that most studies 

with incident cases lack information about antibody status which is required to distinguish 

LADA from type 2 diabetes. Antibodies are not routinely measured in health care. The few 

studies investigating risk of LADA in relation to lifestyle factors conducted to date have all 

been based on data from two population-based studies in Norway and Sweden; the prospective 

HUNT Study [86] and the case-control study ESTRID [28]. Findings from HUNT and ESTRID 

suggest that LADA, despite its autoantibody positivity, may share several risk factors with type 

2 diabetes; increased age, overweight, physical inactivity [87], family history of diabetes [88, 

63], low birthweight [89], heavy smoking [90], sleep disturbances and low psychological well-

being [91], which supports the importance of insulin resistance in the development of LADA. 

Some of these studies also highlight that the group of LADA patients is heterogeneous; for 

some of these factors, the associations vary depending on degree of autoimmunity [63, 90]. 
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2.2 DIETARY RISK FACTORS 

2.2.1 Overview 

2.2.1.1 Type 2 diabetes 

Diet has been shown to play an important role in the development, and hence also for 

preventive actions, of type 2 diabetes [2, 92]. Lower risks are generally seen with adherence to 

a Mediterranean diet which is characterized by high intakes of nuts, vegetables, legumes, fruits, 

fish and seafood, and moderate alcohol intake, and often limited intakes of red and processed 

meat, (high fat) dairy products, and either high olive oil intake or high monounsaturated fatty 

acid (MUFA) to saturated fatty acid (SFA) ratio [93, 94]. Contrary, positive associations have 

been observed for a Western diet which include high consumption of red and processed meat, 

fried products, high fat dairy products, refined grains, and sweets [95]. The beneficial effects 

of the Mediterranean diet have been attributed to cardiovascular improvements and reductions 

in fasting levels of glucose and insulin, insulin resistance, and inflammatory markers [96] 

whereas the Western diet has been related to increases in inflammatory markers [97]. Dietary 

components associated with lower risks are whole grain [5, 98], total dairy products [5, 99] 

which may be attributed to low-fat dairy products and/or yoghurt intake [99] although 

controversies exist [100], fruits [5, 101], vegetables [5] – specially green leafy vegetables [101], 

coffee [102], low to moderate alcohol consumption [103], and fatty fish intake (further 

discussed in Section 2.2.2.4) [104]. Increased risks have been proposed for intakes of 

sweetened beverages (further discussed in Section 2.2.3.3) [5, 105], red and processed meat 

[5], and diets high in glycemic load [106]. 

A role of total protein intake in the development of type 2 diabetes has also been discussed, 

with increased risks in relation to total protein which may be attributed to protein from animal 

sources [107, 108] whereas inverse associations for have been suggested for plant-based 

proteins [109]. A high PUFA:SFA ratio has been associated with lower risk of type 2 diabetes 

and trans fatty acids have been positively associated [110], but more recent findings suggest 

that the potential role of specific fatty acids may also vary by their carbon length; in EPIC-

InterAct, plasma phospholipid even-chained SFAs were positively associated but odd-chained 

SFAs were inversely associated with type 2 diabetes [111]. Furthermore, the degree of 

unsaturation may affect the roles of specific fatty acids; among n-6 PUFAs the direction of 

association with type 2 diabetes was different for fatty acids with two, three, or four double 

bonds [112]. Taken together, a lot is known when it comes to dietary factors and their 

association with type 2 diabetes, but the specific components in foods and the underlying 

mechanisms explaining these associations are not fully elucidated. 

2.2.1.2 Type 1 diabetes 

Several dietary factors have been hypothesized to influence development of islet autoimmunity 

and type 1 diabetes but results have been inconsistent and no associations have been firmly 

established [113]. Dietary factors proposed to increase the risk include cow’s milk [114-117], 

high sugar intake [9], low omega-3 PUFA intake and status [7], low vitamin D intake [118] 



 

10 

and 25-hydroxyvitamin D status [119, 120], and intake of nitrate and nitrite [121]. The timing, 

with regard to age but also to cessation of breastfeeding, for infant introduction to solid foods 

or specific foods such as gluten/cereal products [122, 123], fruits [122, 124], and root 

vegetables [124], may be of importance. The notion that risk factors for type 1 diabetes may be 

related to the gut microbiota is highly relevant when it comes to diet since the gut microbiota 

composition is vastly influenced by environmental factors such as diet [125, 126]. In support 

of an important role of gut microbiota, early supplementation of probiotics have been inversely 

associated with islet autoimmunity [127], however probiotic supplementation during the first 

six months in life was not associated with islet autoimmunity and type 1 diabetes [128]. 

Importantly, the vast majority of studies have been carried out in children, or siblings of 

children, and often in those with genetic susceptibility. Studies in adults, with and without 

genetic risk, are lacking. 

2.2.1.3 LADA 

To hypothesize that diet may influence the risk of LADA is not far-fetched, given the large 

number of dietary factors studied in relation to type 1 and type 2 diabetes discussed above. 

Despite this potential, the number of studies are few. In fact, by the start of this thesis project, 

only alcohol consumption had been assessed in relation to LADA risk; based on data from 

ESTRID and HUNT studies, an inverse association with moderate alcohol intake was found 

but suggestively only among patients with mild autoimmunity (low GADA levels) [129, 130], 

which is similar to observations in type 2 diabetes [103]. In addition, we later found coffee 

consumption to be positively associated with LADA but only in those with high GADA levels 

[131]. Interestingly, this contrasts previous findings in type 2 diabetes [102]. Along those lines, 

we recently showed that heavy coffee consumption may interact with high risk HLA genotypes 

on the risk of LADA [132], suggesting potential mechanisms related to autoimmunity. 

This thesis project focuses on the role of dietary fish and sweetened beverage consumption in 

development of LADA. There are hypotheses relating dietary fish intake and related nutrients 

as well as sweetened beverage consumption to risk of both type 1 and type 2 diabetes (presented 

in the next section), but their association with LADA has not been previously investigated. This 

thesis is based primarily on data from the ESTRID Study since the dietary information in 

HUNT is limited to indicator questions on key dietary factors [133]. One of the included studies 

is however based on data from the prospective EPIC-InterAct Study [134]. Here, it is not 

possible to study incident LADA (requires known antibody status at diagnosis) but instead, 

GADA measured at baseline (i.e. before diabetes onset) could be explored as a risk factor 

including its potential interaction with other risk factors such as diet. A schematic summary of 

the background for this thesis work is presented in Figure 2.2 (page 14). 

2.2.2 Fish consumption 

Dietary fish is rich in several important nutrients and considered part of a healthy diet. The 

dietary guidelines in Sweden recommend consumption of fish and shellfish two to three times 

a week, and to alter between types of fish consumed (www.slv.se). Fish is the most important 
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dietary source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are 

long-chain polyunsaturated omega-3 fatty acids (n-3 PUFA), and one of the most important 

sources of vitamin D. However, dietary fish is also a source of environmental contaminants 

that may have adverse health effects [135, 136]. 

2.2.2.1 Long-chain omega-3 fatty acids (n-3 PUFA) 

EPA and DHA are synthesized endogenously by elongation and desaturation of α-linoleic acid 

(ALA), an essential fatty acid with shorter carbon chain found in plant-based foods. However, 

this interconversion is very limited and may be as low as <1% for DHA [137]. For this reason, 

these fatty acids must be acquired through foods (or as dietary supplements). EPA and DHA 

have anti-inflammatory properties, which may be of relevance in diabetes prevention as both 

type 1 and type 2 diabetes have been described as having an inflammatory component [138, 

139], and immunomodulatory properties through altered maturation and differentiation of  T 

cells [140]. Also beneficial effects on insulin resistance has been demonstrated in animals [141] 

but findings are less consistent in humans [142]. The amount of n-3 PUFA is larger in fatty fish 

such as salmon and herring, and lower in lean fish such as cod and pollock. As an objective 

biomarker for dietary fish intake, measurements of EPA and DHA in various biological 

compartments is commonly used [143]. 

2.2.2.2 Vitamin D 

Vitamin D is synthesized in the skin by sun exposure (ultraviolet-B radiation). The possibility 

to reach adequate vitamin D levels decreases with increasing latitude. In Sweden and other 

countries at a latitude above 40°, vitamin D synthesis cannot occur during the dark months of 

the year [144] and therefore it has to be acquired through food (as vitamin D3 or D2). After 

hydroxylation in the liver, into 25-hydroxyvitamin D [25(OH)D3], and in the kidney, the 

biologically active form 1,25(OH)2D3 is reached [145]. Dietary fish is one of the major dietary 

sources of naturally occurring vitamin D. Almost all immune cells have vitamin D receptors 

(VDR), which implies that vitamin D has an important role in immune function. Several 

diabetes-related health benefits have been proposed to be linked to vitamin D, including anti-

inflammatory effects and preventive effects on autoimmunity through mechanisms such as 

reduced stimulation of T cells, but there may also be direct effects on pancreatic beta cells and 

insulin secretion [145]. 

2.2.2.3 Environmental contaminants 

Dietary fish is also our primary source of exposure to persistent organic pollutants (POPs), 

especially polychlorinated biphenyls (PCBs) [135]. POPs have been shown to induce insulin 

resistance in rodents [146], and a positive association has been suggested with type 2 diabetes 

in humans [147]. Another contaminant present in fish in methyl mercury [136], which has been 

suggested to induce beta cell dysfunction [148]. 
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2.2.2.4 Dietary fish consumption and risk of diabetes 

The risk of type 2 diabetes in relation to dietary fish intake remains inconclusive and there are 

indications of regional differences with associations being positive for studies in North 

America, inverse for Asian and Australian studies, and no overall association in studies from 

Europe [149]. Differences in preparation methods or level of contamination in different species 

may partly explain the observed discrepancies [150]. Analysis of fish subtypes have suggested 

an inverse association for fatty fish based on data from European and Asian populations [104]. 

Moreover, serum levels of n-3 PUFA have been associated with lower risk of type 2 diabetes, 

with the strongest association seen for DHA [151]. 

Protective effects of fish intake and n-3 PUFA on islet autoimmunity or/and type 1 diabetes 

have been suggested as cod liver oil supplementation during first year of life was shown to be 

associated with decreased risk of developing type 1 diabetes [6]. Similarly, an American study 

reported reduced risk of islet autoimmunity in relation to total intake of n-3 PUFA with a 

similar tendency for marine-derived n-3 PUFA [7], but no association with progression to type 

1 diabetes [152]. Moreover, a Finnish study found no association of serum EPA and DHA on 

islet autoimmunity [153]. Inverse associations for vitamin D and development of islet 

autoimmunity or/and type 1 diabetes are reported by some studies [118-120] but not others 

[154, 155]. Studies on dietary fish intake and objectively measured n-3 PUFA exposure are 

lacking with regard to autoimmune diabetes with an adult onset. 

2.2.3 Sweetened beverage consumption 

2.2.3.1 Sugar-sweetened beverages 

The consumption of sugar-sweetened beverages has been increasing over the past decades 

[156]. Sugar-sweetened beverages contribute energy in the form of rapidly absorbed sugars but 

have low nutritional value. Consumption is associated with weight gain [158] with one 

explanation being that liquid calories are less likely to be fully compensated for in subsequent 

meals when compared to solid foods, possibly due to reduced satiety signaling [158, 159]. 

Apart from increased adiposity, there may also be independent increase in insulin resistance 

[160, 161], possibly through adverse effects of fructose-induced hepatic lipid synthesis [162, 

163]. Furthermore, high sugar intake has been associated with increased inflammation [164] 

and demonstrated to induce beta cell apoptosis through oxidative stress [165] or beta cell 

overload [166]. Carbon-13 has been suggested as a biomarker for sugar-sweetened beverage 

intake but is not frequently used [167]. 

2.2.3.2 Artificially sweetened beverages 

As an alternative to sugar, some beverages instead contain artificial (nonnutritive) sweeteners 

such as aspartame and acesulfame K. Stevia is another nonnutritive sweetener which is plant-

based. In this text, all nonnutritive sweeteners will be referred to as artificial. Artificial 

sweeteners contribute with no or very few calories and that way do not directly add to the 

glycemic load or total daily energy intake. However, artificially sweetened beverages have 
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been suggested to enhance appetite due to distorted satiety signaling [168] and cause alterations 

in gut microbiota with subsequent deterioration in glucose tolerance [169, 170]. 

2.2.3.3 Sweetened beverage consumption and risk of diabetes 

The large body of evidence linking sugar-sweetened beverage intake to type 2 diabetes is 

convincing [5]. The association may partly be mediated by BMI, but there also seems to be an 

association independent of adiposity [105]. The role of artificially sweetened beverages in the 

development of type 2 diabetes is controversial; a positive association has been suggested [105] 

but may be explained by BMI or confounding by other dietary or lifestyle factors [171-173]. 

The role of sweetened beverages in the development of autoimmune diabetes is less clear. 

Positive associations with sugar-sweetened beverage intake have been reported in two studies 

from North America [8, 9], but no association was seen in a Swedish study [175]. One study 

investigated islet autoimmunity and type 1 diabetes in relation to artificially sweetened 

beverages and found no indication of an association [9]. 

2.2.3.4 The potential influence of genes 

Only one previous study has addressed the potential interaction between intake of sweetened 

beverage and genetic susceptibility on the risk of type 2 diabetes, which was done by means of 

a genetic risk score, but they found no evidence of interaction [175]. Gene-environment studies 

of individual genes are complex due to very modest effects on type 2 diabetes risk. Still, a 

positive association with TCF7L2 (rs12255372) has been indicated to vary across levels of 

glycemic load [176]. The FTO gene has been demonstrated to influence nutrient intake 

preferences [177] and a lower intake of sugar-sweetened beverages, but not artificially 

sweetened, was reported among risk genotype carriers (of rs9939609) compared to those 

without the risk genotype [178]. Furthermore, FTO may interact with dietary intake as a study 

demonstrated that the risk variant was positively associated with type 2 diabetes only in 

combination with low adherence to a Mediterranean diet, but not among risk genotype carriers 

with high adherence (where one score is given for low intake of sugar-sweetened beverages) 

[179]. With regard to type 1 diabetes, one of the North American studies mentioned above 

found a positive association with sweetened beverages only among carriers of a high risk HLA 

genotype who had already developed islet autoimmunity [9]. Whether diabetes-related 

genotypes have a role in a potential association between sweetened beverages and LADA 

remains to be explored. 
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3 AIMS 

The overall aim with this thesis was to investigate consumption of fatty fish and sweetened 

beverages on the development of LADA, and compare to that of type 2 diabetes. 

 

The specific aims were: 

i. to study the risk of LADA and type 1 diabetes in relation to fatty fish consumption and 

dietary supplementation of fish oil and vitamin D (Paper I) 

 

ii. to study the potential role of n-3 PUFA, by measures of dietary fish intake and plasma 

n-3 PUFA, on the progression from islet autoimmunity to diabetes onset in adults 

(Paper II) 

 

iii. to study the risk of LADA and type 2 diabetes in relation to sweetened beverage 

consumption, including separate analysis of sugar-sweetened and artificially sweetened 

beverages (Paper III) 

 

iv. to study whether risk genes for diabetes modify the associations between sweetened 

beverage consumption and risk of LADA and type 2 diabetes, and estimate the 

proportion mediated by BMI (Paper IV) 
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4 SUBJECTS AND METHODS 

4.1 THE ESTRID STUDY (PAPER I, II, IV) 

The ESTRID Study (Epidemiological Study of Risk Factors for LADA and Type 2 Diabetes; 

https://ki.se/imm/estrid) was initiated in 2010 with the overall aim to enable investigations of 

lifestyle risk factors for LADA, including their underlying mechanisms and interaction with 

genetic factors. Such studies were at the time scarce and could in fact be counted on the fingers 

of one hand, all based on the same cohort from Norway, the HUNT Study (The Nord-Trøndelag 

Health Study) [86]. 

4.1.1 Study design 

ESTRID is a Swedish case-control study with incident cases of LADA and type 2 diabetes 

recruited from two diabetes registries; ANDIS (All New Diabetics in Scania; 

http://andis.ludc.med.lu.se) and its sister-study ANDiU (All New Diabetics in Uppsala; 

http://www.andiu.se, recruitment since 2012). The aim of the registries is to include all new 

diabetes cases diagnosed in the regular health care system within the counties of Scania 

(ANDIS) and Uppsala (ANDiU) and classify them based on clinical and genetic characteristics. 

All incident cases of LADA and a random sample of type 2 diabetes cases (four per one LADA 

case) aged ≥ 35 years are invited to participate in ESTRID. Controls without diabetes aged ≥ 

35 years are recruited as a random sample (six per one LADA case) from the Swedish 

Population Register, matched to the cases by county and calendar time (i.e. date of 

participation). ESTRID is an ongoing study which to date includes 584 cases of LADA, 2,033 

cases of type 2 diabetes, and 2,349 controls.  

4.1.2 Study population 

The ESTRID dataset is updated annually. Analyses in Paper I were based on cases and controls 

recruited between September 2010 and July 2013 (only cases who responded to the 

questionnaire within six months of diagnosis to minimize influence of recall bias) including 89 

cases of LADA, 462 cases of type 2 diabetes, and 1,007 controls. Paper III was based on cases 

and controls recruited between September 2010 and July 2015, including 357 cases of LADA, 

1,136 cases of type 2 diabetes, and 1,371 controls with complete information on exposure and 

main covariates. Paper IV, in which we explored gene*environment interaction, was based on 

386 LADA cases and 1,253 type 2 diabetes cases recruited between September 2010 and July 

2017, together with 1,545 controls recruited between 2005 and 2014 within the EIRA Study 

(described in Section 4.1.6.2). The reason for this procedure was that controls within ESTRID 

contribute questionnaire data but no blood samples. 
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Figure 4.1. Schematic of the ESTRID study. 

4.1.3 Clinical information 

Fasting blood samples were collected at time of registration in ANDIS and ANDIU. 

Quantification of GADA was done with an enzyme-linked immunosorbent assay (ELISA), 

where values above 250 IU/ml were censored at 250. Autoantibody positivity was defined as 

≥ 10 IU/ml. Sensitivity was 84% and specificity was 98% at a cut-off level of 10.7 IU/ml [180]. 

C-peptide concentration was measured using Cobas e601 analyzer (Roche Diagnostics, 

Mannheim, Germany) or IMMULITE 2000 (Siemens Healthcare Diagnostics Product Ldt., 

Llanberies, UK). Homeostatic model assessment for insulin resistance (HOMA-IR) and beta 

cell function (HOMA-B) was calculated based on values for fasting blood glucose and C-

peptide in the HOMA2 calculator [181]. 

4.1.4 Classification of diabetes 

Classification of diabetes subtype was based on age at diagnosis, GADA, and C-peptide. 

LADA was defined as age ≥ 35 years, GADA ≥ 10 IU/ml (i.e. autoantibody positivity), and C-

peptide ≥ 0.2 nmol/L (IMMULITE) or ≥ 0.3 nmol/L (Cobas e 601). Similarly, type 2 diabetes 

patients were aged ≥ 35 years, but had GADA < 10 IU/mL (i.e. negative for autoantibodies), 

and C-peptide ≥ 0.60 nmol/L (IMMULITE) or ≥ 0.72 nmol/L (Cobas e 601). In Paper I, which 

was one of the first publications based on ESTRID, we used a cut-off of 20 IU/ml instead of 

10 IU/ml for GADA (classified as ‘LADA mild’ in the ANDIS registry). In all later 

publications based on ESTRID, we instead used the cut-off of 10 IU/ml and addressed the 

heterogeneity of LADA by stratifying the patients by median GADA level. 
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4.1.5 Questionnaire data 

All participants fill out a self-administered questionnaire with a 

wide range of questions including education, height, weight, 

physical activity, smoking, and diet. The cases were specifically 

instructed to report their habits as they had been prior to diagnosis.  

4.1.5.1 Dietary intake estimations 

Dietary habits were assessed by means of a validated [182-184] 

semi-quantitative food frequency questionnaire (FFQ) including 

132 food items intended to cover all parts of the person’s diet. For 

commonly consumed foods and beverages such as coffee, dairy, 

and bread, participants were asked to report the number of predefined servings per day or per 

week. For other food items, the participants were asked to choose from eight predefined 

frequency categories ranging from never to three times per day or more, to indicate intake as 

the average over the past year. Diabetes patients were instructed to report their diet as it had 

been the year preceding diagnosis. Reported intake frequencies were converted to servings per 

day by taking the midpoint of the marked frequency category and used together with age- and 

sex-specific portion sizes to estimate daily intake in grams. Based on these daily intakes, 

estimations of nutrients and total energy intake were calculated by food composition values 

from the Swedish National Food Agency database. Each item in the FFQ represent several 

specific foods, and the relative contribution of each specific food was determined by 

distribution of consumption in the population according to national surveys. Nutrient intakes 

were energy-adjusted according to the residual method [185]. 

For Paper I, the above mentioned data from nutrient calculations were not available. The EPA 

and DHA intake was instead estimated based on EPA and DHA content in the most commonly 

consumed types of fish and shellfish, with nutrient data from the Swedish National Food 

Agency Database. 

4.1.5.2 Fish consumption 

The ESTRID FFQ contains eleven items concerning seafood intake, of which four were 

regarded as fatty fish (herring/Baltic herring/mackerel, salmon, sardines, smoked fish), four 

about lean fish (cod/pollock/plaice/blue hake, tuna, pike/pike perch/perch, fish fingers), and the 

remaining three about other unspecified fish, shellfish, and roe (Figure 4.2). 

4.1.5.3 Dietary supplements 

The questionnaire also asked various dietary supplements. Participants were asked to report if 

each of the stated dietary supplements had ever been consumed (yes/no) and if yes, to specify 

the time period (in years), and to indicate current use. There was one question specifically 

asking about fish oil and one about vitamin D. There were also an open-ended question and the 

respondents reporting any supplement that would without doubt contain fish oil was considered 
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exposed. In addition, there was a question on multivitamin use but this was not considered in 

the analysis of vitamin D. 

 

Figure 4.2. ESTRID FFQ questions about dietary fish intake: “How often do you on average consume 

the following? Mark only one alternative on each row.” 

 

4.1.5.4 Sweetened beverage consumption 

Sweetened beverage consumption were covered by four question in the FFQ of the ESTRID 

questionnaire; two about sugar-sweetened and two about artificially sweetened (Figure 4.3). 

These were part of the section where the respondent was asked to report the number of 200 ml 

glasses consumed per day or per week. In the EIRA questionnaire, sweetened beverages were 

covered by one only question. For this reason, it was not possible to analyze sugar-sweetened 

and artificially sweetened beverages separately in Paper IV. 

 

Figure 4.3. ESTRID FFQ questions about sweetened beverage consumption: “How much do you drink 

of the following? 1 glass = 200 ml” 
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4.1.6 Genetic information 

4.1.6.1 Cases 

Genotyping was performed at the Clinical Research Center in Malmö, Sweden, using iPlex 

Gold Technology (Sequenom, San Diego, CA, USA). Imputation for missing genotypes were 

done on a subset using Infinium CoreExome v1.1 (Illumina, San Diego, CA,USA), which was 

based on the Haplotype Reference Consortium (http://www.haplotype-reference-

consortium.org/; version r1.1 2016) reference panel. Genotyping for HLA was based on three 

SNPs within the major histocompatibility complex (MHC) class II gene region; rs3104413, 

rs2854275, and rs9273363, combined to indicate HLA genotypes or haplotypes according to 

previously described methodology with an accuracy of 99.3% [186]. 

4.1.6.2 Genetic controls 

For the genetic analyses in Paper IV, we used data for diabetes-free controls collected within 

the Swedish EIRA (Epidemiological Investigation of Rheumatoid Arthritis; 

http://www.eirasweden.se) Study. The EIRA study design is very similar to that of ESTRID, 

including the recruitment of randomly selected population-based controls. Controls included 

in the analysis were aged 35 years or older, adhering to the age criteria in ESTRID. SNP data 

for HLA genotyping (rs3104413, rs2854275, rs9273363) was generated from an Infinium 

Illumina 300K immunochip custom array (Illumina, San Diego, CA, USA). Genotypes of 

TCF7L2 rs7903146 and FTO rs9939609 were based on GWAS data derived from an Illumina 

Global Screening array. 

 

4.2 THE EPIC-INTERACT STUDY (PAPER II) 

4.2.1 Study design 

The EPIC-InterAct Project started in 2006 with the overall aim to elucidate the role of diet and 

physical activity, and their interaction with genes, on the risk of type 2 diabetes [134]. InterAct 

is a nested-case cohort consisting of data from eight European countries within the already 

existing EPIC (European Prospective Investigation into Cancer and Nutrition) Study [187], in 

which a total of 340,234 participants were followed for 3.99 million person-years between 1991 

and 2007 (median follow-up 10.9 years). During this time, 12,403 individuals were diagnosed 

with type 2 diabetes. These individuals, together with a subcohort of 16,154 individuals free of 

diabetes at baseline, forms the InterAct case-cohort (Figure 4.4). After exclusions due to 

missing information on covariates, the analyses in Paper II were based on 11,247 diabetes cases 

and 14,981 subcohort participants (including 693 of the cases). 

4.2.2 Blood samples 

Blood samples for all participants were drawn at baseline, i.e. at time of inclusion in EPIC and 

analyzed for autoantibodies against the 65kD isoform of glutamic acid decarboxylase (GADA; 

but referred to as GAD65 antibodies in Paper II) using a radioligand binding assay [188, 189]. 
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Units (U) were expressed relative to the WHO standard [190]. The cut-off for GADA positivity 

was set at ≥ 65 U/ml, determined through a competition assay using recombinant human 

GAD65 (Diamyd Medical, Sweden), as previously described [191]. This corresponds to 

sensitivity of 85% and specificity of 99% [192]. 

The samples were also analyzed for plasma phospholipid fatty acids through solid phase 

extraction followed by hydrolysis and methylation into fatty acid methyl esters which were 

subsequently separated by gas chromatography [193]. Commercial standards were used as 

comparison and the different fatty acids were identified through their retention time and finally 

expressed in mol%, which represents the percentage of total phospholipid fatty acids. 

 

Figure 4.4. Schematic of the EPIC-InterAct case-cohort study design. 

 

4.2.3 Ascertainment of diabetes 

All incident cases of diabetes classified as type 2 occurring during the follow-up period were 

ascertained and verified through a minimum of two out of the following potential sources: self-

report, primary-care registers, secondary-care registers, use of diabetic medication, hospital 

admissions and mortality data. In Denmark and Sweden, all cases were identified through 

linkage to local and national registers for diabetes and prescribed drug registers, for which no 

further verification was considered to be needed. Prevalent cases of diabetes at baseline were 

identified via self-report, doctor’s diagnosis, or use of diabetic medication, and excluded from 

the study. All cases were diagnosed with type 2 diabetes and since no antibody measurements 

were taken at diagnosis, we are unable to distinguish LADA. These cases will for the remainder 

of this text be referred to as ‘diabetes’. 
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4.2.4 Questionnaire data 

Information on education, occupation, and lifestyle including physical activity and smoking 

status was collected for all participants at baseline in a standardized manner across study 

centers. Habitual diet was assessed through self-administered or interviewer-administered 

questionnaires. Development and validation of the dietary questionnaires were performed 

within each country [194, 195]. The dietary intake data was standardized with regard to food 

items and individual nutrients through the use of the EPIC Nutrient Database [196]. 

4.2.4.1 Fish consumption 

Information on dietary fish intake among the EPIC-InterAct participants was divided into fatty 

fish, lean fish, total fish intake (which is the sum of fatty and lean fish), shellfish, and combined 

fish and shellfish intake (also including “other” types of fish such as fish products/fish in 

crumbs, and nonspecific or combined fish). In Paper II, analyses were based on information on 

total fish intake, fatty fish intake, and lean fish intake. 

 

4.3 STATISTICAL ANALYSIS 

4.3.1 The ESTRID Study (Paper I, III, IV) 

In Paper I, III, and IV, conditional logistic regression was used to estimate odds ratios (OR) 

and 95% confidence intervals (CI) of LADA and type 2 diabetes in relation to the exposure of 

interest. Since the cases are incident and the controls are sampled from the population at risk, 

i.e. they are representative of the source population and eligible to become a case, this is also 

called incidence-density sampling. As an implication, the odds ratio may be interpreted as the 

incidence rate ratio or relative risk [197]. In Paper IV, controls from the EIRA Study was used 

and post-matched to the ESTRID cases by age (in 5-year strata) and sex, due to an over-

representation of women in EIRA (as a consequence of the controls originally being matched 

to cases of rheumatoid arthritis; a disease predominantly affecting women). 

In Paper IV, we used causal mediation methodology [198] to estimate the natural direct effect 

and natural indirect effect of high sweetened beverage consumption, and proportion of the 

association between high intake and risk of diabetes that is mediated by BMI. In order for a 

causal interpretation of the effect estimates to be made, there are four assumptions that need to 

be met, namely that there should be no unmeasured confounding between 1) exposure and 

outcome, 2) mediator and outcome, and 3) exposure and mediator, and also 4) there should be 

no mediator – outcome confounder that is affected by the exposure [198]. 

In Paper IV, we also investigated the potential effect modification by genotypes of HLA, 

TCF7L2 rs7903146, and FTO rs9939609 on the association between sweetened beverage 

intake and diabetes. We did so by stratifying the analyses on genotype to obtain OR per 1 daily 

serving increment in intake specific for each genotype. The genotypes were categorized into 

high risk (high risk HLA; ≥ 1 risk allele [T] for rs7903146; ≥ 1 risk allele [A] for rs9939609) 

or low risk (low/intermediate risk HLA; CC in rs7903146; TT in rs9939609). We also assessed 
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the presence of interaction defined as departure from additivity of effects by estimating the 

attributable proportion (AP) due to interaction for the combined effect of high sweetened 

beverage intake (> 2 servings per day) and high risk genotype, compared with non-risk 

genotype carriers with lower intakes (≤ 2 servings per day). AP was based the following 

formula [199]: 

𝑅𝑅11 − 𝑅𝑅10 − 𝑅𝑅01 + 1

𝑅𝑅11
 

where RR denotes the relative risk, but in this study it is replaced by OR because of the case-

control design with binary outcome measure. OR11 represents the doubly exposed, i.e. to both 

high sweetened beverage intake and high risk genotype, and OR10 and OR01 are those exposed 

to one of the factors but not the other. AP > 0 indicates positive interaction, which is considered 

significant when the confidence interval does not include 0. 

4.3.2 The EPIC-InterAct Study (Paper II) 

In Paper IV, Cox proportional hazards regression models were used in the main analyses due 

to the prospective nature of the data. The models were Prentice-weighted as a way to account 

for the over-representation of cases following the case-cohort design [200]. Hazard ratios (HR) 

and 95% CI of incident diabetes in relation to baseline GADA status, plasma levels of n-3 

PUFAs, or dietary fish intake, and for mutually exclusive combinations of antibody status and 

n-3 PUFA/fish were estimated. Age was used as the underlying timescale, and person-years of 

follow-up were calculated from baseline (time of participation) until diabetes diagnosis, death, 

or December 31 2007, whichever occurred first. All models were conditioned on study center 

to handle potential differences between centers or countries. 

The main focus of Paper IV was the interaction analysis in which we wanted to investigate the 

risk of diabetes in relation to the combination of antibody positivity and low dietary fish intake 

or plasma levels of n-3 PUFA. Interaction was defined as departure from additivity and 

expressed as attributable proportion due to interaction (AP). Calculations were based on the 

same formula as presented above, but with HR replacing RR. In these analyses, the double 

exposed (HR11) were those with GADA positivity (or high GADA level) and low 

dietaryfish/plasma n-3 PUFA level. Antibody negativity and high fish/n-3 PUFA was used as 

reference, as the combination representing the lowest risk should be used as reference [201]. 

AP with 95% CI was estimated using the freely available EpiNET tool [202]. 

 

4.4 ETHICAL CONSIDERATIONS 

All participants in ESTRID, EIRA, and EPIC-InterAct provided informed consent. Ethical 

approval for ESTRID, including the addition of EIRA controls, were obtained from the Ethics 

committee at Karolinska Institutet, Stockholm, Sweden. EPIC-InterAct was approved by the 

IARC Institutional Review Board Committee and local approvals were obtained in each 

country.  
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5 RESULTS 

5.1 CHARACTERISTICS OF STUDY PARTICIPANTS 

In ESTRID, individuals with LADA were younger and leaner at diagnosis, had worse beta cell 

function but better insulin sensitivity compared to individuals with type 2 diabetes (Table 5.1). 

Furthermore, high risk HLA genotypes were more frequent in LADA than in type 2 diabetes 

but no difference was seen with respect to risk genotypes of TCF7L2 and FTO. Median time 

since diagnosis was 6.7 months for LADA and 5.1 months for type 2 diabetes. Characteristics 

of study participants in EPIC-InterAct are presented in the manuscript. 

5.2 PAPER I: FATTY FISH CONSUMPTION AND LADA 

Weekly intake of fatty fish was associated with a reduced risk of LADA (OR 0.51, 95% CI 

0.30-0.87) compared to less frequent consumption (Figure 5.1) whereas no association was 

found for type 2 diabetes (OR 1.01, 95% CI 0.74-1.39). Estimations of total EPA and DHA 

intake from seafood sources supported the associations observed for fatty fish. In addition we 

investigated the risk of LADA in relation to dietary supplementation (ever vs. never use) of 

fish oil and vitamin D. These were hampered by very small numbers but the ORs, although 

with wide confidence intervals, were compatible with a reduced risk of LADA in supplement 

users (Figure 5.1).  

Figure 5.1. OR of LADA and type 2 diabetes in relation to fatty fish consumption and dietary 

supplementation of fish oil and vitamin D. The models were adjusted for age, sex, education, smoking, 

physical activity, family history of diabetes, and intakes of alcohol, red meat, fruit and vegetables. 
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Table 5.1. Characteristics of patients with LADA or type 2 diabetes, and diabetes-free control subjects included in the ESTRID dataset used for the latest paper included 

in this thesis (Paper IV). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristic Controls LADA Type 2 diabetes pa Genetic controlsb 

No. of individuals 1,790 386 1,253  1,545 

Age (years), mean (SD) 59 (14) 59 (12) 63 (10) <0.0001 58 (10) 

Women, % 52 47 40 0.0064 74 

BMI (kg/m2), mean (SD) 25.9 (4.2) 27.9 (5.3) 31.1 (5.3) <0.0001 25.4 (4.1) 

Overweight (BMI ≥ 25), % 54 70 93 <0.0001 47 

Obese (BMI ≥ 30), % 15 31 51 <0.0001 12 

With family history of diabetes, % 25 42 50 0.0046 - 

High risk HLA genotype, % - 61 31 <0.0001 32 

≥1 risk allele TCF7L2 rs7903146, % - 52 53 0.8225 46 

≥1 risk allele FTO rs9939609, % - 66 68 0.5561 64 

GADA (IU/ml), median (IQR) - 240 (29-250)c -  - 

C-peptide (nmol/l ), mean (SD) - 0.80 (0.52) 1.35 (0.59) <0.0001 - 

HOMA-IR, median (IQR) - 2.7 (1.8-4.4) 3.6 (2.7-4.8) 0.0014 - 

HOMA-B, median (IQR) - 33 (13-65) 68 (42-94) <0.0001 - 

a p for the comparison between LADA and type 2 diabetes. 
b Genetic controls collected within the EIRA Study. 
c High values are censored at 250 IU/ml. 
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5.3 PAPER II: GADA, FISH/N-3 PUFA, AND DIABETES 

In EPIC-InterAct, GADA positivity vs. negativity at baseline conferred a nearly 2-fold 

increased risk of diabetes (HR 1.81, 95% CI 1.49-2.20), which was even more pronounced in 

those with high GADA levels defined as ≥ 167.5 U/ml (HR 2.93, 95% CI 2.27-3.79). Neither 

total fish intake nor plasma n-3 PUFA was associated with the risk of diabetes (highest vs. 

lowest tertile: HR 1.03, 95% CI 0.93-1.15, and HR 1.01, 95% CI 0.93-1.11, respectively). 

Despite the lack of overall association, consumption of both total fish and fatty fish was found 

to interact with GADA status in relation to the risk of diabetes; HR for positivity combined 

with low intake was 2.52 (95% CI 1.76-3.63) and 2.48 (95% CI 1.79-3.45), respectively. 

Estimations of AP indicated that 44-48% (95% CI 16-72%) of the doubly exposed cases could 

be attributed to the interaction between the two exposures. The highest risk of diabetes was 

seen in individuals with high GADA levels combined with low levels of total n-3 PUFA (HR 

4.26, 95% CI 2.70-6.72, with AP 0.46, 95% CI 0.12-0.80), and plasma DHA (HR 4.30, 95% 

CI 2.86-6.47, with AP 0.43, 95% CI 0.08-0.77) (Figure 5.2). 

Figure 5.2. Multivariable adjusted HR (95% CI) of adult onset diabetes by mutually exclusive 

combinations of GADA status and plasma levels of a) n-3 PUFA and b) DHA measured at baseline in 

the EPIC-InterAct Study. The models were adjusted for age (as underlying time-scale, center, sex, 

education, smoking, physical activity, BMI, alcohol, fruit and vegetable intake. 
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5.4 PAPER III: SWEETENED BEVERAGE CONSUMTION AND LADA 

In Paper III we investigated the association between sweetened beverage intake and LADA or 

type 2 diabetes. High consumption (> 2 servings per day) was positively associated with both 

LADA (OR 2.12, 95% CI 1.20-3.75) and type 2 diabetes (OR 3.31, 95% CI 2.07-5.31) 

compared to non-consumption. The associations remained also after inclusion of BMI in the 

models (LADA: OR 1.99, 95% CI 1.11-3.56, and type 2 diabetes OR: 2.39, 95% CI 1.39-4.09). 

In separate analysis by beverage type, OR per one additional daily serving of sugar-sweetened 

beverages was 1.18 (95% CI 1.00-1.39) for LADA and 1.21 (95% CI 1.05-1.41) for type 2 

diabetes after adjustment for BMI. The corresponding ORs for artificially sweetened beverage 

intake was 1.12 (95% CI 0.95-1.32) and 1.18 (95% CI 1.01-1.38) for LADA and type 2 

diabetes, respectively. 

5.5 PAPER IV: SWEETENED BEVERAGES, GENOTYPES, AND LADA 

In Paper IV, we show that HLA was strongly associated with LADA but not type 2 diabetes 

(Figure 5.3) and furthermore that the association with LADA pertained only to carriers of 

low/intermediate risk HLA genotypes but not to high risk carriers (Figure 5.4). TCF7L2 was 

associated with both LADA and type 2 diabetes, but did not seem to modify the association 

between sweetened beverages and neither LADA not type 2 diabetes. FTO was associated with 

type 2 diabetes but not with LADA, and FTO showed indications of being effect modifier in 

the association between sweetened beverage intake and type 2 diabetes. 

 

Figure 5.3. Age- and sex-adjusted OR with 95% CI of LADA and type 2 diabetes in relation to 

genotypes of HLA, TCF7L2 and FTO. 
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Figure 5.4. Multivariable adjusted OR of LADA and type 2 diabetes per 1 daily serving increment in 

intake of sweetened beverages, overall and by genotypes of HLA, TCF7L7 rs7903146, and FTO 

rs9939609. The models were adjusted for age, sex, education, physical activity, smoking, and alcohol 

intake. 

Sweetened beverage intake was positively associated with insulin resistance, measured as 

HOMA-IR, among individuals with type 2 diabetes both before (β=0.035, p < 0.001) and after 

(β=0.033, p < 0.05) adjustment for BMI. For LADA, similar tendencies were observed overall 

(β=0.051, p = 0.09, and β=0.043, p = 0.14), but stratification by HLA genotype indicated that 

the association was present only among carriers of low/intermediate risk HLA genotypes 

(β=0.162, p < 0.05, and β=0.122, p < 0.05). No associations were found with HOMA-B as an 

indicator of beta cell function. 

By means of causal mediation analysis, BMI was estimated to mediate 17% of the association 

with high sweetened beverage consumption for LADA and 56% for type 2 diabetes, while the 

estimated direct effect was of similar magnitude for both LADA and type 2 diabetes (Figure 

5.5). 

Figure 5.5. Estimated natural indirect effect, natural direct effect, and total effect of high sweetened 

beverage intake on the risk of LADA and type 2 diabetes. 
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6 DISCUSSION 

6.1 MAIN FINDINGS AND INTERPRETATIONS 

This doctoral thesis aimed to elucidate the risk of LADA in relation to consumption of fatty 

fish and sweetened beverages. The findings suggest that fatty fish is associated with reduced 

risk of LADA, possibly by beneficial effects of marine-originated n-3 PUFAs on progression 

from autoimmunity to diabetes onset. In contrast, sweetened beverage consumption was 

associated with an increased risk of LADA, with indications of mechanisms including 

detrimental effects on bodyweight and insulin resistance. Stratification by genotypes suggested 

that the positive association with sweetened beverages pertains only to individuals without 

HLA-conferred genetic susceptibility but that neither TCF7L2 nor FTO modified the 

association with LADA. The findings of this doctoral thesis clearly suggest that dietary factors 

may play a role in the development of LADA. These are the first studies investigating 

consumption of fish and sweetened beverages in relation to risk of LADA, thus confirmation 

and replication is warranted. 

6.1.1 Fish consumption 

The findings based on the ESTRID Study suggest that weekly fatty fish consumption is 

associated with a reduced risk of LADA. With data from EPIC-InterAct including both 

reported fish consumption and nutritional biomarkers, we found further support for a reduced 

risk of autoimmune diabetes in relation to the long-chain n-3 PUFA in fish. This is in line with 

previous reports in children [6, 7], although not with all [152, 153]. The mechanistic support 

for beneficial effects of EPA and DHA on autoimmunity and inflammation includes 

incorporation of these fatty acids into the cell membranes of immune cells, partly at the expense 

of arachidonic acid leading to a reduction in proinflammatory eicosanoid production [140]. 

Interestingly, there are potential links between n-3 PUFA and HLA-DR molecules, a type of 

cell surface receptors of antigen-presenting cells in the immune system encoded by the HLA 

genes. EPA and DHA have been shown to decrease HLA-DR concentration by down-

regulating gene expression of HLA-DR and costimulatory proteins in dendritic cells (type of 

immune cell) [203]. It may be hypothesized that lower levels of the HLA-DR receptors would 

lead to a less intense immune response and lower rate of beta cell destruction. Hence, EPA and 

DHA may potentially interact with HLA genotype on the risk of autoimmune diabetes. 

Potentially modifying effects of HLA and other genotypes in the association between n-3 

PUFA and LADA is thus an important topic for future studies. However, beneficial effects of 

vitamin D on development of autoimmune diabetes should not be ruled out as a potential 

explanation for our findings [118-120]. 

In EPIC-InterAct, we are assessing the risk of diabetes in relation to the interaction between 

baseline GADA positivity and dietary fish intake or plasma n-3 PUFA levels. The only 

previous study specifically addressing the potential role of n-3 PUFA on the progression from 

islet autoimmunity to diabetes onset found no association but was based on a limited number 
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of children and all of them were at increased genetic risk [152]. Of note, plasma phospholipid 

EPA and DHA concentration has been positively associated with fasting C-peptide in youth 

newly diagnosed with type 1 diabetes, which may suggest a preserving effect on beta cells 

[204]. We are unable to disentangle whether our findings based on ESTRID may be related to 

development of autoimmunity or progression to clinical diabetes. Autoantibodies may be 

present several years prior to diabetes onset [205] but there is no information on antibody status 

prior to diagnosis for the cases in ESTRID. 

We did not observe an association between dietary fish intake and type 2 diabetes, which is in 

line with previously published data [149, 150]. Preparation method and exposure to 

contaminants such as PCBs and methyl mercury have been suggested to play a role in the 

relationship between fish intake and type 2 diabetes [150], but unfortunately we were not able 

to take these factors into account. It is however unclear to what extent these factors would 

differentially affect LADA and type 2 diabetes. 

6.1.2 Sweetened beverage consumption 

Consumption of sweetened beverages was found to be positively associated with both LADA 

and type 2 diabetes. This is in concordance with previous studies in type 2 diabetes [5] and two 

previous studies on type 1 diabetes in children [8, 9]. BMI has previously been suggested to 

mediate the association between sweetened beverage intake and type 2 diabetes [105]. We 

addressed this hypothesis by means of the causal mediation framework [198] and estimated 

that BMI mediates about half of the observed association between high intake of sweetened 

beverages and type 2 diabetes and 17% of the association with LADA. This fit with previous 

findings indicating that overweight is a less strong risk factor for LADA than for type 2 diabetes 

[28]. Furthermore, this speaks in favor of a direct effect of sweetened beverage consumption 

which may be of equal magnitude for LADA and type 2 diabetes. The overall positive 

associations with sweetened beverage intake, even after adjustment for BMI, found for 

HOMA-IR but not HOMA-B among type 2 diabetes patients and with similar tendencies for 

LADA provide support for a direct effect of sweetened beverages involving insulin resistance, 

which has been previously suggested. In addition, sweetened beverages may act through 

increased inflammation [164] and oxidative stress [165]. 

We observed a positive association with type 2 diabetes for both sugar-sweetened and 

artificially sweetened beverages, with similar indications for LADA although based on small 

numbers. Consumption of artificially sweetened beverages has previously been associated with 

type 2 diabetes [105, 171-173]. Although there are animal studies indicating a causal link 

between artificial sweeteners and impairments in glucose metabolism [169, 170], alternative 

explanations for the observed association between artificially sweetened beverages and 

diabetes risk need to be considered. It may be speculated that those consuming artificially 

sweetened beverages may have changed from previous consumption of sugar-sweetened 

beverages to prevent further weight gain [206]. In support hereof, we observed the highest BMI 

at present and at age 20 among high consumers of artificially sweetened beverages. 
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We also wanted to investigate whether genetic factors modify the association between 

sweetened beverages and LADA since it has been reported that the positive association 

between sugar-sweetened beverage intake and type 1 diabetes pertains only to children with 

high risk HLA genotypes [9]. Data from ESTRID and other studies [57, 58, 60, 61] show that 

HLA but also TCF7L2 are associated with increased risk of LADA, but our findings do not 

suggest that high risk genotype carriers of either genotype are particularly susceptible for 

adverse effects of sweetened beverage intake. Contrary, we found a positive association with 

sweetened beverage intake only among carriers of low/intermediate risk genotypes. This may 

be explained by differences in the pathophysiology of childhood type 1 diabetes and adults 

with LADA and may suggest that the relative contribution of environmental factors to risk of 

LADA is greater in individuals with lower genetic susceptibility. Interestingly, a rise in the 

frequency of low/moderate risk HLA genotypes in newly diagnosed type 1 diabetes patients 

have been observed over time, suggesting an increased importance of environmental factors in 

the development of disease [207]. 

6.2 METHODOLOGICAL CONSIDERATIONS 

6.2.1 Random errors 

The findings presented in Paper I were among the first analyses based on data from the ESTRID 

Study and included only 89 cases of LADA. Hence, these findings of an inverse association 

with fatty fish intake need to be interpreted with caution. A strength is that our findings based 

on EPIC-InterAct provides further support of an association between fatty fish intake and 

autoimmune diabetes. However, since GADA was measured at baseline and not at time of 

diagnosis in EPIC-InterAct, we could not address the risk of LADA per se, but rather the 

interplay between dietary fish/plasma n-3 PUFA levels and GADA positivity in relation to 

incidence of diabetes (either type 2 diabetes or LADA). The number of LADA patients in the 

ESTRID dataset is now considerably larger (n≈400) which means that we will have the 

opportunity to re-run the fatty fish analyses in ESTRID using four times as many cases. At the 

same time, further confirmation in independent data is essential. With regard to the sweetened 

beverages analyses, these have only been carried out in ESTRID so far, thus confirmation using 

a different population is of importance. 

6.2.2 Systematic errors 

6.2.2.1 Selection bias 

In ESTRID, controls were selected randomly and continuously from the same population in 

which the cases were generated. This method has high probability of providing a sample that 

is representative of the target population with regard to exposure prevalence [197]. Bias may 

be introduced if study participants differ from non-participants with regard to the exposure 

under study. The response rate among the ESTRID controls was 62% and in order to assess 

whether they are representative of the target population, we compared their consumption of 

fish and sweetened beverages to national intake level data. The agreement was high for mean 

sweetened beverage intake among both men (0.44 vs. 0.42 servings/day) and women (0.26 vs. 
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0.28 servings/day) [208]. The genetic controls (EIRA) had sweetened beverage consumption 

that was somewhat higher in males but lower in females compared to the national averages 

(0.47 and 0.21 servings/day, respectively). This does not seem to have influenced the results 

since the overall associations between sweetened beverages and LADA and type 2 diabetes 

were similar irrespective of whether ESTRID or EIRA (genetic) controls were used. National 

data on intake of dietary fish is not very detailed but 30% of adults consume fish at least twice 

weekly [209] and consumption increases with age [208]. The ESTIRD controls are largely in 

agreement with these numbers; 25% reported having fatty fish had more than twice weekly. 

Furthermore, the ESTRID controls have comparable education level as the general Swedish 

population (www.scb.se). 

Selection bias may also be discussed in relation to case recruitment. In the county of Scania, 

from where the vast majority of ESTRID cases is recruited, > 90% of all eligible patients were 

included in the ANDIS registry [23]. Almost all LADA patients (approx. 95%) are invited to 

ESTRID, and 83% of those choose to participate. For type 2 diabetes, the response rate is 

similar at 79%. In all, the impact of selection bias with regard to cases should be limited. 

For the EPIC-InterAct prospective case-cohort study, loss to follow-up may be an issue if it is 

differential with regard to level of dietary fish intake and probability of being detected as a 

case. A large number of sources were used for case ascertainment, including sources that do 

not rely on self-report, which would minimize loss to follow-up and increase the likelihood that 

any incomplete follow-up would be non-differential with regard to fish intake and plasma n-3 

PUFA level and would, if anything, lead to dilution of the observed associations. 

6.2.2.2 Misclassification of outcome 

In ESTRID, all diabetes cases were identified within the regional health care system and 

diagnosed according to national criteria. This means that undiagnosed cases will be missed and 

also that such cases may be found among the controls. Inclusion of controls with diabetes will 

make them more similar to the cases and consequently lead to dilution of the studied 

associations. In EPIC-InterAct, several sources of information, both self-report and objective 

sources, were used to identify and verify incident cases, which would minimize the number of 

unidentified cases and the number of false positive cases. Undiagnosed diabetes will however 

be present among the non-cases and potentially lead to bias if the incidence is related to dietary 

fish intake. 

GADA was the only antibody measured to indicate autoimmunity, and used to separate LADA 

from type 2 diabetes. Thus it is possible that individuals were positive for other antibodies (e.g. 

IAA, IA-2A, zinc transporter 8 antibody), which we did not have information on, and 

consequently some patients with autoimmune diabetes may have been missed. Importantly, 

GADA is present in 90% of adult patients with autoimmune diabetes [11, 205]. In ESTRID, 

the sensitivity of the GADA assay used was 84%, which means that some patients with LADA 

were erroneously classified as autoantibody negative. The specificity of 98% implies that type 

2 diabetes patients may be incorrectly classified as having LADA and this could contribute to 
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the similar associations with sweetened beverage intake seen for LADA and type 2 diabetes. 

Notably, the positive association with sweetened beverage intake was found also in analyses 

restricted to LADA with high GADA levels (i.e. above the median). Moreover, false positive 

LADA cases could not explain the differences in associations with fatty fish intake for LADA 

and type 2 diabetes found in Paper I. Importantly, we found that high risk HLA genotypes are 

associated with LADA but not type 2 diabetes, indicating that the GADA assay did identify 

two distinct patient groups. 

In the studies based on ESTRID, HOMA-IR was used to indicate degree of insulin resistance. 

Hence, we are not assessing insulin resistance per se. HOMA is widely used and has shown 

high validity as a proxy for insulin resistance in diabetes patients when compared to the “gold 

standard” tests of hyperinsulinemic-euglycemic and hyperglycemic clamps [210, 211]. 

6.2.2.3 Misclassification of exposure 

The FFQ used in ESTRID has been extensively validated against repeated 24-h recall 

interviews [182], weighed diet records [183], and adipose tissue n-3 PUFA content [184]. Yet, 

self-reported dietary intake is inherently afflicted with some degree of misreporting, often 

related to different characteristics such as bodyweight; in general, underreporting is more 

common among overweight individuals while underweight individuals are more likely to 

overreport [212]. Misreporting is especially problematic when dietary data are collected 

retrospectively, as in the ESTRID Study. Diet is essential in diabetes management and bias 

would be introduced if cases have changed their dietary intake after diagnosis and reported 

accordingly. To minimize bias, cases were specifically instructed to report diet as it was prior 

to diagnosis. In addition, we restricted the analyses of Paper I to cases who responded to the 

questionnaire within six months of diagnosis, and in Paper III, sensitivity analyses were 

conducted based on time since diagnosis. Notably, such bias would explain our findings only 

if cases would have decreased their fatty fish intake and increased their sweetened beverage 

consumption after diagnosis, which seems unlikely. Furthermore, it would not explain the 

observed differences between LADA and type 2 diabetes in relation to fatty fish consumption 

as we have no reason to believe that potential bias in the reporting would differ by diabetes 

type. Our findings for type 2 diabetes in relation to intakes of sweetened beverages and dietary 

fish concur with findings in prospective studies [5], which provide further support for the 

validity of our findings. Nevertheless, the potential issues with misreporting make the use of 

biomarkers as objective indicators of dietary intake appealing. In Paper II based on prospective 

data from EPIC-InterAct, exposure to n-3 PUFA was assessed by self-reported fish 

consumption but also by plasma phospholipid levels of n-3 PUFA. These findings were in line 

with the associations found in Paper I, supporting the hypothesis that n-3 PUFAs may have a 

role in the development of autoimmune diabetes. 

In EPIC-InterAct, dietary habits and plasma n-3 PUFA were assessed at baseline but 

participants may have changed their intakes of dietary fish during follow-up. Repeated 

measurements throughout follow-up would have been a way of minimizing bias due exposure 

misclassification, but no such information was available. Any misclassification of dietary 
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habits or n-3 PUFA levels could however be assumed to be non-differential with regard to 

diabetes status and hence lead to dilution of associations rather than spurious excess risks 

related to low fish/n-3 PUFA, but may distort potential dose-response relationships. Sensitivity 

and specificity of the GADA assay was high (85% and 99%, respectively). However, GADA 

status was assessed at baseline, which means that some of those classified as antibody negative 

may in fact have seroconverted during follow-up and this misclassification may lead to dilution 

and potential underestimation of the interaction between dietary fish/plasma n-3 PUFA and 

GADA positivity. 

BMI is an essential covariate closely linked to both dietary intake and diabetes risk, which is 

why it is of interest to consider its role as a potential mediator. BMI is based on self-reported 

data in ESTRID and in general, weight tends to be underreported and height tends to 

overreported [213]. However, correlation with BMI based on clinical measurements is high 

(r=0.92) for the cases in ESTRID. Still, BMI is a crude measure of body fat [214] and it is 

possible that we have underestimated the proportion of association mediated by BMI in the 

causal mediation analysis. Notably however, this may not speak against a common underlying 

mechanism for LADA and type 2 diabetes since the estimated direct effect of high sweetened 

beverage consumption was equal for both diabetes subtypes. 

6.2.2.4 Confounding 

A strength in the present studies was the detailed information on a large number of 

characteristics and lifestyle factors, such as education, smoking habits, physical activity, BMI, 

alcohol and other dietary components which could be included as covariates in the main 

statistical analyses. In Papers II and IV, it was not possible to adjust for family history, which 

is an important risk factor for both type 2 diabetes [215] and LADA [63]. However, the 

interactions between fish/n-3 PUFA and GADA on the risk of adult-onset diabetes reported in 

Paper II remained after additional adjustment for family history in sensitivity analysis. 

Furthermore, family history did not appreciably affect the association between sweetened 

beverage intake and LADA or type 2 diabetes in Paper III. We had detailed dietary data and 

the possibility to adjust for a large number of potential confounders including intakes of 

red/processed meat, sweet/salty snacks, coffee, whole grain, fruits, and vegetables. Still, we 

cannot exclude that our results are influenced by residual confounding, e.g. from inaccurately 

measured dietary confounders. 
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7 CONCLUSIONS 

This thesis aimed to explore the role of diet in the development of LADA, and more specifically 

the risk of LADA in relation to dietary fish and sweetened beverage consumption. The findings 

indicate that n-3 PUFAs, acquired predominantly through fatty fish intake, may decrease the 

risk of LADA. Ensuring adequate levels of long-chain n-3 PUFAs by regular consumption of 

fatty fish may be particularly important when autoantibodies are already present in order to 

delay the progression to diabetes in adults. Furthermore, high sweetened beverage consumption 

seems to increase the risk of LADA, possibly through mechanisms promoting insulin 

resistance. The increased risk may be limited to individuals with low HLA-conferred genetic 

susceptibility. 

These findings are well in line with the notion of LADA as a hybrid form of diabetes with risk 

factors related to both autoimmunity and insulin resistance. These were the first studies of the 

risk of LADA in relation to dietary fish and sweetened beverage consumption and it is 

important to confirm the associations in other populations. Still, these results add to the limited 

by growing body of evidence suggesting that lifestyle factors play a role in the development of 

LADA. Increased knowledge about modifiable lifestyle factors for LADA and their interaction 

with diabetes-related susceptibility genotypes may aid in the prevention and be a step towards 

reducing the burden of autoimmune diabetes. 
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8 FUTURE PERSPECTIVES 

The work of identifying lifestyle factors contributing to the development of LADA is still in 

its infancy and a lot remains to be explored. Diet has a large impact on health and disease and 

there is no shortage in factors hypothesized to have role in processes related to autoimmunity 

and insulin resistance. 

There are currently no prospective studies of LADA with dietary intake data available. Such 

studies would add valuable information on the role of diet in the development of LADA. The 

use of biomarkers and repeated measurements of exposures and autoantibody status would 

enable even more detailed analyses. 

The potential interaction between genetic and dietary factors is an interesting area that needs 

to be further explored, especially in times when increased attention is given to precision 

medicine. 

Exploring the roles of individual foods and nutrients is of importance for increased 

understanding of possible routes of action, but diet is likely to be a complex interplay and it is 

of equal importance to study dietary patterns to account for synergistic effects. 

The role of diet in the prognosis of LADA including potential diet–drug interactions is another 

unexplored area. 
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