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Abstract We study the Clifford type inequality for a particular type of curves
C2,2,5, which are contained in smooth quintic threefolds. This allows us to
prove some stronger Bogomolov–Gieseker type inequalities for Chern char-
acters of stable sheaves and tilt-stable objects on smooth quintic threefolds.
Employing the previous framework by Bayer, Bertram, Macrì, Stellari and
Toda, we construct an open subset of stability conditions on every smooth
quintic threefold in P4

C
.
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C. Li

1 Introduction

The notion of stability conditions on a triangulated category is introduced by
Bridgeland [10]. The existence of stability conditions on three-dimensional
projective varieties, and more specifically on Calabi–Yau threefolds, is often
considered as one of the biggest open problem in the theory of Bridgeland sta-
bility conditions in recent years. In series work of [4,5,7], the authors propose
a general approach towards the constructions of geometric stability condi-
tions on a smooth projective threefold. The construction involves the notion of
tilt-stability for two-term complexes, and the existence of geometric stability
conditions relies on a conjectural Bogomolov–Gieseker type inequality for the
third Chern character of tilt-stable objects.

Stability conditions are only known to exist on few families of smooth
projective threefolds: Fano threefolds [6,18,24,29,31], Abelian threefolds
[5,26,27] and Kummer type threefolds [5]. The smooth quintic threefolds
will be the first example of strict Calabi–Yau threefolds that has geomet-
ric stability conditions. One need to be cautious that the original conjectural
Bogomolov–Gieseker type inequality in [7] does not hold for all threefolds,
counterexamples for the blowup at a point of another threefold has been con-
structed in [28,32]. However, due to the flexibility of the construction in [7]
as well as the work [30], modified Bogomolov–Gieseker type inequality will
still imply the existence of stability conditions on such threefolds.

In this paper, we prove the followingBogomolov–Gieseker type inequalities
for the second Chern character of slope stable sheaves on smooth quintic
threefolds:

Theorem 1.1 (Theorem 5.5) Let F be a torsion free μH -slope semistable

sheaf on a smooth quintic threefold (X, H). Suppose H2 ch1(F)

H3rk(F)
∈ [−1, 1],
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On stability conditions for the quintic threefold

In a special case thatwhen H2 ch1(F)

H3rk(F)
= −1

2 ,we have�(F)H ≥ 1.25rk(F)2,
which is a slightly weaker inequality than that in [33, Conjecture 1.2]. In
particular, it implies the rank 2 case as that in [33, Proposition 1.3].

Theorem 1.1 implies [5, Conjecture 4.1] for smooth quintic threefolds with
a little constrain on the parameters (α, β), for which we will review in the next
few paragraphs.

Theorem 1.2 (Theorem 2.8) Conjecture 4.1 in [5] holds for smooth quintic
threefolds when the parameters satisfy α2 + (β − �β� − 1

2 )
2 > 1

4 .

Employing the framework in [5,7,30], Theorem 1.2 allows us to construct
a family of Bridgeland stability conditions on the bounded derived category
of coherent sheaves on each smooth quintic threefold. To give the accurate
statement, we introduce some notions from [4,5,7] and briefly summarize the
construction of stability conditions on a quintic threefold.

Stability conditions on smooth quintic threefoldsLet (X, H) be a smooth
quintic threefold with H = [OX (1)], let Db(X) be the bounded derived cate-
gory of coherent sheaves on X . As shown in [10, Proposition 5.3], a stability
condition on Db(X) is equivalently determined by a pair σ = (Z ,A), where
the central charge Z : K0(A) → C is a grouphomomorphismandA ⊂ Db(X)

is the heart of a bounded t-structure, which have to satisfy the following three
properties.

(a) For any non-zero object E ∈ A, its central charge Z([E]) ∈ R>0 · e(0,1]π i .
This allows us to define a notion of slope-stability on A via the slope
function

νσ (E) := −Re Z([E])
ImZ([E]) .

(b) With respect to the slope-stability νσ , each non-zero object E ∈ A admits
a unique Harder–Narasimhan filtration:

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that: each quotient Fi := Ei/Ei−1 is μσ -slope semistable with
νσ (F1) > νσ (F2) > · · · > νσ (Fm). We set ν+

σ (E) := νσ (F1) and
ν−
σ (E) := νσ (Fm).

(c) (support property) There is a constant C > 0 such that for all semistable
object E ∈ A, we have ‖[E]‖ ≤ C |Z([E])|, where ‖ · ‖ is a fixed norm
on K0(X) ⊗ R.

Under the framework of [4,5,7], the heart A of the stability condition is
constructed by ‘double-tilting’ Coh(X). Denote μH as the slope stability on
Coh(X). For any object E ∈ Coh(X), let μ+

H (E) (μ−
H (E)) be the maximum
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C. Li

(minimum) slope of its Harder–Narasimhan factors. The first tilting-heart
Cohβ,H (X) ⊂ Db(X) with parameter β ∈ R is the extension-closure
〈Tβ,H ,FH,β[1]〉, where

Tβ,H = {E ∈ Coh(X)|μ−
H (E) > β}; Fβ,H = {E ∈ Coh(X)|μ+

H (E) ≤ β}.

Given α ∈ R>0, we may define the tilt-slope function for objects in
Cohβ,H (X) as follows: for an object E ∈ Cohβ,H (X), its tilt-slope function
is defined as

ν′
α,β,H (E) :=

⎧
⎨

⎩

H chβ H
2 (E)− α2

2 H3 ch0(E)

H2 chβ H
1 (E)

, when H2 chβ H
1 (E) > 0;

+∞, when H2 chβ H
1 (E) = 0.

(1)

The explicit formulas of twisted Chern characters chβ H
i are given at the

beginning of Sect. 2.
The heart Aα,β,H (X) ⊂ Db(X) is defined as 〈T ′

α,β,H ,F ′
α,β,H [1]〉, where

T ′
α,β,H := {E ∈ Cohβ,H (X)|ν′−

α,β,H (E) > 0};
F ′

α,β,H := {E ∈ Cohβ,H (X)|ν′+
α,β,H (E) ≤ 0}.

The central charge on Aα,β,H (X) is defined as that in [5, Lemma 8.3]:

Za,b
α,β,H := (− chβ H

3 +bH chβ H
2 +a H2 chβ H

1 ) + i(H chβ H
2 −α2

2
H3 ch0).

(2)

As a corollary of [5, Conjecture 4.1] employing the framework in [4,5,7],
the construction above offers us a family of stability conditions.

Theorem 1.3 (Theorem 1.2, [5, Theorem 8.6, Proposition 8.10]) There is a
continuous family of Bridgeland stability conditions σ

a,b
α,β,H = (Za,b

α,β,H (X),

Aα,β,H (X)) on each smooth quintic threefold (X, H), parameterized by the
set (α, β, a, b) ∈ R>0 × R × R>0 × R such that

α2 + (β − �β� − 1

2
)2 >

1

4
; and a >

α2

6
+ 1

2
|b| α.

This family is a slice of the G̃L
+
2 (R)-action on an open subset of the space of

stability conditions on Db(X).
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On stability conditions for the quintic threefold

The mirror family of X is parameterized by the stackMK , which is called
the stringy Kähler moduli space of X :

MK :=
[
{ψ ∈ C|ψ5 �= 1}/μ5

]
.

Here the generator of μ5 acts on C by the multiplication of e
2π i
5 . Based on the

papers [2], [12, Remark 3.9] and [33], it is expected that there is an embedding
from the stringy Kähler moduli space to the double quotient:

I : MK ↪→ [Aut(Db(X)) \ Stab(X)/C].

We refer readers to [2, Section 7.1] and [33, Section 3] formore detailed discus-
sions and predictions on the formula of centrals charge and heart structures.
Under this embedding, the images of (the neighbourhoods of) three special
points are of particular interests:

• the large volume(radius) limit at the point ψ = ∞;
• the conifold gap point at the point ψ5 = 1;
• the Gepner point the point ψ = 0.

Up to the actions by Aut(Db(X)) and C, the images of the neighborhood of
the large volume limit are expected to be expressed by geometric stability
conditions with predicted central charge:

Zβ,t,H := (− chβ H
3 + t2

2
H2 chβ H

1 ) + i(t H chβ H
2 −5t3

6
H3 ch0),

whereβ ∈ R and t > 0. Scaling the imaginary part of (2) by t , let b = 0,a = t2
2

andα =
√
15
3 t ; we get all such central charges for t > 1. In particular, the space

of stability conditions constructed in Theorem 1.3 contains a neighbourhood
of the large volume limit.

Up to the actions by Aut(Db(X)), the limit of central charges near the
conifold gap point is expected to satisfy Z(OX ) = 0. Note that in (2), one may
let β = 0 and α → 0 so that the kernel of the central charge will tend to the
character of OX . In particular, the space of stability conditions constructed in
Theorem 1.3 contains parts of the neighbourhood of conifold gap point.

The image of the Gepner point is expected to be represented by a stability
condition that is fixed by the action (STOX ◦ ⊗O(H), −2

5). By [33], to con-
struct such a stability condition, we prior need a Bogomolov–Gieseker type
inequality which is ‘slighly’ stronger than that in Theorem 1.1. We hope to
prove this better bound in some future projects after introducing more tech-
niques in the paper [19].
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C. Li

1.1 Organisation and Approach

The logic flow of the proof is as follows:

4©Proposition 4.1 ��⇒
3© Theorem 5.5 ��⇒

2©
Proposition 3.1

Theorem�����⇒
1© 3.2 Theorem 2.8.

Each statement above is an inequality for characters of certain semistable
objects. Each ‘ �⇒ ’ only relies on the previous inequality but not relates to
the arguments for that inequality. The argument in 1© follows the technique in
[5, Section 5], it is also originated from the idea in [24, Section 2.2]. Naively
speaking, by 1© we may reduce the inequality for stable objects with respect
to every tilt-slope functions to a single type: the so-called ‘Brill–Noether’ sta-
ble objects. The mainstream of the argument in 2© is to follow the technique
developed for Fano threefolds as that in [6,18,29]. However, in the Calabi–
Yau threefold case, we don’t have some of the Hom vanishings as that in
the Fano threefolds case. Instead, we need to estimate the hom(OX , E) for
Brill–Noether stable objects. The original idea for this estimation via stabil-
ity conditions, as far as the author knows, first appears in [3] which reproves
the Brill–Noether generality of certain curves on K3 surfaces as that in [17].
The estimation for hom(OX , E) necessarily relies on a stronger Bogomolov–
Gieseker type inequality for the secondChern character of slope stable objects,
which is the statement of Theorem 5.5. In addition to Proposition 4.1, the argu-
ment in 3© relies on two techniques: the deformation of stability conditions
and Feyzbakhsh’s restriction lemma.A similar deformation argument has been
used in [18] for the case of Fano threefolds with index one. The restriction
lemma first appears in [13], where the author shows the stability of vector bun-
dles on curves restricted from a K3 surface. More details about the restriction
technique via stability conditions appear in Feyzbakhsh’s thesis. The argument
3© can produce more Bogomolov–Gieseker type inequalities for the first two
Chern characters for several other varieties. Some results focused on this direc-
tion will appear soon in [19]. 4© Proposition 4.1 is the Clifford type bound for
the dimension of global sections of stable vector bundles on curves C2,2,5, the
complete intersection of two quadratics and a quintic hypersurface in P4. As
a topic of its own interest, several general results on the Clifford type bound
for curves can be found in [1,20–22,25]. It is pity that none of the results
mentioned above fit in our situation since we need the sharp bounds at some
critical slopes μ = 5, 10, 30 and 35. Based on the idea in [14], together with
Feyzbakhsh, we develop our own methods to estimate the Clifford type bound
for curves supported on K3 and Fano surfaces via stability conditions in [15].
Especially for this case, we think C2,2,5 as a curve on a degree four del Pezzo
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On stability conditions for the quintic threefold

surface. More introductions about the technical details in 4© can be found in
[14,15].

We organize the paper slightly different from the logic flow. Section 2 is to
fix some notations and to collect some lemmas and tools that will be useful in
every other section. In Sect. 3, we assume the result in Theorem5.5 and directly
prove our main Theorem 2.8. We make this arrangement since the arguments
in this part are more well-established, also we would like to convince the
reader that a stronger Bogomolov–Gieseker type inequality for the second
Chern character of slope stable sheaves will imply Bogomolov–Gieseker type
inequality for the third Chern character of tilt-stable complexes at this early
stage. Section 4 is devoted to proving theClifford type bound for the dimension
of global sections of a stable vector bundle on the curve C2,2,5. This section
involves a certain amount of computations. As for the convenience of the
readers, there is no harm to skip these details first. Section 5 is to proof the
stronger Bogomolov–Gieseker type inequality for the surfaces S2,5 based on
the inequality in Proposition 4.1.

2 Background: tilt-stability condition and wall-crossing

2.1 Stability condition: notations and conventions

In this section, we review the notion of stability and tilt-stability for smooth
varieties introduced in [7,10,30]. We then recall the conjectural Bogomolov–
Gieseker type inequality for tilt-stable complexes proposed there.

Let X be a smooth projective complex variety and H ∈ N S(X)R be a real
ample divisor class. Let the dimension of X be n, in this paper, n will always
be 2 or 3. For an arbitrary divisor class B ∈ N S(X)R , we will always denote
the twisted Chern characters as follows:

chB
0 = ch0 = rk chB

2 = ch2 −B ch1 + B2

2
ch0

chB
1 = ch1 −B ch0 chB

3 = ch3 −B ch2 + B2

2
H2 ch1 − B3

6
ch0 .

In this paper, we are mainly interested in smooth quintic threefold whose
N S(X)R is of rank 1, we will always assume B = β H for some β ∈ R. The
μH -slope of a coherent sheaf E on X is defined as

μH (E) =
{

Hn−1 ch1(E)
Hn ch0(E)

, when ch0(E) �= 0;
+∞, when ch0(E) = 0.
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C. Li

Definition 2.1 A coherent sheaf E is called slope (semi)stable if for any non-
trivial subsheaf F ↪→ E , we have

μH (F) < (≤)μH (E/F).

Each coherent sheaf E admits a unique Harder–Narasimhan filtration:

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that: each quotient Fi := Ei/Ei−1 is slope semistable; and μH (F1) >

μH (F2) > · · · > μH (Fm). We set μ+
H (E) := μH (F1) and μ−

H (E) :=
μH (Fm).

There exists torsion pairs (Tβ,H ,Fβ,H ) in Coh(X) defined as follows:

Tβ,H = 〈semistable E ∈ Coh(E) with μH (E) > β〉 = {E |μ−
H (E) > β};

Fβ,H = 〈semistable E ∈ Coh(E) with μH (E) ≤ β〉 = {E |μ+
H (E) ≤ β}.

Definition 2.2 We let Cohβ,H (X) ⊂ Db(X) be the extension-closure

〈Tβ,H ,Fβ,H [1]〉.

By the general theory on tilting heart in [16], Cohβ,H (X) is the heart of a
t-structure in Db(X). Given α ∈ R, we may define the tilt-slope function for
objects in Cohβ,H (X) as follows: for an object E ∈ Cohβ,H (X), its tilt-slope
function

να,β,H (E) :=
⎧
⎨

⎩

Hn−2 ch2(E)−αHn ch0(E)

Hn−1 chβ H
1 (E)

, when Hn−1 chβ H
1 (E) > 0;

+∞, when Hn−1 chβ H
1 (E) = 0.

Definition 2.3 An object E ∈ Cohβ,H (X) is called να,β,H -tilt slope
(semi)stable if for any non-trivial subobject F ↪→ E in Cohβ,H (X), we have

να,β,H (F) < (≤)να,β,H (E/F).

An object E ∈ Db(X) is called να,β,H -tilt (semi)stable if E[m] ∈ Cohβ,H (X)

is να,β,H -tilt (semi)stable for some homological shift m ∈ Z.
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On stability conditions for the quintic threefold

The tilt slope stability also admits Harder–Narasimhan property when α >
β2

2 .
For an object E ∈ CohH,β(X) we may write ν+

α,β,H (E) and ν−
α,β,H (E) for the

maximum and minimum slopes of its semistable factors respectively.
We also write the central charge

Zα,β,H (E) := −(Hn−2 ch2(E) − αHn ch0(E)) + i Hn−1 chβ H
1 (E)

for an object E ∈ Cohβ,H (X).

Remark 2.4 The formula να,β,H is re-parameterized from the one in [5, Section
4]. Let the tilt-slope function in [5, Section 4] be ν′

α,β,H , then

ν′
α,β,H = ν 1

2 (α2+β2),β,H − β.

In particular, an object E ∈ Cohβ,H (X) is ν′
α,β,H -tilt (semi)stable (in the sense

of [5]) if and only if ν 1
2 (α2+β2),β,H -tilt (semi)stable.We use να,β,H as it is more

convenient to compare the slopes of objects via pictures.

Definition 2.5 Let E be an object in Db(X), we define its H -discriminant as

�̄H (E) := (Hn−1 ch1(E))2 − 2Hn ch0(E) · Hn−2 ch2(E).

Theorem 2.6 (Bogomolov Inequality [8], [7, Theorem 7.3.1], [30, Propo-
sition 2.21]) Let X be a smooth projective variety, and H ∈ N S(X)R an
ample class. Assume that E is να,β,H -tilt semistable for some α > 1

2β
2, then

�̄H (E) ≥ 0.

The main goal of this paper is on the following conjectural Bogomolov–
Gieseker inequality for να,β,H -tilt semistable objects:

Conjecture 2.7 [5, Conjecture 4.1][7, Conjecture 2.7] Let X be a smooth
projective threefold, and H ∈ N S(X)R an ample class. Assume that E is
να,β,H -tilt semistable for some α > 1

2β
2, then

Qα,β(E) := (2α − β2)�̄H (E) + 4(H chβ H
2 (E))2

− 6H2 chβ H
1 (E) chβ H

3 (E) ≥ 0. (3)

In this paper, we will prove this conjecture for smooth quintic threefolds
with a little assumption on α.
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Theorem 2.8 Let X be a smooth projective quintic threefold, and H =
[OX (1)]. Assume that E is να,β,H -tilt semistable for some α > 1

2β
2 + 1

2 (β −
�β�)(�β� + 1 − β), then the inequality (3) holds.

2.2 Recollection of lemmas

Let X be a smooth projective variety and H ∈ N S(X)R be a real ample divisor
class. For an object E ∈ Db(X), we write

v̄H (E) := (Hn ch0(E), Hn−1 ch1(E), Hn−2 ch2(E));
and pH (E) :=

(
Hn−2 ch2(E)

Hn ch0(E)
,

Hn−1 ch1(E)

Hn ch0(E)

)

, when v̄H (E) �= 0.

Let α, β ∈ R be the parameters for tilt-slope functions, unless mentioned
otherwise, we will always assume α > 1

2β
2.

Lemma 2.9 Let E ∈ Cohβ0,H (X) be a να0,β0,H -tilt stable object for some
α0 > 1

2β
2
0 , then we have the following properties.

(a) (Openness) There exists an open set of neighborhood U of (α0, β0) such
that for any (α, β) ∈ U, the object E is να,β,H -tilt stable.

(b) (Bertram’s Nested Wall Theorem) The object E is να,β,H -tilt stable for
any {(α, β)|α > 1

2β
2} on the line through the points (α0, β0) and pH (E).

More precisely, the object E is να,β,H -tilt stable for (α, β) such that the
determinant

det

⎛

⎝
1 α β

1 α0 β0

Hn ch0(E) Hn−2 ch2(E) Hn−1 ch1(E)

⎞

⎠ = 0.

The statement also holds for semistable case. Moreover, when X is a
threefold,

Hn−1 chβ H
1 (E)Qα0,β0(E) = Hn−1 chβ0H

1 (E)Qα,β(E). (4)

(b′) Let F be an object in Cohβ0,H (X) such that pH (F) is on the line through
the points (α0, β0) and pH (E), then να0,β0,H (E) = να0,β0,H (F). More
precisely, the requirements on E and F are as follows: both v̄H (E) and
v̄H (F) are not zero and the determinant

det

⎛

⎝
1 α0 β0

Hn ch0(E) Hn−2 ch2(E) Hn−1 ch1(E)

Hn ch0(F) Hn−2 ch2(F) Hn−1 ch1(F)

⎞

⎠ = 0.
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On stability conditions for the quintic threefold

(c) (Destabilizing walls) The set {(α, β) ∈ R
2|α > 1

2β
2, E is strictly να,β,H -

tilt semistable} is empty or a union of line segments and rays.

Proof The first and third statements are in [7, Corollary3.3.3] and also in [5,
Appendix B] with more details. The nested wall theorem is in [23, Theorem
3.1] and [5, Lemma 4.3]. As for the Eq. (4), by formally tensoring O(m H)

on E , we may assume that Hn−1 ch1(E) = 0. The left hand side then can be
simplified as:

4β Hn ch0 Hn−2 ch2(α0Hn ch0 −Hn−2 ch2) − 6ββ0(Hn ch0)
2Hn−3 ch3 .

This equals the right hand side since the zero determinant implies:

β(α0Hn ch0 −Hn−2 ch2) = β0(αHn ch0 −Hn−2 ch2).

Part (b′) is a direct computation by the definition of να,β,H . ��
The following lemma from [5]will be very useful in the techniqueof deform-

ing tilt-stabilities. We list it here for the convenience of readers.

Lemma 2.10 [5, Corollary 3.10] Let E be a strictly να,β,H -tilt semistable
object with να,β,H (E) �= +∞. Then for any of its Jordan–Hölder factor Ei of
E, we have

�̄H (Ei ) ≤ �̄H (E).

The equality holds only when v̄H (Ei ) is proportional to v̄H (E) and �̄H (E) =
�̄H (Ei ) = 0.

Definition 2.11 We call an object E Brill–Noether stable if there exists an
open subset Uδ := {(α, β)|α2 + β2 < δ, α > 1

2β
2} for some δ > 0 such that

E is να,β,H -tilt stable for every (α, β) ∈ Uδ .
We call an object E Brill–Noether semistable if there exists δ > 0 such that

E is να,0,H -tilt semistable for every 0 < α < δ.
For an object E ∈ Coh0,H (X), we denote its Brill–Noether slope by

νB N (E) :=
{

Hn−2 ch2(E)

Hn−1 ch1(E)
, when Hn−1 ch1(E) �= 0;

+∞, when Hn−1 ch1(E) = 0.

Onmay think theBrill–Noether stability condition also as the ‘weak stability
condition’ on the heart Coh0,H (X) whose central charge is given by Z =
−Hn−2 ch2 +i Hn−1 ch1. By Lemma 2.9, an object E with Hn−2 ch2(E) �= 0
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is Brill–Noether stable if and only if it is να,β,H -tilt stable for some (α, β)

proportional to pH (E). The Brill–Noether semistability of E implies that E
is να,β,H -tilt semistable for some (α, β) proportional to pH (E).

Lemma 2.12 [3, Lemma 6.5] Assume that E ∈ Coh0,H (X) is Brill–Noether
stable. If νB N (E) > 0, let W ⊂ Hom(OX , E) be a subspace, then the object

Ẽ := Cone(OX ⊗ W
can−−→ E)

is in Coh0,H (X) and Brill–Noether semistable.
If νB N (E) < 0, let W ′ ⊂ (Hom(E[−1],OX ))∗ be a subspace, then the

object

Ẽ ′ := Cone(E[−1] can−−→ OX ⊗ W ′)

is in Coh0,H (X) and Brill–Noether semistable.

Proof We prove the case when νB N (E) > 0, the other case can be proved in
a similar way. Note that Ẽ is the canonical extension

0 → E → Ẽ → OX [1] ⊗ W → 0

in Coh0,H (X). In the case that νB N (E) = +∞, for any α > 0, both E and
OX [1]⊗ W are να,0,H -tilt semistable with the same slope +∞. Any extended
object from them, especially Ẽ , is also να,0,H -tilt semistable with slope +∞.

We may now assume Hn−1 ch1(E) �= 0, then there exists points (α, β)

proportional to pH (E) such thatα > 1
2β

2. For any such (α, β), bothOX [1] and
E are να,β,H -tilt stable and να,β,H (E) = να,β,H (OX [1]). Their extension Ẽ is
να,β,H -tilt semistable. If Ẽ is not νε,0,H -tilt stable for sufficiently small ε > 0,
then the destabilizing quotient object Ẽ � Q in Coh0,H (X)would necessarily
be να,β,H -tilt semistable with the same slope as να,β,H (OX [1]) = να,β,H (E).
Note that OX [1] is νε,0,H -stable with slope

νε,0,H (OX [1]) = +∞ > νε,0,H (Ẽ) > νε,0,H (Q),

we have Hom(OX [1], Q) = 0. Therefore, we must have Hom(E, Q) �= 0.
Since E is να,β,H -tilt stable and Q is να,β,H -tilt semistable with the same

slope, the object E has to be a subobject of Q in Cohβ,H (X). Denote the kernel
of Ẽ � Q by K . We then have the short exact sequence

0 → K → Ẽ/E → Q/E → 0
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inCohβ,H (X). By choosing sufficiently smallβ > 0,wehave Hn−1 ch1(Q/E),
Hn−1 ch1(K ) ≥ 0. Note that Ẽ/E � OX [1]⊗ W and Hn−1 ch1(OX [1]) = 0,
we must have Hn−1 ch1(Q/E) = 0. Since να,β,H (Q/E) = να,β,H (E) =
να,β,H (OX [1]), we have v̄H (Q/E) = (Hn ch0(Q/E), 0, 0) and �̄H (Q/E) =
0. By [5, Corollary 3.11(c)], both Q/E and K must be some direct summands
of OX [1]. By the definition of Ẽ , there is no non-zero map from K to Ẽ .
Hence, Ẽ is νε,0,H -tilt stable for sufficiently small ε > 0. ��

3 Proof for the main result

The goal of this section is to prove the inequality in Theorem 2.8 with the
assumption of Theorem 5.5. Following the idea in [5, Section 5], we first
reduce the inequality for every tilt semistable objects to Brill–Noether stable
objects.

Proposition 3.1 Let X be a smooth projective quintic threefold, and H =
[OX (1)]. Assume that E ∈ Coh0,H (X) is Brill–Noether stable and νB N (E) ∈
[−1

2 ,
1
2 ], then

Q0,0(E) := 4(H ch2(E))2 − 6H2 ch1(E) ch3(E) ≥ 0.

Theorem 3.2 [5, Theorem 5.4] Proposition 3.1 implies Theorem 2.8.

Proof Suppose Theorem 2.8 does not hold, then by Theorem 2.6, there exists a
να,β,H -tilt semistable object E ∈ Cohβ,H (X) violating inequality (3) with the
minimum �̄H . Note that the minimum �̄H is by considering all (α, β) such
that α > 1

2β
2 + 1

2 (β − �β�)(�β� + 1− β) and every να,β,H -tilt semistable E
such that Qα,β(E) < 0. By [5, Lemma 5.6], we may assume �̄H (E) > 0. We

may also assume H2 chβ H
1 (E) > 0, since otherwise H2 chβ H

1 (E) = 0 and
the inequality (3) holds automatically.

Consider the wall W through (α, β) and pH (E):

W := {(α′, β ′)|α′ >
1

2
β ′2; (α′, β ′), (α, β) and pH (E) are collinear}.

For any (α′, β ′) in W , by Lemma 2.9, the object E is να′,β ′,H -tilt semistable.
By Lemma 2.9 part (b), we have Qα′,β ′(E) < 0. By the assumption that
α > 1

2β
2 + 1

2 (β − �β�)(�β� + 1 − β), the wall W contains at least one
(α0, β0) such that β0 is an integer.
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Fig. 1 The condition α > 1
2β2 + 1

2 (β − �β�)(�β� + 1− β) is equivalent to say that the point
(α, β) is to the right of the dashed lines

Moreover, we can choose the integer β0 such that

H chβ0H
2 (E)

H2 chβ0H
1 (E)

∈ [−1

2
,
1

2
].

Here the integer β0 can be determined by the position of pH (E) as in Fig. 1.
Or more precisely, the integer β0 is in

⎧
⎪⎪⎨

⎪⎪⎩

H2 ch1(E)

H3 ch0(E)
−

√
�̄H (E)

(H3 ch0(E))2
+ 1

4 + [−1
2 ,

1
2

]
,when ch0(E) > 0;

H2 ch1(E)

H3 ch0(E)
+

√
�̄H (E)

(H3 ch0(E))2
+ 1

4 + [−1
2 ,

1
2

]
,when ch0(E) < 0;

− H ch2(E)

H2 ch1(E)
+ [−1

2 ,
1
2

]
,when ch0(E) = 0.

By reseting E = E(−β0H), we may assume β0 = 0. In particular, we may
assume that E is να,0,H -tilt semistable and Qα,0(E) < 0. Suppose E becomes
strictly να0,0,H -tilt semistable for some 0 < α0 ≤ α, then by Lemma 2.10 and
the assumption that �̄H (E) > 0, for each Jordan–Hölder factor Ei , we have
�̄H (Ei ) < �̄H (E). Note that Qα0,0(E) ≤ Qα,0(E) < 0. By [5, LemmaA.6],
there exists a Jordan–Hölder factor Ei such that Qα0,0(Ei ) < 0. This violates
the minimum assumption on �̄H (E).

Let (α1, β1) be a point on the wall through pH (E) and (0, 0) when
H ch2(E) �= 0. By Lemma 2.9, we have Qα1,β1(E) < 0 as Q0,0(E) ≤
Qα,β(E) < 0. If E is strictly να1,β1,H -tilt semistable, then any of its Jordan–
Hölder factor Ei is Brill–Noether stable and has νB N (Ei ) = νB N (E) ∈
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Fig. 2 The point (α, β) is slightly to the left of the line through O and pH (E)

[−1
2 ,

1
2 ]. By Proposition 3.1, each factor satisfies Q0,0(Ei ) ≥ 0. By [5, Lemma

A.6] again, we have Q0,0(E) ≥ 0.
If E is να1,β1,H -tilt stable or H ch2(E) = 0, then E is Brill–Noether stable.

By Proposition 3.1, we also have Q0,0(E) ≥ 0.
In either case, we get 0 > Qα,0(E) ≥ Q0,0(E) ≥ 0, which is a contradic-

tion. Therefore, under the assumption of Proposition 3.1, Theorem 2.8 holds.
��

We now show that Proposition 3.1 can be implied by the stronger
Bogomolov–Gieseker type inequality for the second Chern character of Brill–
Noether stable objects.

Proposition 3.3 Theorem 5.5 implies Proposition 3.1.

Proof Let E ∈ Coh0,H (X) be a Brill–Noether stable object, we first discuss
the case when νB N (E) ∈ (0, 1

2 ]. There exists (α, β) such that α > 1
2β

2,
0 < α

β
< νB N (E) and E is να,β,H -tilt stable. Note that (Fig. 2)

να,β,H (OX [1]) = α

β
< να,β,H (E).

Since both OX [1] and E are να,β,H -tilt stable, by Serre duality, we have

Hom(OX , E[2 + i]) � (Hom(E,OX [1 − i]))∗ = 0,

for any i ≥ 0. Consider the object Ẽ :=Cone(OX ⊗ Hom(OX , E) → E), by
Lemma 2.12, Ẽ is Brill–Noether semistable in Coh0,H (X). By Theorem 5.5,
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the slope H2 ch1(Ẽ)

H3rk(Ẽ)
cannot be in (−1

4 , 0]. Moreover, either

H2 ch1(E)

H3(rk(E) − hom(OX , E))
= H2 ch1(Ẽ)

H3rk(Ẽ)
/∈ [−1

2
, −1

4
]; (5)

or by Theorem 5.5,

H2 ch1(Ẽ)

H3rk(Ẽ)
∈ [ − 1

2
, −1

4
] and H ch2(Ẽ) ≥ −1

2
H2 ch1(Ẽ) − 1

4
H3rk(Ẽ).

(6)

When (5) happens, we have

hom(OX , E) < rk(E) + 2

5
H2 ch1(E). (7)

When (6) happens, we have

hom(OX , E) ≤ rk(E) + 2

5
H2 ch1(E) + 4

5
H ch2(E). (8)

Note that H2 ch1(E) > 0 and we have assumed that νB N (E) > 0, hence
H ch2(E) > 0 and inequality (8) always holds.
Since Hom(OX [1], E[i]) = 0 for i ≤ −1, we have

χ(OX , E) ≤ hom(OX , E).

Substitute this to (8), recall that td1(X) = 0, td3(X) = χ(OX ) = 0 and
td2(X) = 5

6 H2 (as χ(OX (H)) = 5), by Hirzebruch–Riemann–Roch, we
have

ch3(E) + 5

6
H2 ch1(E) = χ(E) ≤ rk(E) + 2

5
H2 ch1(E) + 4

5
H ch2(E).

By multiplying 6H2 ch1(E) and cancelling out some terms on both sides, we
have:

Q0,0(E) ≥ 13

5
(H2 ch1(E))2 + 4(H ch2(E))2 − 6rk(E)H2 ch1(E)

− 24

5
H ch2(E)H2 ch1(E)

= 6

5
H2 ch1(H2 ch1 −H3rk)
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+ 1

5
(7H2 ch1 −10H ch2)(H2 ch1 −2H ch2) (9)

= 6

5
H2 ch1(2H2 ch1 −4H ch2 −H3rk)

+ 4(H ch2)
2 + 1

5
(H2 ch1)

2 (10)

= 6

5
H2 ch1(

3

2
H2 ch1 −H ch2 −H3rk)

+ 1

5
(4H2 ch1 −10H ch2)(H2 ch1 −2H ch2) (11)

= 4

5
(
3

2
(H2 ch1)

2 − H ch2 H3rk − H2 ch1 H3rk)

+ 1

5
(7H2 ch1 −10H ch2 −2H3rk)(H2 ch1 −2H ch2). (12)

ByTheorem5.5 and the assumption that νB N (E) ∈ (0, 1
2 ], we have H2 ch1(E)

H3rk(E)
/∈

[0, 1
2 ].

• When H2 ch1(E)

H3rk(E)
/∈ [12 , 1], we have H2 ch1(E) > 0, H2 ch1(E) > H3rk(E)

and H2 ch1(E) = 1
νB N (E)

H ch2(E) ≥ 2H ch2(E), hence the Eq. (9) is
non-negative.

• When H2 ch1(E)

H3rk(E)
∈ [12 , 3

4 ], by Theorem 5.5, the Eq. (10) is non-negative.

• When H2 ch1(E)

H3rk(E)
∈ [34 , 10

11 ], by Theorem 5.5, 3
2 H2 ch1(E) − H ch2(E) −

H3rk(E) ≥ 0 and νB N (E) < 2
5 . Therefore 4H2 ch1(E) − 10H ch2(E) ≥

0, the Eq. (11) is non-negative.

• When H2 ch1(E)

H3rk(E)
∈ [1011 , 1], by Theorem 5.5, the first term in Eq. (12) is non-

negative. The term 7H2 ch1(E) − 10H ch2(E) − 2H3rk(E) is also non-
negative since 2H ch2(E) + 2H3rk(E) ≤ 3H2 ch1(E) by Theorem 5.5.
Therefore, the Eq. (12) is non-negative.

As a summary, when νB N (E) ∈ (0, 1
2 ], we always have Q0,0(E) ≥ 0.

The same argument applies for the case when νB N (E) ∈ [−1
2 , 0). In that

case, we will have Hom(OX , E) = 0 and we can bound the dimension
hom(OX , E[2]) = hom(E,O[1]) by Lemma 2.12. As pointed out by the ref-
eree,wemay also consider the derived dualD(E) := E∨[1]. By [7, Proposition
5.1.3 (b)], it fits into an exact triangle Ē → D(E) → T0[−1] for a Brill–
Noether semistable object Ē ∈ Coh0,H (X) and a zero-dimensional torsion
sheaf T0. Note that ch1(Ē) = ch1(D(E)) = ch1(E) and ch2(Ē) = − ch2(E)

we have νB N (E) ∈ (0, 1
2 ]. Therefore,

Q0,0(E) = Q0,0(D(E)) = Q0,0(Ē) + 6 ch1(E) ch3(T0) ≥ 0.
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As for the remaining case that νB N (E) = 0 = H ch2(E), we consider the
object Ẽ := Cone(OX ⊗Hom(OX , E)

can−−→ E). If Ẽ is να,0,H -tilt semistable

for some α > 0, then by Theorem 5.5, we know that H2 ch1(Ẽ)

H3rk(Ẽ)
/∈ (−1

2 , 0]. As
H2 ch1(Ẽ) = H2 ch1(E) > 0, we have

H3rk(Ẽ) ≥ −2H2 ch1(Ẽ). (13)

Otherwise, for each δ > 0, Ẽ is destabilized by some νδ2,δ,H -tilt stable object
Fδ ↪→ Ẽ inCohδ,H (X).Wemayassume0 < δ < 1

2 sufficiently small so that E
is νδ2,δ,H -tilt stable. Note that either Hom(Fδ, E) �= 0 or Hom(Fδ,OX [1]) �=
0. We have either νδ2,δ,H (Fδ) ≤ νδ2,δ,H (O[1]) or νδ2,δ,H (Fδ) ≤ νδ2,δ,H (E).
By Theorem 5.5, when δ < 1

2 , we always have νδ2,δ,H (E) < νδ2,δ,H (O[1]) =
δ. Therefore, νδ2,δ,H (Fδ) ≤ νδ2,δ,H (O[1]). Note that the ‘=’ can only hold
when Fδ � O[1], but then Hom(Fδ, Ẽ) = 0. Therefore, νδ2,δ,H (Fδ) < δ.

Wemay assume that Fδ has the greatest νδ2,δ,H slope among all destabilizing
subobject of Ẽ in Cohδ,H (X). Then for each Harder–Narasimhan factor Ei of
Ẽ with respect to νδ2,δ,H , we have νδ2,δ,H (Ei ) < δ. By Lemma 2.9, each Ei
is also ναi ,0,H -tilt stable for some αi > 0 and in addition νB N (Ei ) < δ. By
Theorem 5.5,

H2 ch1(Ei )

H3rk(Ei )
/∈ [ −1

4δ + 2
, 0].

or equivalently, H3rk(Ei )

H2 ch1(Ei )
> −4δ−2.When δ tends to 0, we have H3rk(Ẽ) ≥

−2H2 ch1(Ẽ). As (13) always holds, we have

hom(OX , E) ≤ 2

5
H2 ch1(E) + rk(E). (14)

Recall that by [7, Proposition 5.1.3 (b)], there is an exact triangle Ē →
D(E) → T0[−1] for a Brill–Noether semistable object Ē ∈ Coh0,H (X) and
a zero-dimensional torsion sheaf T0. We have

hom(OX , E[2]) = hom(E,OX [1]) = hom(D(OX [1]), D(E)) (15)

= hom(OX , D(E)) = hom(OX , Ē) ≤ 2

5
H2 ch1(E) − rk(E).

(16)

By Hirzebruch–Riemann–Roch (14) and (16), we have
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ch3(E) + 5

6
H2 ch1(E) ≤ χ(E) ≤ hom(OX , E)

+ hom(OX , E[2]) = 4

5
H2 ch1(E).

Therefore, ch3(E) < 0 and Q0,0(E) > 0.
In any case of νB N (E), we always have Q0,0(E) ≥ 0. ��

4 Clifford type inequality for curves C2,2,5

The generalized Clifford index theorem for curves, [9, Theorem 2.1] states
that for any semistable vector bundle F over a smooth curve C with rank r
and slope μ ∈ [0, g], where g is the genus of the curve, the following bound
holds:

h0(F)/r ≤ 1 + μ

2
.

The main purpose of this section is to set up the following stronger Clifford
type inequality for the curve C2,2,5, which is the complete intersection of two
quadratic hypersurfaces and a quintic hypersurface in P4

C
.

Proposition 4.1 Let F be a semistable vector bundle on a smooth curve C2,2,5
with rank r and slope μ ∈ (0, 10]∪[30, 40], then we have the following bounds
for the dimension of global sections of h0(F):

h0(F)/r ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

40
41 + μ

41 , when μ ∈ (0, 2);
max{2425 + 4

125μ, 241
248 + 33

1240μ}, when μ ∈ [2, 5
2 );

max{1213 + 3
65μ, 295

306 + 19
612μ}, when μ ∈ [52 , 10

3 );
max{45 + 2

25μ, 193
204 + 7

170μ}, when μ ∈ [103 , 5);
max{15μ, 55

62 + 9
124μ}, when μ ∈ [5, 10];

2
5μ − 4, when μ ∈ [30, 37];
11
15μ − 49

3 , when μ ∈ [37, 40].

(17)

The bound listed above is the best result we can prove so far. As for the
purpose to proveProposition 5.2,whenμ ∈ [2, 10],we only need the following
weaker but neat bound.

Whenμ ∈ [2, 5), the right hand side is always less than or equal to 7μ
120+ 109

120 .

Whenμ ∈ [5, 10], the right hand side is always less than or equal to 3μ
20 + 1

2 .

Remark 4.2 The inequality is sharp for some values of the slope μ. When
μ ∈ (0, 2), this result is the sharp bound as shown in [21, Proposition 2.1].
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Fig. 3 Bounds for h0(F)/r
when μ ∈ (0, 5)

When μ = 2, 5
2 ,

10
3 , 5, 10, 30, 40, this bound is also for sure to be sharp

(Fig. 3).
To express those vector bundles with sharp bound more precisely, we let

S2,2 be a smooth complete intersection of two quadratic hyper-surfaces such
that S2,2 containsC2,2,5 inP4

C
. Note that S2,2 is a del Pezzo surface with degree

4, it can be viewed as a projective plane blown-up at 5 points. Denote 
0 as
the pull-back of a line in P2 and 
1 as one of the exceptional lines.

When μ = 10
n+1 for n = 1, 2, 3, 4, we may achieve the maximum h0(F)/r

by letting F = En|C2,2,5 where En is a vector bundle on S2,2 defined as the
cokernel of the map

OS2,2(−nH)
can−−→ OS2,2 ⊗ Hom(OS2,2(−nH),OS2,2)

∗.

When μ = 10, one may let F = OS2,2(
0 − 
1)|C2,2,5 . When μ = 40, one
may let F = O(2H)|C2,2,5 .

Back to the proof for the Proposition 4.1, it is enough to prove the statement
for stable vector bundles. We denote the inclusion map by ι : C2,2,5 ↪→ S2,2.
In this section, we write H for [OS2,2(1)] and only use stability conditions on
S2,2 with polarization H . As h0(F) = h0(ι∗F), we will always consider the
dimension of global sections on ι∗F in Db(S2,2) instead of F . The following
statement is standard:

Lemma 4.3 Let F be a stable vector bundle on C2,2,5, then ι∗F is να,0,H -tilt
stable for α � 0.

Following the strategy in [14,15], we will compute h0(ι∗F) by considering
the Harder–Narasimhan factors of ι∗F with respect to νB N .

Lemma 4.4 [14, Proposition 3.4 (a)] For each object E ∈ Coh0,H (S2,2) that
is να,0,H -tilt stable for some α > 0, there exists δ > 0 such that there is a
Harder–Narasimhan filtration for E with respect to να,0,H for any 0 < α < δ:

0 = E0 ⊂ E1 ⊂ . . . Em = E .
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In particular, each factor Fi = Ei/Ei−1 is Brill–Noether semistable. The
slope is decreasing ν+

B N (E) := νB N (F1) ≥ · · · ≥ νB N (Fn) =: ν−
B N (E).

The original statement in [14, Proposition 3.4 (a)] only states for K3 sur-
faces. But the argument only needs that there are finitely many possible classes
for semistable factors, which is due to Bogomolov inequality. So it holds for
every surface.

The geometric stability conditions on S2,2 with polarization H is slightly
larger than that ensured by the Bogomolov inequality. In particular, we may

choose the parameter α ≤ β2

2 .

Definition 4.5 Let γ : R → R be a 1-periodic function. When x ∈ [0, 1],

γ (x) :=
{

1
2 x2 − 1

2 x + 1
4 , if x ∈ (0, 1);

0, ifx = 0 or 1.

Let �(x) := 1
2 x2 − γ (x).

Observation 4.6 For any torsion-free μH -slope stable object E, we have

�

(
H ch1(E)

H2rk(E)

)

≥ ch2(E)

H2rk(E)
.

The data (Coh0,H (S2,2), Zα,β,H ) parameterized by {(α, β) ∈ R
2|α > �(β)}

form a continuous family of stability conditions on Db(S2,2).

Proof The inequality for Chern characters of μH -slope stable objects with
H ch1(E)

H2rk(E)
/∈ Z is by computing

0 ≥ − hom(OS2,2(�
H ch1(E)

H2rk(E)
+ 1�H), E[1]) = χ(E(−� H ch1(E)

H2rk(E)
+ 1�H)).

The stability condition is then a standard construction as that in [11] or the
framework in [30, Section 2]. ��
Remark 4.7 It is worth tomention that Bertram’s nestedwall theorem (Lemma
2.9 (b)) still holds for (α, β) on the wall such that α > �(β), but one needs
to be careful that in this case every point (α′, β ′) on the line segment between
(α0, β0) and (α, β) should also satisfy α′ > �(β ′).

The following lemma explains that we can estimate the dimension of global
sections for each Brill–Noether semistable factor.
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Lemma 4.8 Let F ∈ Coh0,H (S2,2)be a Brill–Noether semistable object. Then

hom(OS2,2 , F)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= rk(F) + 1
2 H ch1(F) + ch2(F), when − 1

2 < νB N (F) < +∞;
≤ rk(F) + 1

4n H ch1(F), when νB N (F) = − n
2 , n ∈ Z>0;

≤ rk(F) + 2n+1
4n2+4n+2

H ch1(F)

+ 1
2n2+2n+1

ch2(F), when − n+1
2 < νB N (F) < − n

2 , n ∈ Z>0.

Proof When −1
2 < νB N (F) < +∞, since OS2,2(−H)[1] is Brill–Noether

stable with slope

νB N (OS2,2(−H)[1]) = −1

2
,

we have

hom(OS2,2, F[1 + i]) = hom(F,OS2,2(−H)[1 − i]) = 0

for i ≥ 0. Since OS2,2[1] is να,0,H -tilt stable for α > 0 and has slope

νB N (OS2,2[1]) = +∞,

we have

hom(OS2,2, F[−1 − i]) = hom(OS2,2[1 + i], F) = 0

for i ≥ 0. Therefore,

hom(OS2,2, F) = χ(F) = rk(F) + 1

2
H ch1(F) + ch2(F).

When νB N (F) ≤ −1
2 , there exists (α, β) on the line through pH (F) and

(0, 0) such that α > 1
2β

2. By Lemma 2.9, the object F is in Cohβ,H (S2,2) and
να,β,H -tilt semistable with νB N (F) = να,β,H (F) = α

β
= να,β,H (OS2,2). The

object

F̃ := Cone(OS2,2 ⊗ Hom(OS2,2, F)
can−−→ F)

is in Coh0,H (S2,2) and therefore also in Cohβ,H (S2,2) by Lemma 2.9. In par-
ticular, the object F̃ is να,β,H -tilt semistable with slope να,β,H (F̃) = νB N (F).
Since �̄H (F̃) ≥ 0, we have

0 ≤ (H ch1(F))2 − 2H2 ch2(F)(rk(F) − hom(OS2,2 , F))
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�⇒ hom(OS2,2 , F) ≤ rk(F) − (H ch1(F))2

2H2 ch2(F)
= rk(F) − 1

8νB N (F)
H ch1(F).

This verifies the case when νB N (F) = −n
2 for n ∈ Z>0.

When −n+1
2 < νB N (F) < −n

2 , n ∈ Z>0, note that OS2,2(−(n + 1)H)[1]
is in Cohβ,H (S2,2) and να,β,H -tilt stable with slope

να,β,H (OS2,2(−(n + 1)H)[1]) → νB N (OS2,2(−(n + 1)H)[1]) = −n + 1

2
,

when β → 0. We have

hom(OS2,2(−nH), F̃[1 + i]) = hom(F̃,OS2,2(−(n + 1)H)[1 − i]) = 0

for i ≥ 0. Since OS2,2(−nH)[1] is in Cohβ,H (S2,2) and να,β,H -tilt stable for
with slope

να,β,H (OS2,2(−nH)[1]) → νB N (OS2,2(−nH)[1]) = −n

2
,

when β → 0. We have

hom(OS2,2(−nH), F̃[−1 − i]) = hom(OS2,2(−nH)[1], F̃[−i]) = 0

for i ≥ 0. Therefore,

0 ≤ hom(OS2,2(−nH), F̃) = χ(F̃(nH))

= ch2(F) + (n + 1

2
)H ch1(F)

+ (n2 + n)H2 + 2

2
(rk(F) − hom(OS2,2, F))

�⇒ hom(OS2,2, F)) ≤ rk(F) + 2n + 1

4n2 + 4n + 2
H ch1(F)

+ 1

2n2 + 2n + 1
ch2(F).

We finish the claim for all cases. ��
The following property decides the bounds for the Brill–Noether slopes of

each Harder–Narasimhan factors of ι∗F .

Proposition 4.9 Let F be a slope stable vector bundle on C2,2,5 with slope
μ(F) ∈ (0, 10] ∪ [30, 40], then

• ι∗F is Brill–Noether semistable when μ ≤ 30 − 20
√
2;
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• ν+
B N (ι∗F) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 − 5

μ
, when μ ∈ (30 − 20

√
2, 10];

3
2 − 25

μ
, when μ ∈ [30, 10 + 20

√
2];

23μ−610
12μ−140 , when μ ∈ [10 + 20

√
2, 39];

μ
8 − 4, when μ ∈ [39, 40].

• ν−
B N (ι∗F) ≥

⎧
⎪⎨

⎪⎩

490−9μ
2μ−200 , when μ ∈ (30 − 20

√
2, 10];

450−7μ
2μ−200 , when μ ∈ [30, 10 + 20

√
2];

−3
2 , when μ ∈ [10 + 20

√
2, 40].

To prove the proposition, we need estimate the first wall of ι∗F .

Lemma 4.10 Adopt the notations in Proposition 4.9, if μ ∈ (0, 30 − 20
√
2],

then ι∗F is Brill–Noether semistable. Otherwise, suppose ι∗F becomes strictly
να,0,H -tilt semistable for some α > 0. Then,

α ≤

⎧
⎪⎨

⎪⎩

3μ
20 − μ2

400 − 1
4 , when μ ∈ (30 − 20

√
2, 10];

μ
5 − μ2

400 − 5
4 , when μ ∈ [30, 10 + 20

√
2];

3μ
20 − 3, when μ ∈ (10 + 20

√
2, 40].

Proof Wewrite r for the rank of F , the Chern characters of ι∗F are as follows:

(ch0(ι∗F), ch1(ι∗F), ch2(ι∗F)) = (0, 5r H, −r
(5H)2

2
+ rμ = r(μ − 50)).

Let 0 → F2 → ι∗F → F1 → 0 inCoh0,H (S2,2) be the destabilizing sequence
with respect to να,0,H , then there is an exact sequence in Coh(S2,2).

0 H−1(F1) F2 ι∗F H0(F1) 0.

rank s s 0 0

ch1 D1 D2 5r H 5aH

If s = 0, then H−1(F1) = 0 as it is torsion free. Since F2 and ι∗F have the
same να,0,H slope, we must have ch(ι∗F) = k ch(F2) for some real number
k > 0, this will violate the stability assumption on F . Thus, we may assume
s �= 0.

Let T (F2) be themaximal torsion subsheaf of F2.Without loss of generality
we may assume that it is supported on C2,2,5 with ch1(T (F2)) = 5t H . Since
F is of rank r , to make the sequence exact at the term ι∗F , we must have

r − a ≤ rank
(
ι∗T (F2)

) + rank
(
F2/T (F2)

) = s + t.
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Therefore,

H ch1
(
F2/T (F2)

)

s H2 − H ch1
(
H−1(F1)

)

s H2

= D2H − 5t H2 − D1H

s H2 = 5r − 5a − 5t

s
≤ 5. (18)

By Lemma 2.9, the objects F1 and F2 are να′,β ′,H -tilt semistable of the same
phase as ι∗E for any (α′, β ′) along the wall W through (α, 0) with slope
1/νB N (ι∗F) = 1/( μ

20 − 5
2 ). Let (α1, β1) and (α2, β2) be the intersection points

of W and the curve �, more precisely,

β1 := max{y < 0|�(y) ≥ (
μ

20
− 5

2
)y + α};

β2 := min{y > 0|�(y) ≥ (
μ

20
− 5

2
)y + α}.

By Lemma 2.9 and Remark 4.7, the object F2/T (F2) is in the heart
Cohβ2−ε,H X and H−1(F1) is in the heart Cohβ1+ε,H X for sufficiently small
ε > 0. Thus by definition of the tilting heart and (18), we have

β2 − β1 ≤ 5. (19)

Now we have reduced the first wall through (α, 0) to an elementary computa-
tion. Note that the line through (�(β2), β2) and (�(β2 − 5), β2 − 5) always
has slope 1/(β2 − 5

2 ).

• When 0 < μ ≤ 10, note that the line through (�(
μ
20 ),

μ
20 ) and (�(

μ
20 −

5), μ
20 − 5) has equation

X − μ

40
+ 1

4
= (

μ

20
− 5

2
)(Y − μ

20
).

It passes through the point (3μ20 − μ2

400− 1
4 , 0).The object ι∗F cannot become

strictly να,0,H -tilt semistable for any α > max{0, 3μ
20 − μ2

400 − 1
4}.• When 30 ≤ μ ≤ 40, two different types of lines are possible to be the first

wall as shown in Fig. 4. We list their equations as follows:
(a) The line through (�(−3), −3) with slope 1/( μ

20 − 5
2 ) has equation

(
μ
20 − 5

2 )(Y + 3) = X − 9
2 . It passes through (

3μ
20 − 3, 0).

(b) The line through (�(
μ
20 ),

μ
20 ) and (�(

μ
20 − 5), μ

20 − 5) has equation

X − 3μ
40 + 5

4 = (
μ
20 − 5

2 )(Y − μ
20 ). It passes through (

μ
5 − μ2

400 − 5
4 , 0).

The object ι∗F cannot become strictly να,0,H -tilt semistable for any α >

max{3μ20 − 3, μ
5 − μ2

400 − 5
4}.
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Fig. 4 The potential first wall of ι∗F

��

Proof for Proposition 4.9 Suppose ι∗F is not Brill–Noether semistable. Let
the Harder–Narasimhan filtration of ι∗F with respect to νB N be

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em−1 ⊂ Em = ι∗F.

Note that rk(E1) > 0, since otherwise for any α > 0,

να,0(E1) ≥ νB N (E1) > νB N (ι∗F) = να,0(ι∗F),

this is not possible as E1 is a subobject of ι∗F in Coh0,H (S2,2).
The line through pH (E1) with slope 1/νB N (ι∗F) passes through (α, 0) for

some α ≤ 0 or satisfying the inequality in Lemma 4.10. Together with the
constrain that rk(E1) > 0, the slope νB N (E1) can only achieve maximum
when both α and β2 reach their maximums and H ch1(E1)

H2rk(E1)
= β2. It is a direct

computation that

β2 =

⎧
⎪⎨

⎪⎩

μ
20 , when μ ∈ (30 − 20

√
2, 10] ∪ [30, 10 + 20

√
2];

3μ−35
80−μ

, when μ ∈ [10 + 20
√
2, 39];

2, when μ ∈ [39, 40].
To compute νB N (E1), the only special case is when μ ∈ [39, 40], in this case
β1 = −3, we have ch2(E1)

H2rk(E1)
≤ μ

4 − 8. The other cases are by computing �(β2)
β2

directly.
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Fig. 5 Replacing extra edges and moving the vertex

As for the νB N (Em/Em−1), one may use the same argument and reduce it
to the computation of �(β1)

β1
. ��

Define the function ♣: (x, y) ∈ H = R × R
>0 → R

>0 as follows

♣(x, y) :=

⎧
⎪⎨

⎪⎩

y
2 + x, when x

y > −1
2 ;

y
4n , when x

y = −n
2 , n ∈ Z>0;

2n+1
4n2+4n+2

y + 1
2n2+2n+1

x, when − n+1
2 < x

y < −n
2 , n ∈ Z>0.

Note that the value of ♣ is always positive, therefore well defined.

Lemma 4.11 Let O = (0, 0)be the origin, let P = (x p, yp)and Q = (xq , yq)

be two points on H such that
x p
yp

<
xq
yq

and yp > yq . Consider all collections of
points P0 = O, P1, . . . , Pn = P in the triangle O Q P such that P0P1 . . . Pn P0
forms a convex polygon, then the sum

k=n∑

k=1

♣(
−−−−→
Pk−1Pk) (20)

can achieve its maximum when either n = 1 or 2. In addition, when n = 2, the
point P1 = (x1, y1) can be chosen on the line segment O Q (Q P, respectively)
unless x1

y1
= −n

2 (
x p−x1
yp−y1

= −n
2 , respectively) for some n ∈ Z>0.

Proof Consider the following toy model on the left in Fig. 5: yc > yb > ya
and AC//A′C ′. We allow A′ to move alone the line segment AB (C ′ moves

along BC accordingly so that AC//A′C ′). Note that the function ♣(
−−→
AA′) +

♣(
−−→
A′C ′) + ♣(

−−→
C ′C) changes linearly with respect to the length of AA′, it can

achieve maximum when either A′ = C ′ = B or both A′ = A and C ′ = C .
Therefore, to achieve the maximum of (20) we may remove extra Pi ’s when

n > 2.
Consider the toy model on the right in Fig. 5: yc > yb and D is on the

line segment of BC such that xd
yd

/∈ 1
2Z<0. Then by the definition of ♣, there

exists D1 and D2 on the line segment of B D and C D respectively such that
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xdi
ydi

∈ 1
2Z<0 or D1 = C (D2 = B), and for any point D′ on the line segment

D1D2 (D′ �= D1 or D2), the function ♣(
−−→
O D′) is computed with the same

coefficients as that of ♣(
−−→
O D). Note that the function ♣(

−−→
O D′) + ♣(

−−→
D′C)

changes linearly with respect to the length of D1D′ when D �= D1 or D2, and
is upper semi-continuous at D1 and D2, it can achieve the maximum when
either D′ = D1 or D2.

Back to the case of the lemma when n = 2, we may always adjust the
position of P1 so that it satisfies the requirements in the statement. ��
Proof of Proposition 4.1 It is enough to prove the case for slope stable vector
bundle F over C2,2,5. We consider the Harder–Narasimhan filtration for ι∗F
with respect to νB N as that in Lemma 4.4:

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = ι∗F.

We draw the points Pi := (ch2(Fi ), H ch1(Fi )), 1 ≤ i ≤ m on the upper
half plane H. By Lemma 4.8 and the definition of the function ♣,

h0(F) =Hom(OS2,2, ι∗F) ≤
i=m∑

i=1

Hom(OS2,2, Fi/Fi−1)

≤
i=m∑

i=1

rk(Fi/Fi−1) + ♣(ch2(Fi/Fi−1), H ch1(Fi/Fi−1))

=
i=m∑

i=1

♣(
−−−−→
Pi−1Pi ). (21)

Let P = Pn = ((μ−50)r, 20r) and Q = (xq , yq) be points on H such that xq
yq

is the upper bound for ν+
B N (ι∗F) and x p−xq

xq−yq
is the lower bound for ν−

B N (ι∗F) as
that in Proposition 4.9. The points O, P1, . . . , P, O then form the vertices of
a convex polygon in the triangle O Q P as that in Fig. 6. Now by Lemma 4.11,
we may estimate the upper bound for h0(F) by choosing suitable candidate
point P1 := (x1, y1) in the triangle O Q P .

We first treat with the case when μ ∈ (0, 10], by Proposition 4.9, the slope
ν−

B N (ι∗F) ∈ (−5
2 , −2).

• When μ ∈ (0, 2), by Proposition 4.9, the slope ν+
B N (ι∗F) ∈ (−5

2 , −2). By
(21),

h0(F)/r ≤ 9

82
× 20 + μ − 50

41
= 40

41
+ μ

41
.
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Fig. 6 The HN polygon for
ι∗E is inside the triangle
O Q P

When μ ∈ [2, 10], the point Q is always with locus:

Q = ((
μ

10
− 1)r,

μ

5
r).

• When μ ∈ [2, 5
2 ), by Proposition 4.9, the slope ν+

B N (ι∗F) ∈ (−5
2 , −3

2 ).

By Lemma 4.11, P1 has two candidate positions: P1 = Q or P1 is on the
line segment P Q and x1

y1
= −2.

– When P1 = Q, the Eq. (21) is equal to

7

50

μ

5
r + 1

25
(
μ

10
− 1)r

+ 9

82
(20 − μ

5
)r + 1

41
(
9μ

10
− 49)r = (

24

25
+ 4μ

125
)r.

– In the second case, P1 is at

(x1, y1) = (
−240μ + 4μ2 + 400

90 − 5μ
r,
120μ − 2μ2 − 200

90 − 5μ
r).

Note that y1 as a function of μ is convex down when μ ≤ 10. Substi-
tuting y1(2) = 2

5r and y1(
5
2 ) = 35

31r , we have y1 ≤ (226155μ − 78
31)r . The

Eq. (21) is equal to

1

16
y1 + 9

82
(20r − y1) + 1

41
((μ − 50)r + 2y1)

= (
40

41
+ μ

41
)r + 1

656
y1

≤ (
40

41
+ μ

41
+ 1

656
(
226

155
μ − 78

31
))r

= (
33μ

1240
+ 241

248
)r. (22)
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• When μ ∈ [52 , 10
3 ), by Proposition 4.9, the slope ν+

B N (ι∗F) ∈ (−5
2 , −1).

By Lemma 4.11, P1 has three candidate positions: P1 = Q or P1 is on the
line segment P Q with x1

y1
= −3

2 or −2.
– When P1 = Q, the Eq. (21) is equal to

5

26

μ

5
r + 1

13
(
μ

10
− 1)r

+ 9

82
(20 − μ

5
)r + 1

41
(
9μ

10
− 49)r = (

12

13
+ 3μ

65
)r.

– In the second case, P1 is at

(x1, y1) = (
−180μ + 3μ2 + 300

190 − 6μ
r,
60μ − μ2 − 100

95 − 3μ
r).

Note that y1 as a function of μ is convex down when μ ≤ 10. Substi-
tuting y1(

5
2 ) = 1

2r and y1(
10
3 ) = 160

153r , we have y1 ≤ (167255μ − 58
51)r .

The Eq. (21) is equal to

1

12
y1 + 9

82
(20r − y1) + 1

41
((μ − 50)r + 3

2
y1)

= (
40

41
+ μ

41
)r + 5

492
y1

≤ (
40

41
+ μ

41
+ 5

492
(
167

255
μ − 58

51
))r

= (
295

306
+ 19μ

612
)r. (23)

– In the third case, the coordinate of P1 is given in the second case of
μ ∈ [2, 5

2 ). The term
1

656 y1 in (22) is 35
20336r and 5

1353r whenμ = 5
2 and

10
3 respectively. The term 5

492 y1 in (23) is 5
984r and 200

18819r when μ = 5
2

and 10
3 respectively. Therefore, (22) is always less than the estimation

in the second case.
• When μ ∈ [103 , 5), by Proposition 4.9, ν+

B N (ι∗F) ∈ (−5
2 , −1

2 ). By
Lemma 4.11, P1 has four candidate positions: P1 = Q or P1 is on the
line segment P Q with x1

y1
= −1 or −3

2 or −2.
– When P1 = Q, the Eq. (21) is equal to

3

10

μ

5
r + 1

5
(
μ

10
− 1)r + 9

82
(20 − μ

5
)r + 1

41
(
9μ

10
− 49)r = (

4

5
+ 2μ

25
)r.
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– In the second case, P1 is at

(x1, y1) = (
−120μ + 2μ2 + 200

290 − 7μ
r,
120μ − 2μ2 − 200

290 − 7μ
r).

Note that y1 as a function of μ is convex down when μ ≤ 10. Substi-
tuting y1(

10
3 ) = 2

3r and y1(5) = 70
51r , we have y1 ≤ (3685μ − 38

51)r . The
Eq. (21) is equal to

1

8
y1 + 9

82
(20r − y1) + 1

41
((μ − 50)r + y1) = (

40

41
+ μ

41
)r + 13

328
y1

≤ (
40

41
+ μ

41
+ 13

328
(
36

85
μ − 38

51
))r = (

193

204
+ 7μ

170
)r.

– The remaining cases can be eliminated by a similar calculation as that
in the third case of when μ ∈ [52 , 10

3 ).
• When μ ∈ [5, 10], by Lemma 4.11, P1 has five candidate positions: P1 =

Q or P1 is on the line segment P Q with x1
y1

= −1
2 or −1 or −3

2 or −2.
– When P1 = Q, the Eq. (21) is equal to

μ

10
r + (

μ

10
− 1)r + 9

82
(20 − μ

5
)r + 1

41
(
9μ

10
− 49)r = μ

5
r.

– In the second case, P1 is at

(x1, y1) = (
−60μ + μ2 + 100

390 − 8μ
r,
60μ − μ2 − 100

195 − 4μ
r).

Note that y1 as a function of μ is convex down when μ ≤ 10. Substi-
tuting y1(5) = r and y1(10) = 80

31r , we have y1 ≤ ( 49
155μ − 18

31)r . The
Eq. (21) is equal to

1

4
y1 + 9

82
(20r − y1) + 1

41
((μ − 50)r + y1

2
) = (

40

41
+ μ

41
)r + 25

164
y1

≤ (
40

41
+ μ

41
+ 25

164
(
49

155
μ − 18

31
))r = (

55

62
+ 9μ

124
)r.

– The remaining cases can be eliminated by a similar calculation as that
in the third case of when μ ∈ [52 , 10

3 ).

We then treat with the case when μ ∈ [30, 40].
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• When μ ≥ 10 + 20
√
2, as ν−

B N (ι∗F) = −3
2 , by Lemma 4.11, we may

assume P1 = Q to compute (21). The coordinate of Q is

(xq , yq) =
{

((μ − 32)r, 8r), when μ ∈ [39, 40];
(
23μ−610

41 r, 12μ−140
41 r), when μ ∈ [10 + 20

√
2, 39].

The Eq. (21) is equal to

1

2
yq + xq + 1

12
(20r − yq) =

{
(μ − 27)r, when μ ∈ [39, 40];
28μ−600

41 r, when μ ∈ [10 + 20
√
2, 39].

• When μ ≤ 10 + 20
√
2, the point Q is always with locus:

((
3μ

10
− 5)r,

μ

5
r).

Wemay consider when P1 = Q or P1 is on the line segment O Q such that
x p−x1
yp−y1

= −3
2 .

– The second case is the same computation as that in the second case of
when μ ≥ 10 + 20

√
2.

– When P1 = Q, the Eq. (21) is equal to

1

2

μ

5
r + (

3μ

10
− 5)r + 7

50
(20 − μ

5
)r + 1

25
(
7μ

10
− 45)r = (

2μ

5
− 4)r.

When μ = 37, 2μ
5 − 4 = 10.8 = 11μ

15 − 49
3 > 1026

41 = 28μ−600
41 > μ − 27.

Whenμ = 40, 2μ5 −4 = 12 <
28μ−600

41 = 1228
41 < 13 = 11μ

15 − 49
3 = μ−27.

Note the slope of μ in the bound in each case, the bound in Proposition 4.1
holds. ��

5 Bogomolov–Gieseker type inequality for surfaces S2,5 and quintic
threefolds

The goal of this section is to prove the stronger Bogomolov–Gieseker type
inequality for the second Chern character of slope stable sheaves on a quintic
threefold. Our strategy is to first reduce this to the same inequality for a surface
on the quintic threefold.

The following Feyzbakhsh’s restriction lemma [13] will be one of the key
tools to reduce Bogomolov–Gieseker type inequality for higher dimensional
varieties to surfaces.
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Lemma 5.1 Let (X, H) be a polarized smooth projective variety with dimen-
sion n = 2 or 3. Let E be a coherent sheaf in Coh0,H (X). Suppose there exists
α > 0 and m ∈ Z>0 such that

• E(−m H)[1] is in Coh0,H (X);
• both E and E(−m H)[1] are να,0,H -tilt stable;
• να,0,H (E) = να,0,H (E(−m H)[1]).

Then for a generic smooth irreducible subvariety Y ∈ |m H |, the restricted
sheaf E |Y is μHY -slope semistable on Y . Moreover, rk(E) = rk(E |Y ), Hn−2

Y
ch1(E |Y ) = m Hn−1 ch1(E) and when n = 3, ch2(E |Y ) = m H ch2(E).

Proof Note that E(−m H)[1] is να,0,H -tilt stable, for any torsion sheaf
T supported on a variety with codimension not less than 2, we have
Hom(T, E(−m H)[1]) = 0. In particular, E is a reflexive sheaf, the singular
locus of E is of codimension at least 3. For any smooth irreducible Y ∈ |m H |
avoiding the singular locus, the restricted sheaf E |Y is locally free on Y . In
addition, rk(E) = rk(E |Y ), Hn−2

Y ch1(E |Y ) = m Hn−1 ch1(E).
Suppose E |Y is not semistable, then there is a destabilizing subobject F ↪→

E |Y in Coh(Y ) such that F is locally free and μHY (E |Y ) < μHY (F). Denote
the embedding by ι : Y ↪→ X . Then

να,0,H (ι∗(E |Y )) = Hn−2 ch2(ι∗(E |Y ))

Hn−1 ch1(ι∗(E |Y ))

= Hn−2
Y ch1(E |Y ) − 1

2m Hn−1
Y rk(E |Y )

Hn−1
Y rk(E |Y )

= μHY (E |Y ) − m

2
< μHY (F) − m

2
= να,0,H (ι∗F).

Therefore ι∗(E |Y ) is not να,0-tilt semistable. However, the object ι∗(E |Y ) is the
extension of E and E(−m H)[1] in Coh0,H (X). Since both E and E(−m H)[1]
are να,0,H -tilt stable with the same slope in Coh0,H (X), any of their extension
is να,0,H -tilt semistable. We get the contradiction, and E |Y must beμHY -slope
semistable. ��
Let S2,5 ⊂ P4 be a smooth irreducible projective surface which is the complete
intersection of a quadratic hypersurface and a quintic hypersurface. Denote
H = [OS2,5(1)]. By the Clifford type inequality for C2,2,5 ∈ |2H | in Proposi-
tion 4.1, we have the following stronger Bogomolov–Gieseker type inequality
for stable objects in Db(S2,5).

Proposition 5.2 Let F be an object in Db(S2,5) such that H ch1(F)

H2rk(F)
∈ (0, 1).

Suppose F is να,0,H -tilt stable or να′,1,H -tilt stable for some α > 0 or α′ > 1
2 ,

then
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ch2(F)

H2rk(F)
≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3
2

(
H ch1(F)

H2rk(F)

)2 − H ch1(F)

H2rk(F)
, when H ch1(F)

H2rk(F)
∈ (0, 1

10 ] ∪ [ 9
10 , 1);

− 4
15

H ch1(F)

H2rk(F)
− 7

120 , when H2 ch1(F)

H3rk(F)
∈ [ 1

10 ,
1
4 ];

1
2

H ch1(F)

H2rk(F)
− 1

4 , when H ch1(F)

H2rk(F)
∈ [14 , 3

4 ];
19
15

H ch1(F)

H2rk(F)
− 33

40 , when H ch1(F)

H2rk(F)
∈ [34 , 9

10 ].
(24)

Proof Suppose there is some να,0,H or να′,1,H -tilt stable object F with
H ch1(F)

H2rk(F)
∈ (0, 1) violating the inequality (24), we may assume that F is

with the minimum discriminant �̄H among such objects. Suppose F becomes
strictly να,0,H -tilt (or να′,1,H -tilt) semistable for some α > 0 (or α′ > 1

2 ), then
as the shape of the curve (24) is convex (see Fig. 7), there exists a Jordan–
Hölder factor Fi with

H ch1(Fi )

H2rk(Fi )
∈ (0, 1)which also violates the inequality (24).

By Lemma 2.10, this violates the minimum assumption on �̄H (F).
If F becomes strictly να,β0,H -tilt semistable at the vertical wall for β0 =

H ch1(F)

H2rk(F)
and some α >

β2
0
2 , we may assume that F ∈ Cohβ0,H (S2,5), then

each torsion Jordan–Hölder factor of F has ch2 ≥ 0. Since for any other
Jordan–Hölder factor Fj we have 0 > rk(Fj ) ≥ rk(F), there exists a factor
Fi with

H ch1(Fi )

H2rk(Fi )
= H ch1(F)

H2rk(F)
and ch2(Fi )

H2rk(Fi )
≥ ch2(F)

H2rk(F)
. In particular, the object

Fi also violates the inequality (24) and �̄H (Fi ) ≤ �̄H (F). By Lemma 2.9, the
object Fi is να,0,H -tilt stable and να,1,H -tilt stable for α � 0. By the minimum
assumption on �̄H (F), the equality holds, we may just choose F to be Fi .
By the previous argument, the object F is να,0,H -tilt stable for all α > 0 and
να,1,H -tilt stable for all α > 1

2 .
We may assume that F ∈ Coh0,H (S2,5) and F[1] ∈ Coh1,H (S2,5). By the

inequality (24), we always have

ch2(F)

H2rk(F)
>

3

2

(
H ch1(F)

H2rk(F)

)2

− H ch1(F)

H2rk(F)
.

The line through pH (F) =: (a, b) and pH (F(−2H)[1]) = (a−2b+2, b−2)
has equation

(b − 1)Y − X = −a + b2 − b.

Note that a > 3
2b2 − b, the line will intersect (α0, 0) for some α0 > 0

and (α′
0, −1) for some α′

0 > 1
2 . By previous discussions, the object F is a

coherent sheaf and να0,0,H -tilt stable in Coh0,H (S2,5). The object F(−2H)[1]
is να′

0,−1,H -tilt stable in Coh−1,H (S2,5) and therefore also να0,0,H -tilt stable
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Fig. 7 The line through pH (F) and pH (F(−2H)

in Coh0,H (S2,5) by Lemma 2.9. Since pH (F), pH (F(−2H)[1]) and (α0, 0)
are collinear, by Lemma 2.9 (b′), we have

να0,0,H (F) = να0,0,H (F(−2H)[1]).

By Lemma 5.1, let C2,2,5 ∈ |2H | be a smooth irreducible curve, then F |C2,2,5

is semistable with

rk(F |C2,2,5) = rk(F) and deg(F |C2,2,5) = 2H ch1(F).

Without loss of generality, we may assume H ch1(F)

H2rk(F)
≤ 1

2 , as otherwise

we may use F∨(H) instead. Note that Hom(OS2,5, F(−2H)) = 0 and
Hom(OS2,5, F∨) = 0, by Hirzebruch–Riemann–Roch, we have

ch2(F) − H ch1(F) + 15rk(F) = χ(OS2,5, F) (25)

≤ hom(OS2,5, F) + hom(OS2,5, F[2])
= hom(OS2,5, F) + hom(OS2,5, F∨(2H)) (26)

≤ hom(OC2,2,5, F |C2,2,5) + hom(OC2,2,5, F∨(2H)|C2,2,5). (27)

We now apply Proposition 4.1 and discuss three different cases on the slope
of F |C2,2,5 . Note that the slope μ(F |C2,2,5) = 20 H ch1(F)

H2rk(F)
∈ (0, 10].

• When μ ∈ (0, 2), by Proposition 4.1, the Eq. (27)
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≤
(
40

41
+ μ

41
+ 11

15
(40 − μ) − 49

3

)

rk(F) < (14 − 2

3
μ)rk(F)

= 14rk(F) − 4

3
H ch1(F).

This is less than that in Eq. (25), since in this case we have assumed that

ch2(F)

H2rk(F)
>

3

2

(
H ch1(F)

H2rk(F)

)2

− H ch1(F)

H2rk(F)
> − 1

10
�⇒ ch2(F) + rk(F) > 0.

• Whenμ ∈ [2, 5), note that in Proposition 4.1, the right hand side in Eq. (17)
is always less than or equal to

{
7μ
120 + 109

120 , when μ ∈ [2, 5);
23μ
45 − 71

9 , when μ ∈ (35, 38]. There-
fore, the Eq. (27)

≤
(
109

120
+ 7μ

120
+ 23

45
(40 − μ) − 71

9

)

rk(F)

= 13
167

360
rk(F) − 163

180
H ch1(F).

By (25-27) and the assumption on F that it violates (24), we have

− 4

15
H ch1(F) − 7

12
rk(F) < ch2(F) ≤ 17

180
H ch1(F) − 1

193

360
rk(F).

This is not possible since H ch1(F) < 2.5rk(F).
• When μ ∈ [5, 10], in Proposition 4.1, the Eq. (17) is always less than or
equal to 3μ

20 + 1
2 . Therefore, the Eq. (27)

≤
(
1

2
+ 3μ

20
+ 2

5
(40 − μ) − 4

)

rk(F) = 12
1

2
rk(F) − 1

2
H ch1(F).

By (25–27), the object F satisfies Eq. (24).

In either case of μ, we always get contradiction. Therefore, any να,0,H or
να′,1,H -tilt stable object F with H ch1(F)

H2rk(F)
∈ (0, 1) satisfies the inequality (24).

��
Corollary 5.3 Let F be a torsion free μH -slope semistable sheaf on S2,5, then
the numerical Chern characters of F satisfy Eq. (24).
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Proof This is by Proposition 5.2 and by noticing that F is να,0,H -tilt stable for
α � 0. ��
Corollary 5.4 Let (X, H) be a smooth projective quintic threefold, F be an

object in Db(X) such that H2 ch1(F)

H3rk(F)
∈ (0, 1). Suppose F is να,0,H -tilt stable

or να′,1,H -tilt stable for some α > 0 or α′ > 1
2 , then (24) holds for F if

one replaces ch2(F), H ch1(F) and H2rk(F) by H ch2(F), H2 ch1(F) and
H3rk(F) respectively.

Proof Suppose there is some να,0,H or να′,1,H -tilt stable object F with
H2 ch1(F)

H3rk(F)
∈ (0, 1) violating the inequality (24), we may assume that F is

with the minimum discriminant �̄H among such object. By the same argu-
ment as that in Proposition 5.2, we may assume that F ∈ Coh0,H (S2,5) is
να,0,H -tilt stable for all α > 0 and να′,1,H -tilt stable for all α′ > 1

2 .
Due to the same argument as that in Proposition 5.2 and Lemma 5.1, there

exists S2,5 ∈ |2H | such that F |S2,5 is μHS2,5
slope semistable with

H2
S2,5rk(F |S2,5) = 2H3rk(F),

HS2,5 ch1(F |S2,5) = 2H ch1(F) and

ch2(F |S2,5) = 2H ch2(F).

Note that the characters of F |S2,5 violate the inequality (24), by Corollary 5.3,
we get the contradiction. ��

We restate Corollary 5.4 as a theorem in the following neater version. The
inequality is slightly weaker but can be applied more effectively in the proof
for our main theorem on the third Chern character. It can also be viewed as a
stronger Bogomolov–Gieseker type inequality in the classical sense.

Theorem 5.5 Let (X, H) be a smooth projective quintic threefold, F be a
slope semistable sheaf in Coh(X) (or a να,0,H -tilt semistable object for some
α > 0, especially Brill–Noether semistable object in Coh0,H (X)). Suppose
H2 ch1(F)

H3rk(F)
∈ [−1, 1], then

H ch2(F)

H3rk(F)
≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1
2

∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣ , when

∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣ ∈ [0, 1

4 ];
1
2

∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣ − 1

4 , when
∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣ ∈ [14 , 3

4 ];
3
2

∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣ − 1, when

∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣ ∈ [34 , 1].
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The ‘=’ can hold only when H2 ch1(F)

H3rk(F)
∈ 1

4Z. Moreover, when
∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣ ∈

[0, 1
10 ] ∪ [ 9

10 , 1], we have H ch2(F)

H3rk(F)
≤ 3

2

∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣
2 −

∣
∣
∣

H2 ch1(F)

H3rk(F)

∣
∣
∣.

Remark 5.6 (Other projective Calabi–Yau threefolds) One may expect to gen-
eralize the argument to someotherCalabi–Yau threefolds that canbe realized as
a complete intersection in PN for N not too large. To do that one could replace
S2,5 by a smooth subvariety Y ∈ |2H | and the curve C2,2,5 by C ∈ |2HY |.
Evidently, the inequality in Proposition 5.2 does not hold for Y in general. The
first non-trivial task is to find a suitable Bogomolov–Gieseker type inequality
for Y , the inequality needs to be sharp for some value of H ch1

rk , especially when
H ch1
rk = H3

χ(OX (H))−1 , so that it is strong enough to prove Proposition 3.1. The
next task is to estimate a Clifford type inequality for the curve C . It is worth to
mention that some results in [20–22] may help. Also one may consider to use
the method in Sect. 4 by finding a suitable surface containing the curve. As a
summary, our methods are expect to be generalized to some other Calabi–Yau
threefolds, meanwhile it seems that each deformation type will require much
computation.
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