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Abstract 
Pregnancy can be accompanied by serious health risks to mother and child, such as 
pre-eclampsia, premature birth, and postpartum haemorrhage. Understanding of the 
normal physiology of uterine function is essential to an improved management of 
such risks. Here we focus on the physiology of the smooth muscle fibres that make 
up the bulk of the uterine wall, and which generate the forceful contractions that 
accompany parturition. We survey computational methods that integrate 
mathematical modelling with data analysis and thereby aid the discovery of new 
therapeutic targets that, according to clinical needs, can be manipulated to either stop 
contractions or cause the uterine wall muscle to become active. 
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Introduction 
The onset of labour is a complex process that requires a host of regulatory pathways 
working in concert. In particular, the timing of delivery is critical in relation to the 
state of development of the foetus. A human pregnancy is defined as reaching early 
term at 37 weeks, whereas full term occurs at 39 weeks, and late term by 41 weeks; 
the pregnancy is considered overdue by 42 weeks.1 
 The foetus develops throughout gestation and gradually acquires the ability to 
survive outside the uterine environment. If all goes well, the foetal lungs are well-
developed at term, which will allow survival outside of the womb with no or minimal 
intervention. On the other hand, delivery before 37 weeks is deemed preterm and 
associated with serious morbidity and mortality; it is the leading cause of death 
amongst newborns, and the second highest amongst children under five years old.2 
Moreover, preterm labour presents a major risk factor for developmental delay and 
neurological impairment.2 
 To treat preterm labour, the clinician seeks to disrupt the processes that lead to 
uterine contractions. This can be accomplished through reduction of the excitability 
of the smooth muscle cells that make up the uterine muscle, or else by disrupting the 
coordination between the contractions in individual muscle fibres, so that the global 
synchronicity of muscle activity is diminished. 
 Reduction of cellular excitability is effective since the contraction of a smooth 
muscle cell is coupled to, and governed by, the electrical activity at the level of the 
cell membrane: quenching the latter prevents the former.3 Disruption of electric 
communication between muscle fibres may still allow partial contractions, but lack of 
coordination at the whole-organ level means that these partial contractions happen at 
different points in time, greatly diminishing the ability to generate the levels of 
hydrostatic pressure inside the uterine cavity that are required to expel the foetus. 
Any agent that has such effects is called a tocolytic, a term whose Greek etymology 
suggests “dissolution of labour”. An agent with the opposite effect, that of inducing 
labour, is a tocotropic.4 
 Electrical currents through the cell membrane are conducted by entities known 
as ion channels.5 Such ion channels represent a target of choice for pharmaceutical 
disruption, blockade, or stimulation. However, these ion channels work together in a 
complex manner, and, moreover, exhibit interactions with various intracellular 
processes as well as with processes that transcend the cellular level. This complexity 
necessitates a comprehensive characterisation of the dynamics of this ensemble of 
processes, if we are to understand in full the functional consequences of any 
pharmaceutical intervention. This review will survey an integrated approach that 
brings together acquisition of data by a variety of experimental methods and several 
mathematical and computational techniques. 

Structure of the myometrium 
The myometrium is the middle layer of the uterine wall, the inner layer being the 
endometrium, which lines the uterine cavity, and the outer layer being the 
perimetrium.3 As the name indicates, the myometrium consists of muscle cells; (myo- 



referring to muscle and mētra meaning womb4). The uterine muscle cells are smooth 
muscle cells (abbreviated USMCs for uterine smooth muscle cells; Figure 1), and 
accordingly have the typical characteristics associated with smooth muscle cells, viz. 
slow, but strong and prolonged, contraction over a wide range of movement, which is 
precisely what is required of the myometrium during delivery.4 
 The USMCs connect to form fibrous structures, which in turn are organised 
into small bundles, fasciculi.6 As shown in Figure 2, in silico reconstruction of the 
tissue microstructure indicates that these fasciculi tend to encircle the uterine cavity 
in the deeper layers (i.e. closest to the endometrial lining) of the body and fundus of 
the uterus (i.e. the portion distal from the cervix), whereas the superficial layers 
exhibit longitudinally orientated fibres (green in Figure 2C) as well as transversal 
fibres (blue in Figure 2C); the most superficial fibres (to a depth of about 5 mm) are 
organised in sheets rather than bundles. Nearer to the cervical canal, the deep fibres 
form a circular “cuff” (red in Figure 2C) whereas the superficial fibres appear to run 
in various directions.7,8 The ability to map the three-dimensional micro-architecture 
of the mymetrial  means that we can use simulations to work out the consequences at 
the whole-organ level of any phenomena that we observe (and may be able to 
represent in mathematical form) at the molecular and cellular levels. Thus, in silico 
reconstruction of histological data forms a bridge between quite disparate levels of 
biological organisation. 

Activity of the myometrium 
The myometrium remains quiescent through much of pregnancy, but enters a more 
excitable state as the pregnancy approaches term.4 These changes can be understood 
in terms of the resting membrane potential (RMP) across the cell membrane, which 
refers to a difference in voltage (electric potential energy) between the cellular 
interior (cytosol) and exterior (interstitial fluid).9 This membrane potential undergoes 
rapid changes during an excitation event, in particular a depolarisation (also known as 
action potential, AP), which is concomitant with an influx of calcium ions that enter 
the cell from the interstitium that surrounds it. 
 Whereas the RMP is always unstable in the sense that perturbations will induce 
an AP, the minimal magnitude of the perturbation required to do so varies. It is 
prohibitively large when the cells are “quiescent” whereas a smaller perturbation 
suffices later when the pregnancy nears full term. In fact, this smaller perturbation 
can be readily effected by ionic currents induced by the “labour hormone” oxytocin 
(a term whose etymology suggests acute birth4). The required perturbation is never 
infinitesimal; in other words, there is a finite, non-zero threshold for excitation. The 
threshold is large during the course of pregnancy and gradually lowers as the time for 
labour draws near.4 
 The influx of calcium ions that accompanies an AP is absorbed by various 
buffering systems and intracellular stores, but as these take some time to respond, a 
temporary increase in intracellular calcium occurs. In fact, the stores release calcium 
into the cytosol in response to this rise (as will be detailed below). Moreover, calcium 
operates on ion channels in the cell membrane, which increases the influx of calcium. 



Both these mechanisms exacerbate the calcium rise and effectively constitute a 
feedforward loop. 
 The rise in cytosolic calcium is instrumental to USMC function, as it 
ultimately leads to the contraction of the cell.  Electrical excitation of the cell leads to 
contraction, which is referred to as excitation-contraction (E-C) coupling.10 Calcium 
stimulates phosphorylation of the myosin light chain, which interacts with actin 
filaments to generate mechanical force.11 

Humoral triggering of excitation-contraction coupling 
Oxytocin is a peptide hormone consisting of 9 amino acids,12 which is a major driver 
of the excitation (and thereby contraction) of the myometrium. It is secreted by the 
posterior pituitary gland, as well as by the uterus itself; there are thus two modes of 
blood-borne chemical communication, referred to as endocrine and paracrine, 
respectively.4 During labour, secretion of oxytocin occurs as part of the Ferguson 
reflex (Figure 3), a positive feedback loop by which contraction of the uterus exerts 
pressure on the cervix, stimulating sensory neurones that drive secretion by the 
pituitary gland.4 This in turn increases the force and frequency of contractions, 
leading to increased signalling. In this manner, the contractions become more 
frequent and forceful as labour progresses.4 
 Oxytocin binds to the oxytocin receptor (OTR), which is a G-protein-coupled 
receptor.13 This interaction leads to activation of phospholipase C (PLC) via a 
G protein.14,15 The activated PLC cleaves the phospholipid phosphatidylinositol 4,5-
bisphosphate (PIP2) into diacylglycerol (DAG) and inositol triphosphate (IP3); 
whereas DAG remains bound to the plasma membrane, IP3 is water-soluble and 
diffuses away from the plasma membrane.16 Both of these products are major second 
messengers: DAG modulates conductances such as the BK potassium channel,17 and 
IP3 stimulates calcium release from the cell’s internal stores. These calcium ions 
operate on an anionic conductance in the plasma membrane, which moderately 
depolarises the plasma membrane. This initial depolarisation leads to the opening of 
the L-type voltage-gated calcium channel, causing a large calcium influx and further 
depolarisation resulting in an AP.18 These events in turn engage the BK channel,19–22 
which opens and thus heralds repolarisation of the cell. The pathway is summarised 
in Figure 4. 
 We thus observe positive feedback loops at various levels of biological 
organisation: at the molecular/cellular level, as a calcium rise reinforces itself at the 
cellular level through calcium-mediated calcium release and calcium acting on ion 
channels, and also at the whole-organism level, via the Ferguson reflex. In either 
case, the fundamental dynamic character of a positive feedback loop is to elicit a 
rapid all-or-none type response in a system. This is appropriate as the uterus, geared 
for quiescence as the child develops, suddenly needs to commit to full activation at 
all levels when the time comes for the child to be born. 



Ion channels and the myometrial conductome 
The “conductome” of a cell, or its “conductance repertoire,” is the term given to the 
collection of protein species that permit the movement of charged particles across the 
membrane.23 The cell membrane itself is phospholipid bilayer, which is highly 
impermeable to charged particles. Embedded within the plasma membrane are ion 
channels, pores that are selectively permeable to specific ions and typically composed 
of several proteins.5 
 The numbers of ion channels present at the membrane and their gating 
parameters (such as ligand presence) can be regulated by the cell, allowing it to fine-
tune ionic fluxes across the membrane. Many different ion channels exist, and the 
composition of the conductance repertoire varies significantly, depending upon cell 
type and function.5 
 Ion channels are broadly categorised in terms of the main ion carried through 
the channel’s pore as well as its gating variables, i.e. the physico-chemical factors 
that affect its conductivity.9 Ion channels generally allow the passive movement of 
ions down their electrochemical gradient when open. The cation channels are 
selective, allowing calcium (Ca2+), potassium (K+), or sodium (Na+), whilst the anion 
channels allow non-specific anion flux; the chloride ion (Cl-) is the most abundant 
anion. Besides ion channels, which allow ion fluxes between the intracellular and 
extracellular compartments, there also occur hemichannels that form so-called gap 
junctions; these are cell-to-cell contacts that permit electrical continuity of the 
cytoplasm and cytoskeleton between adjacent cells, and thereby enable intercellular 
signalling.24 This type of communication is essential to the propagation of electrical 
impulses through excitable tissues such as the myometrium.25,26 

Changes occurring within the myometrium through gestation 
The myometrial conductome undergoes numerous changes throughout pregnancy 
which correlate with, first, quiescence and, subsequently, global synchronisation.4 
Complete lack of excitation will prevent contraction altogether, whilst impaired 
electrical signalling will ultimately lead to disordered contraction, prolonging 
delivery, which carries with it increased foetal and maternal risk of complications.4 
Conversely, excitability of the myometrium prior to term may increase the likelihood 
of preterm delivery.4 Even at term, if the myometrium begins to contract before the 
cervix if fully ripened, labour may be prolonged, increasing the risks of maternal and 
foetal complications.4 
 Throughout gestation, the uterus maintains quiescence by high expression of 
the BK family of potassium channels. The potassium current carried by this channel 
acts to hyperpolarise the membrane, leading to a reduced likelihood of stimuli being 
able to attain the threshold for opening the L-type calcium channel and triggering an 
AP.27 
 In the event that a “nominally quiescent” cell does become excited, the 
propagation of depolarisation events to nearby cells is prevented by the low 
abundance of connexins, which make up the hemichannels, throughout much of 
gestation.28 Connexin 43 expression is increased in preparation for labour, whilst 



expression of connexin 26, another hemichannel component, peaks before delivery, 
and then falls. By altering the composition of gap junctions, the spread of the 
electrical excitation through the myometrium is modulated.26 Indeed, numerous 
changes to the myometrium occur up until delivery, with significant differences 
observed in the transcriptomes of gestationally matched myometrial biopsies.29 

Ion channels & currents across the cell membrane 
The quantitative data sets produced by patch-clamp electrophysiological 
experimentation lend itself well to mathematical modelling. An individual channel 
may be considered to be in an open or closed state, which determines whether it is 
able to conduct a current. The magnitude of the current that will flow through a single 
channel in the open state is determined by its unitary conductance ( ! ); wider pores in 
the membrane will allow a more substantial ion flux than narrower ones, and the 
mechanisms by which channels select for specific ions contribute to electrical 
resistance. As these factors are different for each particular type of channel, each 
accordingly has a different unitary conductance.5,9 
 The challenge for a mathematical model is to determine the likelihood that a 
channel of species !  will be open at a particular time ( ! ), and also to determine 
how quickly the channel will transition between open and closed states. The factors 
that cause a channel to move between an open or closed state are termed gating 
variables.5,9 In constructing mathematical models, these variables may be measured 
empirically (such as membrane potential, ! ) or estimated by means of a calculation. 
Although gating variables are naturally associated with an interval scale, limitations 
in measurement techniques sometimes constrain one to work a weaker scale. 
 When numerous copies of a channel type are considered together, e.g. for an 
entire cell, the open probability !  can be taken to represent the fraction of the total 
channel population that is in the open state; this is a simple corollary of the law of 
large numbers. Thus, if the membrane density of channels of the species can be 
determined ( ! ), the total current that will be carried ( ! ) can be approximated as 
follows: 
  !  . 
The reversal potential !  may be calculated from the Nernst equation: 

  !  

(where !  is the gas constant, !  the absolute temperature, !  the valency of the ion 
species conducted by channel type , and  Faraday’s constant).9 This formula 
represents the thermodynamic equilibrium between the electrical forces experienced 
by an ion and its random Brownian motion leading to a net movement of the ion 
down its concentration gradient. When these two processes oppose each other across 
a selectively permeable membrane, but are in equilibrium, there is no net movement 
of the ion. The value of  at which this happens is .9 The RMP can be 
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intuitively thought of as a weighted compromise between the !  values for the 
various ionic species ! . 
 The cytosolic and interstitial fluids contain electrolytes which endow these 
media with rapid Debye equilibration,9 which compels any charge imbalance to 
accumulate atomistically close to cell membrane; accordingly, the latter acts as a 
capacitance ! . If we treat Debye equilibration as infinitely rapid, the potential 
difference !  between cytosol and interstitial fluid follows immediately from charge 
conservation: 

  !  

which makes clear that we will have obtained a mathematically closed system as soon 
as !  has been described for all channel species !  extant within the conductome. 

The pioneering work by Hodgkin and Huxley 
Hodgkin, Huxley, and colleagues modelled the AP in a seminal series of papers.30–34 
Not only did they develop the technique of patch-clamp electrophysiology, but they 
used it to derive mathematical models that describe ionic currents across the 
membrane in an approach that remains relevant nearly 70 years later. This feat is 
made all the more impressive by the fact that the existence of the ion channels was 
not confirmed until years later. 
 In the Hodgkin-Huxley (HH) model, an ion channel is envisaged as a pore in 
the membrane containing a series of barriers, each of which can bar the flow of ions 
by being in the closed state, and all of which must be open to allow the pore to be 
conducting. This conceptual model is shown schematically in Figure 5. The 
assumption of statistical independence between these movable barriers (“gates”) 
translates into the proposition that the probability of the channel being in a 
conducting state can be written as the product of the corresponding probabilities for 
the individual gates. In particular, when all the gates are of the same type, one would 
simply take a power of the individual gate probability to give the overall pore 
probability (the exponent being the number of gates that are arranged in series within 
the pore of the channel). 
 The genius of Hodgkin and Huxley consisted in translating a series of voltage-
clamp measurements into a dynamical model of these gates. In particular, the 
probability for each gate is assumed to follow linear relaxation behaviour toward a 
final value, with the key proviso that both this final value and the relaxation rate are 
taken to be functions of ! . It is this functional dependence that makes !  the gating 
variable (other examples of gating variables are e.g. concentrations of intracellular or 
extracellular ions or molecules, which might be metabolites such as ATP or secondary 
messengers such as IP3, cf. Figure 4). The model’s non-linear properties, notably its 
ability to reproduce the AP, derive from the presence of voltage-dependence in the 
relaxation rates and instantaneous equilibrium values of the gating variables. 
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Empirical state transition graphs 
The state transition kinetics for a single gate in the HH model is particularly simple: 
  !  

Where !  is the closed state, !  the open state, !  the transition rate (in the sense of a 
hazard function on the exponentially distributed lifetime of the closed state) from 
closed to open, and !  the corresponding rate from open to closed. The stroke of 
brilliance was not only to hypothesise that these rates both depend on the reigning 
membrane potential !  but also to devise a technique to reconstruct empirical 
formulas for these dependencies. The above diagram can be viewed as a state 
transition graph with two nodes (open and closed) and two directed edges (it is thus, 
technically speaking, a “directed graph” or digraph but we will just use the friendlier 
term graph). The state transition graph of the entire channel is then defined as the 
Cartesian product over the graphs for each of the gates, where the assumption of 
statistical independence allows us to carry over the transition rates from the factor 
graphs in the obvious way; Figure 6 illustrates this procedure for the product of two 
simple gates. Three or more gates can be multiplied together in the same manner, 
although the resulting hypercube graph is perhaps less readily visualised as the 
numbers become larger. 
 The vertices in the state transition graph correspond to minima in the so-called 
“energy landscape” of the ion channel. The regular hypercube arrangement of the 
HH model is seldom encountered in nature. Individual gates often have more than 
two states, and are not necessarily statistically independent.5 Two representative 
examples of empirically determined state transition graphs are shown in Figure 7. In 
addition to closed and open states, there are inhibited states as well, closed states with 
long persistence times, or exit rates that depend on special gating. 
 Several remarks are in order since the issue appears to invite numerous 
common misunderstandings. First, the HH-model channels are often discussed as if 
they were antonymic to “Markov chain models” but this is a distinction without a 
difference. Since state transition graphs are isomorphic to continuous-time Markov 
chains (i.e. there is a unique way of going from an instance of the former to an 
instance of the latter, and vice versa) both have equal call to be regarded as such. 
 Second, models based on empirical state transition graphs are often 
erroneously believed to be more complex than HH models; the truth is that models 
such as typically encountered in the literature (e.g., Figure 7) have rather simpler 
graphs than the HH model depicted in Figure 5, as may be attested by anyone who 
has attempted to sketch on a flat page, say, the 4-dimensional hypercube defined by 
the graph product for the classic HH Loligo giant axion sodium channel: 

  !  

(the symbol !  represents the Cartesian graph multiplication operator; see Figure 6). 
It should be admitted, however, that the energy landscape of a proteinaceous entity as 
large as an ion channel will have hundreds if not thousands of (mostly extremely 
shallow) local minima; an ultra-high resolution empirical state transition graph could 
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accordingly grow to enormous sizes, as the scope and complexity of the graph is a 
function of the accuracy with which the energy landscape of a given ion channel has 
been probed. 
 Third, HH models and models based on empirical state transition graphs are 
often contrasted in terms of “macroscopic”-currents versus “microscopic”-currents. 
The “macro” currents are currents that are in reality carried by two or more distinct 
ion channel species, but represented in the model as though it were carried by a single 
type of pore (or at any rate, by fewer pore types than actually present), whereas 
“micro” currents are purported to each correspond to a single ion channel species in 
the conductome. For example, the large complement of potassium channels in an 
USMC (Figure 8) may be represented as only a handful so-called “pooled 
conductances.” 
 In brief, empirical state transition models are definitely intended to correspond 
to individual channel species (up to the caveat related to the accuracy with which the 
energy landscape is known), whereas the HH-type state transition graph is 
vanishingly unlikely to be the empirical graph of any existing ion channel, given its 
exceptionally regular hypercube topology (even if this is not logically impossible, 
and it would be an interesting challenge to design a proteinaceous ion channel that 
obeys HH rules). At the same time, the HH model is a time-honoured routine tool to 
approximate “macroscopic” currents. Finally, the empirical state transition models are 
often loosely said to be “superior” — in view of the preceding three remarks one may 
appreciate both why this impression easily arises, and why it is misleading at best. 

Stochastic versus deterministic currents at the cellular level 
While there is no fundamental logical distinction between HH-models and those 
predicated on empirical state transition graphs, there do exist important differences 
between the ways in which either can be treated from a computational point of view. 
To appreciate this point, let us consider the simplest non-trivial state transition graph: 
  !  
where !  is a constant. Individual systems subject to this kinetics behave 
stochastically. In a numerical context, continuous-time Monte Carlo simulation can 
be employed.35 If the system (also referred to in this context as particle) starts out in 
state B, there is nothing to be said and the particle just stays there forever. If the 
particle is in state A to begin with, at time zero, it transitions to state B at a point in 
time !  units after time zero, where !  (i.e. !  
where ! , a useful thing to know if drawings from the standard uniform 
distribution are all one has at one’s disposal), and it will remain in state B henceforth. 
If one has !  particles in state A at time zero, the number of particles at time !  is 
subject to the following approximation: 
  !  
which becomes more accurate as !  by the law of large numbers. 
Mathematicians make the idea of accuracy more precise by describing probabilistic 
bounds on the error of the approximation as a function of ! . 
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 The number of ion channels present in a given cell’s conductome will never be 
infinite, so the question becomes whether this number is sufficiently large to warrant 
the use of this “large numbers” approximation (also known as the approximation “in 
expectation,” or the “mean field” approximation). In practice, the criterion ought to 
be whether the approximation incurred is negligible compared to other sources of 
error that affect the quantitative prediction. 

The basics of the mean field approximation 
Let us consider the basic gate 
  !  . 

We have the following expression for the open probability ! : 
  !  
where ! . The mean field approximation amounts to positing 
that, out of the !  instances of this system that are present, a number !  is open. 
The variance about this expectation is ! . If we divide the standard 
deviation by the expectation, we obtain the coefficient of variation, which gives an 
indication of the relative error. This quantity works out as ! , which 
can be made arbitrarily small by taking !  large enough — a fairly elementary 
observation which nonetheless forms the foundation for the mean field approach. 
 For the “product system” in Figure 6, we have: 

  !  

    !  

where !  for ! . In the special case where the rates are 

equal ( !  and ! ) this reduces to an expression 
that is even nicer: 

  !  

Such neat factorisation is the hallmark of HH models, but it does not generically 
obtain for any given empirical state transition graph. If the graph has !  vertices, the 
probabilities for each of these states obey a non-autonomous linear differential 
equation: 

  !  

where !  is a vector whose ! th element denotes the probability of the system 
being in the ! th state (graph vertex), !  is a gating input (of some dimension ! ; 
when there is a single gating variable, such as membrane potential, we have ! ; if 
the channel is, in addition, calcium-gated, we would have !  and so on, 
according as to whether the channel is sensitive to several other gating inputs) and !  
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is an !  matrix which depends on ! , generally in a non-linear fashion, whereas !  
depends on time. Since the channel has to be in some state and can only be in one 
state at a time, it follows that the elements of !  sum to ! . As we saw above, the 
dynamics of !  depends itself on the currents that flow, thus “closing the loop of 
causality.” 
 The open probability is given by the expression 
  !  
where !  is an !  matrix storing the unitary conductances associated with each of 
the !  states. Usually !  can be factored into a scalar which is the unitary conductance 
of the channel, and a row vector consisting of ! s and ! s according to whether the 
corresponding state is open. 
 If we fix !  at some constant value !  (i.e., we “clamp” the gating input in 
the parlance of the electrophysiologist), the above differential equation becomes 
autonomous. We have the standard solution for a constant linear system:36 

 !  

where !  by a Lyapunov-type argument on closed 
compartmental systems (which also accounts for the celebrated H-theorem)36 — we 
assume here for the sake of simplicity that the eigenvalues of !  are all distinct, 
as is generically warranted. The asterisk indicates dependence on ! , i.e. 
! . In intuitive terms, this result says that !  will relax toward ! , 
apart from no more than !  “wobbles.” In this sense, the behaviour of the gating-
clamped system can be regarded as fairly simple. Put differently, much of the 
dynamic interest of a conductance really derives from its gating dependency. 
 If the modes of the system (time scales ! ) are sufficiently fast, we may 
use the approximation !  — the mean field conductance is “slaved” to 
the gating input. Alternatively, using rate quantities of the form 

  !  , 

as our guide, we can divide the time axis into a succession of intervals, during each of 
which the gating input is treated as not changing substantially, and employ a piece-
wise clamped approximation. That is to say, we pretend that the gating input is 
constant over intervals, and we concatenate the corresponding clamped solutions. 
Once more, some economy might be achieved by discarding one or more “fast” 
modes. 
 Yet another option is to consider whether the analytical solution is close to 
being factorable, that is, whether the system can be approximated as a system of 
independent gates — the number of which would have to be rather less than !  to 
make this approach worth considering. 
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Continuous-time Monte Carlo simulation  
Whenever the state transition graph is the HH hypercube, it appears that, in practice, 
the mean field approximation is used. Although this has no a priori justification, 
habitual practice dovetails with the use of HH as a “macro” model for pooled 
conductances. On the other hand, in the case of empirical state transition graphs, the 
subject at hand is a definite species of ion channel, which may be present at such low 
copy numbers per cell that the mean field approximation is not valid. In this case, 
continuous-time Monte Carlo simulation is required. We are dealing with the 
“exponentiated” graph 
  !  

where !  is the graph of a single ion channel of interest (cf. Figure 7 for 
examples) and !  is the copy number present on the cell. As !  grows 
without bound, the system !  behaves more and more deterministically, as 
prescribed by the mean field approximation. The exponential power !  
should certainly not be confused with the exponential in an individual HH-type 
channel with several gates. In the latter, the single channel is conducting only if all 
the gates in its pore are open; in a cellular population of !  channels, the total current 
is proportional to the number of channels that are open, as we saw above. 
 Statistical independence greatly simplifies the Monte Carlo simulation. For 
instance, if we take the exponentiated system 

   !   

and consider a point in time !  where we have !  particles in state A (and hence 
!  in state B), elementary calculations exploiting statistical 
independence allow us show that 
 !  
      !  

for ! , and that the first particle to change state will be a state-A particle 

(transitioning to state B) with probability ! .  These 

results make the setting up of a stochastic simulation virtually trivial. Similarly, if we 
have a general exponentiated graph ! , we need only consider a single instance 
of ! , with “buckets” of particles at each vertex containing the particles, and the 
employ this type of calculation to choose, probabilistically, the next “buckets 
exchanging a particle” event. 
 If we picture this system as the single gate in a (rather elementary variety of) 
ion channel, we may consider the current conducted, which is proportional to the 
fraction of the pores that are in the open state out of a per-cell population of ! . Such a 
current is graphed as a function of time in Figure 9, for various values of ! . For 
! , we observe the current switching abruptly between its minimum and its 
maximum value, as the gate transitions between the !  and !  states. For larger ! , 
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more intermediate levels of current become available in steps of !  of the 
maximum; moreover, the noisiness gradually diminishes as the mean field 
approximation improves (cf. the !  argument alluded to above). In the limit 
! , these levels become arbitrarily close to one another and the system resides, 
“most of the time,” closest to the level corresponding to the equilibrium open 
probability !  (statistical mathematics makes this intuitive but vague 
phrase “most of the time” more precise). 

Stochastic disruption  
Far from merely being of mathematical interest, the difference between the Monte 
Carlo and mean field regimes could well be of crucial physiological importance. 
Consider a number of electrically isolated USMCs, and assume for the sake of the 
argument that they all have identical conductomes and receive identical stimulation, 
amounting to a supra-liminal perturbation in the mean field. However, all have a 
potassium channel with high unitary conductance, present in a large enough copy 
number (identical for every cell) to inhibit the AP when all are open, but small 
enough that the mean field approximation fails and stochasticity reigns. In these 
circumstances, what we observe is that some cells are excited whereas others remain 
quiescent, even though in the mean field all would be excited. 
 Let us contrast a large number of potassium channels with small unitary 
conductances to a small number of potassium channels with large unitary 
conductances (but otherwise identical gating characteristics). It can clearly be 
arranged that the two cases would behave identically in the mean field. However, let 
us suppose that the mean field approximation is only valid for the many channels/
small unitary conductance case; the few channels/large unitary conductance case is 
then revealed to have the ability to desynchronise the myometrium, as soon as 
stochasticity is taken into account. This effect — stochastic disruption — may help to 
explain why we encounter such a byzantine variety of potassium channels in a single 
cell type (Figure 8) and why the potassium channel BK plays a major role during the 
course of pregnancy but not during delivery. 

Gating heterogeneity 
Statistical independence loomed large in the foregoing arguments, and we would 
therefore do well to ask if, besides being mathematically convenient, this assumption 
is well-warranted from a biological point of view. The harsh truth is that this is not 
the case. However, we find a saving grace in the fact that correlations between ion 
channels are generally mediated by their gating characteristics (an exception occurs 
when channels are capable of direct physical interaction, by-passing the intermediary 
of dissolved molecules or the reigning membrane potential). In other words, the 
channels are conditionally independent given their gating, or, as Bayesian statisticians 
would put it, ion channels are d-separated on the evidence provided by the gating 
inputs. 

1/N

∼ 1/ N
N → ∞

(1 + μOC /μCO)−1



 In terms of our notation, the situation is as follows: each channel has its 
(generically distinct) gating input ! , and instead of the exponentiated graph, the 
general case involves the more intricately structured Cartesian product 
  !  
   !  
(here the index !  does not stand for channel type, but ranges over the !  individual 
molecular copies of a given species of ion channel). Statistical independence only 
obtains when ! , i.e. all copies of the ion channel “see” the same gating 
environment. This occurs when gating ligands are well-mixed and present at the same 
concentration everywhere across the cell. Another important example of such gating 
uniformity is the membrane potential, which equilibrates across the cellular surface at 
an extremely rapid rate.9 
 USMCs are connected by gap junctions (Figure 8). As the pregnancy reaches 
full term, connexins are up-regulated,37 leading to a dramatic decrease of electrical 
resistance across these junctions. This does not only permit the propagation of 
excitation over larger regions of the organ, but also brings the cytoplasms of 
neighbouring cells closer to behaving as a single conductor. In mathematical terms, 
this implies that the mean field approximation becomes better. In other words, the 
stochastic disruption effect described above is suppressed by the electrical joining up 
of neighbouring cells. Under these conditions, a fasciculus becomes more 
deterministic and unified in terms of its electrophysiological behaviour. 
 As shown in Figure 4, cytosolic calcium is a key intermediary in cellular 
excitation, its local concentration acting as an important gating variable. Inasmuch as 
this concentration is spatially heterogeneous even within a single cell, we have a 
situation where two copies of the same ion channel species, say !  and ! , can 
experience distinct gating inputs, i.e. ! . 
 To describe this heterogeneity, the modeller can opt for different approaches. 
One is to obtain data regarding these inputs at high spatio-temporal resolution, and 
feed these directly into the model at the level of ! . Another is to 
formulate mathematical models for these inputs. For instance, one might represent the 
local calcium concentration as a stochastic process. The latter can take the form of a 
continuous-time Markov chain with state transition graph ! . The kinetics topology of 
a calcium-gated channel can then be represented by the Markov chain over the 
product ! ; the rate labels on the directed edges (“arrows”) do not carry over as 
in Figure 6, since ! ’s rates are dependent on the state (i.e., vertex) of ! , and this 
cross-dependence has to be taken into account (to make matters even more 
complicated, the rates of !  depend on the global state of the cell). 
 In the case where the calcium fluctuations are spatially uncorrelated across the 
cell, the ion channel population can be represented by the exponentiated graph 
! ; the latter, finally, may or may not be amenable to a mean-field 
approximation (thus, even if local stochasticity is taken properly into account, the 
global, cellular behaviour may turn out to be “deterministic”). 
 This construction can also be used when two or more ion channels are in direct 
physical interaction. Thus, if we have two ion channels !  and ! , we study the 
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Markov chain over the product ! . We emphasise that this construction is 
necessary and proper, whether or not we ultimately work with the mean field 
approximation or with Monte Carlo simulation, for instance. 
 As a physiologically relevant application of gating heterogeneity, we consider 
the cytosolic calcium gradients that are created when calcium diffuses via the gap 
junctions from an excited cell to its quiescent neighbour.38 The cytosolic calcium 
concentration in the neighbouring cell has risen in the process of activation, as 
described in the foregoing sections, and the concentration difference across the gap 
junction causes a net diffusion of calcium into the inactive cell. The spindle-shaped 
USMC can be treated as axially symmetric. The relevant spatial parameter is 
therefore just the longitudinal distance from the gap junctional zone. If no other 
calcium-related phenomena are (as yet) happening, such as release from the SR or 
influx through calcium channels, the spatio-temporal description of the cytosolic 
calcium concentration in the inactive cell can be treated as a standard diffusion 
problem. Combining the two, one can infer ! , the gating input on the ! th copy of 
the channel. 
 If the cell were to localise calcium-gated potassium channels (such as BK19,20) 
near gap junctions, the calcium ions that enter would furnish a drive towards ! , 
which counteracts the depolarising current conducted via the gap junction and thus 
effectively shutting down cell-to-cell propagation of activity (even when connexins 
are being expressed). By contrast, if the cell were to populate the neighbourhood of 
gap junctions with channels that conduct ions whose !  is more positive than the 
RMP (e.g. Cl-, Na+, Ca2+), this would provide a drive that reinforces the depolarising 
currents transmitted via the connexins. Calcium-gated ion channels that co-localise 
with gap junctions could therefore serve as a kind of transistor, modulating the 
transfer of the exciting stimulus from one cell to the next, both in a positive and 
negative sense. 
 The transistor effect indicates that the spatial disposition of calcium-gated ion 
channels over the cell membrane, relative to the location of the gap junctions, should 
be carefully observed and taken into account in the mathematical models of 
individual cells. This effect may be of particular physiological importance in 
controlling the global spread of activation, i.e. the ability of an excitation event to 
propagate over the entire organ. 

Detailed biophysics of myometrial excitability 
The USMC’s conductome comprises a vast repertoire of potential conductance 
entities, where the multimeric nature of ion channels contributes combinatorial 
richness (Figure 8). Modellers of excitable cells could attempt to tackle this diversity 
by pooling conductances together into “macro” currents that are more readily 
characterised using electrophysiological methods. However, this approach has a 
fundamental flaw, inasmuch as a given putative drug compound generally will have 
distinct pharmacodynamics for each individual ion channel. This severely limits the 
utility of any model based on “macroscopic” currents (i.e., “pooled conductances”), 
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particularly in the context of evaluating or predicting the effects of putative drugs 
such as candidate tocolytics or tocotropics. 
 To overcome these limitations, Atia et al.23 constructed a comprehensive 
“micro”-currents model incorporating all potential conductance species that were 
detected by Chan et al.29 using RNAseq. This dataset was obtained from human tissue 
samples, and so is immediately applicable to the human USMC. The potential 
conductome (conductance repertoire) that could be generated through the 
combination of each of the constituent subunits expressed was determined. Empirical 
state transition kinetics for each of these conductances was gleaned from a 
comprehensive literature search. This exercise left only the expression levels of the 
ion channels as the free parameters, that is, a set 
  !  
where !  is about 30, to be estimated from further experimental data. The customary 
approach is to take observations, e.g. a series of measurements of !  over an 
interval of time, i.e. !  where !  and !  are the start and termination times of 
the period of observations, and compare the observed values of !  to those 
obtained by solving the integral equation for ! : 

  !  

(which typically has be accomplished by numerical means, as closed form solutions 
are generally not available). A time-honoured method to compare data to model 
predictions makes use of the sum of the squares of the differences;36 this sum is a 
function of the parameter vector !  and the value of the latter is 
sought for which the error sum attains a global minimum. 
 However, there is no such unique value; instead, in the generic case, there is a 
subspace of !  each element of which is such that the extremum of the minimand 
obtains. This indeterminacy is a general difficulty that arises both for “macro” and 
“micro” models, even if in the former case it is sometimes dealt with by pretending it 
is not there. 
 A pragmatic if somewhat brute-force approach to this identifiability problem is 
to take more measurements, that is, observe the system under various conditions as it 
exhibits a wider range of physiological behaviours, and add the sum of squared errors 
together into one “grand sum” as the minimand. This will never increase the size of 
the indeterminate minimiser subspace, but it may well reduce it. 
 There are now two cases to consider: (i) by thus concatenating a sufficient 
number of experiments, this dimension will be reduced to zero, that is, a unique value 
for !  can be found eventually, even if this may require a huge amount of 
data, or (ii) no matter how many observational data are appended, there is an 
irreducible core of dimension greater than 0. In the latter case, there is an irreducible 
functional redundancy in the system. 
 The indeterminate subspace can be characterised as the kernel of a certain 
operator, which allows its structure to be explored with the customary tools of linear 
algebra.23 For instance, one can determine subsets of ion channels that are 
substitutable for other such subsets, in the sense of compensatory changes in surface 
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densities of the latter set when the surface densities of the elements of the former are 
changed, all the while preserving the behaviour observed (i.e. !  for ! ). 
Life scientists often wax philosophical on the subject of functional redundancy: it 
should be accorded a central role in theoretical biology and its significance is 
intuitively clear, even if a precise general definition has always been elusive. Here we 
have a precise experimental and mathematical method to characterise such functional 
redundancy. 
 To resolve the identifiability problem, we may choose a value of !  
within the kernel that satisfies an additional constraint, such as minimising the cost 
for the cell in expressing the ion channels. Using this approach, a putative density 
vector can be identified and used to predict the behaviour of the electrophysiology of 
the whole cell assuming a given pharmacodynamics for a specific ion channel.39 The 
redundancy analysis plays a key role here: for instance, suppose that we have a 
candidate drug that knocks-out the potassium channel Kir7.1, and we find that this 
makes the cell more excitable: a putative tropotopic agent.39 However, if the 
redundancy analysis shows that the cell can compensate for the loss of Kir7.1 by a 
suitable up-expression of other channels, this should give us pause; it is not a given 
that a USMS will do this just because the linear algebra indicates that it can. For 
instance, whereas on the one hand we observe that a downshift in the BK channel is 
readily compensated, on the other hand, knock-out of the hERG channel calls for 
substantial adjustments to the conductome, with many channels requiring expression 
levels beyond physiological limits. These predictions are consistent with 
experimental evidence; inhibition of BK has no effect on uterine contractility,40 but 
inhibition of hERG depolarises the membrane and prevents generation of APs.41 

Outlook: a computational systems biology platform 
Detailed biophysical models of the uterine smooth muscle provide a platform to 
simulate, accurately at molecular, histological, and whole-organ level, smooth muscle 
behaviour (e.g. to assess putatively pharmacologically active compounds): this 
comprises specific ion channels at the molecular level and effects on the propagation 
of the contraction wave at the whole-organ level, which can be studied in detail on 
the basis of comprehensive high-resolution digitisation of muscle fibre micro-
architecture. To realise such simulations presents numerous challenges, in terms of 
data acquisition, mathematical foundations, and computational integration of data of 
various modalities, including transcriptomics, histology, and electrophysiology. 
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Figure 1. The non-pregnant human uterus: gross morphology and anatomy, with inset 
showing histological section (hæmatoxylin and eosin stain) of myometrial tissue.  



 

Figure 2. The non-pregnant human uterus. A: exterior aspect, with the cervical end at 
the bottom and the cranial extremity (fundus) at the top. B: computer-enhanced 
visualisation of three-dimensional myometrial structure of the smooth muscle fibre 
network, based on digitisation of histological sections, followed by automated 
analysis of fibre direction. Superficial fibres tend to run from top to bottom, whereas 
deep fibres near the cervix run around the uterine cavity. C: False colour rendering of 
an oblique slice through the digitised and reconstructed three-dimensional muscle 
fibre micro-architecture where colours in the diagram represent bundle direction, as 
follows: red representing left-right, green representing up-down, and blue coming out 
of the page. Colour intensity is proportional to nuclear density. Adapted from ref. 8. 



Figure 3. The Ferguson reflex. Hypothalamic neurones (1) release the peptide 
hormone oxytocin into the bloodstream via the vascular bed of the posterior part of 
the pituitary (2). This oxytocin is carried by the bloodstream around the body (3). 
Smooth muscle cells in the uterine wall express oxytocin receptors (4), which 
mediate the positive effect of the hormone on the excitability of these cells. Uterine 
contractions lead to a build-up of pressure inside the womb, which is registered by 
stretch receptors in the cervix (5). The sensory neurone forms a synapse with a 
neurone of the ascending pathway (6) which conveys the stimulus to the 
hypothalamus (1), thus closing the positive feedback loop.  



 

Figure 4:  The phospholipase-C signalling cascade, through which the electrical 
excitation of a uterine muscle cell is modulated. The first messenger oxytocin (1) 
binds to the oxytocin receptor (2), which activates PLC via the activated alpha 
subunit of the G-protein (3); PLC then cleaves PIP2 into DAG and IP3 (4); DAG 
activates PKC (5), which leads to closure of the BK potassium channel (6), whereas 
IP3 binds its receptor in the membrane of the sarcoplasmic reticulum (7), where the 
majority of intracellular calcium is stored. This interaction leads to a flow of calcium 
from these stores into the cytoplasm (8), which activates an anionic conductance (9). 
The changes in potassium and anion conductance alter the membrane potential, thus 
activating voltage-gated calcium channels, through which extracellular calcium can 
now enter the cell (10). Both the depolarisation and the rise in cytosolic calcium raise 
the open probability of the BK channel (11). Active mechanisms transport calcium 
ions into the sarcoplasmic reticulum (12). 

PLC: phospholipase-C 
OTR: oxytocin receptor 
PIP2: phosphatidylinositol-4,5-bisphosphate 
DAG: diacylglycerol 
IP3: inositol-1,4,5-triphosphate 
PKC: protein kinase C 
VGCC: voltage-gated calcium channel  



Figure 5: Representation of the Loligo sodium conductance model as described by 
Hodgkin and Huxley. The model consisted of four independent gates: 3 m-gates 
(blue) and 1 h-gate (pink), all of which must be open in order to allow current to flow. 
At the resting potential, the channel is unlikely to be open, as one or more m-gates 
will be closed. Following an initial depolarisation of the membrane, the m-gates are 
opened, allowing sodium ion flux. After sustained depolarisation, the slower h-gate 
closes, inactivating the current.  



Figure 6. Cartesian multiplication of two gate graphs. The box symbol on the left 
represents the operation of graph multiplication. The vertices in the product graph (on 
the right) contain the open/closed information regarding the gates in the two factor 
graphs on the left. The rate labels carry over in the obvious manner, as a result of 
statistical independence.  



 

Figure 7. Examples of empirical state transition graphs. Top: Kv4.3 channel; bottom: 
hERG channel. Adapted from ref. 23. 



 

Figure 8. Schematic representation of the uterine smooth muscle cell, with its 
extended conductome, i.e. all electrogenic entities predicted on the basis of tissue-
level transcriptomics. Potassium channels are indicated in red, calcium channels blue, 
and chloride channels yellow. Adapted from ref. 23. 



 
Figure 9. Current (ordinate) plotted as a function of time (abscissa). Numbers indicate 

!  in the system ! . Halfway through the simulation, the opening rate !  

is suddenly tripled to mimic a gating effect, as may be observed during voltage clamp 
experiments. Abscissa is scaled to the 110% of the maximum current carried.
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