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Abstract

In public health and policy making, understanding the overall impact of an
intervention is of essential importance. A way to quantify the disease burden due
to some risk factor is by the attributable fraction (AF). The AF is a measure of
the proportion of some disease that could be prevented if all would have been
unexposed to the risk factor of interest. From the definition of the AF, it is a
causal parameter and in order to achieve a causal interpretation of the AF
estimate, we have to tackle the challenges of estimating causal effects in
observational data. One of them is the problem of confounding, which may cause
the researcher to confuse a spurious correlation with a causal effect.

In this work, we stress the importance of using model-based adjustment to
estimate the AF and develop novel methods for AF estimation. In project I we
implemented methods for AF estimation for cross-sectional, case-control
(matched and unmatched) and cohort study designs in the statistical software R
by the package AF. The package serves as a platform for the novel methods of
AF estimation developed in project II-IV.

While project I focuses on estimation methods for the AF that rely on the fact
that all confounders, sufficient for confounding control, are measured, researchers
often face the problem with unmeasured confounding. In some situations, we may
have access to clusters that share these unmeasured confounders. Thus, clustered
data can be used to adjust for cluster-shared unmeasured confounding. In project
II we develop a method that enables estimation of the AF, as a function of time,
and adjusts for cluster-shared unmeasured confounders.

In practice, confounders may be unmeasured, but not shared within clusters,
or we may lack access to clustered data. One remedy is to use an instrumental
variable to mimic a randomized controlled trial and estimate the causal effect.
In project IV, we developed a method for AF estimation based on instrumental
variable analysis.

Genetics play an important role in the disease development and the concept
of heritability, i.e. the variation in a trait explained by genetic factors, is often
used to quantify the role of genetics. However, heritability does not convey any
information on the population impact of some disease due to genetics. In project
III we show how the AF can be conceptualized for complex traits, with the overall
genetic risk as the exposure, and how heritability and the AF are formally related.
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List of abbreviations and mathematical notations

ADHD Attention deficit hyperactivity disorder

AF Attributable fraction

BW Between-within

CHD Coronary heart disease

DAG Directed acyclic graph

E(·) Expected value

exp(·) Exponential function

G Denotes instrumental variable or genetic exposure

GPS Genome-wide polygenic score

GWAS Genome-wide association study

IV Instrumental variable

L Liability

λ (·) Hazard function

LATE Local average treatment effect

log(·) Base-e log (or the natural logarithm)

MR Mendelian randomization

NEM No effect modification

OR Odds ratio

PH Proportional Hazard

Pr(·) Probability

RCT Randomized controlled trial

RR Risk ratio

S(·) Survival function

SMM Structural mean model

TS Two stage

TSLS Two stage Least Square

UKBB United Kingdom biobank

U Denotes unmeasured confounding or frailty

X Generally denotes the exposure

Y Generally denotes the outcome

Z Generally denotes measured confounder/confounders





1 Introduction

We live in a world surrounded by a large variation of factors that may affect our lives and
health. The understanding of how environmental or genetic factors influence us is
necessary when designing public health interventions. For this purpose, the task of
distinguishing a spurious correlation from a causal relationship is essential, but far from
trivial in practice.

For example, based on observational data in New York, US, smoking was expected
to cause lung cancer [1]. These discoveries were, however, not sufficient as evidence
for declaring that smoking is a causal risk factor for lung cancer. The tobacco industry
argued that the observed association may be due to genetic factors that increase the risk
for becoming a smoker as well as getting lung cancer, i.e. the observed association was
driven by a common cause, a confounder. By the use of different study designs and
experimental evidence in animal studies, smoking could be proven to be a risk factor for
lung cancer [2]. The process that lead to smoking finally being accepted as a risk factor for
lung cancer illustrates the challenge in proving causal effects in epidemiological practice
[3].

The gold standard for reducing the problem of confounding, and for proving causal
effects, is to randomize the exposure of interest in a group, representative of the
population of interest, i.e. a randomized controlled trial (RCT). However, in many
situations RCTs are not feasible for practical and ethical reasons, for example, when we
expect the exposure to be harmful, such as the example with smoking. Observational
data is often used in those situations, or to complement the results from an RCT. Due to
the problem of confounding, researchers aiming to estimate causal effects in
observational data are faced with some great challenges [4], such as the problem with
unmeasured confounding.

In epidemiology, the estimation of causal effects has traditionally been addressed by
the Bradford-Hill criterias [5], which are a set of practical guidelines for the evidence
needed in order to establish a causal effect. As a complement, the statistical field of
causal inference has developed a formal framework for conceptualizing and estimating
causal effects. This framework incorporates a definition of the causal parameter, statistical
methods for consistent estimation and the conditions for parameter identification. What
we today refer to as causal inference was initially formulated by Donald Rubin in the
1970s and later developed by James Robins, Judea Pearl, and Miguel Hernán, among
others [6].

A special feature of epidemiology is the use of different measures to describe the risk
of some outcome, e.g. a disease or medical state due to some exposure [5]. The risk
ratio (RR) estimates the relative risk of some outcome between two groups, e.g. exposed
versus unexposed, while the odds ratio (OR) estimates the relative odds of the outcome

1



between two groups.

Even though measures such as the RR and OR help us to answer questions regarding
the effect size of some risk factor, they are relative measures and do not give information
about the absolute risk and population impact. In public health, an understanding of the
population impact of some risk factor is especially important since it may aid in designing
efficient interventions. One measure that estimates the proportion of some outcome that
is attributable to some risk factor is the attributable fraction (AF).

1.1 The attributable fraction

The AF is a population-specific measure of the proportion of preventable outcomes, e.g.
disease cases, had all subjects in the population been unexposed to an exposure of
interest. One aspect that has made the AF popular in epidemiology and public health is
that it quantifies the exposure-outcome relationship by taking the exposure prevalence
into account. The AF was first used in the 1950’s by Morton Levin in a study of the
relationship between smoking and lung cancer [1] and later on, Macmahon and Pugh
(1970) [7] defined the AF in Eq. (1.1) for a binary outcome Y and a binary exposure X

AFnaive = 1− Pr(Y = 1 | X = 0)
Pr(Y = 1)

, (1.1)

where Pr(Y = 1 | X = 0) is the outcome prevalence among unexposed and Pr(Y = 1) is
the overall outcome prevalence in the population. Reading Levine (1953) [1], it is clear
that the AFnaive was intended as a causal measure, where the outcome prevalence among
unexposed Pr(Y = 1 | X = 0) serves as a proxy for the outcome prevalence had everyone
been unexposed (with exposure status X = 0). In causal inference, this quantity is called
the counterfactual outcome prevalence, denoted as Pr(Y0 = 1).

Whether Pr(Y = 1 | X = 0) equals Pr(Y0 = 1) will depend on the level of confounding
and in general, they will not be exchangeable in observational data. For example, if
lifestyle factors or socioeconomic background are confounders of the association between
smoking and lung cancer, the lung cancer prevalence among non-smokers may not equal
the lung cancer prevalence, if everyone in the population had been non-smokers.

In causal inference, directed acyclic graphs (DAGs) are often used to graphically
present the problem of confounding [8]. Let Z denote a set of confounders. Figure 1.1 is
a DAG that describes the confounding by Z of the causal relationship between exposure
status X and outcome Y .
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Figure 1.1: DAG of the causal relationship between exposure status X , outcome Y
and confounders Z.

Thus, in the presence of confounding, the definition of the AF in Eq. (1.1) cannot have a
causal interpretation. A definition of the AF which corresponds to a causal interpretation
of the AF, also in observational data, is given in Sjölander and Vansteelandt (2011) [9],

AF = 1− Pr(Y0 = 1)
Pr(Y = 1)

. (1.2)

However, if Z contains all confounders sufficient for confounding control, the equality in
Eq. (1.3) holds.

Pr(Y0 = 1) = EZ{Pr(Y = 1 | X = 0,Z)}, (1.3)

and the counterfactual outcome prevalence Pr(Y0 = 1) can be estimated by adjusting for
the confounders Z.

Confounding adjustment can be made in different ways for the AF [10, 11] and different
estimation strategies of EZ{Pr(Y = 1 | X = 0,Z)} in Eq. (1.3), has been proposed for
cross-sectional and case-control study designs [9, 12, 13].

The AF has also been defined for time-to-event outcomes [14–16]. Let T be the time-
to-event of interest, the AF function is defined as

AF(t) = 1− Pr(T0 ≤ t)
Pr(T≤ t)

, (1.4)

where Pr(T ≤ t) is the factual probability of an event at or before time t, and Pr(T0 ≤ t)
is the counterfactual probability of an event at or before time t, had the exposure been
eliminated for everyone at baseline.
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2 Problems and aims

There are several generalizations of the AF for multiple exposures [13, 18, 19], sequential
mediation [20, 21], multiple exposures levels [18, 22–24] and multi-state models with
time-varying exposures [25, 26], which allow for a more generalized modelling of the
AF. In contrast to these methods, the focus of this thesis is on how to obtain a causal
interpretation of the AF estimate by using the study design and facilitate their use by
software implementation.

Depending on the study design, we may use different estimation strategies to estimate
the AF [11]. For the standard study designs in epidemiology for observational data, i.e.
cross-sectional, case-control and cohort, the theory for model-based estimations has been
developed. At the beginning of 2015, no statistical software for model-based estimation
of the AF in different sampling designs was available. Thus, the aim with project I was to
create a package in the statistical software R [27] that covers model-based estimation of
the AF for cross-sectional, case-control and cohort sampling designs. This package also
served as a platform for the software implementations of projects II-IV.

A problem when estimating causal effects is the assumption of no unmeasured
confounding. This assumption is rarely plausible in observational data but if the
unmeasured confounders are shared within clusters, we can adjust for the cluster-shared
confounders by statistical methods that condition on the cluster. For time-to-event
outcomes, the stratified Cox proportional hazard (PH) model is used for this purpose. A
limitation with the stratified Cox PH model is that we cannot estimate absolute
probabilities. In project II we develop an estimation strategy for the AF for clustered
time-to-event data by using the ‘between-within’ (BW) frailty model.

In general, we may not have access to clustered data, or clusters may not contain all
unmeasured confounders of interest. Another remedy to avoid the problem with
unmeasured confounding is to use an instrumental variable (IV) to mimic an RCT. In
project IV, we develop a potentially confounding robust estimation strategy of the AF
based on IV analysis.

The AF is mainly used for environmental exposures but genetic risk factors also play
an important role in the disease development. The traditional ways to use single, or a set
of risk increasing genetic variants to estimate the AF, cannot capture the overall genetic
disease risk for complex diseases. In project III we investigate how the AF, with the
overall genetic risk as the exposure, can be conceptualized for complex diseases. This
work is aimed to improve the understanding of the concept of heritability, i.e. the
proportion of disease variability explained by genetic factors, by showing how the AF
and heritability can be formally related.
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In summary, we wanted to:

� Develop a package in the statistical software R [27] that incorporates the estimating
strategies for the AF used in the most common epidemiological study designs.

� Develop a method for estimating absolute risks and the AF for clustered data with
time-to-event outcomes and implement this method in the R package.

� Develop a method to estimate the AF in IV analysis and implement the method in
the R package.

� Create a better understanding of the AF with overall genetic risk as the exposure
for complex diseases.

� Show how the AF and heritability are formally related.

In order to put this work in the greater context, the models used for confounding
adjustment and estimation strategies for estimating the AF are described in the following
sections.
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3 Model-based estimation of the AF in
classical sampling designs

Study design plays an important role in epidemiology and has consequences for the
statistical analysis and AF estimation. In a cross-sectional study design, the sample is a
random selection of subjects of the populations at a specific time point. However, for
rare diseases, such sampling may contain few or no cases. In order to ensure that there is
enough cases for statistical analysis, and improve statistical power, a case-control study
design is often used [5].

In a case-control study design, cases are first selected and controls are then sampled
from the same population as the cases. Such sampling scheme implies that the outcome
prevalence is fixed by study design and that the estimate of the outcome prevalence in the
sample will not be representative of the outcome prevalence in the population.

A limitation with both cross-sectional and case-control study designs is that they do
not contain information on the time between exposure and disease, which is important
for understanding the disease etiology [5]. The cohort study design is used to retrieve
information on the time dimension of the disease development by sampling the study
participants from the population at time 0, and follow the subjects until they experience
the event, censoring or end of study. Recently, the AF function, seen in Eq. (1.4), was
developed for cohort study designs.

Depending on the study design, different statistical methods are used to estimate the AF.
In the following sections we give an overview of the statistical methods and the estimation
procedures used for estimating the AF.

3.1 Estimation of the AF based on logistic regression

The AF, as defined in Eq. (1.2), contains two elements: the counterfactual probability
Pr(Y0 = 1) and the factual outcome prevalence Pr(Y = 1). While Pr(Y = 1) usually can
be estimated directly from the data, we need model-based adjustment in order to estimate
the counterfactual Pr(Y0 = 1) in observational data. With ‘model-based adjustment’ we
mean that we model the probability of the outcome with the confounders as covariates in
the model. Since linear or log-linear models may fail to yield probabilities between 0 and
1, the logistic model is the standard model for AF estimation [28]. The logistic regression
model can be defined as in Eq. (3.1),

logit{Pr(Y = 1|X ,Z)}= g(X ,Z;βββ ), (3.1)
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where g(·) is an additive function of the variables X and Z indexed by the parameter
vector βββ . For example, g(·) could be specified as β0 +β1X +β2Z or contain interactions
or other functional forms of X and Z. Logistic regression estimates the parameters βββ ,
which are the log ORs.

In cross-sectional sampling design we use the logistic regression model in Eq. (3.1)
to predict the counterfactual outcome prevalence, Pr(Y0 = 1), with exposure-level fixed
at 0, for each subject. Given that Z contains all confounders sufficient for confounding
control, the average of the predictions, over the sampling distribution of Z, EZ{Pr(Y = 1 |
X = 0,Z)} will equal the counterfactual outcome prevalence, Pr(Y0 = 1) [9, 12].

In a case-control study design, we cannot estimate absolute probabilities, i.e. Pr(Y = 1)
and Pr(Y0 = 1), since the outcome prevalence is fixed by the study design. An alternative
is to use Bayes’ rule to reformulate the AF, as defined in Eq. (1.2), so that the AF is a
function of the adjusted RR [13],

AF = 1−EX ,Z|Y=1{RR(Z)−X |Y = 1}. (3.2)

The expected value is taken over the conditional distribution of X and Z among the cases
and RR(Z) is the conditional RR defined as in Eq. (3.3),

RR(Z) =
Pr(Y = 1 | X = 1,Z)
Pr(Y = 1 | X = 0,Z)

. (3.3)

If the disease is rare, the RR can be approximated by the OR. Thus, we may replace
RR(Z) in Eq. (3.2) with OR(Z), defined in Eq. (3.4),

OR(Z) =
Pr(Y = 1 | X = 1,Z)/Pr(Y = 0 | X = 1,Z)
Pr(Y = 1 | X = 0,Z)/Pr(Y = 0 | X = 0,Z)

. (3.4)

Since the case-control design is motivated by a rare disease, the most common way to
estimate the AF from case-control studies is by logistic regression, using the formulation
of the AF in Eq. (3.2) [13].

3.2 Estimation of the AF based on the Cox PH model

In cohort studies, we are interested in capturing the time-specific AF by estimating the
AF as a function of time t. The AF function in Eq. (1.4) is defined in terms of, Pr(T ≤ t),
and Pr(T0 ≤ t), i.e. the probability of an event at or before time t and the corresponding
counterfactual quantity, respectively. Since Pr(T ≤ t) = 1− S(t), where S(t) is the
survival function, the estimation of the AF function in Eq. (1.4) is based on modelling

8



the factual, S(t), and counterfactual, S0(t), survival functions [15, 16].

AF(t) = 1− {1−S0(t)}
{1−S(t)}

. (3.5)

The survival function is the probability that an individual survive beyond time t and it is
defined as

S(t) = Pr(T > t) =
∫

∞

t
f (t)dt, (3.6)

where f (t) is some density function. The survival function can also be expressed as in
Eq. (3.7),

S(t) = EX ,Z{S(t | X ,Z)}. (3.7)

where EX ,Z{S(t | X ,Z)} is the expected value of the survival function conditional on Z
and X , taken over the distribution of Z and X .

If Z contains all confounders sufficient for confounding control at baseline, the
counterfactual survival function, S0(t) equals the expectation, over the distribution of Z,
with X = 0 for all subjects, as seen in Eq. (3.8),

S0(t) = EZ{S(t | X = 0,Z)}. (3.8)

Chen et al. (2010) [15] and and Sjölander and Vandsteelandt (2014) [16] have suggested
using the Cox PH model to estimate the factual and counterfactual survival functions in
Eq. (3.7) and (3.8) and the AF function in Eq. (3.5).

The Cox PH model is defined in Eq. (3.9),

λ (t | X ,Z) = λ0(t)eg(X ,Z;βββ ), (3.9)

where λ0(t) is the baseline hazard at time t and g(X ,Z;βββ ) is some function of the exposure
X and confounders Z indexed by the parameter vector βββ . In the Cox PH model, we assume
that the covariates are multiplicatively related to the hazard which implies that the baseline
hazard, λ0(t), does not need to be specified [30].

Based on the estimated Cox PH model we can estimate the conditional survival function
in Eq. (3.10),

Ŝ(t|Xi,Zi) = e−eg(Xi ,Zi;β̂ββ )Λ̂(t) (3.10)

where β̂ββ is the estimated coefficients from the Cox PH model and Λ̂(t) is the estimated
cumulative baseline hazard, defined as Λ(t) =

∫ t
u=0 λ (u)du. The cumulative baseline

hazard can be estimated semi-parametrically by the Breslow estimator [29].

We obtain an estimate of the survival function, S(t) in Eq. (3.7, by using the conditional
survival function in Eq. (3.10) to predict the survival for each subject and taking the
sample average. Given that Z contains all confounders sufficient for confounding control
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at baseline, the same procedure, but with X fixed to 0 for everyone in Eq. (3.10), yields
an estimate of the counterfactual survival function S0(t). The estimates of S(t) and S0(t)
are then used to estimate the AF function in Eq. (3.5).

10



4 Methods for clustered data

Data can be clustered, or correlated, in many different ways but the general feature of
clustered data is that subjects within a cluster tends to share features. For example,
siblings share genetic and childhood environmental factors to a larger extent than
unrelated individuals and classmates share their educational environment to a larger
extent than students at other schools. The factors shared within clusters may sometimes
be important unmeasured confounders and statistical methods that adjust for the
cluster-shared factors are important tools in causal inference [31].

An example of informative cluster is shown in the DAG in Figure 4.1. Let two subjects
in the same cluster j be indexed by i and i′, respectively. Assume that the unmeasured
confounders U j are shared within the cluster j. The subjects may have different exposure
status Xi j and Xi′ j, outcome status Yi j and Yi′ j and observed confounder status Zi j and
Zi′ j, respectively. Matched data is also clustered data but in comparison with ‘natural’

Zi j //

��

Xi j

��

Xi′ j

��

Zi′ joo

��

U j

~~   

`` >>

Yi j Yi′ j

Figure 4.1: Directed Acyclic Graph (DAG) of cluster shared confounders U for
subject i and i′ in cluster j with exposure status X , outcome Y and measured
confounders Z.

clusters, such as twins or school classes, and matched samples are what U in Figure 4.1
contains [32]. While U contains all factors shared within the ‘natural’ clusters, U will
mainly contain the factors that were matched on in a matched cluster.

4.1 Clustered data with point-outcomes

For binary outcomes, conditional logistic regression is one way to adjust for factors shared
within a cluster. The conditional logistic regression is equivalent to fixed effect regression
for binary outcomes and is often used to model matched case-control data [33]. The
conditional logistic regression can be defined as in Eq. (4.1)

logit{Pr(Y = 1|Xi j,Zi j,cluster j)}= β0 j +β1Xi j +β2Zi j. (4.1)
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In contrast to the logistic regression in Eq. (3.1), the model in Eq. (4.1) account for the
cluster-shared factors by the cluster specific intercept β0 j.

An alternative to conditional logistic regression is to adjust for the cluster-shared
factors using standard logistic regression with a dummy variable for each cluster [34].
However, when the number of subjects within a cluster is small, and the number of
clusters increase, we will in general not get consistent estimates of the parameters in Eq.
(4.1) [35]. Conditional logistic regression avoid this problem by adjusting for the
cluster-shared factors by conditioning on the cluster rather than estimating the
cluster-specific intercepts. This implies that conditional logistic regression cannot be
used to estimate absolute probabilities, since β0 j in Eq. (4.1) is not estimated.

Thus, for matched case-control data, or other types of clustered data with a rare
outcome, we estimate the AF based on Eq. (3.2), where RR(Z) is approximated by
OR(Z), estimated from a conditional logistic regression model.

4.2 Clustered data with time-to-event outcomes

The stratified Cox PH model in Eq. (4.2) is an analogue to the conditional logistic
regression model for time-to-event outcomes.

λ (t | Xi j,Zi j,cluster j) =λ0 j(t)eβW Xi j+γZi j (4.2)

where t is the event-time, Xi j and Zi j are the exposure and observed confounders for
subject i in cluster j. The stratified Cox PH model is estimated with a conditional
likelihood and thus, does not model the cluster-specific baseline hazard λ0 j(t) in Eq.
(4.2). For estimation of the AF based on the Cox PH model, the Breslow estimator was
used to estimate the survival function. However, when we have few subjects in each
cluster, which is the standard case in family studies, the Breslow estimator will not give a
consistent estmate of the cumulative baseline hazards, λ0 j(t), when the number of
clusters grows. Hence, for small clusters, we cannot use the same approach for the
stratified Cox PH model as that for the Cox PH to estimate the AF function in Eq. (1.4)
[5, 36].

A method often considered for clustered data with point outcomes is the random effect
model. The random effect model allows for a cluster-specific intercept, which is assumed
to be independent of the covariates in the model and follow some distribution [34]. In
contrast to models based on conditioning on the cluster, the random effect model does
not adjust for cluster-shared confounders, by the independence assumption, but can be
used to estimate absolute probabilities. The frailty model in Eq. (4.3) is the time-to-event
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analogue to the random effect model

λ (t | Xi j,Zi j,cluster j) =λ0(t)U jeβW Xi j+γZi j (4.3)

where the cluster-specific baseline hazard in the stratified Cox PH model, Eq. (4.2), is
factorized into the baseline hazard λ0(t) and the cluster-specific ’frailty’ effect U j, which
we assume follows some distribution [37–39].

Thus, there are different limitations with the stratified Cox PH model and the frailty
model. While the stratified Cox PH model cannot be used to estimate absolute survival
probabilities for small cluster sizes, the frailty model assumes independence between the
cluster-specific frailty effect, U j, and the covariates in the model, which a priori rules out
cluster-shared confounding [40].

Brumback et al. (2010) [41] propose the ‘between-within’ (BW) model as a possible
solution to this problem for binary data. The BW model was first described by Mundlak
(1978) [42] and later by Neuhaus and Kalbfleisch (1998) [43]. The basic idea with the BW
model is to include a within cluster effect in order to adjust for cluster shared unmeasured
confounding. Sjölander et al. (2013) [40] have described how the BW model can be used
for time-to-event outcomes. The BW frailty model can be defined as

λ (t | Xi j,Zi j,cluster j) =λ0(t)U jeβW Xi j+βBX̄ j+γZi j

=λ0(t)U jeβBX̄ j︸ ︷︷ ︸
U∗j

eβW Xi j+γZi j (4.4)

where U∗j collects both the cluster-specific frailty effect and the cluster average of the
exposure, U jeβBX̄ j . This ‘trick’ enables the BW frailty model to allow for dependence
between the cluster-specific component and the covariates in the model and thus, to
adjust for cluster-shared confounding. In Eq. (4.4), the between-cluster effect βB

captures the dependence between U j and the cluster-level exposure X̄ j. If the observed Z,
and cluster-shared unobserved confounders, are sufficient for confounding control, the
within-effect βW , captures the conditional exposure-outcome effect. Thus, by a simple
trick when specifying the model, we can use the frailty model to adjust for cluster-shared
confounding.

There are several ways to estimate the frailty model. Sjölander et al. (2013) [40]
propose assuming a Weibull baseline hazard and a gamma distributed frailty. Other
alternatives are to use a semi-parametric approach with an unspecified baseline-hazard
modelled by splines [44, 45].

In project II we have developed an estimation strategy for the AF function in Eq. (1.4)
based on the BW frailty model.
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5 Instrumental variable analysis

So far, we have covered methods for model-based adjustment with observed covariates
and possibilities to adjust for cluster-shared unobserved confounding. However, we may
still have unmeasured confounding that is not shared within the cluster. A natural
extension is thus to consider using instrumental variables (IVs) to avoid the problem of
confounding.

The motivation behind IV analysis is that by finding a variable G, which is uncorrelated
with the confounders U but correlated with the exposure X . For example, a variable which
is randomized in the population but associated with the exposure. If we find such an IV
variable, we can mimic a RCT in observational data, and estimate the causal effect [46].
For a variable G to be a valid IV it should fulfill the three requirements: 1) it should be
associated with the exposure X , 2) it should not be associated with any of the confounders
of the exposure-outcome relationship, U, conditional on the exposure and 3) its effect on
the outcome Y should only be mediated by X [47]. Let G denote the IV, in Figure 5.1,
crossed arrows denote arrows that would violated the three IV assumptions,

U

�� ��

×

��
G

×

99

×

55

// X // Y

Figure 5.1: Valid instrumental variable G for the causal effect of X on Y .

Treatment assignment in an RCTs with non-compliance is often used as an example of
an ideal IV to motivate IV analysis. However, in observational data it has been proven
difficult to find IVs that simultaneously fulfill the three IV assumptions [48].

An appealing alternative is the Mendelian randomization (MR), where genetic variants,
usually single-nucleotide polymorphisms (SNPs), are used as instruments. There are two
reasons for the popularity of MR. First, the second IV assumption is likely to hold since
genotypes are transmitted from parents to offspring by random assortment, with respect to
other genotypes, according to Mendel’s first and second law of inheritance [49]. Another
reason are the new large sources of genetic data, i.e. UK biobank (UKBB), and results
from Genome Wide Association studies (GWAS), that provide researchers with a large
set of possible instruments [50].

Since no method for estimating the AF based on IV analysis had previously been
developed, we developed an estimator in project IV. The most common estimation
method for IV analysis is the Two-Stage Least Square (TSLS) regression [51]. The
TSLS is, however, limited to continuous exposures and outcomes and for the purpose of
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estimating the AF we need to use IV estimators for binary outcomes.

The two main methods for IV analysis with binary outcomes are the Two Stage (TS)
estimator, which is an analogue to the TSLS for binary outcomes and follows the same
principle as the Wald estimator, and the G-estimator, also often denoted as the Structural
mean model (SMM) [49]. The aim with both of these estimators is to estimate the causal
effect ψ by the structural causal model defined in Eq.(5.1),

η{Pr(Y = 1 | X ,G)}−η{Pr(Y0 = 1 | X ,G)}= ψX . (5.1)

where η is the log link for the causal RR and logit link for the causal OR.

An important limitation with IV analysis are the several, partly untestable, assumptions.
Even though procedures for testing IV assumptions 2-3 have been suggested [52, 53],
these are not guaranteed to rule out an invalid IV, even asymptotically. Moreover, without
additional assumptions it is only possible to estimates bounds for the causal effect in Eq.
(5.1) [46, 52]. In order to identify the population causal effect, which we are interested
in for AF estimation, we have to assume that the causal effect is constant within levels
of the IV, i.e. the ‘no effect modification’ assumption (NEM). The NEM assumption is
restrictive and the possibility to test it will depend on the application [54].

The ‘monotonicity’ assumption is an alternative assumption, made in order to identify
the local average treatment effect (LATE) [54]. In terms of the RCT with non-compliance,
the monotonicity assumption implies that there are no ‘defiers’, i.e. subjects which would
take the treatment if not assigned, but refrain from treatment if assigned.

In the following two sections, the two main classes for IV analysis for binary outcomes
[49] are described. Both methods relies on the NEM assumption in order to identify the
causal effect, ψ .

5.1 The Two Stage estimator

The TS estimator estimate the causal parameter ψ in two steps. In the first step in Eq.
(5.2) a model for the exposure-IV association is fitted,

h{E(Xi | Gi)}= α0 +α1Gi (5.2)

where h(·) is some link function. The predictions of X from Eq. (5.2) are used as the
dependent variable to fit a model for the outcome Y in Eq. (5.3),

η{E(Yi | X̂i)}= β0 +ψX̂i (5.3)

where η(·) is some link function. The TSLS estimator coincides with the TS estimator
when linear models are used in both steps. For binary outcomes, a log link in stage 2 is
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suggested to estimate the causal RR and a logistic link in step 2 for estimating the causal
OR [49].

Even though the TS estimator is an appealing analogue to the TSLS estimator for binary
outcomes, the TS estimator can only estimate the causal RR consistently for a linear
model in stage 1 and a log-linear model in stage 2 [55].

There are thus two important limitations for using the TS estimator to estimate the AF
in Eq. (1.2). Firstly, the AF is defined for binary exposures, for which a linear IV-exposure
model may not be appropriate. Secondly, and more generally, we cannot use the logistic
regression model in stage 2 to obtain a consistent estimate of the causal OR [49, 55].

5.2 The G-estimator

The G-estimator is an alternative to the TS estimator for IV analysis [49]. The G-estimator
has been shown to consistently estimate the causal RR [56] and the causal OR [57].

G-estimation is based on the principle that, if the IV assumptions holds, the
counterfactual outcome for all subjects unexposed, Y0, is conditionally independent of
the IV, G, given the exposure X , i.e. Y0 ⊥ G | X . Thus, the G-estimator of ψ is the value
of ψ which, on average, yields a zero covariance between G and Y0 [58].

The log causal RR can be estimated by finding the value of ψ that satisfies the equality
in Eq. (5.4) [56] by averaging over the sample,

0 =
n

∑
i=1
{Gi− Ê(G)}Yiexp(−ψXi) (5.4)

where Ê(G) denotes the mean of G.

The G-estimation of the causal OR follows a slightly different procedure due to the
non-linearity in the logit function, used as link function in Eq. (5.1). This requires an
additional estimation of an ‘associational model’, Eq.(5.5), in order to get a consistent
estimate of ψ from the estimating equation in Eq. (5.6) [57].

logit{Pr(Y = 1 | X ,G)}= m(X ,G;β ), (5.5)

where m(·) is some function of X and G.

To minimize the problem of model-misspecification in Eq. (5.5), which may introduce
bias, a saturated model can be used if both X and G are categorical with few levels [57].

Vansteelandt et al. (2011) [57] have shown that the estimating equation in Eq. (5.6)
yields a consistent estimate of the log causal OR ψ ,

0 =
n

∑
i=1
{Gi− Ê(G)}× expit{m(Xi,Gi; β̂ )−ψXi} (5.6)
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where expit(x)≡ exp(x)/{1+ exp(x)}, Ê(G) denotes the mean of Gi and m(Xi,Gi; β̂ ) is
the predictions from the associational model defined in Eq. (5.5).

While the TS estimator is guaranteed convergence, since it is based on two fully
parametric models, the G-estimator may not converge. The convergence of the
semi-parametric G-estimator relies more heavily on the IV and the other model
assumptions. For example, non-convergence is more common when the IV-exposure
association is weak, i.e. violation of IV assumption 1 [59].
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6 Variance estimation with the sandwich
estimator

For some non-standard or nested parameter, i.e. a parameter that is a function of other
parameters, such as the AF, the bootstrap and the sandwich estimator (or Robust standard
errors and Huber-White sandwich estimator [51, 60]) can be used to estimate the variance.

Both the sandwich and the bootstrap estimator rely on large sample properties [51],
but differ in that the bootstrap estimator is based on resampling while the sandwich
estimator is based on an analytical expression. The bootstrap may provide an asymptotic
refinement, when used carefully, compared to the sandwich estimator [51] but the
sandwich estimator has the advantage of being computationally more efficient in large
datasets. For this purpose, the sandwich estimator is preferable for software
implementations.

In clustered data, the standard errors are typically underestimated but with the
sandwich estimator, the within-cluster correlation can easily be accounted for [51]. For
these reasons, we have used the sandwich estimator for estimating the variance of the AF
in our software AF, even though other variance estimators has been proposed for the AF
[61, 62].

6.1 Theory for M-estimators

The sandwich estimator is derived from the theory for M-estimators [60]. M-estimators
are a broad class of estimators, incorporating non-linear as well as standard maximum
likelihood estimators, all based on estimating equations. A detailed description of M-
estimators are given in Stefanski and Boos (2002) [60] and a brief description is given
here.

Let θ be the parameter of interest, and let Y be a generic variable where, Y =Y1, . . . ,Yn

are independent, but not identically distributed, observations. Moreover, θ̂ is the M-
estimator of θ . The M-estimator is the value of θ̂ which satisfies the Eq. (6.1),

n

∑
i=1

φ(Yi, θ̂) = 0 (6.1)

where φ(·) is a known function that does not depend on i or n [60]. Eq. (6.1) is then the
estimating equation for θ . From the theory of M-estimators,

n1/2(θ̂ −θ)
p∼ N(0,Σ). (6.2)

By the Taylor series expansion of Eq. (6.2), we can get an expression of the asymptotic
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variance Var(θ̂), shown in Eq. (6.3)

Var(θ̂) = A(θ0)
−1B(θ0){A(θ0)

−1}T (6.3)

where θ0 is the asymptotic solution to the estimating equation in Eq. (6.1). The ‘bread’,
A(θ0), is the expected value of the first derivative of the estimating equation φ(Yi, θ̂), with
the empirical estimator in Eq. (6.4)

An(Y, θ̂) =
1
n

n

∑
i=1

[
∂φ(Yi, θ̂)

]
(6.4)

and B(θ0) is the variance of the individual contributions from the estimating equations,
with the empirical estimator in Eq. (6.5)

Bn(Y, θ̂) =
1
n

n

∑
i=1

φ(Yi, θ̂)φ(Yi, θ̂)
T . (6.5)

In maximum likelihood theory, B(θ) denotes the variance of the score contributions and
A(θ) is the Fisher information, i.e. the hessian of the score function, since these coincide
in ordinary maximum likelihood estimation, Eq. (6.3) simplifies to B(θ).

Correct variance for clustered data is given by within-cluster versus between-cluster
summation, where the clusters are assumed to be independent. In the Appendix of project
II, this procedure is described.

6.2 Estimation of the variance of the AF

In order to implement the sandwich estimator for the AF, we formulate an estimating
equation for each parameter p, used in the estimation of the AF. This results in a system
of estimating equations, that takes the dependence between parameters into account.
From the system of estimating equations the sandwich estimator in Eq. (6.3) is
estimated, resulting in a square p × p-matrix, where p is equal to the number of
estimating equations.

Depending on which estimating strategy that was used for estimating the AF, the
procedure to extract the variance of the parameter of interest from the sandwich
estimator differ. If the AF is estimated as a ratio between a counterfactual and factual
quantity, as defined in Eq. (1.2) and Eq. (1.4), the delta method is used to get the
variance estimate of the AF. The variances of factual and counterfactual, Pr(Y = 1) and
Pr(Y0 = 1), respectively, are extracted from the sandwich matrix. If the AF is estimated
based on Eq. (3.2), the variance can directly be retrieved from sandwich estimator.
Further details are given in the articles of project I, II and IV.
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7 The AF with a genetic exposure

The AF was initially defined with an environmental exposure in mind, but the exposure of
interest could as well be genetic. The most widely used estimation strategy of the AF with
a genetic exposures is to define a single, or set of, risk increasing SNPs as the exposure
[63, 64].

In the process of detecting the SNPs that contribute to the disease risk, GWAS
traditionally uses a stringent significance threshold in order to cope with the multiple
testing problem [65]. Consequently, genetic variants with small-effects, in a given
sample size, will be neglected. For complex traits, where a large set of SNPs contributes
to the overall genetic disease risk [65], this imposes a problem since the SNPs used to
estimate the AF will not represent the overall genetic risk. Thus, the approach to estimate
the AF based on a single, or multiple, SNPs as exposures is, to this date, difficult to
extend to complex traits with the overall genetic risk as the exposure of interest.

Ramakrishnan and Thacker (2012) [66] define an exposed subject as a subject with an
affected co-twin and use twin data to estimate the AF for the overall genetic risk. They
use the estimation strategy proposed by Levin (1953) [1] in Eq. (7.1),

AF =
PX (OR−1)

1+PX (OR−1)
(7.1)

where PX denotes the population exposure prevalence, i.e. the outcome prevalence among
co-twins, and the OR is estimated from a logistic regression. Ramakrishnan and Thacker
(2012) [66] separate the AF into an AF for the shared environment between twins, AFc,
and an AF for heritability, AFa. These two AFs are estimated by plugging in the estimate
of the OR for the shared environment, ÔRc or the OR for heritability, ÔRa, in Eq. (7.1),
respectively. The estimates of ORc and ORa are derived from the coefficients of the
logistic regression in Eq. (7.2),

Y = β0 +β1X +β2Z +β3XZ (7.2)

where Y is the disease status in the twin and the exposure X is a binary indicator of the
disease status in the co-twin and Z is an indicator of zygosity.

Even though Ramakrishnan and Thacker (2012) [66] attempt to capture the overall
genetic risk in complex diseases, having an affected co-twin cannot cause the disease.
Rather, it is the genetic set-up shared between the twins that is the cause and thus, the
exposure of interest. An alternative way to model, and conceptualize, the overall genetic
risk is by the liability threshold model.
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7.1 The liability threshold model for complex traits

Complex diseases are diseases caused by a large set of environmental and genetic factors,
each with a small contribution to the overall disease risk. Thus, the distribution of the
disease risk can be well described by an underlying continuous liability scale following a
normal distribution [67]. The liability threshold model is depicted in Figure 7.1 and the
observed outcome status can then be regarded as an indicator of whether the individual
has a liability that exceeds the threshold β on the liability scale [68].

Figure 7.1: The liability threshold model

Based on the liability model we may decompose the overall liability into environmental
(E) and genetic (G) effects on the liability (L), as in Eq. (7.3).

L = G+E. (7.3)

With the liability model, we can conceptualize the exposure as the overall genetic risk G
and consider some intervention that shift in the genetic risk, G, to lower risk levels. In
project III, we show how the liability model can be used to formulate the AF with the
overall genetic risk as the exposure. In this context, the concept of heritability may help
us to quantify the overall genetic risk.
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7.2 Heritability

Heritability is a measure of the proportion of variation in a disease that is due to genetic
risk defined in Eq. (7.4) [67].

h2 =
σ2

G

σ2
L

(7.4)

where σ2
L denotes the overall disease variation and σ2

G denotes the genetic variation of the
disease. The challenge in estimation of heritability is to separate genetic variation from
the overall variation of the disease. For this purpose, heritability is estimated using data
on related subjects [69, 70]. One way to estimate heritability is by the ACE model, based
on the liability threshold model [70].

The ACE model identifies the disease variation due to genetics by compairing the
disease prevalence between monozygotic twins, assumed to share the whole genome,
and dizygotic twins, assumed to share around 50% percent of genome [71]. However,
the ACE model relies on several strong assumptions of: no assortative mating, no effect
of genetic dominance, additive genetic effects, no gene-environment interactions and
normally distributed genetic and environmental components. Thus, in practice, estimates
of heritability based on the ACE liability model may suffer from bias [69, 72].

The definition of heritability in Eq. (7.4) may look simple, but communicating the
meaning of a ratio of two variances is not trivial, which makes heritability difficult to
interpret [69]. One common misinterpretation of heritability is that it is the proportion
of cases that would have been avoided if no one would have had the harmful genetic
composition causing the disease, i.e. the AF with a genetic exposure [69].

Even though both the AF and heritability measure the effect of a genetic factor on a
trait in a specific population, the measures estimate different quantities. While
heritability estimate the proportion of variance in a disease explained by genetic
variation in a population, the AF estimates the proportion of a disease that would be
avoided, had a genetic component been eliminated in the population. Nevertheless, both
concepts are important in order to understand the disease burden due to genetics. In
project III, we formalized the relationship between heritability and the AF for complex
diseases using the liability threshold model.
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8 Summary of projects

8.1 Project I

The use of a statistical method will in practice depend on its availability in statistical
software. Even though model-based estimation of the AF has been developed for most
statistical software [73], there has been no uniform tool for estimating model-based AF
for various study designs in the statistical software R. When we started this project in
2015, there were only three packages available at CRAN: epiR [74], attribrisk [75] and
paf [76].

Each of the available packages had its own limitations. For example, the function
epi.2by2 in the epiR package which estimates the AF for cross-sectional, case-control
and cohort study designs does not allow for model-based confounder adjustment.
Moreover, the attribrisk package estimates the AF for case-control and
cross-sectional study designs but relies on the ‘rare-disease’ assumption and is thus
restricted to case-control studies in practice. For cohort study designs, the AF can be
estimated with the paf package using Cox proportional hazard regression for
confounder adjustment. The main limitation of the paf package is that it does not handle
large datasets.

Another limitation is that none of these packages provide accurate standard errors for
clustered data [77]. In our package AF we aimed at solving the limitations in the other
packages and creating a uniform tool for estimating the AF in different study designs.

For example, we made it possible to use large datasets and used the analytical
sandwich estimator in order to reduce the computation time. We also made it possible to
calculate correct standard errors for clustered data. In the latest version of the package,
the AF is estimated based on the logistic regression (AFlogit), conditional logistic
regression (AFclogit) and a Cox PH model (AFcoxph). Moreover, our later
developments of estimation strategies of the AF in project II-IV were implemented in
the AF package.

8.2 Project II

In project II, we developed an AF estimator which enable adjustment for cluster-shared
unmeasured confounding. We used the BW frailty model and assumed a Weibull
distributed baseline hazard and a gamma distributed frailty effect, as suggested in
Sjölander et al. (2013) [40]. We showed how the BW frailty model can be used to
estimate the counterfactual survival function Sx(t), if all subject would have been
exposed at exposure level x, by standardized survival. Based on these results, we
describe an estimation stategy for the AF function defined in Eq. (1.4).
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To illustrate our developed methods, we investigated if the association that has been
observed between preterm birth and ADHD persists if we adjust for factors shared within
sibling pairs [78]. For this purpose, we used Swedish registry data to create a birth cohort
followed between 3-18 years of age, or until 2013, whichever came first. In the cohort,
we considered children born by the same mother and father as clusters and ended up with
667,282 children from 305,938 families.

The outcome was defined as ‘time-to-ADHD diagnosis/ medication’ and the exposure
was defined as being born before week 37 of gestation. We adjusted for the non-shared
potential confounders: birth order, sex, maternal and paternal age at childbearing and
maternal smoking during pregnancy.

We compared the stratified Cox PH model, the frailty model and the BW frailty model
concerning the estimated effect of preterm birth and ADHD diagnosis. While the hazard
ratios estimated in the stratified Cox PH model and the BW model were both around
1.08, the hazard ratio was 1.27 in the ordinary frailty model. The results illustrated our
analytical understanding of the relationships between the models, in which the BW frailty
model yielded a similar estimate as the stratified Cox PH model. The results showed that
adjusting for sibling-shared factors attenuates the effect of preterm birth on ADHD risk,
which may be an indication of cluster-shared confounders of the observed association
between preterm birth and ADHD in the frailty model.

The estimated AF function based on the BW model ranges between 1% to 0.5% from
3 years of age to 18 years of age (or end of follow-up). Thus, due to the small effect of
preterm birth on ADHD, and the low prevalence of preterm birth ( 9.6%), an intervention
which could prevent all preterm births would have an impact of between 0.5-1% on the
risk of being diagnosed (or medicated for) ADHD before 18 years of age in the Swedish
population.

This project resulted in the function AFfrailty implemented in the package AF.

8.3 Project III

In order to improve our understanding of the disease burden due to overall genetic risk,
we showed how it was possible to conceptualize the AF with an overall genetic exposure
using the liability model and heritability in project III.

To formulate the AF with an overall genetic exposure, we used the liability model to
conceptualize an intervention on the overall genetic risk. We assumed that the liability
can be described as a linear combination of genetic and environmental effects, both
normally distributed. Furthermore, we consider some hypothetical intervention targeting
the genetic risk, such that the genetic risk distribution is shifted to lower levels for all
subjects targeted by the intervention. However, since not all subject may benefit from
such intervention, i.e. those who already have a low genetic risk, we allowed to model
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the intervention with a limited target group consisting of those with the highest genetic
risk. By using the liability model, we could show how heritability occurs naturally as a
parameter in the formulation of the AF. Thus, based on the assumptions similar to those
of the ACE model, the AF with an overall genetic exposure can be formalized as a
function of intervention effect, disease prevalence, target group size and heritability.

As an illustration of our analytical derivations, we used two real examples. In the
first example, we showed how the same intervention of blood pressure and cholesterol
lowering medication on stroke and acute myocardial infarction may have different AFs
due to the differences in heritability and disease prevalence between the two diseases. In
the second example, we turn our focus on how different intervention strategies to prevent
breast cancer influence the AF differently for a given heritability and disease prevalence.
In both examples, we used estimates of heritability from twin-studies.

In project III we concluded that it is possible to formally show how the AF and
heritability are related, and formulate the AF for genetic exposures in complex traits.
The relationship is, however, highly non-linear and relies on several parameters and
assumptions. Since the formula for the AF may be difficult to interpret analytically, we
provide the shiny app afheritability [79] in the package AF to allow the user to
investigate the relationships between heritability, prevalence, intervention effect size and
target group size graphically.

8.4 Project IV

Unmeasured confounding is a major problem in observational studies. In project II we
developed a method for confounder robust estimation of the AF for situations in which
unmeasured confounding is shared within clusters. However, for situations when
clustered data is not available, or we expect that the unmeasured confounding is not
shared within clusters, IV analysis is an alternative to handle the problem with
unmeasured confounding.

In project IV, we developed an AF estimator for IV analysis. We compared the two
main IV estimators for binary outcomes: the TS and the G-estimator and showed how the
AF can be estimated based on either estimator. The TS and the G-estimator are used to
estimate the causal parameter ψ , which may be either the log causal RR or log causal OR.

The first step to estimate the AF was to use the estimated ψ to predict the counterfactual
outcome, Y0, for each individual i. The procedure differed depending on which parameter
was estimated, and by which estimator. In the next step, the predictions of Y0i were used
to estimate the counterfactual outcome prevalence, Pr(Y0 = 1), used to estimate the AF as
defined in Eq. (1.2).

Previous studies have observed a reverse association between education level and risk
of coronary heart disease (CHD) [80, 81]. A recent MR study used genetic variants as IVs
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to prove that education has a causal effect on CHD risk [82]. In project IV, we used the
genetic variants from Tillmann et al. (2017) [82] to illustrate our developed methods and
estimate the AF of having a university education on CHD risk with data from the UKBB.

The dataset from the UKBB consists of 267,506 individuals, aged 40-69 years from
different study centers across the UK who participated in the UKBB project during 2006-
2010. We made two primary analyses: one ‘observational’, in which we estimated one
undjusted OR and one conditional OR, adjusted for the potential confounders: ‘maternal
smoking during pregnancy’, ‘comparative body size at age 10’, ‘age’ and ‘sex’.

In the ‘observational’ results, the unadjusted OR was 1.52 with an AF of 23%. When
adjusting for the potential confounders, the conditional OR was slightly lower, 1.49, with
an AF of 21%.

In the IV analysis, all estimates, independent of choice of parameter or estimation
method, were around 1.88-1.99, indicating an almost doubled risk of CHD among those
without a university degree. The corresponding AF was around 33-34%. Adjustment for
potential IV-outcome confounders ‘maternal smoking during pregnancy’ and
‘comparative body size at age 10’, yielded slightly attenuated effect estimates ranging
between 1.84-1.93, with an AF of 32-33%. All results were significant on a 5%
significance level.

Assuming that the IV assumptions hold, the results would indicate that some
confounders, with opposite directions on the exposure and the outcome, confound the
crude associations. However, in this application, we have several reasons to expect that
the IV assumptions do not hold. We discuss possible violations, solutions and stressed
the importance of a critical assessment of the IV assumptions when interpreting the
results from IV studies.

This project resulted in the function AFivglm in the package AF.
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9 Discussion

In this work, we have focused on how a causal interpretation of the estimated AF can
be obtained by using tools from causal inference and the study design. One essential
condition for estimating causal effects in observational data is that of no unmeasured
confounding. In practice, unmeasured confounding is expected in observational studies
and hampers estimation of causal effects. In project II and IV, we have shown how
clustered data and instrumental variables offer solutions to the problem of unmeasured
confounding in some settings. Moreover, by providing a user-friendly R-package for
model-based estimation of the AF, we intended to make the methods in causal inference
more accessible for epidemiologists and improve estimation of the AF.

With the emergence of larger sources of genetic data, the AF with genetic risk factors
has been suggested [63, 64]. In project III we show how it is possible to conceptualize
the AF with a genetic exposure even if the disease is complex and how this approach also
formalize the relationship between heritability and the AF. A result which can be used to
improve our understanding of the disease burden of some complex disease due to genetic
factors.

The overall aim of this work has been to create a unified framework for AF estimation.
The contributions to AF estimation presented in this work is however only a small part of
all possible extensions. In the following section we further discuss current limitations
and possible directions for future method developments to improve AF estimation in
observational studies.

9.1 Limitations and future directions

The methods we proposed to handle the problem with unmeasured confounding suffers
from their own limitations. For example, in project II we use conditional models to adjust
for cluster shared unmeasured confounding. The rationale for conditioning on the cluster
is that we expect the unmeasured confounders to be shared within the cluster. It has,
however, been shown that in the presence of non-shared confounding and measurement
error, the bias will be amplified when we condition on the cluster [83].

Furthermore, in clustered data, we may encounter the problem of ‘carryover effects’,
i.e. that subjects within a cluster influence each other’s exposures or outcomes. Carryover
effects may yield different types of bias depending on the type of carryover effect [84].
Thus, even though methods that conditions on clusters are promising for adjustment of
unmeasured cluster-shared confounding, we have to be aware of multiple sources of bias.

IV analysis has been regarded as another promising tool to identify causal effects in the
presence of unmeasured confounding but relies on three assumptions, out of which two, to
a large extent, are untestable. Thus, in some sense, IV analysis solves the problem of the
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untestable ‘no unmeasured confounding’ assumption with other untestable assumptions
[46]. Another limitation is the difficulty in finding IVs that simultaneously fulfill the three
IV assumptions. MR has been regarded as a solution to this problem, since a large set of
SNPs are available for most traits. But with a large number of SNPs as IV (if used as
a score), each with a somewhat unknown biological mechanism, justification of the IV
based on subject-matter knowledge is often unfeasible [53, 85, 86].

Robust methods have been developed to handle violations of IV assumption 2-3 for
some SNPs [87]. Using robust methods could potentially solve the problem of violations
of the IV assumptions in some cases, but to this date, all suggested methods have
important limitations [87]. Nevertheless, it could be interesting to explore the possibility
to incorporate the robust methods with the AF estimation strategy proposed in project
IV.

Moreover, while the TS estimator relies on distributional assumptions on the
IV-exposure relationship, which yield inconsistent estimates of the causal RR and causal
OR when the exposure is binary [49], the G-estimator is not guaranteed convergence.
Solving either of these limitations would improve IV estimation in situations with binary
exposures and outcomes.

Our application in project IV did not only highlight the need of care and
consideration when using MR analysis, we also recognized the importance of looking
into mediation of the exposure-outcome effect. Methods for mediation with AF [20, 21]
could be used to improve the design of efficient interventions by creating a better
understanding of the population impact of each mediating factor. Moreover, when
considering mediation, it would also be interesting to account for interference, i.e.
subjects influence on each other’s mediators [88].

Despite the limitations of the methods used in project II and IV, when used correctly,
and with awareness, the methods may, at worst, provide insights into the problem of
confounding and at best yield a more confounding robust estimate of the AF.

So far we have assumed that the problem of confounding is known by the researcher,
in practice, the crucial problem is that the researcher has to rely on the currently available
subject matter knowledge, which, in many cases, may be limited, i.e. the DAG may be
wrong. One way to model different confounding scenarios and assess the problem with
unmeasured confounding is by sensitivity analysis.

Methods for sensitivity analysis has been developed for the AF [89, 90] and could be
used, and extended, in multiple ways. One interesting extension would be to combine the
analytical expression for the bias term derived for carryover effects in clustered data [84]
with sensitivity analysis for the AF. Other extensions would be to develop the tools for
sensitivity analysis for the AF to continuous exposures and in IV analysis.

At a first glance, the topic of project III may seem outside the scope of this thesis, but
the question regarding the role of genetic exposures is an important issue in
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epidemiology [91]. A possible application of our results in project III would be to use
the recently developed genome-wide polygenic scores (GPS) [92], developed for various
complex diseases, to consider an intervention which move those at the highest genetic
risk to normal risk levels. Translating the results in studies such as Khera et al. (2018)
[92] into AF estimates would be a powerful tool to communicate the disease burden for a
large set of complex diseases.

Throughout the majority this work, we have considered the AF defined for a binary
exposure. However, in many situations it may not be realistic, or of interest, to
investigate a complete elimination of the exposure. For example, no realistic intervention
to this date can eliminate all cases of preterm birth, as discussed in project II. A more
general definition of the AF, that allows for continuous exposures, is the generalized
impact fraction (GIF) [22–24].

By implementing the GIF as an alternative in in the AF package, we would allow the
user to model more realistic intervention scenarios. Moreover, many intervention
strategies do not only target a single, but several, potential risk factors. For example,
interventions to reduce CHD risk by promotion of a healthy lifestyle. Hence, when
considering more realistic ways to model the AF, it would also be useful to allow for
multiple exposures [93].

In projects I and II we discuss, and develop, the AF as a function of time. We assume
that the exposure and confounders occur at baseline, but in most applications the exposure,
and confounders, may be time-varying. Methods for AF estimation that allows for time-
varying exposures and confounders, as well as competing risks and multiple states, have
been developed [25, 26]. So far, these methods have not been implemented in any R-
package and could potentially be part of our package AF.
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10 Conclusion

The problems discussed in this work mainly relates to the estimation of the AF but are
shared by the general field of causal inference. Essentially: how can we obtain an estimate
of a causal effect when using observational data? This well-debated topic in epidemiology
and statistics still challenge researchers [4], and will continue to do so. One reason lies
in the challenge to conceptualize what we mean with a causal effect, a question that has
been debated within philosophy for centuries [8]. Without a clear definition of causality,
traditional statistics have previously limited their scope of attention to the estimation of
associations. Even though knowledge on the association between various factors may be
interesting and important, it is of limited use when designing interventions to improve
public health.

The field of causal inference has intended to bridge the gap between the theoretical
limitations of causality and the interest in estimating causal effects in epidemiology by
creating a conceptual framework for causal inference [8]. This framework is limited to
the focus on conditions to identify causal parameters. Thus, causal inference, by itself, is
not enough to prove causality. Triangulation of evidence, i.e. consideration of different
data sources and study designs, plays a central role in this process. Nevertheless, the
tools of causal inference are helpful in the process to disentangle the reasons for why the
available evidence is not sufficient to prove causality. An understanding of the current
limitations in a specific study may aid in improving statistical methods, study design and
data sources for future studies.
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