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Abstract

In this paper, we find all solutions of the exponential Diophantine equation
𝐵𝑥

𝑛+1 −𝐵𝑥
𝑛 = 𝐵𝑚 in positive integer variables (𝑚,𝑛, 𝑥), where 𝐵𝑘 is the 𝑘-th

term of the Balancing sequence.
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1. Introduction

The first definition of balancing numbers is essentially due to Finkelstein [3], al-
though he called them numerical centers. A positive integer 𝑛 is called a balancing
number if

1 + 2 + · · · + (𝑛− 1) = (𝑛 + 1) + (𝑛 + 2) + · · · + (𝑛 + 𝑟)

holds for some positive integer 𝑟. Then 𝑟 is called the balancer corresponding to the
balancing number 𝑛. For example, 6 and 35 are balancing numbers with balancers
2 and 14, respectively. The 𝑛-th term of the sequence of balancing numbers is
denoted by 𝐵𝑛. The balancing numbers satisfy the recurrence relation

𝐵𝑛 = 6𝐵𝑛−1 −𝐵𝑛−2, for all 𝑛 ≥ 2,

where the initial conditions are 𝐵0 = 0 and 𝐵1 = 1. Its first terms are

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, . . .

It is well-known that

𝐵2
𝑛+1 −𝐵2

𝑛 = 𝐵2𝑛+2, for any 𝑛 ≥ 0.

In particular, this identity tells us that the difference between the square of two
consecutive Balancing numbers is still a Balancing number. So, one can ask if this
identity can be generalized?

Diophantine equations involving sum or difference of powers of two consecutive
members of a given linear recurrent sequence {𝑈𝑛}𝑛≥1 were also considered in
several papers. For example, in [5], Marques and Togbé proved that if 𝑠 ≥ 1 an
integer such that 𝐹 𝑠

𝑚 + 𝐹 𝑠
𝑚+1 is a Fibonacci number for all sufficiently large 𝑚,

then 𝑠 ∈ {1, 2}. In [4], Luca and Oyono proved that there is no integer 𝑠 ≥ 3 such
that the sum of 𝑠th powers of two consecutive Fibonacci numbers is a Fibonacci
number. Later, their result has been extended in [8] to the generalized Fibonacci
numbers and recently in [7] to the Pell sequence.

Here, we apply the same argument as in [4] to the Balancing sequence and prove
the following:

Theorem 1.1. The only nonnegative integer solutions (𝑚,𝑛, 𝑥) of the Diophantine
equation

𝐵𝑥
𝑛+1 −𝐵𝑥

𝑛 = 𝐵𝑚 (1.1)

are (𝑚,𝑛, 𝑥) = (2𝑛 + 2, 𝑛, 2), (1, 0, 𝑥), (0, 𝑛, 0).

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of
algebraic numbers and a reduction algorithm originally introduced by Baker and
Davenport in [1]. Here, we will use a version due to Dujella and Pethő in [2, Lemma
5(a)].
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2. Preliminary results

2.1. The Balancing sequences

Let (𝛼, 𝛽) = (3 + 2
√

2, 3 − 2
√

2) be the roots of the characteristic equation 𝑥2 −
6𝑥 + 1 = 0 of the Balancing sequence (𝐵𝑛)𝑛≥0. The Binet formula for 𝐵𝑛 is

𝐵𝑛 =
𝛼𝑛 − 𝛽𝑛

4
√

2
, for all 𝑛 ≥ 0. (2.1)

This implies that the inequality

𝛼𝑛−2 ≤ 𝐵𝑛 ≤ 𝛼𝑛−1 (2.2)

holds for all positive integers 𝑛. It is easy to prove that

𝐵𝑛

𝐵𝑛+1
≤ 5

29
(2.3)

holds, for any 𝑛 ≥ 2.

2.2. Linear forms in logarithms
For any non-zero algebraic number 𝛾 of degree 𝑑 over Q, whose minimal polynomial
over Z is 𝑎

∏︀𝑑
𝑖=1

(︀
𝑋 − 𝛾(𝑖)

)︀
, we denote by

ℎ(𝛾) =
1

𝑑

(︃
log |𝑎| +

𝑑∑︁

𝑖=1

log max
(︁

1,
⃒⃒
⃒𝛾(𝑖)

⃒⃒
⃒
)︁)︃

the usual absolute logarithmic height of 𝛾.
With this notation, Matveev proved the following theorem (see [6]).

Theorem 2.1. Let 𝛾1, . . . , 𝛾𝑠 be real algebraic numbers and let 𝑏1, . . . , 𝑏𝑠 be nonzero
rational integer numbers. Let 𝐷 be the degree of the number field Q(𝛾1, . . . , 𝛾𝑠) over
Q and let 𝐴𝑗 be positive real numbers satisfying

𝐴𝑗 = max{𝐷ℎ(𝛾𝑗), | log 𝛾𝑗 |, 0.16}, for 𝑗 = 1, . . . , 𝑠.

Assume that
𝐵 ≥ max{|𝑏1|, . . . , |𝑏𝑠|}.

If 𝛾𝑏1
1 · · · 𝛾𝑏𝑠

𝑠 − 1 ̸= 0, then

|𝛾𝑏1
1 · · · 𝛾𝑏𝑠

𝑠 − 1| ≥ exp(−1.4 · 30𝑠+3 · 𝑠4.5 ·𝐷2(1 + log𝐷)(1 + log𝐵)𝐴1 · · ·𝐴𝑠).
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2.3. Reduction algorithm
Lemma 2.2. Let 𝑀 be a positive integer, let 𝑝/𝑞 be a convergent of the continued
fraction expansion of the irrational 𝛾 such that 𝑞 > 6𝑀 , and let 𝐴,𝐵, 𝜇 be some
real numbers with 𝐴 > 0 and 𝐵 > 1. Let

𝜀 = ||𝜇𝑞|| −𝑀 · ||𝛾𝑞||,

where || · || denotes the distance from the nearest integer. If 𝜀 > 0, then there is no
solution of the inequality

0 < 𝑚𝛾 − 𝑛 + 𝜇 < 𝐴𝐵−𝑘

in positive integers 𝑚,𝑛 and 𝑘 with

𝑚 ≤ 𝑀 and 𝑘 ≥ log(𝐴𝑞/𝜀)

log𝐵
.

3. The proof of Theorem 1.1

3.1. An inequality for 𝑥 versus 𝑚 and 𝑛

The case 𝑛𝑥 = 0 is trivial so we assume that 𝑛 ≥ 1 and that 𝑥 ≥ 1. Observe that
since 𝐵𝑛 < 𝐵𝑛+1 − 𝐵𝑛 < 𝐵𝑛+1, the Diophantine equation (1.1) has no solution
when 𝑥 = 1.

When 𝑛 = 1, we get 𝐵𝑚 = 6𝑥 − 1. In this case, we have that 𝑚 is odd. Thus,
using the Binet formula (2.1), we obtained the following factorization

6𝑥 = 𝐵𝑚 + 1 = 𝐵𝑚 + 𝐵1 = 𝐵(𝑚+1)/2𝐶(𝑚−1)/2,

where {𝐶𝑚}𝑚≥1 is the Lucas Balancing sequence given by the recurrence 𝐶𝑚 =
6𝐶𝑚−1 − 𝐶𝑚−2 with initial conditions 𝐶0 = 2, 𝐶1 = 6. The Binet formula of the
Lucas Balancing sequence is given by 𝐶𝑛 = 𝛼𝑛 + 𝛽𝑛. This shows that the largest
prime factor of 𝐵(𝑚+1)/2 is 3 and by Carmichael’s Primitive Divisor Theorem we
conclude that (𝑚+ 1)/2 ≤ 12, so 𝑚 ≤ 23. Now, one checks all such 𝑚 and gets no
additional solution with 𝑛 = 1.

So, we can assume that 𝑛 ≥ 2 and 𝑥 ≥ 3. Therefore, we have

𝐵𝑚 = 𝐵𝑥
𝑛+1 −𝐵𝑥

𝑛 ≥ 𝐵3
3 −𝐵3

1 = 215,

which implies that 𝑚 > 4. Here, we use the same argument from [4] to bound
𝑥 in terms of 𝑚 and 𝑛. Since most of the details are similar, we only sketch the
argument.

Using inequality (2.2), we get

𝛼𝑚−1 > 𝐵𝑚 = 𝐵𝑥
𝑛+1 −𝐵𝑥

𝑛 ≥ 𝐵𝑥
𝑛 > 𝛼(𝑛−2)𝑥
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and
𝛼𝑚−2 < 𝐵𝑚 = 𝐵𝑥

𝑛+1 −𝐵𝑥
𝑛 < 𝐵𝑥

𝑛+1 < 𝛼𝑛𝑥.

Thus, we have
(𝑛− 2)𝑥 + 1 < 𝑚 < 𝑛𝑥 + 2. (3.1)

Estimate (3.1) is essential for our purpose.
Now, we rewrite equation (1.1) as

𝛼𝑚

4
√

2
−𝐵𝑥

𝑛+1 = −𝐵𝑥
𝑛 +

𝛽𝑚

4
√

2
. (3.2)

Dividing both sides of equation (3.2) by 𝐵𝑥
𝑛+1, taking absolute value and using the

inequality (2.3), we obtain

⃒⃒
⃒𝛼𝑚(4

√
2)−1𝐵−𝑥

𝑛+1 − 1
⃒⃒
⃒ < 2

(︂
𝐵𝑛

𝐵𝑛+1

)︂𝑥

<
2

5.8𝑥
. (3.3)

Put
Λ1 := 𝛼𝑚(4

√
2)−1𝐵−𝑥

𝑛+1 − 1. (3.4)

If Λ1 = 0, we get 𝛼𝑚 = 4
√

2𝐵𝑥
𝑛+1. Thus 𝛼2𝑚 ∈ Z, which is false for all positive

integers 𝑚, therefore Λ1 ̸= 0.
At this point, we will use Matveev’s theorem to get a lower bound for Λ1. We

set 𝑠 := 3 and we take

𝛾1 := 𝛼, 𝛾2 := 4
√

2, 𝛾3 := 𝐵𝑛+1, 𝑏1 := 𝑚, 𝑏2 := −1, 𝑏3 := −𝑥.

Note that 𝛾1, 𝛾2, 𝛾3 ∈ Q(
√

2), so we can take 𝐷 := 2. Since ℎ(𝛾1) = (log𝛼)/2,
ℎ(𝛾2) = (log 32)/2 and ℎ(𝛾3) = log𝐵𝑛+1 < 𝑛 log𝛼, we can take 𝐴1 := log𝛼, 𝐴2 :=
log 32 and 𝐴3 := 2𝑛 log𝛼. Finally, inequality (3.1) implies that 𝑚 > (𝑛− 2)𝑥 ≥ 𝑥,
thus we can take 𝐵 := 𝑚. We also have 𝐵 := 𝑚 ≤ 𝑛𝑥 + 2 < (𝑛 + 2)𝑥. Hence,
Matveev’s theorem implies that

log |Λ1| ≥ −1.4 × 306 × 34.5 × 22 × (1 + log 2)(log𝛼)(log 32)(2𝑛 log𝛼)(1 + log𝑚)

≥ −2.1 × 1013𝑛(1 + log𝑚). (3.5)

The inequalities (3.3), (3.4) and (3.5) give that

𝑥 < 1.2 × 1013𝑛(1 + log𝑚) < 2.1 × 1013𝑛 log𝑚,

where we used the fact that 1 + log𝑚 < 1.7 log𝑚, for all 𝑚 ≥ 5. Together with
the fact that 𝑚 < (𝑛 + 2)𝑥, we get that

𝑥 < 2.1 × 1013𝑛 log((𝑛 + 2)𝑥).
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3.2. Small values of 𝑛

Next, we treat the cases when 𝑛 ∈ [2, 37]. In this case,

𝑥 < 2.1 × 1013𝑛 log((𝑛 + 2)𝑥) < 7.8 × 1014 log(46𝑥)

so 𝑥 < 4 × 1016.
Now, we take another look at Λ1 given by expression (3.4). Put

Γ1 := 𝑚 log𝛼− log(4
√

2) − 𝑥 log𝐵𝑛+1.

Thus, Λ1 = 𝑒Γ1 − 1. One sees that the right-hand side of (3.2) is a number in the
interval [−𝐵𝑥

𝑛,−𝐵𝑥
𝑛 + 1]. In particular, Λ1 is negative, which implies that Γ1 is

negative. Thus,

0 < −Γ1 <
2

5.8𝑥
,

so

0 < 𝑥

(︂
log𝐵𝑛+1

log𝛼

)︂
−𝑚 +

(︃
log(4

√
2

log𝛼

)︃
<

2

5.8𝑥 log𝛼
. (3.6)

For us, inequality (3.6) is

0 < 𝑥𝛾 −𝑚 + 𝜇 < 𝐴𝐵−𝑥,

where

𝛾 :=
log𝐵𝑛+1

log𝛼
, 𝜇 =

log(4
√

2)

log𝛼
, 𝐴 =

2

log𝛼
, 𝐵 = 5.8.

We take 𝑀 := 4 × 1016.
The program was developed in PARI/GP running with 200 digits. For the com-

putations, if the first convergent such that 𝑞 > 6𝑀 does not satisfy the condition
𝜀 > 0, then we use the next convergent until we find the one that satisfies the
condition. In one minute all the computations were done. In all cases, we obtained
𝑥 ≤ 77. A computer search with Maple revealed in less than one minute that there
are no solutions to the equation (1.1) in the range 𝑛 ∈ [3, 37] and 𝑥 ∈ [3, 77].

3.3. An upper bound on 𝑥 in terms of 𝑛
From now on, we assume that 𝑛 ≥ 38. Recall from the previous section that

𝑥 < 2.1 × 1013𝑛 log((𝑛 + 2)𝑥). (3.7)

Next, we give an upper bound on 𝑥 depending only on 𝑛. If

𝑥 ≤ 𝑛 + 2, (3.8)

then we are through. Otherwise, that is if 𝑛 + 2 < 𝑥, we then have

𝑥 < 2.1 × 1013𝑛 log 𝑥2 = 4.2 × 1013𝑛 log 𝑥,
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which can be rewritten as
𝑥

log 𝑥
< 4.2 × 1013𝑛. (3.9)

Using the fact that, for all 𝐴 ≥ 3

𝑥

log 𝑥
< 𝐴 yields 𝑥 < 2𝐴 log𝐴,

and the fact that log(4.2 × 1013𝑛) < 10 log 𝑛 holds for all 𝑛 ≥ 38, we get that

𝑥 < 2(4.2 × 1013𝑛) log((4.2 × 1013𝑛) (3.10)

< 8.4 × 1013𝑛(10 log 𝑛)

< 8.4 × 1014𝑛 log 𝑛.

From (3.8) and (3.10), we conclude that the inequality

𝑥 < 8.4 × 1014𝑛 log 𝑛 (3.11)

holds.

3.4. An absolute upper bound on 𝑥

Let us look at the element
𝑦 :=

𝑥

𝛼2𝑛
.

The above inequality (3.11) implies that

𝑦 <
8.4 × 1014𝑛 log 𝑛

𝛼2𝑛
<

1

𝛼𝑛
, (3.12)

where the last inequality holds for any 𝑛 ≥ 23. In particular, 𝑦 < 𝛼−38 < 10−31.
We now write

𝐵𝑥
𝑛 =

𝛼𝑛𝑥

32𝑥/2

(︂
1 − 1

𝛼2𝑛

)︂𝑥

and

𝐵𝑥
𝑛+1 =

𝛼(𝑛+1)𝑥

32𝑥/2

(︂
1 − 1

𝛼2(𝑛+1)

)︂𝑥

.

We have
0 <

(︂
1 − 1

𝛼2𝑛

)︂
< 𝑒𝑦 < 1 + 2𝑦,

because 𝑦 < 10−31 is very small. The same inequality holds if we replace 𝑛 by
𝑛 + 1. Hence, we have that

max

{︂⃒⃒
⃒⃒𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

⃒⃒
⃒⃒ ,
⃒⃒
⃒⃒𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

⃒⃒
⃒⃒
}︂

<
2𝑦𝛼(𝑛+1)𝑥

32𝑥/2
.
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We now return to our equation (1.1) and rewrite it as

𝛼𝑚 − 𝛽𝑚

4
√

2
= 𝐵𝑚 = 𝐵𝑥

𝑛+1 −𝐵𝑥
𝑛

=
𝛼(𝑛+1)𝑥

32𝑥/2
− 𝛼𝑛𝑥

32𝑥/2
+

(︂
𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

)︂
−
(︂
𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

)︂
,

or
⃒⃒
⃒⃒ 𝛼𝑚

321/2
− 𝛼𝑛𝑥

32𝑥/2
(𝛼𝑥 − 1)

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒ 𝛽𝑚

321/2
+

(︂
𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

)︂
−
(︂
𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

)︂⃒⃒
⃒⃒

<
1

𝛼𝑚
+

⃒⃒
⃒⃒𝐵𝑥

𝑛+1 −
𝛼(𝑛+1)𝑥

32𝑥/2

⃒⃒
⃒⃒+

⃒⃒
⃒⃒𝐵𝑥

𝑛 − 𝛼𝑛𝑥

32𝑥/2

⃒⃒
⃒⃒

<
1

𝛼𝑚
+ 2𝑦

(︂
𝛼𝑛𝑥(1 + 𝛼𝑥)

32𝑥/2

)︂
.

Thus, multiplying both sides by 𝛼−(𝑛+1)𝑥32𝑥/2, we obtain that
⃒⃒
⃒𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 − (1 − 𝛼−𝑥)

⃒⃒
⃒ < 32𝑥/2

𝛼𝑚+(𝑛+1)𝑥
+ 2𝑦(1 + 𝛼−𝑥)

<
1

2𝛼𝑛
+

396𝑦

197
<

3

𝛼𝑛
, (3.13)

where we used the fact that 32𝑥/2/(𝛼(𝑛+1)𝑥) ≤ (4
√

2/𝛼38)𝑥 < 1/2, 𝑚 ≥ (𝑛− 2)𝑥 ≥
𝑛 and 𝛼𝑥 ≥ 𝛼3 > 197, as well as inequality (3.12). Hence, we conclude that

⃒⃒
⃒𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 − 1

⃒⃒
⃒ < 1

𝛼𝑥
+

3

𝛼𝑛
≤ 4

𝛼𝑙
, (3.14)

where 𝑙 := min{𝑛, 𝑥}. We now set

Λ2 := 𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 − 1 (3.15)

and observe that Λ2 ̸= 0. Indeed, for if Λ2 = 0, then 𝛼2((𝑛+1)𝑥−𝑚) = 32𝑥−1 ∈ Z
which is possible only when (𝑛 + 1)𝑥 = 𝑚. But if this were so, then we would get
0 = Λ2 = 32(𝑥−1)/2 − 1, which leads to the conclusion that 𝑥 = 1, which is not
possible. Hence, Λ2 ̸= 0. Next, let us notice that since 𝑥 ≥ 3 and 𝑚 ≥ 38, we have
that

|Λ2| ≤
1

𝛼3
+

1

𝛼38
<

1

2
, (3.16)

so that 𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2 ∈ [1/2, 3/2]. In particular,

(𝑛 + 1)𝑥−𝑚 <
1

log𝛼

(︂
(𝑥− 1) log 32

2
+ log 2

)︂
< 𝑥

(︂
log 32

2 log𝛼

)︂
< 𝑥 (3.17)

and

(𝑛 + 1)𝑥−𝑚 >
1

log𝛼

(︂
(𝑥− 1) log 32

2
− log 2

)︂
> 0.9𝑥− 1.4 > 0. (3.18)

8 S. E. Rihane, B. Faye, F. Luca, A. Togbé



We lower bound the left-hand side of inequality (3.15) using again Matveev’s the-
orem. We take

𝑠 := 2, 𝛾1 := 𝛼, 𝛾2 := 4
√

2, 𝑏1 := 𝑚− (𝑛 + 1)𝑥, 𝑏2 := 𝑥− 1,

𝐷 := 2, 𝐴1 := log𝛼, 𝐴2 := log 32, and 𝐵 := 𝑥.

We thus get that

log |Λ2| > −1.4 × 305 × 24.5 × 22(1 + log 2)(log𝛼)(log 32)(1 + log 𝑥). (3.19)

The inequalities (3.14) and (3.19) give

𝑙 < 4 × 1010 log 𝑥.

Treating separately the case 𝑙 = 𝑥 and the case 𝑙 = 𝑛, following the argument in
[4] we have that the upper bound

𝑥 < 7 × 1028

always holds.

3.5. Reducing the bound on 𝑥

Next, we take

Γ2 := (𝑥− 1) log(4
√

2) − ((𝑛 + 1)𝑥−𝑚) log𝛼.

Observe that Λ2 = 𝑒Γ2 − 1, where Λ2 is given by (3.15). Since |Λ2| < 1
2 , we have

that 𝑒|Γ2| < 2. Hence,

|Γ2| ≤ 𝑒|Γ2| ⃒⃒𝑒Γ2 − 1
⃒⃒
< 2 |Λ2| <

2

𝛼𝑥
+

6

𝛼𝑛
.

This leads to
⃒⃒
⃒⃒
⃒
log(4

√
2)

log𝛼
− (𝑛 + 1)𝑥−𝑚

𝑥− 1

⃒⃒
⃒⃒
⃒ <

1

(𝑥− 1) log𝛼

(︂
2

𝛼𝑥
+

6

𝛼𝑛

)︂
. (3.20)

Assume next that 𝑥 > 100. Then 𝛼𝑥 > 𝛼100 > 1033 > 104𝑥. Hence, we get that

1

(𝑥− 1) log𝛼

(︂
2

𝛼𝑥
+

6

𝛼𝑛

)︂
<

8

𝑥(𝑥− 1)104 log𝛼
<

1

2200(𝑥− 1)2
. (3.21)

Estimates (3.20) and (3.21) lead to
⃒⃒
⃒⃒
⃒
log(4

√
2)

log𝛼
− (𝑛 + 1)𝑥−𝑚

𝑥− 1

⃒⃒
⃒⃒
⃒ <

1

2200(𝑥− 1)2
. (3.22)
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By a criterion of Legendre, inequality (3.22) implies that the rational number ((𝑛+
1)𝑥−𝑚)/(𝑥− 1) is a convergent to 𝛾 := log(4

√
2)/ log𝛼. Let

[𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, . . .] = [0, 1, 57, 1, 234, 2, 1, . . .]

be the continued fraction of 𝛾, and let 𝑝𝑘/𝑞𝑘 be it’s 𝑘th convergent. Assume that
((𝑛 + 1)𝑥 −𝑚)/(𝑥 − 1) = 𝑝𝑘/𝑞𝑘 for some 𝑘. Then, 𝑥 − 1 = 𝑑𝑞𝑘 for some positive
integer 𝑑, which in fact is the greatest common divisor of (𝑛 + 1)𝑥−𝑚 and 𝑥− 1.
We have the inequality

𝑞54 > 7 × 1028 > 𝑥− 1.

Thus, 𝑘 ∈ {0, . . . , 53}. Furthermore, 𝑎𝑘 ≤ 234 for all 𝑘 = 0, 1, . . . , 53. From the
known properties of the continued fraction, we have that
⃒⃒
⃒⃒𝛾 − (𝑛 + 1)𝑥−𝑚

𝑥− 1

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒𝛾 − 𝑝𝑘

𝑞𝑘

⃒⃒
⃒⃒ > 1

(𝑎𝑘 + 2)𝑞2𝑘
≥ 𝑑2

236(𝑥− 1)2
≥ 1

236(𝑥− 1)2
,

which contradicts inequality (3.22). Hence, 𝑥 ≤ 100.

3.6. The final step
To finish, we go back to inequality (3.13) and rewrite it as

⃒⃒
⃒𝛼𝑚−(𝑛+1)𝑥32(𝑥−1)/2(1 − 𝛼−𝑥)−1 − 1

⃒⃒
⃒ < 3

𝛼𝑛(1 − 𝛼−𝑥)
<

4

𝛼𝑛
.

Recall that 𝑥 ∈ [3, 100] and from inequalities (3.17) and (3.18), we have that

0.9𝑥− 1.4 < (𝑛 + 1)𝑥−𝑚 < 𝑥.

Put 𝑡 := (𝑛+1)𝑥−𝑚. We computed all the numbers
⃒⃒
𝛼−𝑡32(𝑥−1)/2(1 + 𝛼−𝑥)−1 − 1

⃒⃒

for all 𝑥 ∈ [3, 100] and all 𝑡 ∈ [⌊0.9𝑥− 1.4⌋, ⌊𝑥⌋] . None of them ended up being
zero and the smallest of these numbers is > 10−1. Thus, 1/10 < 3/𝛼𝑛, or 𝛼𝑛 < 30,
so 𝑛 ≤ 3 which is false.
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