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Abstract

We introduce the arithmetic subderivative of a positive integer with re-
spect to a non-empty set of primes. This notion generalizes the concepts
of the arithmetic derivative and arithmetic partial derivative. In order to
generalize these notions a step further, we define that an arithmetic function
𝑓 is Leibniz-additive if there is a nonzero-valued and completely multiplica-
tive function ℎ𝑓 satisfying 𝑓(𝑚𝑛) = 𝑓(𝑚)ℎ𝑓 (𝑛) + 𝑓(𝑛)ℎ𝑓 (𝑚) for all positive
integers 𝑚 and 𝑛. We study some basic properties of such functions. For ex-
ample, we present conditions when an arithmetic function is Leibniz-additive
and, generalizing the well-known bounds for the arithmetic derivative, we
establish bounds for a Leibniz-additive function.
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1. Introduction

We let P, Z+, N, Z, and Q stand for the set of primes, positive integers, nonnegative
integers, integers, and rational numbers, respectively.
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Let 𝑛 ∈ Z+. There is a unique sequence (𝜈𝑝(𝑛))𝑝∈P of nonnegative integers
(with only finitely many positive terms) such that

𝑛 =
∏︁

𝑝∈P
𝑝𝜈𝑝(𝑛). (1.1)

We use this notation throughout.
Let ∅ ̸= 𝑆 ⊆ P. We define the arithmetic subderivative of 𝑛 with respect to 𝑆

as
𝐷𝑆(𝑛) = 𝑛′

𝑆 = 𝑛
∑︁

𝑝∈𝑆

𝜈𝑝(𝑛)

𝑝
.

In particular, 𝑛′
P is the arithmetic derivative of 𝑛, defined by Barbeau [2] and

studied further by Ufnarovski and Åhlander [10]. Another well-known special case
is 𝑛′

{𝑝}, the arithmetic partial derivative of 𝑛 with respect to 𝑝 ∈ P, defined by
Kovič [7] and studied further by the present authors and Mattila [4, 5].

We define the arithmetic logarithmic subderivative of 𝑛 with respect to 𝑆 as

ld𝑆(𝑛) =
𝐷𝑆(𝑛)

𝑛
=

∑︁

𝑝∈𝑆

𝜈𝑝(𝑛)

𝑝
.

In particular, ldP(𝑛) is the arithmetic logarithmic derivative of 𝑛. This notion was
originally introduced by Ufnarovski and Åhlander [10].

An arithmetic function 𝑔 is completely additive (or c-additive, for short) if
𝑔(𝑚𝑛) = 𝑔(𝑚)+𝑔(𝑛) for all 𝑚,𝑛 ∈ Z+. It follows from the definition that 𝑔(1) = 0.
An arithmetic function ℎ is completely multiplicative (or c-multiplicative, for short)
if ℎ(1) = 1 and ℎ(𝑚𝑛) = ℎ(𝑚)ℎ(𝑛) for all 𝑚,𝑛 ∈ Z+. The following theorems
recall that these functions are totally determined by their values at primes. The
proofs are simple and omitted.

Theorem 1.1. Let 𝑔 be an arithmetic function, and let (𝑥𝑝)𝑝∈P be a sequence of
real numbers. The following conditions are equivalent:

(a) 𝑔 is c-additive and 𝑔(𝑝) = 𝑥𝑝 for all 𝑝 ∈ P;

(b) for all 𝑛 ∈ Z+,
𝑔(𝑛) =

∑︁

𝑝∈P
𝜈𝑝(𝑛)𝑥𝑝.

Theorem 1.2. Let ℎ be an arithmetic and nonzero-valued function, and let (𝑦𝑝)𝑝∈P
be a sequence of nonzero real numbers. The following conditions are equivalent:

(a) ℎ is c-multiplicative and ℎ(𝑝) = 𝑦𝑝 for all 𝑝 ∈ P;

(b) for all 𝑛 ∈ Z+,
ℎ(𝑛) =

∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .
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We say that an arithmetic function 𝑓 is Leibniz-additive (or L-additive, for
short) if there is a nonzero-valued and c-multiplicative function ℎ𝑓 such that

𝑓(𝑚𝑛) = 𝑓(𝑚)ℎ𝑓 (𝑛) + 𝑓(𝑛)ℎ𝑓 (𝑚) (1.2)

for all 𝑚,𝑛 ∈ Z+. Then 𝑓(1) = 0, since ℎ𝑓 (1) = 1. The property (1.2) may be
considered a generalized Leibniz rule. Substituting 𝑚 = 𝑛 = 𝑝 ∈ P and applying
induction, we get

𝑓(𝑝𝑎) = 𝑎𝑓(𝑝)ℎ(𝑝)𝑎−1 (1.3)

for all 𝑝 ∈ P, 𝑎 ∈ Z+.
The arithmetic subderivative 𝐷𝑆 is L-additive with ℎ𝐷𝑆

= 𝑁 , where 𝑁 is the
identity function 𝑁(𝑛) = 𝑛. A c-additive function 𝑔 is L-additive with ℎ𝑔 = 𝐸,
where 𝐸(𝑛) = 1 for all 𝑛 ∈ Z+. The arithmetic logarithmic subderivative ld𝑆 is
c-additive and hence L-additive.

This paper is a sequel to [6], where we defined L-additivity without requiring
that ℎ𝑓 is nonzero-valued. We begin by showing how the values of an L-additive
function 𝑓 are determined in Z+ by the values of 𝑓 and ℎ𝑓 at primes (Section 2)
and then study under which conditions an arithmetic function 𝑓 can be expressed
as 𝑓 = 𝑔ℎ, where 𝑔 is c-additive and ℎ is nonzero-valued and c-multiplicative
(Section 3). It turns out that the same conditions are necessary for L-additivity
(Section 4). Finally, extending Barbeau’s [2] and Westrick’s [11] results, we present
some lower and upper bounds for an L-additive function (Section 5). We complete
our paper with some remarks (Section 6).

2. Constructing 𝑓(𝑛) and ℎ𝑓(𝑛)

An L-additive function 𝑓 is not totally defined by its values at primes. Also, the
values of ℎ𝑓 at primes must be known.

Theorem 2.1. Let 𝑓 be an arithmetic function, and let (𝑥𝑝)𝑝∈P and (𝑦𝑝)𝑝∈P be as
in Theorems 1.1 and 1.2. The following conditions are equivalent:

(a) 𝑓 is L-additive and 𝑓(𝑝) = 𝑥𝑝, ℎ𝑓 (𝑝) = 𝑦𝑝 for all 𝑝 ∈ P;

(b) for all 𝑛 ∈ Z+,
𝑓(𝑛) =

(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .

Proof. (a) ⇒ (b). Since 𝑓(1) = 0, (b) holds for 𝑛 = 1. So, let 𝑛 > 1. Denoting

{𝑝1, . . . , 𝑝𝑠} = {𝑝 ∈ P | 𝜈𝑝(𝑛) > 0}

and
𝑎𝑖 = 𝜈𝑝𝑖

(𝑛), 𝑖 = 1, . . . , 𝑠,
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we have

𝑓(𝑛) =
𝑠∑︁

𝑖=1

ℎ𝑓 (𝑝1)
𝑎1 · · ·ℎ𝑓 (𝑝𝑖−1)

𝑎𝑖−1𝑓(𝑝𝑎𝑖
𝑖 )ℎ𝑓 (𝑝𝑖+1)

𝑎𝑖+1 · · ·ℎ𝑓 (𝑝𝑠)
𝑎𝑠

=
𝑠∑︁

𝑖=1

ℎ𝑓 (𝑝1)
𝑎1 · · ·ℎ𝑓 (𝑝𝑖−1)

𝑎𝑖−1𝑎𝑖𝑓(𝑝𝑖)ℎ𝑓 (𝑝𝑖)
𝑎𝑖−1ℎ𝑓 (𝑝𝑖+1)

𝑎𝑖+1 · · ·ℎ𝑓 (𝑝𝑠)
𝑎𝑠

=
∑︁

𝑝∈P

(︁
𝜈𝑝(𝑛)𝑓(𝑝)ℎ𝑓 (𝑝)

𝜈𝑝(𝑛)−1
∏︁

𝑞∈P
𝑞 ̸=𝑝

ℎ𝑓 (𝑞)
𝜈𝑞(𝑛)

)︁

=
∑︁

𝑝∈P

(︁
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ𝑓 (𝑝)

∏︁

𝑞∈P
ℎ𝑓 (𝑞)

𝜈𝑞(𝑛)
)︁

=
(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .

The first equation can be proved by induction on 𝑠, the second holds by (1.3), and
the remaining equations are obvious.

(b) ⇒ (a). We define now

ℎ(𝑛) =
∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝 .

Let 𝑚,𝑛 ∈ Z+. Then

𝑓(𝑚𝑛) =
(︁∑︁

𝑝∈P
𝜈𝑝(𝑚𝑛)

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚𝑛)
𝑝

=
(︁∑︁

𝑝∈P
(𝜈𝑝(𝑚) + 𝜈𝑝(𝑛))

𝑥𝑝

𝑦𝑝

)︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)+𝜈𝑝(𝑛)
𝑝

=
(︁∑︁

𝑝∈P
(𝜈𝑝(𝑚) + 𝜈𝑝(𝑛))

𝑥𝑝

𝑦𝑝

)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)
𝑝

)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝

)︁

=
(︁∑︁

𝑝∈P
𝜈𝑝(𝑚)

𝑥𝑝

𝑦𝑝

(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)
𝑝

)︁)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝

)︁

+
(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑥𝑝

𝑦𝑝

(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑛)
𝑝

)︁)︁(︁∏︁

𝑝∈P
𝑦𝜈𝑝(𝑚)
𝑝

)︁

= 𝑓(𝑚)ℎ(𝑛) + 𝑓(𝑛)ℎ(𝑚).

So, 𝑓 is L-additive with ℎ𝑓 = ℎ. It is clear that 𝑓(𝑝) = 𝑥𝑝 and ℎ𝑓 (𝑝) = 𝑦𝑝 for all
𝑝 ∈ P.

Next, we construct ℎ𝑓 from 𝑓 . Let us denote

𝑈𝑓 = {𝑝 ∈ P | 𝑓(𝑝) ̸= 0}, 𝑉𝑓 = {𝑝 ∈ P | 𝑓(𝑝) = 0}.
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If 𝑓 = 𝜃, where 𝜃(𝑛) = 0 for all 𝑛 ∈ Z+, then any ℎ𝑓 applies. Hence, we now
assume that 𝑓 ̸= 𝜃. Then 𝑈𝑓 ̸= ∅.

Since
𝑓(𝑝2) = 2𝑓(𝑝)ℎ𝑓 (𝑝)

by (1.3), we have

ℎ𝑓 (𝑝) =
𝑓(𝑝2)

2𝑓(𝑝)
for 𝑝 ∈ 𝑈𝑓 .

The case 𝑝 ∈ 𝑉𝑓 remains. Let 𝑞 ∈ P. Then (1.2) implies that

𝑓(𝑝𝑞) = 𝑓(𝑝)ℎ𝑓 (𝑞) + 𝑓(𝑞)ℎ𝑓 (𝑝) = 𝑓(𝑞)ℎ𝑓 (𝑝).

Therefore,

ℎ𝑓 (𝑝) =
𝑓(𝑝𝑞)

𝑓(𝑞)
for 𝑝 ∈ 𝑉𝑓 , (2.1)

where 𝑞 ∈ 𝑈𝑓 is arbitrary. Now, by Theorem 1.2,

ℎ𝑓 (𝑛) =
(︁ ∏︁

𝑝∈𝑈𝑓

(︁𝑓(𝑝2)
2𝑓(𝑝)

)︁𝜈𝑝(𝑛))︁(︁ ∏︁

𝑝∈𝑉𝑓

(︁𝑓(𝑝𝑞)
𝑓(𝑞)

)︁𝜈𝑝(𝑛))︁
, (2.2)

where 𝑞 ∈ 𝑈𝑓 is arbitrary. (If 𝑉𝑓 = ∅, then the latter factor is the “empty product”
one.) We have thus proved the following theorem.

Theorem 2.2. If 𝑓 ̸= 𝜃 is L-additive, then ℎ𝑓 is unique and determined by (2.2).

3. Decomposing 𝑓 = 𝑔ℎ

Let 𝑓 be an arithmetic function and let ℎ be a nonzero-valued and c-multiplicative
function. By Theorem 2.1, 𝑓 is L-additive with ℎ𝑓 = ℎ if and only if

𝑓(𝑛) =
(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ(𝑝)

)︁∏︁

𝑝∈P
ℎ(𝑝)𝜈𝑝(𝑛) =

(︁∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ(𝑝)

)︁
ℎ(𝑛). (3.1)

The function
𝑔(𝑛) =

∑︁

𝑝∈P
𝜈𝑝(𝑛)

𝑓(𝑝)

ℎ(𝑝)

is c-additive by Theorem 1.1.
We say that an arithmetic function 𝑓 is gh-decomposable if it has a gh decom-

position
𝑓 = 𝑔ℎ,

where 𝑔 is c-additive and ℎ is nonzero-valued and c-multiplicative. We saw above
that L-additivity implies 𝑔ℎ-decomposability. Also, the converse holds.
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Theorem 3.1. Let 𝑓 be an arithmetic function. The following conditions are
equivalent:

(a) 𝑓 is L-additive;

(b) 𝑓 is 𝑔ℎ-decomposable.

Proof. (a) ⇒ (b). We proved this above.
(b) ⇒ (a). For all 𝑚,𝑛 ∈ Z+,

𝑓(𝑚𝑛) = 𝑔(𝑚𝑛)ℎ(𝑚𝑛) = (𝑔(𝑚) + 𝑔(𝑛))ℎ(𝑚)ℎ(𝑛)

= 𝑔(𝑚)ℎ(𝑚)ℎ(𝑛) + 𝑔(𝑛)ℎ(𝑛)ℎ(𝑚) = 𝑓(𝑚)ℎ(𝑛) + 𝑓(𝑛)ℎ(𝑚).

Consequently, 𝑓 is L-additive with ℎ𝑓 = ℎ.

Corollary 3.2. Let 𝑓 ̸= 𝜃 be an arithmetic function. The following conditions are
equivalent:

(a) 𝑓 is L-additive;

(b) 𝑓 is uniquely 𝑔ℎ-decomposable.

Proof. In proving (a) ⇒ (b), ℎ𝑓 is unique by Theorem 2.2. Since ℎ𝑓 is nonzero-
valued, also 𝑔 = 𝑓/ℎ𝑓 is unique.

For example, if 𝑓 = 𝐷𝑆 , then 𝑔 = ld𝑆 and ℎ = 𝑁 .
By Theorem 2.2, an L-additive function 𝑓 ̸= 𝜃 determines ℎ𝑓 uniquely. We

consider next the converse problem: Given a nonzero-valued and c-multiplicative
function ℎ, find an L-additive function 𝑓 such that ℎ𝑓 = ℎ.

Theorem 3.3. Let (𝑥𝑝)𝑝∈P be a sequence of real numbers and let ℎ be nonzero-
valued and c-multiplicative. There is a unique L-additive function 𝑓 with ℎ𝑓 = ℎ
such that 𝑓(𝑝) = 𝑥𝑝 for all 𝑝 ∈ P.

Proof. If at least one 𝑥𝑝 ̸= 0, then apply Theorem 2.1 and Corollary 3.2. Otherwise,
𝑓 = 𝜃.

We can now characterize 𝐷𝑆 and ld𝑆 .

Corollary 3.4. Let 𝑓 be an arithmetic function and ∅ ≠ 𝑆 ⊆ P. The following
conditions are equivalent:

(a) 𝑓 is L-additive, ℎ𝑓 = 𝑁 , 𝑓(𝑝) = 1 for 𝑝 ∈ 𝑆, and 𝑓(𝑝) = 0 for 𝑝 ∈ P ∖ 𝑆;

(b) 𝑓 = 𝐷𝑆.

Corollary 3.5. Let 𝑔 be an arithmetic function and ∅ ≠ 𝑆 ⊆ P. The following
conditions are equivalent:

(a) 𝑔 is c-additive, 𝑔(𝑝) = 1/𝑝 for 𝑝 ∈ 𝑆, and 𝑔(𝑝) = 0 for 𝑝 ∈ P ∖ 𝑆;

(b) 𝑔 = ld𝑆.
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4. Conditions for L-additivity

Let 𝑓 ̸= 𝜃 be L-additive and 𝑎, 𝑏 ∈ N.
First, let 𝑝 ∈ P. By (1.3),

𝑓(𝑝𝑎+1) = (𝑎+ 1)𝑓(𝑝)ℎ𝑓 (𝑝)
𝑎, 𝑓(𝑝𝑏+1) = (𝑏+ 1)𝑓(𝑝)ℎ𝑓 (𝑝)

𝑏, (4.1)

and, further,

𝑓(𝑝𝑎+1)𝑏 = (𝑎+ 1)𝑏𝑓(𝑝)𝑏ℎ𝑓 (𝑝)
𝑎𝑏, 𝑓(𝑝𝑏+1)𝑎 = (𝑏+ 1)𝑎𝑓(𝑝)𝑎ℎ𝑓 (𝑝)

𝑏𝑎. (4.2)

Assume now that 𝑝 ∈ 𝑈𝑓 . Then the right-hand sides of the equations in (4.1) are
nonzero and 𝑓(𝑝𝑎+1), 𝑓(𝑝𝑏+1) ̸= 0. Therefore, by (4.2),

𝑓(𝑝𝑎+1)𝑏

𝑓(𝑝𝑏+1)𝑎
=

(𝑎+ 1)𝑏𝑓(𝑝)𝑏

(𝑏+ 1)𝑎𝑓(𝑝)𝑎

or, equivalently, (︁ 𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)

)︁𝑏

=
(︁ 𝑓(𝑝𝑏+1)

(𝑏+ 1)𝑓(𝑝)

)︁𝑎

.

Second, assume that 𝑈𝑓 has at least two elements. If 𝑝, 𝑞 ∈ 𝑈𝑓 , then (1.2) and
(1.3) imply that

𝑓(𝑝𝑎𝑞𝑏) = 𝑓(𝑝𝑎)ℎ𝑓 (𝑞
𝑏) + 𝑓(𝑞𝑏)ℎ𝑓 (𝑝

𝑎)

= 𝑓(𝑝𝑎)ℎ𝑓 (𝑞)
𝑏 + 𝑓(𝑞𝑏)ℎ𝑓 (𝑝)

𝑎 =
𝑓(𝑝𝑎)𝑓(𝑞𝑏+1)

(𝑏+ 1)𝑓(𝑞)
+

𝑓(𝑞𝑏)𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)
.

Third, assume additionally that 𝑉𝑓 ̸= ∅. Let 𝑝 ∈ 𝑉𝑓 and 𝑞1, 𝑞2 ∈ 𝑈𝑓 . By (2.1)
and the fact that ℎ𝑓 is nonzero-valued,

𝑓(𝑝𝑞1)

𝑓(𝑞1)
=

𝑓(𝑝𝑞2)

𝑓(𝑞2)
̸= 0.

In other words, we can “cancel” 𝑝 in

𝑓(𝑝𝑞1)

𝑓(𝑝𝑞2)
=

𝑓(𝑞1)

𝑓(𝑞2)
̸= 0.

Fourth, both the nonzero-valuedness of ℎ𝑓 and (2.2) imply that

𝑓(𝑝2) ̸= 0 for all 𝑝 ∈ 𝑈𝑓 .

We have thus found necessary conditions for L-additivity.

Theorem 4.1. Let 𝑓 ̸= 𝜃 be L-additive and 𝑎, 𝑏 ∈ N.

(i) If 𝑝 ∈ 𝑈𝑓 , then
(︁ 𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)

)︁𝑏

=
(︁ 𝑓(𝑝𝑏+1)

(𝑏+ 1)𝑓(𝑝)

)︁𝑎

.
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(ii) If 𝑝, 𝑞 ∈ 𝑈𝑓 , then

𝑓(𝑝𝑎𝑞𝑏) =
𝑓(𝑝𝑎)𝑓(𝑞𝑏+1)

(𝑏+ 1)𝑓(𝑞)
+

𝑓(𝑞𝑏)𝑓(𝑝𝑎+1)

(𝑎+ 1)𝑓(𝑝)
.

(iii) If 𝑝 ∈ 𝑉𝑓 and 𝑞1, 𝑞2 ∈ 𝑈𝑓 , then

𝑓(𝑝𝑞1)

𝑓(𝑝𝑞2)
=

𝑓(𝑞1)

𝑓(𝑞2)
̸= 0.

(iv) If 𝑝 ∈ 𝑈𝑓 , then
𝑓(𝑝2) ̸= 0.

The question about the sufficiency of these conditions remains open.
To find sufficient conditions for L-additivity, we study under which conditions

we can apply the procedure described in the proof of Theorem 2.2 to a given
arithmetic function 𝑓 ̸= 𝜃. The function ℎ, defined as ℎ𝑓 in (2.2), must be (𝛼)
well-defined, (𝛽) c-multiplicative, and (𝛾) nonzero-valued. Condition (𝛼) follows
from (iii), (𝛽) is obvious, and (𝛾) follows from (iii) and (iv). If the function 𝑔 = 𝑓/ℎ
is also c-additive, then 𝑓 is L-additive by Theorem 3.1. So, we have found sufficient
conditions for L-additivity, and they are obviously also necessary.

Theorem 4.2. An arithmetic function 𝑓 ̸= 𝜃 is L-additive if and only if (iii) and
(iv) in Theorem 4.1 are satisfied and the function 𝑓/ℎ is c-additive, where

ℎ(𝑛) =
(︁ ∏︁

𝑝∈𝑈𝑓

(︁𝑓(𝑝2)
2𝑓(𝑝)

)︁𝜈𝑝(𝑛))︁(︁ ∏︁

𝑝∈𝑉𝑓

(︁𝑓(𝑝𝑞)
𝑓(𝑞)

)︁𝜈𝑝(𝑛))︁
, 𝑞 ∈ 𝑈𝑓 .

5. Bounds for an L-additive function

Let us express (1.1) as
𝑛 = 𝑞1 · · · 𝑞𝑟, (5.1)

where 𝑞1, . . . , 𝑞𝑟 ∈ P, 𝑞1 ≤ · · · ≤ 𝑞𝑟. We first recall the well-known bounds for 𝐷(𝑛)
using 𝑛 and 𝑟 only.

Theorem 5.1. Let 𝑛 be as in (5.1). Then

𝑟𝑛
𝑟−1
𝑟 ≤ 𝐷(𝑛) ≤ 𝑟𝑛

2
≤ 𝑛 log2 𝑛

2
. (5.2)

Equality is attained in the upper bounds if and only if 𝑛 is a power of 2, and in the
lower bound if and only if 𝑛 is a prime or a power of 2.

Proof. See [2, pp. 118–119], [10, Theorem 9].

The first upper bound can be improved using the same information. Westrick
[11, Ineq. (6)] presented in her thesis the following bound without proof.
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Theorem 5.2. Let 𝑛 be as in (5.1). Then

𝐷(𝑛) ≤ 𝑟 − 1

2
𝑛+ 2𝑟−1. (5.3)

Equality is attained if and only if 𝑛 ∈ P or 𝑞1 = · · · = 𝑞𝑟−1 = 2.

Proof. If 𝑟 = 1 (i.e., 𝑛 ∈ P), then (5.3) clearly holds with equality. So, assume that
𝑟 > 1.

Case 1. 𝑞1 = · · · = 𝑞𝑟−1 = 2. Then

𝐷(𝑛) = 𝑛
(︁𝑟 − 1

2
+

1

𝑞𝑟

)︁
=

𝑟 − 1

2
𝑛+

𝑛

𝑛/2𝑟−1
= rhs(5.3),

where “rhs” is short for “the right-hand side”.
Case 2. 𝑞1 = · · · = 𝑞𝑟−2 = 2 (omit this if 𝑟 = 2) and 𝑞𝑟−1 > 2. Since

1

𝑞𝑟−1
+

1

𝑞𝑟
=

1

2
+

4− (𝑞𝑟−1 − 2)(𝑞𝑟 − 2)

2𝑞𝑟−1𝑞𝑟
<

1

2
+

2

𝑞𝑟−1𝑞𝑟
,

we have

𝐷(𝑛) < 𝑛
(︁𝑟 − 2

2
+

1

2
+

2

𝑞𝑟−1𝑞𝑟

)︁
=

𝑟 − 1

2
𝑛+

2𝑛

𝑛/2𝑟−2
= rhs(5.3).

Case 3. 𝑞𝑟−2 > 2. Then 𝑟 ≥ 3 and

𝐷(𝑛) ≤ 𝑛
(︁𝑟 − 3

2
+

1

3
+

1

3
+

1

3

)︁
=

𝑟 − 1

2
𝑛 < rhs(5.3).

The claim with equality conditions is thus verified. Because

𝑟𝑛

2
−
(︁𝑟 − 1

2
𝑛+ 2𝑟−1

)︁
=

𝑛

2
− 2𝑟−1 ≥ 2𝑟

2
− 2𝑟−1 = 0,

the upper bound (5.3) indeed improves (5.2).

We extend the upper bounds (5.2) and (5.3) under the assumption

ℎ𝑓 (𝑝) ≥ 𝑝 for all 𝑝 ∈ 𝑈𝑓 . (5.4)

Let 𝑛 in (5.1) have 𝑞𝑖1 , . . . , 𝑞𝑖𝑠 ∈ 𝑈𝑓 . We denote

𝑝1 = 𝑞𝑖1 , . . . , 𝑝𝑠 = 𝑞𝑖𝑠 (5.5)

and
𝑀 = max

1≤𝑖≤𝑟
𝑓(𝑞𝑖) = max

1≤𝑖≤𝑠
𝑓(𝑝𝑖). (5.6)

Theorem 5.3. Let 𝑓 ̸= 𝜃 be nonnegative and L-additive satisfying (5.4). Then

𝑓(𝑛) ≤ 𝑠𝑀

2
ℎ𝑓 (𝑛) ≤

𝑀 log2 𝑛

2
ℎ𝑓 (𝑛), (5.7)

where 𝑠 is as in (5.5) and 𝑀 is as in (5.6). Equality is attained if and only if 𝑛 is
a power of 2.
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Proof. By (3.1) and simple manipulation,

𝑓(𝑛) = ℎ𝑓 (𝑛)
𝑟∑︁

𝑖=1

𝑓(𝑞𝑖)

ℎ𝑓 (𝑞𝑖)
= ℎ𝑓 (𝑛)

𝑠∑︁

𝑖=1

𝑓(𝑝𝑖)

ℎ𝑓 (𝑝𝑖)
≤ ℎ𝑓 (𝑛)𝑀

𝑠∑︁

𝑖=1

1

𝑝𝑖

≤ ℎ𝑓 (𝑛)𝑀
𝑠∑︁

𝑖=1

1

2
= ℎ𝑓 (𝑛)𝑀

𝑠

2
≤ ℎ𝑓 (𝑛)𝑀

𝑟

2
≤ ℎ𝑓 (𝑛)𝑀

log2 𝑛

2
.

The equality condition is obvious.

Theorem 5.4. Let 𝑓 ̸= 𝜃 be nonnegative and L-additive satisfying (5.4). Then

𝑓(𝑛) ≤
(︁𝑠− 1

2
ℎ𝑓 (𝑛) + ℎ𝑓 (2

𝑠−1)
)︁
𝑀, (5.8)

where 𝑠 is as in (5.5) and 𝑀 is as in (5.6). Equality is attained if and only if 𝑛 ∈ P
or 𝑝1 = · · · = 𝑝𝑠−1 = 2 = ℎ𝑓 (2).

Proof. If 𝑠 = 1 (i.e., 𝑛 ∈ P), then (5.8) clearly holds with equality. So, assume that
𝑠 > 1.

Case 1. 𝑝1 = · · · = 𝑝𝑠−1 = 2. Then

𝑓(𝑛) = 𝑓(2𝑠−1𝑝𝑠) = 𝑓(2𝑠−1)ℎ𝑓 (𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (2
𝑠−1)

= (𝑠− 1)𝑓(2)ℎ𝑓 (2
𝑠−2)ℎ𝑓 (𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (2

𝑠−1)

≤
(︀
(𝑠− 1)(ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠) + ℎ𝑓 (2
𝑠−1)

)︀
𝑀

≤
(︁
(𝑠− 1)ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠)
ℎ𝑓 (2)

2
+ ℎ𝑓 (2

𝑠−1)
)︁
𝑀

=
(︁𝑠− 1

2
ℎ𝑓 (𝑛) + ℎ𝑓 (2

𝑠−1)
)︁
𝑀.

Case 2. 𝑝1 = · · · = 𝑝𝑠−2 = 2 (omit this if 𝑠 = 2) and 𝑝𝑠−1 > 2. If 𝑠 ≥ 3, then

𝑓(𝑛) = 𝑓(2𝑠−2𝑝𝑠−1𝑝𝑠) = 𝑓(2𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + 𝑓(𝑝𝑠−1𝑝𝑠)ℎ𝑓 (2
𝑠−2)

= (𝑠− 2)𝑓(2)ℎ𝑓 (2
𝑠−3)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + 𝑓(𝑝𝑠−1𝑝𝑠)ℎ𝑓 (2

𝑠−2)

=
𝑠− 2

2
𝑓(2)ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) +
(︀
𝑓(𝑝𝑠−1)ℎ𝑓 (𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (𝑝𝑠−1)

)︀
ℎ𝑓 (2

𝑠−2)

≤
(︁𝑠− 2

2
ℎ𝑓 (2

𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + (ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2
𝑠−2)

)︁
𝑀

=
(︁𝑠− 2

2
ℎ𝑓 (𝑛) + (ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2

𝑠−2)
)︁
𝑀

=
(︁𝑠− 1

2
ℎ𝑓 (𝑛) + (ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2

𝑠−2)− 1

2
ℎ𝑓 (𝑛)

)︁
𝑀.

The last expression is obviously an upper bound for 𝑓(𝑛) also if 𝑠 = 2. If

(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))ℎ𝑓 (2
𝑠−2)− 1

2
ℎ𝑓 (𝑛) ≤ ℎ𝑓 (2

𝑠−1),
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i.e.,
2(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))− ℎ𝑓 (𝑝𝑠−1)ℎ𝑓 (𝑝𝑠) ≤ 2ℎ𝑓 (2),

then (5.8) follows. Since

ℎ𝑓 (𝑝𝑠−1)ℎ𝑓 (𝑝𝑠)− 2(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠)) + 4 = (ℎ𝑓 (𝑝𝑠−1)− 2)(ℎ𝑓 (𝑝𝑠)− 2)

≥ (𝑝𝑠−1 − 2)(𝑝𝑠 − 2) > 0,

we actually have a stronger inequality

2(ℎ𝑓 (𝑝𝑠−1) + ℎ𝑓 (𝑝𝑠))− ℎ𝑓 (𝑝𝑠−1)ℎ𝑓 (𝑝𝑠) < 4.

Case 3. 𝑝𝑠−2 > 2. Then 𝑠 ≥ 3 and

𝑓(𝑛) = 𝑓(𝑝1)ℎ𝑓 (𝑝2 · · · 𝑝𝑠) + 𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1)

= 𝑓(𝑝1)
ℎ𝑓 (𝑛)

ℎ𝑓 (𝑝1)
+ 𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1)

≤ 𝑀ℎ𝑓 (𝑛)

2
+ 𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1).

Since

𝑓(𝑝2 · · · 𝑝𝑠)ℎ𝑓 (𝑝1) =
(︀
𝑓(𝑝2)ℎ𝑓 (𝑝3 · · · 𝑝𝑠) + 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝2)

)︀
ℎ𝑓 (𝑝1)

= 𝑓(𝑝2)
ℎ𝑓 (𝑛)

ℎ𝑓 (𝑝2)
+ 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝1𝑝2)

≤ 𝑀ℎ𝑓 (𝑛)

2
+ 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝1𝑝2),

we also have
𝑓(𝑛) ≤ 2

𝑀ℎ𝑓 (𝑛)

2
+ 𝑓(𝑝3 · · · 𝑝𝑠)ℎ𝑓 (𝑝1𝑝2).

Similarly,

𝑓(𝑛) ≤ 𝑠− 3

2
𝑀ℎ𝑓 (𝑛) + 𝑓(𝑝𝑠−2𝑝𝑠−1𝑝𝑠)ℎ𝑓 (𝑝1 · · · 𝑝𝑠−3). (5.9)

Because

𝑓(𝑝𝑠−2𝑝𝑠−1𝑝𝑠) = 𝑓(𝑝𝑠−2)ℎ𝑓 (𝑝𝑠−1𝑝𝑠) + 𝑓(𝑝𝑠−1)ℎ𝑓 (𝑝𝑠−2𝑝𝑠) + 𝑓(𝑝𝑠)ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1)

≤ 𝑀ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1𝑝𝑠)
(︁ 1

𝑝𝑠−2
+

1

𝑝𝑠−1
+

1

𝑝𝑠

)︁

≤ 𝑀ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1𝑝𝑠)
(︁1
3
+

1

3
+

1

3

)︁
= 𝑀ℎ𝑓 (𝑝𝑠−2𝑝𝑠−1𝑝𝑠),

it follows from (5.9) that

𝑓(𝑛) ≤ 𝑠− 3

2
𝑀ℎ𝑓 (𝑛) +𝑀ℎ𝑓 (𝑛) =

𝑠− 1

2
𝑀ℎ𝑓 (𝑛).

In other words, (5.8) holds strictly.
The proof is complete. It also includes the equality conditions.
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If we do not know 𝑠 (but know 𝑟), we can substitute 𝑠 = 𝑟 in (5.7) and (5.8).
We complete this section by extending the lower bound (5.2).

Theorem 5.5. Let 𝑓 be nonnegative and L-additive, and let 𝑛 be as in (5.1) with

ℎ𝑓 (𝑞1), . . . , ℎ𝑓 (𝑞𝑟) > 0.

Then
𝑓(𝑛) ≥ 𝑟𝑚ℎ𝑓 (𝑛)

𝑟−1
𝑟 ,

where
𝑚 = min

1≤𝑖≤𝑟
𝑓(𝑞𝑖).

Equality is attained if and only if 𝑛 is a prime or a power of 2.

Proof. By (3.1) and the arithmetic-geometric mean inequality,

𝑓(𝑛) = ℎ𝑓 (𝑛)

𝑟∑︁

𝑖=1

𝑓(𝑞𝑖)

ℎ𝑓 (𝑞𝑖)
≥ ℎ𝑓 (𝑛)𝑚

𝑟∑︁

𝑖=1

1

ℎ𝑓 (𝑞𝑖)
≥ ℎ𝑓 (𝑛)𝑚

𝑟

(ℎ𝑓 (𝑞1) · · ·ℎ𝑓 (𝑞𝑟))
1
𝑟

= ℎ𝑓 (𝑛)𝑚
𝑟

ℎ𝑓 (𝑞1 · · · 𝑞𝑟) 1
𝑟

= ℎ𝑓 (𝑛)𝑚
𝑟

ℎ𝑓 (𝑛)
1
𝑟

= 𝑟ℎ𝑓 (𝑛)
1− 1

𝑟𝑚.

The equality condition is obvious.

6. Concluding remarks

According to the common custom, we credited in Section 1 the arithmetic derivative
to Barbeau [2]. However, Mingot Shelly [8] considered it as early as in 1911. His
paper has been overlooked for a long time and is found only recently [1, 9]. The
only reference to it that we know from the past decades is in Dickson [3].

A nice introduction to the arithmetic derivative is Balzarotti and Lava [1] (writ-
ten in Italian, but an English reader understands its formulas and mathematical
terms). There is an extensive literature about this topic, but much work is still left
to be done. For example, there is only a few results about “arithmetic integration”
and, more generally, about “arithmetic differential equations”.

For another example, let us define 𝐷 = 𝐷P as a function Q → Q by allowing
𝜈𝑝(𝑛) ∈ Z in (1.1). What do we know about this function? Not much. We
are currently investigating whether 𝐷 (and, more generally, 𝐷𝑆) is discontinuous
everywhere and, if so, how strongly.

The arithmetic partial derivative 𝐷𝑝 = 𝐷{𝑝} has received less attention than 𝐷
and, according to our knowledge, the arithmetic subderivative 𝐷𝑆 is a new concept.
An overall question related to this notion is: Which properties of 𝐷 and 𝐷𝑝 can in
some way be extended to 𝐷𝑆? Probably the cases of finite 𝑆 and infinite 𝑆 must
then be studied separately.

As an extension of 𝐷𝑆 , we defined the concept of an L-additive function 𝑓 . For
simplicity, we stated (contrary to [6]) that ℎ𝑓 must be nonzero-valued. If we allow
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ℎ𝑓 to be zero, it turns out that we only meet extra work without gaining anything
significant in results. Anyway, a very general question arises: Which properties
of 𝐷𝑆 can be extended to 𝑓? In Section 5, we found the generalizations of the
classical upper and lower bounds of 𝐷. But what about other properties? This
remains to be seen.
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