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Supersaturation Problem for the Bowtie
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Abstract

The Turán function ex(n, F ) denotes the maximal number of edges in an F -free
graph on n vertices. We consider the function hF (n, q), the minimal number
of copies of F in a graph on n vertices with ex(n, F ) + q edges. The value of
hF (n, q) has been extensively studied when F is bipartite or colour-critical. In
this paper we investigate the simplest remaining graph F , namely, two triangles
sharing a vertex, and establish the asymptotic value of hF (n, q) for q = o(n2).

1. Introduction

The Turán function ex(n, F ) of a graph F is the maximum number of edges
in an F -free graph on n vertices. In 1907, Mantel [19] proved that ex(n,K3) =
bn2/4c, where Kr denotes the complete graph on r vertices. The fundamental
paper of Turán [32] solved this extremal problem for cliques: the Turán graph
Tr(n), the complete r-partite graph on n vertices with parts of size bn/rc or
dn/re, is the unique maximum Kr+1-free graph on n vertices. Thus the Turán
function satisfies ex(n,Kr+1) = |E(Tr(n))|.

Stated in the contrapositive, this implies that a graph with ex(n,Kr+1) + 1
edges (where, by default, n denotes the number of vertices) contains at least
one copy of Kr+1. Rademacher (1941, unpublished) showed that a graph with
bn2/4c + 1 edges contains not just one but at least bn/2c copies of a triangle.
This is perhaps the first result in the so-called “theory of supersaturated graphs”
that focuses on the supersaturation function

hF (n, q) = min{#F (H) : |V (H)| = n, |E(H)| = ex(n, F ) + q},

the minimum number of F -subgraphs in a graph H on n vertices and ex(n, F )+q
edges. (We say that G is a subgraph of H if V (G) ⊆ V (H) and E(G) ⊆ E(H);
we call G an F -subgraph if it is isomorphic to F .)
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One possible construction for graphs with the minimal number of copies of
F is to add some q edges to a maximum F -free graph. Denote by tF (n, q)
the smallest number of F -subgraphs that can be achieved this way. Clearly,
hF (n, q) ≤ tF (n, q). In fact, this bound is sharp for cliques, when q is small.
Erdős [4] extended Rademacher’s result by showing that hK3

(n, q) = tK3
(n, q) =

qbn/2c for q ≤ 3. Later, he [5] showed that there exists some small constant
εKr > 0 such that hKr (n, q) = tKr (n, q) for all q ≤ εKrn. Lovász and Simonovits
[17, 18] found the best possible value of εKr

as n→∞, settling a long-standing
conjecture of Erdős [4]. In fact, the second paper [18] completely solved the
hKr

(n, q)-problem when q = o(n2). The case q = Ω(n2) of the supersaturation
problem for cliques has been actively studied and proved notoriously difficult.
Only recently was an asymptotic solution found: by Razborov [25] for K3 (see
also Fisher [8]), by Nikiforov [22] for K4, and by Reiher [26] for general Kr.

The supersaturation problem was also considered for general graphs F . If
F is bipartite, then there is a beautiful (and still open) conjecture of Erdős–
Simonovits (see [30]) and Sidorenko [28] whose positive solution would determine
hF (n, q) asymptotically for q = Ω(n2). We refer the reader to some recent papers
on the topic, [2, 11, 13, 16, 31], that contain many references.

For non-bipartite F , the value of hF (n, q) has also been considered for gen-
eral colour-critical graphs. A graph is called r-(colour)-critical if its chromatic
number is r+ 1 while the removal of some edge from the graph reduces its chro-
matic number. Simonovits [29] established that if F is r-critical, then the unique
maximal F -free graph is Tr(n). Pikhurko and Yilma [24] extending the results of
Mubayi [21] established that, similarly to cliques, for every colour-critical graph
F there exists εF > 0 such that when q ≤ εFn, we have hF (n, q) = tF (n, q). In
addition, they established the asymptotic size of hF (n, q) when q = o(n2).

As far as we know, the supersaturation problem has not been considered
for graphs which have chromatic number at least 3 and are not colour-critical,
apart from some general (and rather weak) bounds by Erdős and Simonovits [3].
In this paper, we investigate a ‘simplest’ such graph, namely the bowtie which
consists of two copies of K3 merged at a vertex. We refer to this vertex as the
central vertex of the bowtie.

Despite the simple nature of the bowtie, bowtie-free graphs have been crucial
in several areas, such as in countable universal graphs [1, 14], in Ramsey theory
[12] and Hrushovski property [7], etc.

From this point on F denotes the bowtie and we will assume that
n is sufficiently large. The main contribution of this paper is twofold. First
we establish that when q = o(n2) any graph on n vertices and ex(n, F )+q edges
with minimal number of copies of F contains the Turán graph T2(n). Based on
this we establish the asymptotic value of hF (n, q) when q = o(n2).

2. Main results

The Turán function of the bowtie F is known, namely ex(n, F ) = bn2/4c+1
for n ≥ 5. In addition, the extremal graphs are also known, each being T2(n)
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with an arbitrary edge added. (This is apparently a folklore result; the easiest
proof known to us proceeds by removing a vertex of minimum degree and using
induction on n.) When n is odd, this leads to two non-isomorphic versions of
the extremal graph. Our first result shows that, when n is large enough and
q = o(n2), the only way to construct a graph containing as few bowties as
possible is to add edges to T2(n).

Theorem 1. There is δ > 0 such that every graph H with n ≥ 1/δ vertices,
ex(n, F ) + q ≤ (1/4 + δ)n2 edges and hF (n, q) copies of the bowtie F contains
T2(n) as a subgraph.

Theorem 1 implies that tF (n, q) = hF (n, q) when q = o(n2). Once this
structural property of the graph has been established, we deduce the asymptotic
number of bowties present.

Theorem 2. For every c > 0 there is δ > 0 such that for all natural numbers
n ≥ 1/δ and q ≤ δn2 the following holds. If we write 2(q + 1) = dn + m for
d,m ∈ N with 0 ≤ m < n and set

e1 =

⌊
dn

4
+

min{m,n/2}
2

⌋
and e2 = q + 1− e1,

then

hF (n, q) = (1± c)n
2

[(
e1
2

)
+

(
e2
2

)
+m

(
d+ 1

2

)
n

2
+ (n−m)

(
d

2

)
n

2
+ 4e1e2

]
.

Note that if n→∞ and q/n→∞ in Theorem 2, then d+ 1 = (1 + o(1))d =
(1 + o(1))2q/n and e1, e2 = (1 + o(1))q/2, resulting in a simpler formula

hF (n, q) = (1 + o(1))
9

8
q2n.

Proof outline of Theorems 1 and 2

We start by showing an upper bound on hF (n, q). This can be achieved
by counting the number of bowties in an arbitrary graph on n vertices with
ex(n, F ) + q edges (Lemma 4). Therefore the number of bowties in any ex-
tremal graph H is small and the Graph Removal Lemma (Theorem 5) allows
us to conclude that H can be made bowtie-free by removing a small number of
edges. In addition, since the chromatic number of the bowtie is 3, the Erdős-
Simonovits Stability Theorem (Theorem 6) implies that the vertex set of the
obtained bowtie-free graph can be partitioned into two sets, V1 and V2, such
that almost |E(T2(n))| edges are present between the two parts. Therefore the
original graph H also has almost all edges between V1 and V2 (Lemma 7).

The key step is to establish that every edge between V1 and V2 is present
(Proposition 3). In order to achieve this we need to determine the number of
bowties containing a given edge and the number of bowties created by inserting
an edge. In particular we need to compare the number of bowties containing
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an edge in V1 or V2 and the number of bowties created by inserting an edge
between V1 and V2. When the number of edges spanned by V1 and V2 is small,
the number of bowties has to be counted very precisely in order to determine
which is smaller (Lemma 11). On the other hand, when the number of edges
spanned by V1 and V2 is large, a simpler and less accurate estimate suffices
(Lemma 15). In both cases there is an edge in V1 or V2 which is contained in
more bowties than the number of bowties the insertion of any edge between V1
and V2 would create. Since H is minimal, with respect to the number of copies
of bowties, every edge between V1 and V2 must be present.

Let us ignore the triangles spanned by V1 and V2 for the moment, later we
will see that no such triangles exist in any extremal graph (Lemma 16). We
shall express the number of bowties using an explicit formula. A bowtie can be
formed in three different ways (see Figure 1). Since we ignore triangles spanned
by V1 and V2, any triangle in the graph contains exactly one edge spanned
by V1 or V2. As a bowtie consists of two triangles, it must have exactly two
edges spanned by V1 or V2. We distinguish the following cases, depending on
whether both edges are spanned by the same set or not, in addition if they are
spanned by the same set we consider the cases when the two edges are adjacent
or non-adjacent.

Type 1 Type 2 Type 3

Figure 1: Types of bowties

Recall that every edge between V1 and V2 is present. Therefore, any pair of
disjoint edges in V1 is contained in |V2| bowties and similarly any pair of disjoint
edges in V2 is contained in |V1| bowties. If the two edges are adjacent, then they
are contained in |V2|(|V2| − 1) and |V1|(|V1| − 1) bowties respectively. Finally
any two edges, where one edge is spanned by V1 and the other edge is spanned
by V2, are contained in 2(n− 4) bowties.

The previous argument implies that the number of bowties depends only on
the size of V1 and V2 and the degree sequence of the graphs spanned by these
sets. In fact, in the optimal degree sequence the degrees of any two vertices
in the same part Vi may differ by at most one. Due to the small number of
edges spanned by V1 and V2 one can rearrange the edges inside these parts so
that each part spans an almost regular and triangle-free graph (Lemma 16).
Destroying triangles inside a part decreases the number of bowties, justifying
our earlier decision to ignore them.
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In order to finish the proof of Theorem 1 we only need to show that |V1| =
dn/2e or |V1| = bn/2c. Note that if |V1| = dn/2e and |V2| = bn/2c, the number
of edges spanned by V1 and V2 is exactly q + 1. If we increase the number of
vertices in V1 by a and, in order to keep the total number of vertices unchanged,
at the same time we decrease the number of vertices in V2 by the same amount,
then the number of edges spanned by V1 and V2 increases by at least a2. In
addition, the number of bowties containing edge pairs in V1 decreases (as any
such bowtie is either Type 1 or Type 2), while for edge pairs in V2 the number
of bowties increases. On the other hand, for a fixed pair of edges, one in V1
and the other in V2, the number of bowties containing both these edges remains
unchanged. Roughly speaking, the number of bowties created by adding the a2

new edges has to be counterbalanced by the decrease in the number of Type 1
and Type 2 bowties. This would be possible only if there was a large difference
between the number of edges in V1 and V2. However, we show that this is not
the case (Lemma 18) and thus a must be 0.

Bounding the difference between the number of edges spanned by V1 and
V2 has an additional advantage. Together with the exact size of V1 and V2 it
also implies that, disregarding a couple of vertices, when looking at the graphs
spanned by V1 and V2 the difference in the degree of any pair of vertices is at
most 1 (Lemma 19). In fact, in one of the partitions almost every vertex has
the same degree (Lemma 21). These provide us with a good approximation on
the degree sequence of the graphs spanned by V1 and V2 and thus also on the
total number of bowties.

Organisation of the paper

The remainder of the paper is divided into four parts. In Section 3 we show
that any extremal graph H contains a complete spanning bipartite subgraph
(Proposition 3). Section 4 states any additional lemmas needed for Theorems 1
and 2 and gives the proofs of these results. The proof of the remaining technical
lemmas can be found in Section 5. Section 6 contains some concluding remarks.

3. Complete Bipartite Subgraph: proof of Proposition 3

Throughout this section let H be a graph on n vertices and ex(n, F ) + q
edges containing the minimal number of bowties. Let V := V (H) denote the
vertex set of H and E := E(H) its edge set. The following proposition is vital
in proving Theorem 1.

Proposition 3. For an arbitrary graph H on n vertices and ex(n, F ) + q edges
containing hF (n, q) bowties, where q = o(n2) and n is large enough, admits a
partition V = V1 ∪ V2 such that E(K(V1, V2)) ⊆ E, |V1|, |V2| = (1 + o(1))n/2
and the number of edges spanned by each of V1 and V2 is at most 4q + 4.

The remainder of this section is devoted to proving Proposition 3. Let
{V1, V2} be a max-cut of H. The crucial part of the proof is to show that both
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parts have size (1 + o(1))n/2 and every edge between the parts is present, i.e.
E(K(V1, V2)) ⊆ E.

The key tools used for the proof are the Graph Removal Lemma (Theorem 5)
and the Stability Theorem (Theorem 6). Roughly speaking, the graph removal
lemma states that if a graph contains only a few copies of bowties, which holds
for H (Lemma 4), then removing a few edges makes it bowtie-free. Together
with the Stability Theorem this implies that V1 and V2 both have size roughly
n/2 and most edges between the parts are present (Lemma 7).

For i = 1, 2 let vi = |Vi|. Denote the edges spanned by V1 or V2 by B and
set b = |B|. We call the edges in B bad. The degree sequence of several graphs
on V play a crucial role in counting the number of bowties. For any v ∈ V and
E′ ⊆

(
V
2

)
let dE′(v) be the degree of vertex v in (V,E′) (the graph with vertex

set V and edge set E′). In the special case when E′ = B we call dB(v) the bad
degree.

Our proof strategy is to show that there exists a bad edge which is contained
in more bowties then inserting an edge between the parts would create, should
such an edge be missing. Therefore removing the bad edge destroys more bowties
than inserting the edge between the parts creates leading to a graph with fewer
bowties and implying that every edge between V1 and V2 is present. Showing
this requires a very precise analysis, when the number of bad edges is small
(Lemma 11). However this fails once the number of bad edges becomes large
and an alternate proof is required (Lemma 15).

In order to prove the above lemmas we need a lower bound on the maximal
number of bowties a bad edge is contained in (Lemma 12) and an upper bound
on the number of bowties created when an edge between the parts is inserted
(Lemma 13). The latter is more difficult. Roughly speaking an upper bound on
the bad degree leads to an upper bound on the number of triangles containing
the inserted edge, which leads to an upper bound on the number of bowties.
At first we can only prove a weak upper bound on the bad degree (Lemma 9).
However if the vertex has many neighbours in the other part, which is true for
the majority of the vertices, a significantly better bound exists (Lemma 10). In
fact, once we show that every vertex has many neighbours in the other part
(Lemma 14) the tighter bound applies to every vertex.

As mentioned earlier we need to show that the number of bowties in H, i.e.
hF (n, q), is small.

Lemma 4. For q ≤ n2/20 we have that

hF (n, q) ≤ (q + 1)2 (13n/4 + 13) .

Proof. In order to prove the statement we construct a graph G satisfying
|V (G)| = n, |E(G)| = ex(n, F ) + q and #F (G) ≤ (q + 1)2(13n/4 + 13). Parti-
tion the vertex set of G into two parts U1 and U2 such that |U1| = dn/2e and
|U2| = bn/2c. Every edge between U1 and U2 will be included in the graph, i.e.
K(U1, U2) ⊆ G. This determines dn/2ebn/2c edges in G and thus we only need
to establish the position of the remaining q + 1 edges.

6



Denote by n′ = bn/4c. Let W1,W2 be disjoint subsets of U1 of size n′. The
remaining q + 1 edges are placed between W1 and W2 such that the degrees
are as equal as possible. In particular, for i = 1, 2, (q + 1) mod n′ vertices
in Wi have d(q + 1)/n′e neighbours in W3−i, while the remaining vertices have
b(q + 1)/n′c neighbours in W3−i. Note that such a construction is possible by
Lemma 22, as b(q + 1)/n′c < n′ for sufficiently large n.

In order to determine the number of bowties we count for every vertex v the
number of bowties in G where the central vertex is v. For v ∈ V (G) any two
edge disjoint triangles containing v forms a bowtie. Since no edges are spanned
by U2, every triangle must contain an edge in U1 and any such edges must be
between W1 and W2. Therefore for v ∈ U2 there are at most

(
q+1
2

)
bowties

centred at v.
Now consider bowties centred at v ∈Wi for i = 1, 2. Recall that any triangle

must contain an edge in U1 and a vertex in U2. Therefore any bowtie centred
at v must contain two different vertices in N(v) ∩ U1 and two vertices in U2.
These can be selected in at most(

|N(v) ∩ U1|
2

)
n2

4

ways, giving an upper bound on the number of bowties. Let k ≡ q+1 (mod n′).
Then we have

#F (G) ≤ 2k

(
d(q + 1)/n′e

2

)
n2

4
+ 2(n′ − k)

(
b(q + 1)/n′c

2

)
n2

4
+
n

2

(
q + 1

2

)
≤ n

2

[
k

(
d(q + 1)/n′e

2

)
n+ (n′ − k)

(
b(q + 1)/n′c

2

)
n+

(q + 1)2

2

]
≤ n

4

[
n′
(
q + 1

n′

)2

n+ kn
2(q + 1)

n′
+ (q + 1)2

]
.

Note that k ≤ q + 1 and n′ ≥ n/4− 1, therefore

#F (G) ≤ n

4
(q + 1)2

[
3n

n/4− 1
+ 1

]
≤ (q + 1)2 (13n/4 + 13)

for large enough n.

Next we state the Graph Removal Lemma and the Stability Theorem. Using
them we show that the vertex set of the extremal graph H can be partitioned
into two sets V1, V2 such that both sets contain roughly n/2 vertices and most
edges between V1 and V2 are present.

Theorem 5 (Graph Removal Lemma, see e.g. [15]). Let Γ be a graph with f
vertices. Then for every ε1 > 0 there exists ε2 > 0 such that every graph H with
n ≥ 1/ε2 vertices and at most ε2n

f copies of Γ can be made Γ-free by removing
at most ε1n

2 edges.
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Theorem 6 (Stability Theorem [6, 29]). Let r ≥ 2 and Γ be a graph with
chromatic number r + 1. Then for every ε1 > 0 there exists ε2 > 0 such that
every Γ-free graph on n ≥ 1/ε2 vertices with at least |E(Tr(n))| − ε2n2 edges
contains an r-partite subgraph with at least |E(Tr(n))| − ε1n2 edges.

Lemma 7. Let {V1, V2} be a max-cut of H. For every δ1 > 0 there exist δ2 > 0
and n0 such that for every n > n0 and q + 1 < δ2n

2 we have

|E(H)4E(K(V1, V2))| ≤ δ1n2 + q + 1

and
n/2− 2

√
δ1n ≤ |V1|, |V2| ≤ n/2 + 2

√
δ1n.

Proof. First we show that the number of edges between V1 and V2 is at least
dn/2ebn/2c − δ1n2. Since {V1, V2} is a max-cut, this follows if H contains a
bipartite graph with at least dn/2ebn/2c− δ1n2 edges. Note that the chromatic
number of the bowtie is 3. Therefore, Theorem 6 implies that there exists a
constant ε1 > 0 such that every bowtie-free graph with at least dn/2ebn/2c −
ε1n

2 edges contains a bipartite subgraph with at least dn/2ebn/2c− δ1n2 edges.
Therefore, H contains such a bipartite graph if it has a bowtie-free subgraph

with at least dn/2ebn/2c − ε1n2 edges. Theorem 5 implies that there exists an
ε2 > 0 such that every graph with at most ε2n

5 copies of bowties can be made
bowtie-free by removing at most ε1n

2 edges. This holds for every q satisfying
q + 1 <

√
ε2n

2/2 because by Lemma 4 the number of bowties in H is at most

(q + 1)2 (13n/4 + 13) ≤ ε2n5.

In fact, after the removal of these edges the graph still contains at least

dn/2ebn/2c+ q + 1− ε1n2 ≥ dn/2ebn/2c − ε1n2

edges.
Thus we have a bipartite subgraph with at least dn/2ebn/2c−δ1n2 edges and

the first statement follows. Note that a complete bipartite graph on n vertices
where one part has size at least n/2 + 2

√
δ1n contains at most

n2

4
− 4δ1n

2
δ1n

2>1/8

≤ dn/2ebn/2c − 2δ1n
2

edges, implying the required bounds on the size of the individual parts.

Let ε > 0 be sufficiently small. Apply Lemma 7 for δ1 = ε2/4 which gives
some δ2 > 0. Since q = o(n2), we have that q + 1 ≤ δ2n

2, for large enough n.
Thus {V1, V2}, a max-cut of H, satisfies

n/2− εn ≤ |V1|, |V2| ≤ n/2 + εn

and
|E(H)4E(K(V1, V2))| ≤ ε2n2/4 + q + 1 ≤ ε2n2.
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Note that
b ≤ |E(H)4E(K(V1, V2))| ≤ ε2n2. (1)

In order to establish bounds on dB(v) we need to determine the number of
bowties any edge is contained in.

Lemma 8. Every edge in H is contained in less than 13bn bowties.

Proof. Assume for contradiction that there exists an edge f contained in at
least 13bn bowties. We will show that there exists a pair of non-adjacent vertices
w1, w2 ∈ V such that inserting the edge {w1, w2} creates less than 13bn bowties.
Thus the graph created by removing f and inserting {w1, w2} has less bowties
and contradicts the minimality of H.

Note that the number of vertices w ∈ V1 with dB(w) ≥ 6b/n is at most
2b/(6b/n) = n/3. This implies that the number of vertices in V1 with dB(w) <
6b/n is at least (1− 2ε)n2 −

n
3 ≥ n/8. Since for each of these vertices dB(w) <

6b/n ≤ 6ε2n, two of them must be non-adjacent.
Let w1, w2 ∈ V1 be a pair of non-adjacent vertices with dB(w1), dB(w2) ≤

6b/n and we count the bowties which would be created if we would insert this
edge. Note that any such bowtie must contain at least one more edge in B.
We start with the bowties which contain an edge in B adjacent to {w1, w2}.
In order to count the number of these bowties we first count the number of
triangles containing an edge in B adjacent to w1 or w2. Note that for w1 there
are dB(w1) such edges and each of these edges creates a triangle with at most
v2 +dB(w1) vertices. Therefore there are at most ((1+2ε)n/2+6b/n)6b/n such
triangles, and similarly for w2. Thus the number of triangles containing an edge
in B adjacent to w1 or w2 is at most ((1 + 2ε)n/2 + 6b/n)12b/n. Note that
the codegree of w1, w2 is at most n. Consequently the total number of bowties
created in this fashion is at most(

(1 + 2ε)
n

2
+

6b

n

)
12b

n
n

(1)
< 8bn.

Now consider the case when the bowtie contains an edge in B which is not
adjacent to {w1, w2}. Select an edge e ∈ B, this can be done in b ways. The
final vertex of the bowtie can be picked in at most n ways. Note that once the
central vertex of the bowtie has been selected the structure of the bowtie has
been determined, as it has to contain the edges e and {w1, w2} and these two
edges have to be disjoint. Therefore we create at most 5bn bowties this way.

In total we created less than 13bn bowties, leading to a contradiction.

Using Lemma 8 we obtain an upper bound on dB(v).

Lemma 9. For every v ∈ V we have dB(v) < 5ε2/3n.

Proof. Assume for contradiction that there exists a vertex v ∈ V such that
dB(v) ≥ 5ε2/3n. Without loss of generality assume that v ∈ V1. Because
{V1, V2} is a max-cut ofH we have that |N(v)∩V2| ≥ 5ε2/3n. LetN1 ⊆ N(v)∩V1
and N2 ⊆ N(v)∩V2 be sets of size exactly 5ε2/3n. Since at most ε2n2 edges are
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missing between V1 and V2, there can be only ε2n2 edges missing between N1

and N2. Therefore, there are at least (25ε4/3− ε2)n2 ≥ 24ε4/3n2 edges between
N1 and N2 and each of these edges is adjacent to at most 10ε2/3n other edges
in this set. In addition, by the pigeonhole principle there must exist a vertex
u ∈ N1 such that |N(u) ∩N2| ≥ 2ε2/3n.

Next we count the number of bowties containing the edge {u, v}. Note
that any pair of disjoint edges between N1 and N2 creates a bowtie, where the
central vertex is v. Recall that u is contained in at least 2ε2/3n edges, where
the other end is in N2. In addition, each of these edges is disjoint from at least
24ε4/3n2 − 10ε2/3n edges between N1 and N2. Therefore, {u, v} is contained in
at least

2ε2/3n(24ε4/3n2 − 10ε2/3n) > 25ε2n3

bowties, when n is large enough.
On the other hand, Lemma 8 implies that any edge can be contained in

at most 13bn bowties and by the bound (1) giving b ≤ ε2n2, we have 13bn ≤
13ε2n3, leading to a contradiction.

However, for vertices which have many neighbours in the opposite part,
which holds for most vertices, we establish a tighter bound on dB(v). Let

M = E(K(V1, V2)) \ E(H).

We call the edges in M missing. Recall that dM (v) is the degree of vertex
v in the graph (V,M). Let Si ⊆ Vi be the set of vertices v ∈ Vi satisfying
dM (v) ≥ ε1/4n. Since q + 1 + |M | ≤ b, we have

|Si| ≤
|M |
ε1/4n

≤ b

ε1/4n
. (2)

Next we will consider the properties of the graph spanned by V ′ = V \(S1∪S2),
denoted by H ′. Let V ′1 = V1 \S1 and V ′2 = V2 \S2. The set of edges spanned by
V ′1 and V ′2 are denoted by B′1 and B′2 respectively. Also let B′ = B′1 ∪B′2. Note
that for i = 1, 2, for any vertex v ∈ V ′i we have dB(v) ≤ dB′(v) + |Si|. Since |Si|
is bounded from above by b/(ε1/4n), any upper bound on dB′(v) also provides
an upper bound on dB(v).

Lemma 10. For every v ∈ V ′ we have dB′(v) ≤ 80b/n+ 1.

Proof. Assume for contradiction that there exists v ∈ V ′ such that dB′(v) >
80b/n + 1. Without loss of generality assume v ∈ V ′1 . We will show that in
this graph there is an edge which is contained in at least 13bn bowties which
together with Lemma 8 leads to a contradiction.

Note that any vertex in V ′1 has at least v2 − ε1/4n neighbours in V2 and
thus any pair of vertices in V ′1 has at least v2 − 2ε1/4n ≥ (1− 2ε)n/2− 2ε1/4n
common neighbours. Therefore every edge in B′1 is contained in at least (1 −
2ε)n/2−2ε1/4n triangles. Any pair of triangles each containing a different edge
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in B′1 and a vertex in V2 is edge disjoint if the vertex in V2 differs. Therefore,
any edge in B′ adjacent to v is contained in at least

(dB′(v)− 1)
(

(1− 2ε− 4ε1/4)
n

2
− 1
)2
≥ 16bn

bowties, a contradiction.

Recall that q + 1 + |M | ≤ b. When b is small, we have S1, S2 = ∅, implying
H = H ′ and dB′(v) = dB(v). Therefore, the upper bound on the degree in the
graph (V,B′) in Lemma 10 is actually an upper bound on the degree in (V,B).
This enables us to show that K(V1, V2) is a subgraph of H.

Lemma 11. When b < ε1/4n we have that M = ∅.

Proof. Assume for contradiction that M 6= ∅. Since b < ε1/4n, by (2) we have
|S1|, |S2| < 1, implying that S1 = S2 = ∅. Together with Lemma 10 we have
dB(w) ≤ 80b/n + 1 < 80ε1/4 + 1 < 2 for every w ∈ V . Therefore, dB(w) is at
most one, which in turn implies that the edges in B are disjoint.

Without loss of generality assume b1 ≥ b2. For every edge {w1, w2} ∈ B1 let
t{w1,w2} denote the number of triangles containing either w1 or w2 and an edge
in B2.

We show that if B2 6= ∅, then there exists an edge e ∈ B1 with te ≥ b2 + 1.
Assume for contradiction that there is no such edge. For any {w1, w2} ∈ B1

consider the 2b2 potential triangles which could contribute to t{w1,w2}. Since
the edges in B2 are disjoint, these triangles are edge disjoint except for the edge
in B2. In order for t{w1,w2} ≤ b2 we must have that b2 of these triangles are
missing at least one edge and thus dM (w1) + dM (w2) ≥ b2. Since the edges in
B1 are also disjoint, we have

|M | ≥
∑

{w1,w2}∈B1

(dM (w1) + dM (w2)) ≥ b1b2.

Note that because |M | ≤ b− q−1 and q ≥ 1, we have |M | ≤ b−2 = b1 + b2−2.
However, no positive integer pair b1 ≥ b2 ≥ 1 satisfies b1+b2−2 ≥ b1b2, resulting
in a contradiction.

Select {w1, w2} ∈ B1 such that t{w1,w2} is maximal. We will give a lower
bound on the number of bowties destroyed when {w1, w2} is removed. First
we consider bowties which have an edge in B2. Note that a triangle w1, x, y,
where x, y ∈ V2, forms a bowtie with any triangle containing both w1 and w2,
but not x and y. Also the codegree of w1, w2, not including x and y, is at least
(1− 2ε)n/2− |M | − 2 ≥ (1− 2ε)n/2− b. Since b2 + 1B2 6=∅ = 0, when b2 = 0 we
have t{w1,w2} ≥ b2 + 1B2 6=∅. Thus removing {w1, w2} destroys at least

(b2 + 1B2 6=∅)
(

(1− 2ε)
n

2
− b
)

such bowties. Now we consider the case when the bowtie contains a second edge
in B1. Note that any four vertices in V1 have at least (1− 2ε)n/2− b common
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neighbours. Recall that the edges in B are disjoint. Thus any pair of edges in
B1 are contained in at least (1− 2ε)n/2− b bowties. Therefore, at least

(b1 − 1)
(

(1− 2ε)
n

2
− b
)

additional bowties are destroyed when {w1, w2} is removed. In total, this leads
to at least

(b− 1 + 1B2 6=∅)
(

(1− 2ε)
n

2
− b
)
≥ (b− 1 + 1B2 6=∅)

(
(1− 2ε)

n

2
− ε1/4n

)
destroyed bowties.

Since M 6= ∅, there exists {u, v} ∈ M . Without loss of generality assume
u ∈ V1 and v ∈ V2. Now we analyse the number of bowties created when {u, v}
is added to the graph.

We first consider the case when B2 = ∅. Since B2 = ∅, v has no neighbours
in B2 and thus inserting {u, v} can create at most one triangle, with the third
vertex being z ∈ V1, if it exists. The number of bowties created is equal to the
number of triangles containing exactly one of u, v, z as these form a bowtie with
the triangle u, v, z. The only neighbour of u in V1 is z and vice versa. This
means that the only way these vertices can be in a triangle is if the triangle
contains an edge in B2. However as B2 = ∅ no such triangles exist. Similarly,
the only way v can be in a triangle is if the triangle contains an edge in B1, so
there are at most b1 = b such triangles. Thus removing {w1, w2} destroys at
least

(b− 1)
(

(1− 2ε)
n

2
− ε1/4n

)
bowties, while inserting {u, v} creates at most b. Since b ≥ |M |+ q + 1 ≥ 3 we
destroy more triangles than we created, which leads to a contradiction.

On the other hand, if B2 6= ∅, then u can have a neighbour in V1 and v
can have a neighbour in V2. Denote these vertices by z1 and z2 respectively,
if it exists. Similarly as before, we are interested in the number of triangles
containing exactly one of u, v, z1 or one of u, v, z2. We start with the u, v, z1
triangle. Similarly as before, for each of u and z1 there are at most b2 such
triangles where the additional vertices of the triangle are in V2, and for v there
are at most b1 such triangles where the additional vertices are in V1. Now the
only neighbour of u in V1 is z1 and vice versa, so we have counted every triangle
containing u or z1. However, v has a neighbour z2 ∈ V2 and every vertex in
V1\{u, z1} can form a triangle with {v, z2}. Therefore, the total number of
bowties containing the {u, v, z1} triangle is at most b1 + 2b2 + v1. Analogously,
one can show for the {u, v, z2} triangle that the number of bowties it is contained
in is at most 2b1 + b2 +v2. So in total at most 3b+n bowties have been created,
by adding the edge {u, v}. Now this has to be more than the number of triangles
destroyed, so

3b+ n ≥ b
(

(1− 2ε)
n

2
− ε1/4n

)
,

which leads to a contradiction as b ≥ 3.
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In the remainder of this section we prove that M = ∅ when b is large. We
start by showing that S1 = S2 = ∅ holds in this case as well. Namely, should
there exist a vertex v ∈ S1 ∪S2 we show that removing many edges from B and
inserting them between V1 and V2 such that they are adjacent to v decreases the
number of bowties in the graph. As a first step we need to find a suitable set
of edges, which when removed from the graph destroy many copies of bowties.

Lemma 12. For every integer k ≤ |B′|/2 there exists D ⊆ B′ with |D| = k
such that removing all edges in D destroys at least

k
bn

8
− nk2

2

bowties.

Proof. Note that∑
v∈S1

dB(v) +
∑
v∈S2

dB(v)
Lem. 9
≤ (|S1|+ |S2|)5ε2/3n

= 10ε5/12(|S1|+ |S2|)ε1/4n/2
(2)

≤ 10ε5/12b. (3)

Thus

|B′| ≥ b−
∑
v∈S1

dB(v)−
∑
v∈S2

dB(v)
(3)

≥ (1− 10ε5/12)b > 0. (4)

Therefore, B′ is non-empty. Without loss of generality we assume that V1
spans at least as many edges in B′ as V2. Note that any four vertices in V ′1 have
at least (1 − 2ε)n/2 − 4ε1/4n common neighbours. Select an arbitrary pair of
edges {w1, w2}, {w3, w4} ∈ B′1. If {w3, w4} is disjoint from {w1, w2}, then for
every shared neighbour of w1, w2, w3, w4 we have a bowtie. On the other hand,
if {w3, w4} intersects {w1, w2}, then every pair of shared neighbours results in
a bowtie. Thus the number of bowties containing {w1, w2} and {w3, w4} is at
least

(1− 2ε− 8ε1/4)
n

2
.

Therefore, removing arbitrary k edges from B′1 destroys at least

(1− 2ε− 8ε1/4)
n

2

(
k

(
|B′|

2
− k
))

(4)

≥ (1− 2ε− 8ε1/4)
n

2

(
k

(
(1− 10ε5/12)

b

2
− k
))

≥ k bn
8
− nk2

2

bowties.

13



Next we analyse the number of bowties created if we insert edges between
V1 and V2.

Lemma 13. Assume {u, v} ∈ M with u ∈ V1 and v ∈ V2. Let G be a graph
created from H by removing an arbitrary set of edges D ⊆ E(H) and inserting
an arbitrary set of edges from M \ {u, v}. If

|NG(u) ∩ V ′1 |, |NG(v) ∩ V ′2 | ≤ 80b/n+ 1, (5)

then inserting {u, v} into the graph G creates at most 4ε1/4bn+ 6n bowties.

Proof. Note that adding the edges in M \ {u, v} leaves B unchanged and re-
moving the edges in D can only decrease the size of B.

We start by determining an upper bound on the number of triangles in G a
given vertex is contained in. Consider an arbitrary vertex w ∈ V . Without loss
of generality let w ∈ V1 and we consider the triangles depending on the number
of neighbours it contains in V2. Should the additional vertices of the triangle
both be in V1 or V2, they form an edge in B and thus there are at most b such
triangles. On the other hand, if the triangle contains two vertices in V1 and one
vertex in V2, then the second vertex in V1 has to be a neighbour of w, which
can be chosen in dB\D(w) ways and the vertex in V2 can be chosen in at most n
ways. Therefore, the number of triangles containing v is at most b+ dB\D(v)n.
This together with Lemma 9 implies that the number of triangles containing
any vertex can be bounded from above by

b+ 5ε2/3n2. (6)

However, for w ∈ V ′ ∪{u, v} a stronger bound holds. Note that for a vertex
w ∈ V1 the value of dB\D(w) is determined by the number of neighbours w has
in V ′1 and in S1. For w ∈ V ′1 ∪ {u}, Lemma 10 and (5) imply that the first of
these two terms can be bounded from above by 80b/n+1, while the second term
is at most ε−1/4b/n by (2). An analogous argument holds for w ∈ V ′2 ∪ {v}.
Thus the number of triangles that w ∈ V ′ ∪ {u, v} is contained in is at most

b+

(
80b

n
+ 1 +

b

ε1/4n

)
n = 81b+ n+ ε−1/4b ≤ 3ε−1/4b+ n. (7)

Inserting the edge {u, v} creates two types of triangles, depending on whether
the third vertex is in V ′ or not. We first consider the case when the third vertex
is in V ′. Note that due to our conditions there are at most |NG(u) ∩ V ′1 | +
|NG(v) ∩ V ′2 | ≤ 2(80b/n + 1) such triangles. Due to (7) every vertex of these
triangles is contained in at most 3ε−1/4b + n triangles, thus the number of
bowties is bounded from above by

2

(
80b

n
+ 1

)
3(3ε−1/4b+ n) = 1440ε−1/4

b2

n
+ 18ε−1/4b+ 480b+ 6n

(1)

≤ εbn+ 18ε−1/4b+ 6n

≤ 2εbn+ 6n, (8)
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where the last inequality holds, since n is large enough.
In addition, inserting {u, v} also creates at most |S1|+ |S2| triangles with the

third vertex in S1 ∪ S2. Thus, by (2) and (6) an upper bound on these bowties
is

2
b

ε1/4n
3
(
b+ 5ε2/3n2

)
=

6b2

ε1/4n
+ 30ε5/12bn

(1)

≤ 2ε1/4bn.

This together with (8) implies that at most

4ε1/4bn+ 6n

bowties have been created.

Now we can show that both S1 and S2 is empty and thus H = H ′.

Lemma 14. We have that S1, S2 = ∅.

Proof. Assume for contradiction that S1 or S2 is non-empty. Without loss of
generality assume v ∈ S1. Then we have that dM (v) ≥ ε1/4n. In addition, by
(1) and (2) we have |S2| ≤ bε−1/4n−1 ≤ ε7/4n and thus there exists U ⊆ V ′2 of
size ε1/3n such that no vertex in U is adjacent to v.

Now we will remove ε1/3n edges from the graph H and insert the edges {v, u}
for every u ∈ U . In particular, we will first remove every edge in B \B′ which is
adjacent to v. By Lemma 9 the number of such edges is dB(v) ≤ 5ε2/3n < ε1/3n.
In addition ε1/3n ≤ ε1/4n/3 ≤ |M |/3 ≤ |B|/3, which is at most |B′|/2 by (4).
Therefore 0 < ε1/3n − dB(v) ≤ |B′|/2 and the remaining ε1/3n − dB(v) edges
can be removed from B′ in accordance to Lemma 12. Denote the set of ε1/3n
removed edges by D. Removing the edges in D destroys at least

(ε1/3n− dB(v))
bn

8
− ε2/3n3

2

Lem. 9
≥ ε1/3bn2

30

bowties, where we use b ≥ dM (v) ≥ ε1/4n.
Let G be the graph obtained after removing the edges in D. Note that

|NG(v) ∩ V1| = 0 and for u ∈ V ′2 we have by Lemma 10 that |NG(u) ∩ V ′2 | ≤
80b/n + 1. In addition, inserting edges into M keeps these values unchanged.
Thus, Lemma 13 is applicable for each of the ε1/3n edges inserted, and thus at
most

ε1/3n(4ε1/4bn+ 6n)

bowties are created. Since b ≥ ε1/4n

ε1/3bn2

30
> ε1/3n(4ε1/4bn+ 6n),

contradicting the minimality of H.

Since H = H ′ we have that dB(v) = dB′(v). Thus, Lemma 10 implies that
the conditions of Lemma 13 are satisfied for any pair {u, v} ∈ M , enabling us
to prove M = ∅.
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Lemma 15. When b ≥ ε1/4n we have M = ∅.

Proof. Assume for contradiction M 6= ∅ and let {u, v} ∈M . Since |B′| = |B| ≥
2, by Lemma 12 there exists an edge {w1, w2} such that removing this edge
destroys at least bn/8 − n/2 bowties. In addition, Lemma 13 implies that we
create at most 4ε1/4bn+ 6n bowties when inserting {u, v}. Since b ≥ ε1/4n we
have

bn

8
− n

2
> 4ε1/4bn+ 6n,

which is a contradiction.

We conclude this section with the proof of Proposition 3.

Proof of Proposition 3. The first statement follows trivially from Lemmas 7, 11
and 15.

Next we show that b1 ≤ 4q + 4. Assume for contradiction that b1 > 4q + 4.
Taking any two disjoint edges e1, e2 in B1 and a vertex in V2 creates a bowtie.
In addition if e1, e2 ∈ B1 are adjacent then any pair of vertices in V2 creates a
bowtie. Thus the number of bowties in the graph is at least(

4(q + 1)

2

)
v2 ≥

(
4(q + 1)

2

)
(1− 2ε)

n

2
>

27

8
(q + 1)2n > (q + 1)2 (13n/4 + 13)

for large enough n. This together with Lemma 4 contradicts the minimality of
H. An analogous argument shows b2 ≤ 4q + 4.

Let v1 = dn/2e + a and v2 = bn/2c − a. Without loss of generality assume
a ≥ 0 i.e. v1 ≥ v2. Then the total number of pairs between V1 and V2 is

|V1||V2| = dn/2ebn/2c − a2 + (bn/2c − dn/2e)a ≤ |E(T2(n))| − a2

implying that b1 + b2 = b ≥ q + 1 + a2. Together with b1 + b2 ≤ 8q + 8 = o(n2)
this implies a = o(n) completing the proof.

4. Proof of Theorems 1 and 2

4.1. Proof of Theorem 1

Throughout this section let H be a graph on n vertices and ex(n, F ) + q
edges containing the minimal number of bowties. In the previous section we
proved Proposition 3 stating that there exists a partition of the vertex set of H
into two sets V1, V2, such that every edge between the two sets is present. In
addition, both sets contain approximately n/2 vertices and the number of edges
spanned by each of these sets is small.

Once the partition of Proposition 3 has been established, we only need to
examine the structure of the graphs spanned by V1 and V2. Denote the edges
spanned by V1 and V2 by B1 and B2, respectively. Set B = B1∪B2 and b = |B|.
In addition, for i = 1, 2 let

vi = |Vi| and bi = |Bi|.
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We start by investigating the number of bowties in such graphs. Let H̃ be a
graph on V containing ex(n, F ) + q edges such that the vertex set of H̃ can be

partitioned into two parts Ṽ1, Ṽ2 with E(K(Ṽ1, Ṽ2)) ⊆ E(H̃). Denote the set of

edges spanned by Ṽ1 and Ṽ2 by B̃1 and B̃2, respectively, also let B̃ = B̃1 ∪ B̃2.
Recall that for any v ∈ V and E′ ⊆

(
V
2

)
dE′(v) denotes the degree of vertex

v in the graph (V,E′). Since H̃ contains a complete bipartite subgraph we can

express a lower bound on the number of bowties found in H̃ via an explicit
formula. Recall that bowties are formed of two triangles, and note that any
triangle in H̃ must contain at least one edge in B̃. In particular, we restrict
ourselves to bowties formed from two triangles which have exactly one edge in
B̃ and thus two edges between Ṽ1 and Ṽ2. Any such bowtie belongs to one
of the 3 types of bowties seen in Figure 1. Any pair of disjoint edges in Ṽ1 is
contained in |Ṽ2| bowties. In addition a pair of adjacent edges in Ṽ1 can be

found in |Ṽ2|(|Ṽ2| − 1) bowties. Similarly, two disjoint edges in Ṽ2 create |Ṽ1|
bowties, while two adjacent edges create |Ṽ1|(|Ṽ1| − 1) bowties. Finally any two

edges, where one is spanned by Ṽ1 and the other is spanned by Ṽ2, are contained
in 2(n − 4) bowties. This implies that the total number of bowties in H̃ is at
least

2∑
i=1

∑
v∈Ṽi

(
dB̃(v)

2

)
|Ṽ3−i| (|Ṽ3−i| − 1) +

(|B̃i|
2

)
−
∑
v∈Ṽi

(
dB̃(v)

2

) |Ṽ3−i|


+ 2(n− 4)|B̃1||B̃2|.

After trivial simplifications, this lower bound can be rewritten as

#F (H̃) ≥ f((dB̃(v))v∈Ṽ1
, (dB̃(v))v∈Ṽ2

), (9)

where f is the following function. It takes as input two sequences of non-negative
integers, (d1,1, . . . , d1,v∗1 ) ∈ Nv∗1 and (d2,1, . . . , d2,v∗2 ) ∈ Nv∗2 such that v∗1 +v∗2 = n

and b∗i = 1
2

∑v∗i
j=1 di,j is an integer for i = 1, 2. Then the value of the function f

is defined as

f((d1,j)
v∗1
j=1, (d2,j)

v∗2
j=1) = 2(n− 4)b∗1b

∗
2

+

2∑
i=1

 v∗i∑
j=1

(
di,j
2

)
v∗3−i(v

∗
3−i − 2) +

(
b∗i
2

)
v∗3−i

 . (10)

Note that the bound in (9) is sharp if neither Ṽ1 nor Ṽ2 contains a triangle.
On the other hand, the following lemma gives us some converse to the above
inequality, by replacing B̃i by a graph B∗i that has the same number of edges
and, additionally, is triangle-free and almost regular.

Lemma 16. The following holds for all sufficiently large n. Let V ∗1 ∪ V ∗2 = V
be a partition of V and for i = 1, 2 set v∗i = |V ∗i |. Let φ : V → N be a function
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such that, for i = 1, 2, b∗i =
∑
v∈V ∗i

φ(v)/2 is an integer and b∗i ≤ (v∗i )2/16.

Then there is a graph H∗ with n vertices and v∗1v
∗
2 + b∗1 + b∗2 edges such that

#F (H∗) ≤ f
(

(φ(v))v∈V ∗1 , (φ(v))v∈V ∗2
)
. (11)

Furthermore, if for some i = 1, 2, two values of φ on V ∗i differ by more than 1,
then the inequality in (11) is strict.

Proof. For i = 1, 2, pick integers di,1, . . . , di,v∗i ∈ { b2b
∗
i /v
∗
i c, d2b∗i /v∗i e } with

sum 2b∗i . Lemma 24 shows that there is a triangle-free graph B∗i on V ∗i whose
degree sequence is (di,1, . . . , d

∗
i,vi

). Let H∗ be obtained by adding every edge
between the graphs B∗1 and B∗2 . Clearly, H∗ has the stated order and size while

#F (H∗) = f((d1,j)
v∗1
j=1, (d2,j)

v∗2
j=1). Using the convexity of the function x 7→

(
x
2

)
on N, we see that this is at most the left-hand side of (11), as required.

The second part of the lemma follows since the function x →
(
x
2

)
is strictly

convex on N.

If we let H̃ be our extremal graph H and let φ(v) be dB(v) for v ∈ V ,
then, in view of vi = (1/2 + o(1))n = Ω(n) and bi = o(n2), Lemma 16 applies,
providing another extremal graph H∗. Thus, both (9) and (11) are equalities.
This means that, for i = 1, 2, the part Vi does not induce a triangle and

|dB(u)− dB(v)| ≤ 1, for every u, v ∈ Vi. (12)

For future reference, let us repeat the formula for the number of bowties in
H:

#F (H) = 2(n−4)b1b2+

2∑
i=1

(∑
v∈Vi

(
dB(v)

2

)
v3−i(v3−i − 2) +

(
bi
2

)
v3−i

)
. (13)

Note that the number of vertices which have degree b2bi/vic or d2bi/vie in
the graph (V,B) is uniquely determined by bi and vi. Therefore (13) depends
only on b1, b2, v1, v2. In fact, we only need to establish the values of these
parameters which lead to the minimal number of bowties. However, there is
some dependence between the parameters. We only require one parameter to
track both part sizes. Let

v1 = dn/2e+ a and v2 = bn/2c − a (14)

for some a ∈ Z. Proposition 3 implies that a = o(n). Note that b = q + 1 +
(dn/2e − bn/2c)a+ a2, thus it suffices to determine one of b1, b2, once the value
of a has been established.

Theorem 1 follows if we can show that a = 0 when n is even and that a = 0
or −1 when n is odd. We will show that if neither of these holds, then moving
a vertex from the larger part to the smaller decreases the number of bowties.
Ideally, we would move the vertex in such a way that the number of neighbours
of the vertex within its part remains unchanged and every edge between the
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new parts is still present. This leaves the total number of edges spanned by the
parts unchanged, but increases the number of edges between V1 and V2 as |a|
is reduced. Thus, in order to leave the total number of edges unchanged, we
need to remove some additional edges. Although the previous argument is only
applicable if the degree of the vertex moved between the parts is even, it can be
adapted to work for odd degrees as well. This is achieved by removing an edge
before the vertex is moved, in particular an edge adjacent to the vertex about
to be moved, resulting in an even degree for the vertex. Further superfluous
edges are removed after the vertex has been moved.

We need to estimate the change in the number of bowties after moving a
vertex between the parts and removing superfluous edges. Later we will see that
the number of bowties destroyed by removing edges outnumbers the number of
bowties created when moving the vertex.

In order to prove Theorem 1 we need three auxiliary lemmas, the proofs
of which can be found in Section 5. We first estimate the number of bowties
destroyed when a well-chosen set of k edges is removed from the graph H, after
a vertex has been moved between its parts.

Lemma 17. Let U ⊆ V such that |U | ≥ n− 2 and Ĥ a graph created from H
by adding and removing edges, such that no edge is removed from E(H[U ]). If
b ≥ 10 for every k ≤ b/3 there exists D ⊆ B ∩ E(H[U ]) with |D| = k such that

the removal of all edges of D from the graph Ĥ destroys at least

k
bn

8
− nk2

2

bowties.

The number of bowties created when moving a vertex depends on the dif-
ference of b1 and b2. In particular, the closer the two values are, the smaller
the change in the number of bowties is. In the following lemma we provide an
upper bound on the difference of b1 and b2.

Lemma 18. We have that |b1 − b2| ≤ n/4 + 33(|a|+ 1)q/n.

As a consequence, we can derive that the degrees in the graph (V,B) are
also close. By (12), this holds in a very strong form for vertices that are in the
same part Vi. So the following lemma says something new, only if w is not in
the same part as u or v.

Lemma 19. If there exists a pair of vertices u, v ∈ V such that dB(u) = dB(v),
then every vertex w ∈ V , but at most one, satisfies dB(w) ≥ dB(u)−1−900(|a|+
1)(dB(u)− 1)/n.

Using Proposition 3 and Lemmas 17–19 we prove Theorem 1.

Proof of Theorem 1. Assume for contradiction that the theorem is false. Then
for each δ > 0 there exists a graph H that violates Theorem 1. Let δ be
sufficiently small so that the order n ≥ 1/δ of H and the surplus q = |E(H)| −
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ex(n, F ) ≤ δn2 satisfy all forthcoming inequalities. Since the constant δ given
by our proof is very small, we do not write it explicitly nor try to optimise
the dependencies between other constants. For notational convenience, we use
asymptotic notation, e.g. writing q = o(n2).

Proposition 3 applies and gives that H contains a spanning complete bipar-
tite graph K(V1, V2). Define vi = |Vi| for i = 1, 2. Without loss of generality
we may assume that v1 ≥ v2. Let a = v1 − dn/2e. By Proposition 3, we have
that a = o(n). Since H is a counterexample, we have a ≥ 1. The larger part V1
must contain at least one edge, otherwise selecting U ⊆ V1 with |U | = v2 and
moving the graph spanned by V2 to U strictly decreases the number of bowties
by (13).

Recall that, by (12), all bad degrees inside a part differ by at most 1. Let
d be the maximal integer such that there exist two vertices v, w ∈ V1 such that
dB(v) = dB(w) = d. Since V1 contains at least one edge, we have d > 0.

Note that each bad degree is at most d+1+o(d). Indeed, this is true by (12)
if V2 spans no edges. Otherwise, V2 has two vertices u′, v′ of the same positive
degree d′ and the claim follows in view of a = o(n) from Lemma 19 applied to
these two vertices. Thus, for every z ∈ V , we have, for example, dB(z) ≤ 2d+1.
Since v1, v2 ≤ n, we have

b1, b2 = O(dn). (15)

We consider two cases depending on the parity of d.

Case 1: d is even.

Roughly speaking, we move v from V1 to V2 in such a way that for every vertex
in V \ {v} the number of neighbours within its part remains unchanged, but for
v the number of neighbours within its part changes from d to d− 2, i.e. an edge
is removed from B. In addition, every edge between the new parts is present.
More formally, set V ∗1 = V1 \ {v}, V ∗2 = V2 ∪ {v} and define φ : V → N such
that for u ∈ V \ {v} we have φ(u) = dB(u) and φ(v) = dB(v) − 2. Let H∗ be
the graph provided by Lemma 16 for this function φ. We have that

#F (H∗) ≤ 2(n− 4)

(
b1 −

dB(v)

2

)(
b2 +

dB(v)− 2

2

)
+

(
dB(v)− 2

2

)
(v1 − 1)(v1 − 3)

+

(
b1 − dB(v)/2

2

)
(v2 + 1) +

(
b2 + (dB(v)− 2)/2

2

)
(v1 − 1)

+
∑

u∈V1\{v}

(
dB(u)

2

)
(v2 + 1)(v2 − 1) +

∑
u∈V2

(
dB(u)

2

)
(v1 − 1)(v1 − 3).
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By (13) the number of bowties in H is

#F (H) = 2(n− 4)b1b2 +

(
dB(v)

2

)
v2(v2 − 2) +

(
b1
2

)
v2 +

(
b2
2

)
v1

+
∑

u∈V1\{v}

(
dB(u)

2

)
v2(v2 − 2) +

∑
u∈V2

(
dB(u)

2

)
v1(v1 − 2).

We are interested in a lower bound on #F (H)−#F (H∗), more precisely the
difference of the above two bounds. We will examine the difference of each of
the six terms in order to determine the overall change. Recall that dB(v) = d.

We start with

2(n− 4)b1b2 − 2(n− 4)

(
b1 −

d

2

)(
b2 +

d− 2

2

)
= 2(n− 4)

(
b2
d

2
− b1

d− 2

2
+
d(d− 2)

4

)
(15)

≥ ndb2 − n(d− 2)b1 +O(d2n). (16)

Recall that v1, v2 = n/2 +O(a). Thus for the following term we have(
d

2

)
v2(v2 − 2)−

(
d− 2

2

)
(v1 − 1)(v1 − 3)

=

((
d

2

)
−
(
d− 2

2

))(n
2

)2
+O(ad2n)

= (2d− 3)
(n

2

)2
+O(ad2n). (17)

By the definition of d and (12), every vertex in V1, except at most one, has
degree at most d. Therefore b1 − 1 ≤ dn/4 +O(ad) and thus we have(

b1
2

)
v2 −

(
b1 − d/2

2

)
(v2 + 1) ≥ b1

d

2
v2 −

(
b1
2

)
+O(d2n)

= b1
d

2
v2 − b1

b1 − 1

2
+O(d2n)

(15)

≥ b1

(
d

2

n

2
− dn

8

)
+O(ad2n)

= b1
dn

8
+O(ad2n). (18)

Lemma 19 implies that for every u ∈ V2, except at most one, we have dB(u) ≥
d− 1 +O(ad/n). Thus b2 − 1 ≥ (d− 1)n/4 +O(ad) and similarly as before(

b2
2

)
v1 −

(
b2 + (d− 2)/2

2

)
(v1 − 1) = −b2

d− 2

2

n

2
+

(
b2
2

)
+O(ad2n)

= −b2
d− 2

2

n

2
+ b2

b2 − 1

2
+O(ad2n)

≥ −b2
(d− 3)n

8
+O(ad2n). (19)
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All that is left to estimate are the two sums. The first of these is∑
u∈V1\{v}

(
dB(u)

2

)
v2(v2 − 2)−

∑
u∈V1\{v}

(
dB(u)

2

)
(v2 + 1)(v2 − 1)

= (−2v2 + 1)
∑

u∈V1\{v}

(
dB(u)

2

)
.

Recall that for every u ∈ V1\{v}, except at most one, we have that dB(u) ≤ d
and by (12) for the one exception we have dB(u) ≤ d+ 1. When dB(u) ≤ d, we
have (

dB(u)

2

)
≤ dB(u)(d− 1)

2
,

on the other hand, if dB(u) = d+ 1, then(
dB(u)

2

)
=
dB(u)(d− 1)

2
+
d+ 1

2
.

Thus

(−2v2 + 1)
∑

u∈V1\{v}

(
dB(u)

2

)
≥ (−2v2 + 1)

d+ 1

2
+

∑
u∈V1\{v}

dB(u)(d− 1)

2


= (−2v2 + 1)(d− 1)

∑
u∈V1\{v}

dB(u)

2
+O(ad2n)

≥ (−2v2 + 1)(d− 1)b1 +O(ad2n)

(15)
= −b1(d− 1)n+O(ad2n). (20)

Finally, we have∑
u∈V2

(
dB(u)

2

)
v1(v1−2)−

∑
u∈V2

(
dB(u)

2

)
(v1−1)(v1−3) = (2v1−3)

∑
u∈V2

(
dB(u)

2

)
.

Recall that for every u ∈ V2, except at most one, we have dB(u) ≥ d − 1 −
O(ad/n) and by (12) for the one exception we have dB(u) ≥ d − 2 − O(ad/n),
thus

(2v1 − 3)
∑
u∈V2

(
dB(u)

2

)
≥ (2v1 − 3)(d− 2)

∑
u∈V2

dB(u)

2
+O(ad2n)

= b2(d− 2)n+O(ad2n). (21)
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Combining (16)–(21) we have

#F (H)−#F (H∗)

≥ (2d− 3)
(n

2

)2
+

(
15d− 13

4
b2 −

15d− 24

4
b1

)
n

2
+O(ad2n)

Lem. 18
≥ (2d− 3)

(n
2

)2
− 15d− 24

8

(n
2

)2
+O(ad2n)

d=o(n)
=

d

8

(n
2

)2
+ o(adn2) (22)

when n is large enough.
Note that the number of edges in H∗ exceeds the number of edges in H by

E(H∗)− E(H) ≥ (dn/2e+ (a− 1)) (bn/2c − (a− 1))

− (dn/2e+ a) (bn/2c − a)− 1

≥ a2 − (a− 1)2 − 1 = 2(a− 1).

When a < 10,

#F (H)−#F (H∗)
(22)

≥ d

8

(n
2

)2
+ o(adn2) > 0

for large enough n and thus already H∗ has fewer bowties than H and removing
the additional edges only decreases this number. On the other hand, if a ≥ 10,
then removing these 2(a − 1) additional edges plays a significant role, because
by Lemma 17 this destroys at least (a − 1)bn/4 − 2(a − 1)2n bowties. Recall
that b ≥ q+ 1 + a2 and when a ≥ 10 then b ≥ q+ 1 + a2 ≥ 10(a− 1) leading to
the destruction of at least

(a−1)n

(
b

4
− 2(a− 1)

)
≥ (a−1)n

(
b

4
− 2b

10

)
= (a−1)

b

20
n
b≥(d−1)n/2,d≥2

≥ adn2

100
(23)

bowties. This together with (22) leads to a contradiction.

Case 2: d is odd.

Recall that v, w ∈ V1 are such that dB(v) = dB(w) = d. Roughly speaking, we
will move v from V1 to V2 in such a way that for every vertex in V \ {v, w} the
number of neighbours within its part remains unchanged, but for v and w the
number of neighbours within its part changes from d to d − 1. Formally, set
V ∗1 = V1 \ {v}, V ∗2 = V2 ∪{v} and define φ : V → N such that φ(v) = dB(v)− 1,
φ(w) = dB(w)− 1 and for u ∈ V \ {v, w} we have φ(u) = dB(u). Let H∗ be the
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graph returned by Lemma 16. The number of bowties in H∗ satisfies

#F (H∗)

≤ 2(n− 4)

(
b1 −

dB(v) + 1

2

)(
b2 +

dB(v)− 1

2

)
+

(
dB(v)− 1

2

)
(v1 − 1)(v1 − 3) +

(
dB(w)− 1

2

)
(v2 + 1)(v2 − 1)

+

(
b1 − (dB(v) + 1)/2

2

)
(v2 + 1) +

(
b2 + (dB(v)− 1)/2

2

)
(v1 − 1)

+
∑

u∈V1\{v,w}

(
dB(u)

2

)
(v2 + 1)(v2 − 1) +

∑
u∈V2

(
dB(u)

2

)
(v1 − 1)(v1 − 3).

Clearly, the number of bowties in H is the same as earlier

#F (H) = 2(n− 4)b1b2

+

(
dB(v)

2

)
v2(v2 − 2) +

(
dB(w)

2

)
v2(v2 − 2)

+

(
b1
2

)
v2 +

(
b2
2

)
v1

+
∑

u∈V1\{v,w}

(
dB(u)

2

)
v2(v2 − 2) +

∑
u∈V2

(
dB(u)

2

)
v1(v1 − 2).

The calculations, for most part, are analogous to Case 1. In (16) we just
need to replace d with d+ 1

2(n− 4)b1b2 − 2(n− 4)

(
b1 −

(d+ 1)

2

)(
b2 +

d− 1

2

)
≥ n(d+ 1)b2 − n(d− 1)b1 +O(d2n). (24)

On the other hand, in (17) the vertex degree decreases only by one, leading
to (

d

2

)
v2(v2 − 2)−

(
d− 1

2

)
(v1 − 1)(v1 − 3)

=

(
d

2

)(n
2

)2
−
(
d− 1

2

)(n
2

)2
+O(ad2n)

= (d− 1)
(n

2

)2
+O(ad2n).

However, this time the degree of another vertex in V1 also decreases(
dB(w)

2

)
v2(v2 − 2)−

(
dB(w)− 1

2

)
(v2 + 1)(v2 − 1) = (d− 1)

(n
2

)2
+O(ad2n).
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For (18) and (19) our bounds on b1 and b2 still hold, leading to(
b1
2

)
v2 −

(
b1 − (d+ 1)/2

2

)
(v2 + 1) ≥ b1

(
d+ 1

2

n

2
− dn

8

)
+O(ad2n)

= b1
(d+ 2)n

8
+O(ad2n)

and(
b2
2

)
v1 −

(
b2 + (d− 1)/2

2

)
(v1 − 1) ≥ −b2

d− 1

2

n

2
+ b2

(d− 1)n

8
+O(ad2n)

≥ −b2
(d− 1)n

8
+O(ad2n).

Finally, note that removing an additional vertex from the sum in (20) has
no affect on the lower bound and (21) remains unchanged. Therefore, we have

#F (H)−#F (H∗)

≥ 2(d− 1)
(n

2

)2
+

(
15d− 7

4
b2 −

15d− 18

4
b1

)
n

2
+O(ad2n)

Lem. 18
≥ 2(d− 1)

(n
2

)2
− 15d− 18

8

(n
2

)2
+O(ad2n)

≥ d+ 2

8

(n
2

)2
+O(ad2n)

when n is large enough. Similarly as before we have at least 2(a− 1) additional
edges in the graph. If a < 10 or d = 1, then the number of bowties has
already decreased even before removing these edges. In the remaining cases, a
calculation analogue to (23) implies that the removal of the additional edges
decreases the number of bowties.

4.2. Proof of Theorem 2

In order to prove Theorem 2 we need to show

hF (n, q) = (1± c)n
2

[(
e1
2

)
+

(
e2
2

)
+m

(
d+ 1

2

)
n

2
+ (n−m)

(
d

2

)
n

2
+ 4e1e2

]
,

where

e1 =

⌊
dn

4
+

min{m,n/2}
2

⌋
and e2 = q + 1− e1.

In the previous subsection we established the values of v1 and v2, thus we
only need to determine the values of b1 and b2. More precisely, the asymptotics
of these two values suffice, which we achieve by analysing the degree sequence in
the graphs spanned by V1 and V2. We first show that the bad degree of almost
every vertex must take one of two values (Lemma 20). In addition in one of
the partitions almost every vertex must have the same bad degree (Lemma 21).
The proofs of these two lemmas can be found in Section 5. Lemmas 20 and 21
are sufficient to establish the asymptotics of b1 and b2 and complete the proof
of Theorem 2.
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Lemma 20. Let d = b2(q + 1)/nc. For every vertex v ∈ V , we have d − 1 ≤
dB(v) ≤ d + 2. In addition, both the number of vertices with bad degree d − 1
and d+ 2 is at most one.

This lemma shows that almost every vertex has degree b2(q+1)/nc or b2(q+
1)/nc + 1 in the graph (V,B). We have yet to establish how many of these
vertices are contained in V1 and V2. In the following lemma we show that in
one of the two parts almost every vertex has the same degree. In fact, we show
a more general statement. By (12), pick integers k and ` such that every vertex
in V1 has degree k or k+ 1 and every vertex in V2 has degree ` or `+ 1. Let Ci
denote the set of vertices of degree i in V1 and Di denote the set of vertices of
degree i in V2.

Lemma 21. In H, at least one of |Ck|, |Ck+1|, |D`|, |D`+1| is at most 1.

The previous two lemmas give us a satisfactory estimate for the degree se-
quence of (V,B), allowing us to determine the asymptotics of hF (n, q).

Proof of Theorem 2. By (13) and since vi = (1 + o(1))n/2, the number of
bowties is

(1 + o(1))
n

2

[(
b1
2

)
+

(
b2
2

)
+
n

2

∑
v∈V

(
dB(v)

2

)
+ 4b1b2

]
.

When q < bn/4c− 1, Lemma 21 implies that the optimal solution is when V1 or
V2 contains a matching of size q+ 1 and the other part does not span any edge.
Therefore the statement holds for this range of q.

Now assume that q ≥ bn/4c − 1. Recall from the statement of the theorem
that 2(q + 1) = dn + m for d,m ∈ N with m < n and d = b2(q + 1)/nc. By
Lemma 20 we have that almost every vertex has degree d or d+ 1 in (V,B) and
any other vertex has degree d− 1 or d+ 2. Thus we obtain∑

v∈V

(
dB(v)

2

)
= (n−m)

(
d

2

)
+m

(
d+ 1

2

)
+O(d+ 1).

Since d = o(n), we have (d + 1)n = o(n2). In addition, q = Ω(n) and thus
b21 + b22 = Ω(n2). Therefore, the total number of bowties is

(1 + o(1))
n

2

[(
b1
2

)
+

(
b2
2

)
+
n

2

(
(n−m)

(
d

2

)
+m

(
d+ 1

2

))
+ 4b1b2

]
.

All that is left to show is that one of the parts contains (1 + o(1))e1 edges.
Recall that the sum of the bad degrees is dn+m. Let m > n/2. By Lemma 20
there exist at least n/2 − 3 vertices of bad degree d + 1. If each part has at
least 2 vertices with bad degree d + 1, then by Lemma 21 all but at most one
vertex must have bad degree d+1 in one of the parts. Together with Theorem 1
this implies that there exists a part with at least n/2− 2 vertices of bad degree
d + 1. Otherwise, one part has at most one vertex of bad degree d + 1 and
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thus the other must have at least n/2 − 4 vertices of bad degree d + 1. So in
either case we have a part containing at least n/2 − 4 vertices of bad degree
d + 1 and without loss of generality we may assume that this is V1. Then
b1 = (1 + o(1))(d+ 1)n/2 = (1 + o(1))e1.

Now consider the case when m ≤ n/2. A similar argument as before, implies
the existence of a part containing n/2−4 vertices with bad degree d and without
loss of generality assume that this is V2. Therefore,

b1 =
dn+m

2
− (1 + o(1))

dn

4
− o

(
(d+ 1)n

4

)
= (1 + o(1))e1

as required.

Remark Lemmas 20 and 21 leave only a limited number of options for the
degree sequence of the extremal graph H. The exact value of hF (n, q) can be
deduced after a precise analysis. In particular when n is divisible by 4, since
the number of vertices in both parts is even the aforementioned lemmas imply
that every vertex has bad degree d or d+ 1 and every vertex in one of the parts
has the same bad degree. Therefore the formula in Theorem 2 holds exactly,
i.e. without the 1± c multiplier.

5. Proof of technical lemmas

We start with results on the existence of triangle-free graphs with a given
degree sequence, culminating in Lemma 24 which was used in the proof of
Lemma 16. While some of the intermediate steps can be derived from the Gale-
Ryser theorem [9, 27] that characterises possible degree sequences of bipartite
graphs, we present simple direct constructions instead. Let an (α, a, β, b)-graph
mean a triangle-free graph with α + β vertices which has α vertices of degree
a and β vertices of degree b if a 6= b and is a-regular if a = b. Trivially an
(α, a, β, b) graph is also a (β, b, α, a) graph.

Lemma 22. For any non-negative integers d, i,m satisfying d < i + m there
exists a (2i, d+ 1, 2m, d)-graph. In addition this is a balanced bipartite graph.

Proof. Partition the vertices into two sets {v1,j : j = 1, . . . , i + m} and {v2,j :
j = 1, . . . , i + m}. Join v1,j with v2,j by an edge for every j ≤ i. Let M` be a
perfect matching where for every j = 1, . . . , i + m the vertex v1,j is connected
to v2,k where k ≡ j + ` (mod i + m). In order to complete the graph, insert
M` for ` = 1, . . . , d. The obtained graph has the desired degree sequence and is
also bipartite (and thus triangle-free).

Lemma 23. For any integers k,m satisfying k ≥ m ≥ 0 there exists a
(4k, k, 1, 2m)-graph.

Proof. Denote by u the vertex of degree 2m and partition the remaining vertices
into 4 sets of size k: U1, . . . , U4. Denote the vertices in Ui by ui,j for j = 1, . . . , k.
Join u to vertices ui,j by an edge, where i = 1, 3 and j = 1, . . . ,m, i.e. we join
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u to m vertices in U1 and to m vertices in U3. In addition, for j = m+ 1, . . . , k
insert an edge between u1,j and u3,j . Also for j = 1, . . . , k insert an edge
between u2,j and u4,j . Finally insert every edge between U1 and U2 and every
edge between U3 and U4 except the ones in the set {{ui,j , ui+1,j} : i = 1, 2, j =
1, . . . , k}.

Note that the obtained graph G has the required degree sequence. In addi-
tion u is not contained in a triangle, while, G−u is bipartite with parts U1∪U4

and U2 ∪ U3. Thus, G is triangle-free, as required.

Lemma 24. Let a, b, α, β be non-negative integers such that |a−b| = 1, αa+βb
is even and 3a+ 3b < α+ β − 1. Then there is an (α, a, β, b)-graph.

Proof. If both α and β are even, then Lemma 22 directly gives the desired graph.
Assume that at least one of α and β is odd. In fact, exactly one of them is odd,
because a and b have different parities while αa+βb is even by our assumption.
By symmetry, assume that α is odd and β is even. Then, necessarily, a is even.

By the remaining assumption of the lemma, we have that 6a < α+ β − 1 or
6b < α+β− 1. In the former case we take the disjoint union of the (4a, a, 1, a)-
graph given by Lemma 23 (with k = a and m = a/2) and the (α−4a−1, a, β, b)-
graph given by Lemma 22. In the latter case we take the (4b, b, 1, a)-graph of
Lemma 23 (with k = b and m = a/2) and the (α − 1, a, β − 4b, b)-graph of
Lemma 22.

Now we provide the proofs of the auxiliary lemmas of Section 4.

Proof of Lemma 17. The number of bowties destroyed by removing the edges
in D from the graph Ĥ, is at least the number of bowties destroyed by removing
D from the graph H[U ]. We will analyse the latter.

Note that

|B ∩ E(H[U ])|
Lem. 10
≥ b− 2

(
80b

n
+ 1

)
≥ 2b

3
,

where the last inequality follows from our assumption that b ≥ 10 and because
n is large enough.

For simplicity of notation let U1 = U ∩V1 and U2 = U ∩V2. Without loss of
generality we assume that U1 spans at least as many edges in B∩E(H[U ]) as U2.
Select an arbitrary pair of edges {w1, w2}, {w3, w4} ∈ B∩E(H[U1]). If {w3, w4}
is disjoint from {w1, w2}, then for every shared neighbour of w1, w2, w3, w4 we
have a bowtie. On the other hand, if {w3, w4} is adjacent to {w1, w2}, then
every pair of shared neighbours results in a bowtie. By Proposition 3 every
edge between U1 and U2 is present. Since only two vertices were removed from
the graph we have |U1|, |U2| = (1 + o(1))n/2. Thus the number of bowties
containing {w1, w2} and {w3, w4} is at least (1 + o(1))n/2.
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Therefore, removing arbitrary k edges from B ∩ E(H[U1]) destroys at least

(1 + o(1))
n

2

(
k

(
|B ∩ E(H[U ])|

2
− k
))
≥ (1 + o(1))

n

2

(
k

(
b

3
− k
))

≥ k bn
8
− nk2

2

bowties.

Proof of Lemma 18. Assume for contradiction that |b1 − b2| > n/4 + 33(|a| +
1)q/n. Without loss of generality assume that

b1 > b2 + n/4 + 33(|a|+ 1)q/n. (25)

Roughly speaking, we move eM := bn/4c− |a| edges from V1 to V2 and show
that the resulting graph has fewer copies of bowties. Let R1 be a set of vertices
in V1 of size 2bn/4c−2|a| maximising the function

∑
v∈R1

dB(v), i.e. it contains
the 2bn/4c − 2|a| vertices v ∈ V1 with the largest value of dB(v). Note that

|V1| − |R1| ≥
⌊n

2

⌋
− |a| − 2

⌊n
4

⌋
+ 2|a| ≥ |a| ≥ 0.

On the other hand, let R2 be the set of vertices in V2 of size 2bn/4c − 2|a|
minimising the function

∑
v∈R2

dB(v). In order to move the eM edges we reduce
the value of dB(v) for v ∈ R1 by one and increase the value of dB(v) for v ∈ R2

by one. Define φ : V → N by

φ(v) =

 dB(v)− 1, if v ∈ R1,
dB(v), if v ∈ V \ (R1 ∪R2),
dB(v) + 1, if v ∈ R2.

Since by (12) the value of dB(v) differs by at most one for vertices in V1 and
R1 contains the vertices v with the largest value of dB(v), we also have that the
value of φ(v) differs by at most one for vertices in V1. The same argument also
gives us that the value of φ(v) differs by at most one for vertices in V2.

Denote by H∗ the graph returned by Lemma 16 for V ∗1 = V1 and V ∗2 = V2.
By (13) and Lemma 16 we have

#F (H)−#F (H∗)

≥
∑
u∈R1

φ(u)v2(v2 − 2) + eMb2(2n− 8) + v2

(
eMb1 −

e2M
2
− eM

2

)

−
∑
u∈R2

dB(u)v1(v1 − 2)− eM (b1 − eM )(2n− 8)− v1
(
b2eM +

e2M
2
− eM

2

)
.

By Proposition 3 and (25) we have 4q+4 ≥ b1 ≥ n/4, implying b1 ≤ (1+o(1))4q
and 16q/n ≥ 1 + o(1). Therefore

∑
u∈R1

φ(u) ≤
∑
u∈V1

φ(u) ≤ 2b1 ≤ (1 +
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o(1))8q ≤ 9q. Thus∑
u∈R1

φ(u)v2(v2 − 2) ≥
∑
u∈R1

φ(u)

(
n

2
− |a| − 1

2

)(
n

2
− |a| − 5

2

)
≥
∑
u∈R1

φ(u)
(n

2

)2
− 14(|a|+ 1)qn.

Proposition 3 also implies that v1 = (1 + o(1))n/2, therefore the average vertex
degree in H[V1] is 2b1/v1 ≤ (1+o(1))16q/n. Together with (12), for every vertex
v ∈ V1 we have dB(v) ≤ (1 + o(1))16q/n + 1 for large enough n. Recall that
16q/n ≥ 1 + o(1). Thus for v ∈ V1 we have dB(v) ≤ (1 + o(1))32q/n ≤ 33q/n.
Therefore, we have∑

u∈R1

φ(u)
(n

2

)2
− 14(|a|+ 1)qn

≥

[∑
u∈V1

φ(u)− |V1 \R1|
33q

n

](n
2

)2
− 14(|a|+ 1)qn

≥
(n

2

)2 ∑
u∈V1

φ(u)− 39(|a|+ 1)qn,

as |V1 \R1| ≤ dn/2e+ |a| − 2bn/4c+ 2|a| ≤ 3(|a|+ 1).
Since q ≥ (1 + o(1))n/16 we have b2 ≤ 4q + 4 ≤ 5q for large enough n.

Together with eM ≤ n/4 this implies

eMb2(2n− 8) ≥ eMb22n− 10(|a|+ 1)qn

eM≥n/4−|a|−1
≥

(n
2

)2 ∑
u∈V2

dB(u)− 20(|a|+ 1)qn.

Finally using eM = bn/4c − |a| and eM + 1 ≤ n/4 + 1 ≤ b1 ≤ (1 + o(1))4q
we have

v2

(
eMb1 −

e2M
2
− eM

2

)
≥ n

2

(
eMb1 −

e2M
2
− eM

2

)
− 2(|a|+ 1)qn

≥ n

2
b1

(n
4
− |a| − 1

)
− n

4

((n
4

)2
+
n

4

)
− 2(|a|+ 1)qn

≥ n2

8
b1 −

n3

64
− n2

16
− 5(|a|+ 1)qn.

Therefore, we obtain∑
u∈R1

φ(u)v2(v2 − 2) + eMb2(2n− 8) + v2

(
eMb1 −

e2M
2
− eM

2

)

≥
(n

2

)2 ∑
u∈V1

φ(u) +
(n

2

)2 ∑
u∈V2

dB(u) +
n2

8
b1 −

n3

64
− n2

16
− 64(|a|+ 1)qn.
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A similar argument shows that∑
u∈R2

dB(u)v1(v1 − 2) + eM (b1 − eM )(2n− 8) + v1

(
b2eM +

e2M
2
− eM

2

)

≤
(n

2

)2 ∑
u∈V2

dB(u) +
(n

2

)2 ∑
u∈V1

φ(u) +
n2

8
b2 +

n3

64
+
n2

16
+ 64(|a|+ 1)qn.

Summing up, we have

#F (H)−#F (H∗) ≥ n2

8

[
b1 − b2 −

n

4
− 1− 16

(|a|+ 1)q

n

]
16q/n≥1+o(1)

≥ n2

8

[
b1 − b2 −

n

4
− 33

(|a|+ 1)q

n

]
,

which is positive due to (25), leading to a contradiction on minimality.

Proof of Lemma 19. Let d := dB(u) − 1 = dB(v) − 1. We start with the case
when u, v ∈ V1, d ≥ 1 and at most one vertex in V1 has degree d+ 2 in (V,B).

Assume for contradiction that there exist 2 vertices w1, w2 ∈ V with
dB(w1), dB(w2) < d − 900(|a| + 1)d/n. By (12) for any vertex w ∈ V1 we
have that dB(w) ≥ d so in fact w1, w2 ∈ V2. In addition, we may choose w1, w2

such that for every w ∈ V2 \ {w1, w2} we have dB(w1), dB(w2) ≤ dB(w). Let
φ : V → N be the function defined by

φ(z) =

 dB(z)− 1, if z = u, v,
dB(z), if v ∈ V \ {u, v, w1, w2},
dB(z) + 1, if z = w1, w2.

Let H∗ be the graph returned by Lemma 16 for V ∗1 = V1 and V ∗2 = V2. Thus,
by (13), we have

#F (H)−#F (H∗) ≥ (dB(u) + dB(v)− 2)v2(v2 − 2) + b2(2n− 8) + (b1 − 1)v2

− (dB(w1) + dB(w2))v1(v1 − 2)− (b1 − 1)(2n− 8)− b2v1.

Note that dB(v), dB(w1) ≤ d+ 1 and together with (12) we have that dB(w) ≤
d + 2 for any w ∈ V . Therefore, b1, b2 ≤ (1 + o(1))(d + 2)n/4 ≤ dn as d ≥ 1.
Thus we have

#F (H)−#F (H∗) ≥ (2d− dB(w1)− dB(w2))
n2

4
+

3

2
n(b2 − b1)− 26(|a|+ 1)dn.

Recall that dB(w) ≤ d+ 2 for any w ∈ V . Therefore q ≤ (d+ 2)n/2
d≥1
≤ 3dn/2.

This together with Lemma 18 implies b2 ≤ b1 + n/4 + 33(|a| + 1)q/n ≤ b1 +
n/4 + 50(|a|+ 1)d and thus

#F (H)−#F (H∗) ≥ (2d−dB(w1)−dB(w2))
n2

4
− 3

2
n
n

4
−101(|a|+1)dn. (26)
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We first consider the case when 900(|a|+ 1)d/n < 1. In this case any vertex
with degree less than d− 900(|a|+ 1)d/n has degree at most d− 1. Therefore,
dB(w1), dB(w2) ≤ d− 1 and thus

#F (H)−#F (H∗)
(26)

≥ 2
n2

4
− 3n2

8
− 101(|a|+ 1)dn > 0

where the last inequality follows because due to our condition, 101(|a|+ 1)q <
n2/8, resulting in a contradiction.

Next we consider the case when 900(|a| + 1)d/n ≥ 1. Recall that by our
assumption dB(w1), dB(w2) < d− 900(|a|+ 1)d/n and thus

#F (H)−#F (H∗)
(26)

≥ 450(|a|+ 1)dn− 3n2

8
− 101(|a|+ 1)dn > 0,

where the last inequality follows because due to our conditions 900(|a|+ 1)dn ≥
n2, leading to a contradiction.

Now we consider the remaining cases. An analogous proof works if u, v ∈ V2.
Should u and v be in different parts, by (12) we have for all w ∈ V that dB(w) ≥
d giving the required bound. Also the statement is trivial when d + 1 = 1, as
the degree of any vertex is non-negative. Finally, if more than two vertices of
degree d+ 2 exist, then u and v can be replaced by two vertices of degree d+ 2
and our earlier argument implies the result.

Proof of Lemma 20. Note that dn ≤ 2(q + 1) ≤ (d+ 1)n. We start by showing
that in the graph (V,B) at most one vertex of degree at least d + 2 exists.
Suppose that this is false. Let Wd+1 be the set of vertices w ∈ V with dB(w) <
d+ 1. By Theorem 1 we have |a| ≤ 1, which together with Lemma 19, d = o(n)
and the fact that dB(w) is an integer imply that |Wd+1| ≤ 1. In fact, by (12)
we have that if there exists a vertex w ∈Wd+1, then dB(w) ≥ d. Therefore,

2(q + 1) =
∑
w∈V

dB(w) ≥ 2(d+ 2) + d+ (n− 3)(d+ 1) > (d+ 1)n,

contradicting our earlier observation.
Note that if there exists in (V,B) a vertex of degree at least d+ 3, then by

(12) there exists a pair of vertices u, v ∈ V such that dB(u) = dB(v) ≥ d + 2,
a contradiction. Therefore, there is at most one vertex with degree larger than
d + 1 in (V,B) and by (12) this vertex, if it exists, has degree exactly d + 2 in
(V,B). It only remains to show that there is at most one vertex with degree
less than d in this graph and should such a vertex exist it has degree d− 1.

Lemma 19 implies that this is in fact true if (V,B) contains two vertices of
degree d + 1. Now assume that (V,B) has at most one vertex of degree d + 1.
By (12) the presence of a vertex of degree d + 2 in (V,B) would imply that
many vertices of degree d+ 1, d+ 2 or d+ 3 should be present. However, by our
assumption there is only one vertex of degree d+ 1 in (V,B) and previously we
have shown that there is at most one vertex of degree at least d + 2 in (V,B).
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Thus (V,B) contains no vertex with degree larger than d + 1. Let Wd be the
set of vertices w ∈ V with dB(w) < d. Then

dn ≤ 2(q + 1) =
∑
w∈V

dB(w) = d+ 1 + (n− |Wd| − 1)d+
∑
w∈Wd

dB(w).

Rearranging the terms gives us

|Wd|d− 1 ≤
∑
w∈Wd

dB(w) ≤ |Wd|(d− 1),

where the right hand inequality follows from the definition of Wd. The inequality
holds only if |Wd| ≤ 1 and for w ∈Wd we have dB(w) = d− 1.

Proof of Lemma 21. Assume for contradiction that the size of each of these sets
is at least two. Therefore there exist vertices u1, u2 ∈ Ck+1, v1, v2 ∈ Ck, w1, w2 ∈
D`+1, z1, z2 ∈ D`. Roughly speaking, we want to show that either moving an
edge from Ck+1 to D` decreases the number of bowties, or moving an edge from
D`+1 to Ck does.

Define φ1 : V → N by

φ1(x) =

 dB(x)− 1, if x = u1, u2,
dB(x), if v ∈ V \ {u1, u2, z1, z2},
dB(x) + 1, if x = z1, z2,

and φ2 : V → N by

φ2(x) =

 dB(x)− 1, if x = w1, w2,
dB(x), if v ∈ V \ {w1, w2, v1, v2},
dB(x) + 1, if x = v1, v2.

For i = 1, 2 let Hi be the graph returned by Lemma 16 with φ = φi, V
∗
1 = V1

and V ∗2 = V2. Thus, by (13), we have

#F (H1)−#F (H) ≤ 2`v1(v1 − 2) + (b1 − 1)(2n− 8) + b2v1

− 2kv2(v2 − 2)− b2(2n− 8)− (b1 − 1)v2

and

#F (H2)−#F (H) ≤ 2kv2(v2 − 2) + (b2 − 1)(2n− 8) + b1v2

− 2`v1(v1 − 2)− b1(2n− 8)− (b2 − 1)v1.

Should either one of these be negative, we are done, as we have a contradiction
on the minimality of H. Clearly, this holds if the sum of the two terms is
negative. Note that the 2`v1(v1−2) and the 2kv2(v2−2) terms cancel and thus

#F (H1) + #F (H2)− 2#F (H)

≤ (b1 − 1)(2n− 8) + b2v1 − b2(2n− 8)− (b1 − 1)v2

+ (b2 − 1)(2n− 8) + b1v2 − b1(2n− 8)− (b2 − 1)v1

= −(2n− 8) + v1 − (2n− 8) + v2

= −3n+ 16 < 0

and the statement follows.
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6. Concluding remarks

After Proposition 3 is established (namely, that every extremal graph ad-
mits a vertex partition {V1, V2} such that all cross edges are present), the rest
essentially reduces to the problem of minimising the right-hand side of (13) as
a function of e.g. v1 = |V1| and b1 = |E(H(V1))|. Surprisingly, this integer
optimisation problem turned out to be very delicate and we needed a lot of
calculations to solve it (i.e. to derive Theorems 1–2 from Proposition 3). While
our method may apply to other non-critical graphs F , we expect that similar
algebraic difficulties will appear. One important difference between the cases
of critical and non-critical F for q = o(n2) is that in the former case a single
edge added to K(V1, V2) already creates many copies of F , which often gives
the dominant term for hF (n, q) and makes analysis easier.

One cannot expect that Theorem 1 holds for all q. For example, the Turán
graph Tr(n) is known to minimise the number of triangles among all graphs of
the same order and size, which follows from the results by Moon and Moser [20]
and, independently, Nordhaus and Stewart [23], which can be also derived from
the paper of Goodman [10]. The corresponding stability result was obtained
by Lovász and Simonovits [18]. Since this graph has approximately the same
number of triangles per each vertex, the Cauchy-Schwarz Inequality implies
that Tr(n) also asymptotically minimises the number of bowties, including the
stability result that all asymptotically optimal graphs are o(n2)-close in the edit
distance to Tr(n). However, if r ≥ 3 is a fixed odd integer, then Tr(n) is Ω(n2)-
away from containing T2(n). So Theorem 1 strongly fails for the corresponding
value of q. It would be interesting to know how hF (n, q) behaves for larger q,
in particular find the largest c such that hF (n, q) = (1 + o(1))tF (n, q) holds for
every q ≤ cn2.
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