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08005

omiros.papaspiliopoulos@upf.edu 5

G.O. ROBERTS

Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK
gareth.o.roberts@warwick.ac.uk

AND G. ZANELLA

Department of Decision Sciences, BIDSA and IGIER, Bocconi University, via Roentgen 1, 10

20136 Milan, Italy
giacomo.zanella@unibocconi.it

SUMMARY

We develop methodology and complexity theory for Markov chain Monte Carlo algorithms
used in inference for crossed random effect models in modern analysis of variance. We consider 15

a plain Gibbs sampler and a simple modification we propose here, a collapsed Gibbs sampler.
Under some balancedness assumptions on the data designs and assuming that precision hyper-
parameters are known, we demonstrate that the plain Gibbs sampler is not scalable, in the sense
that its complexity is worse than proportional to the number of parameters and data, but that
the collapsed Gibbs sampler is scalable. In simulated and real datasets we show that the explicit 20

convergence rates our theory predicts match remarkably the computable but non-explicit rates
in cases where the design assumptions are violated. We also show empirically that the collapsed
Gibbs sampler, extended to sample precision hyperparameters, outperforms significantly, often
by orders of magnitude, alternative state of the art algorithms. Supplementary material includes
some proofs, additional simulations, implementation details and the R code to implement the 25

algorithms considered in the article.

Some key words: Bayesian computation, analysis of variance, Gibbs sampler, spectral gap

1. INTRODUCTION

Crossed random effect models are additive models that relate a response variable to categorical
predictors. In the literature they appear under various names, e.g. crossclassified data, variance 30

component models or multiway analysis of variance. They provide the canonical framework for
understanding the relative importance of different sources of variation in a data set as argued in
Gelman (2005). For the purposes of this article we focus on linear models according to which

yi1···iK ∼ N
{
a(0) + a

(1)
i1

+ · · ·+ a
(K)
iK

, (ni1···iKτ0)
−1
}
, ik = 1, . . . , Ik, k = 1, . . . ,K

(1)
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where a(k) is a vector of Ik levels, a(k)ik , corresponding to the k-th categorical factor and a(0)35

is a global mean with I0 = 1 level. These factors might correspond to both main and interac-
tion effects in categorical data analysis. We work with exchangeable Gaussian random effects,
a
(k)
j ∼ N(0, 1/τk), for k > 0, which is by far the most standard choice, although interesting

alternative priors exist as in Volfovsky & Hoff (2014). The precision terms (τ0, . . . , τK) are typ-
ically unknown and are estimated either using fully Bayesian or optimization-based methods. In40

the notation of (1) we allow ni1···iK = 0, which corresponds to empty cells. The total number
of factor levels, hence of regression parameters, is denoted by p =

∑K
k=0 Ik, and the number of

observations by N =
∑

i1···iK ni1···iK . Crossed random effect models adapt naturally to modern
high-dimensional but sparse data. For example, they are used in the context of recommender sys-
tems where in the simplest setup there are two factors, customers and products, and the response45

is a rating; the examples in Gao & Owen (2017) are such that p� N � I1 × I2.
We say a data design has balanced levels if the same number of observations are made at each

level of each factor, but this number can vary with factor, see Section 2·1 for a mathematical def-
inition. The design has balanced cells if the same number of observations are available for each
combination of factor levels, i.e., at each cell of the contingency table defined by the categorical50

predictors. By construction, a design with balanced cells has also balanced levels.
We are interested in scalable methodologies to perform likelihood-based inferences for crossed

random effect models. The main computational bottleneck is the need to perform an integration
over the high-dimensional space of factors. This is needed either for a fully Bayesian infer-
ence that places priors on the precision hypeparameters or for optimization methods using the55

marginal likelihood. An exact marginalisation is possible in the linear model due to the joint
Gaussian distribution of responses and factors. However, this involves matrix operations whose
cost is O(p3), which can be prohibitively large in modern applications. For example for typ-
ical recommender systems we have I1 × I2 ≥ N and thus p ≥ max{I1, I2} ≥

√
N , meaning

that the cost of these operations is at least O(N3/2), which can be infeasible for large datasets.60

See also Section 1 of Gao & Owen (2019) for related discussion and references. Depending on
the data design, the precision matrices of the Gaussian distributions involved may be sparse, in
which case black-box sparse linear algebra algorithms can be used for the matrix operations in
order to reduce the computational cost. However we are not aware of theoretical results that can
be applied to context of crossed random effect models guaranteeing that the resulting compu-65

tational complexity can be reduced to, e.g., O(N). Additionally, we are interested in exploring
methodologies that could be extended to non-Gaussian models, e.g., those with categorical or
count observations.

Markov chain Monte Carlo can be used to carry out the integration over factors. A popular
and convenient algorithm to update the factors given the precision terms is the Gibbs sampler,70

which samples the factors a(k) iteratively from their full conditional distributions. Recently, Gao
& Owen (2017) showed that, in the special case that a(0) is assumed known, in the context of
recommendation where K = 2 with balanced cell design, the Gibbs Sampler has complexity
O(N3/2). The complexity of a Markov chain Monte Carlo algorithm can be defined as the prod-
uct of the computational time per iteration and the number of iterations the algorithm needs to75

mix. The argument in Gao & Owen (2017) suggested that the Gibbs sampler is not scalable for
crossed random effects models due to its superlinear cost in the number of observations.

In this article we develop the theory for analysing the complexity of the Gibbs sampler for
crossed random effect models under different designs. We propose a small modification of the
basic algorithm, the collapsed Gibbs sampler, which we analyse too, and establish rigorously80

its superior performance and scalability. We obtain explicit results on the spectral gap of the
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(a) Relaxation time versus number of datapoints forK = 2,
I1 = I2 and τ0 = τ1 = τ2. Data are missing at completely
random with probability of missingness 0.9. The exact re-
laxation times and those predicted by our theory are shown.

(b) Autocorrelation function of a(0) and σ3 = τ
−1/2
3 for the

Gibbs Sampler (GS), collapsed Gibbs Sampler (cGS) and their
combinations with parameter expansion (+PX) when applied to the
InstEval dataset. See Section 6·2 for details on the set-up.

Fig. 1. Comparison between the Gibbs Sampler (GS) and
its collapsed version (cGS).

algorithms in Section 5 and analyse their computational cost in the Appendix. The essence of
the methodology we develop in this article is shown in Figure 1(a), details of which are given in
Section 6·1. The figure highlights different aspects of our results. We consider modern big data
asymptotic regimes where both the number of parameters and observations grow. The relaxation 85

time of the Gibbs sampler and the collapsed Gibbs sampler, see Section 4·2 for definition and
interpretation of relaxation time, can be computed numerically and are plotted versus the size
of the datasets. It is evident the slowing down of the Gibbs sampler and the improvement of the
collapsed Gibbs sampler with increasing data sizes. Our theory is not applicable in these cases
since the resultant designs, which have been generated randomly, do not have balanced levels, 90

still the rate that our theory predicts matches remarkably the correct rates. We obtain comparable
results in a well-known real dataset of student evaluations with 5 factors in Section 6·2.

The complexity theory developed in the first part of the article relies on assuming the preci-
sion hyperparameters being known. However, the collapsed Gibbs sampler methodology can be
easily extended to provide an algorithm for fully Bayesian inference when precision hyperpa- 95

rameters are given prior distributions. In Section 6·2 we compare numerically the performances
of the resulting sampler with state of the art Markov chain Monte Carlo algorithms, such as pa-
rameter expansion and Hamiltonian Monte Carlo. We find that the collapsed Gibbs sampler we
propose has far superior performance, with an improvement in effective sample size per unit of
computation time ranging from 1 to 3 orders of magnitude depending on the parameter under 100

consideration. Figure 1(b) highlights some of the results for a dataset analyzed in Section 6·2.
The collapsed Gibbs Sampler provides a dramatic decrease in autocorrelation compared to the
plain Gibbs Sampler, for both factors and precision terms, while no significant benefit is obtained
from parameter expansion.

The theory is based upon a multigrid decomposition of the Markov chain generated by the 105

sampler, which allows us to identify the slowest mixing components, and capitalises on exist-
ing theory for the convergence of Gaussian Markov chains. The multigrid decomposition of a
Markov chains is a powerful theoretical tool for studying its spectral gap, since it provides its
decomposition into independent processes. Identifying such decomposition is a kind of art; a
previously successful example is in Zanella & Roberts (2017) in the context of multilevel nested 110

linear models.
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2. DECOMPOSITIONS OF THE POSTERIOR DISTRIBUTION

2·1. Notation
The statistical model we work with is described in (1). In accordance with standard practice

Gaussian priors are used for the factor levels, a(k)j ∼ N(0, 1/τk), and an improper prior for the115

global mean, p(a(0)) ∝ 1. When convenient we write a(0)i0 , which is is the same as a(0). We allow
ni1···iK = 0, which corresponds to empty cells in the contingency table defined by the outer
product of the categorical factors. With n we denote the data incidence array, a multidimensional
array with elements ni1···iK . Two-dimensional marginal tables extracted from the data incidence
matrix are denoted by n(l,k) and have elements n(l,k)il,ik

, which is the total number of observations120

on level il of factor l and ik of factor k; margins of this table are denoted by n(k), and are vectors
of size Ik with elements n(k)j , which is the total number of observations with level j on the k-th

factor. By definition
∑

j n
(k)
j = N , where N is the total number of observations. A data design

has balanced levels if n(k)j = N/Ik for every k and j, and balanced cells if ni1···iK = N/
∏
k Ik

for all combinations of factor levels.125

Averages of vectors are denoted by an overline, e.g., ā(k); weighted averages are denoted by
a tilde, e.g., ỹ =

∑
i1···iK yi1···iKni1···iK/N . The vector of all factor averages is denoted by ā,

the first element of which is trivially a(0). We use a(−k) to denote the vector of all factor levels
except those of a(k) and a(k)−j to denote the vector of all levels of factor k except the j-th level;
a denotes the vector of all levels of all factors. We define δ to be a residual operator that when130

applied to a vector returns the difference of its elements from their sample average, e.g., δa(k)

has elements a(k)j − ā(k) and is referred to as the factor’s level increments; δa denotes the vector
of all such increments, except δa(0) which is 0 trivially.

The law of a random variable X is denoted by L(X), e.g., L(a
(k)
j ) = N(0, 1/τk), and that of

X conditionally on Y by L(X | Y ). When a joint distribution has been specified forX and other135

random variables, L{X | · } denotes the full conditional distribution of X conditionally on the
rest. In the following sections up to Section 6 we assume the precision terms to be fixed without
explicitly writing the conditioning on τ in all expressions.

2·2. Full conditional distributions
Fairly standard Bayesian linear model calculations yield that the conditional distribution of140

a(0) given all other parameters and data is

L
{
a(0) | ·

}
= N

{
ỹ −

∑
k

∑
i a

(k)
i n

(k)
i

N
, (Nτ0)

−1

}
. (2)

With balanced levels this simplifies to

L
{
a(0) | ·

}
= N

{
ỹ −

∑
k

ā(k), (Nτ0)
−1

}
. (3)

Similarly we obtain that for k > 0145

L
{
a
(k)
j | ·

}
= N

{
n
(k)
j τ0

n
(k)
j τ0 + τk

(
ỹ
(k)
j − a

(0) −
∑

l 6=k,l 6=0

∑
i a

(l)
i n

(k,l)
j,i

n
(k)
j

)
, (n

(k)
j τ0 + τk)

−1

}
,

(4)
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where ỹ(k)j is the weighted average of all observations for which their level on factor k is j. With
balanced cells this simplifies to

L
{
a
(k)
j | ·

}
= N

 Nτ0
Nτ0 + Ikτk

ȳ −∑
l 6=k

ā(l)

 , Ik(Nτ0 + Ikτk)
−1

 . (5)

2·3. Factorisations 150

In balanced levels designs the posterior distribution of regression parameters admits certain
factorisation, which are collected together in the following Proposition. Throughout the paper,
we use products of laws to denote independence.

PROPOSITION 1. For balanced levels designs

L{ā, δa | y} = L{ā | y}L {δa | y} , 155

and

L
{
ā(−0) | y

}
=

K∏
k=1

L
{
ā(k) | y

}
. (6)

For balanced cells designs we have further

L{δa | y} =
∏
k

L
{
δa(k) | y

}
.

The factorisation in (6) is particularly relevant to the collapsed Gibbs sampler we introduce later 160

in the article. A sketch of the proof is the following. For the first factorisation, directly from (4)
with the assumption of balanced levels we obtain that

L
{
ā(k) | y, a(−k), δa(k)

}
= N

 Nτ0
Nτ0 + Ikτk

ỹ − a(0) −∑
l 6=k

ā(l)

 , (Nτ0 + Ikτk)
−1

 .

(7)

We use the fact that global and local Markovian properties are equivalent, see, e.g., Section 3 of
Besag (1974). This yields the first independence statement in the proposition. The proof of (6) 165

follows by similar arguments using L
{
ā(−0,−k) | y

}
= N(0, (Ikτk)

−1). The third factorisation
is argued in the same way noting that (5) implies that

L
{
δa(k) | y, a(−k), δa(−k)

}
= N

{
(0, . . . , 0)T , (Nτ0 + Ikτk)

−1 (IkIIk −HIk)
}
,

where IIk denotes the Ik × Ik identity matrix and HIk the Ik × Ik matrix with each entry equal
to 1. 170

3. GIBBS SAMPLERS FOR INFERENCE

We consider two main algorithms in this paper. The first is a block Gibbs sampler that updates
in a single block the levels of a given factor conditional on everything else. Due to the depen-
dence structure in the model, the levels of a given factor conditional on the rest are independent,
hence the sampling is done separately for each factor level, i.e., iteratively from L

{
a
(k)
ik
| ·
}

, 175
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for ik = 1, . . . , Ik, and k = 0, . . . ,K; these distributions are specified in Section 2·2. We re-
fer to this algorithm as the Gibbs sampler, although it should be understood that it is just one
implementation of the scheme.

We also consider a collapsed Gibbs sampler that samples from L
{
a(−0) | y

}
, i.e., the algo-

rithm that is obtained by first analytically integrating out the global mean a(0), and then sampling180

in blocks the levels of each of the remaining factors. In practice, we implement this algorithm
by sampling iteratively from L

{
a(0), a(k) | ·

}
, for k = 1, . . . ,K. Updating a(0) together with

each block is equivalent to integrating it out before sampling starts, in the sense that the result-
ing transition kernel for a(−0) is the same, with the only difference being whether the values of
a(0) are stored or not. In our implementation we first sample L

{
a(0) | y, a(−0,−k)

}
, and then185

L
{
a
(k)
ik
| ·
}

for ik = 1, . . . , Ik as in the original Gibbs Sampler. The implementation of the
collapsed Gibbs sampler relies on the following result.

PROPOSITION 2. Denoting s(k)j = n
(k)
j τ0/(τk + n

(k)
j τ0), then

L
{
a(0) | y, a(−0,−k)

}
= N

 1∑
j s

(k)
j

∑
j

s
(k)
j

(
ỹ
(k)
j −

∑
l 6=k
∑

i a
(l)
i n

(k,l)
j,i

n
(k)
j

)
,

1

τk
∑

j s
(k)
j

 .

(8)

The reason why we prefer to present the collapsed Gibbs sampler in this way where a(0) is190

updated together with each block, is because our preferred version is still realisable in more
elaborate models, e.g., generalised linear crossed random effects models. In such extensions
exact sampling from L

{
a(0), a(k) | ·

}
might not be feasible, but a Metropolis-Hastings step can

be used instead. Additionally, it requires a minimal modification of the Gibbs sampler code to
implement, as shown in the supplementary material.195

4. COMPLEXITY OF MARKOV CHAIN MONTE CARLO

4·1. Notation
For the stochastic processes generated by Markov chain Monte Carlo the time index corre-

sponds to iteration, which is generically denoted by t, and it is included in parentheses, e.g.,
x(t); in such a case the stochastic process over T iterations is denoted by {x(t)}Tt=1; we write200

{x(t)}when T =∞; we write {(x, z)(t)} to denote a stochastic process that at each time t takes
as value the vector composed by x(t) and z(t). We say that the stochastic process {x(t)} is a
timewise transformation of another {y(t)} if there is a function φ such that x(t) = φ{y(t)} for
all t.

4·2. Spectral gap and relaxation time205

In this article we focus on L2(π) convergence, which relies on functional analytic concepts, a
very high level description of which are given below. For a given target distribution π defined on
a state space X , we define L2(π) to be the space of complex-valued functions that are square-
integrable with respect to π. We define the inner product in this space such that the associated
norm of a function f : X → C is ‖f‖2 =

∫
X |f(x)|2π(dx). For a Markov chain {x(t)} defined210

onX with transition kernel P that is invariant with respect to π, we view P as an integral operator
on L2(π) and denote its spectrum by S. We say that P converges geometrically fast to π in L2(π)
norm, also known as operator norm, if and only if its geometric rate of convergence, defined as
supλ∈S |λ|, is less than 1. The spectral gap of P is defined as the difference between 1 and the
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geometric rate of convergence, hence a Markov chain converges in L2(π) norm if and only it has 215

positive spectral gap. In the remainder of the paper we refer to the geometric rate of convergence
simply as rate of convergence for brevity.

Define the relaxation time of a Markov chain as the reciprocal of its spectral gap. This can
be interpreted as the number of iterations needed to subsample the Markov chain so that the
resultant draws are roughly independent of each other. The complexity of a Markov chain Monte 220

Carlo algorithm can be defined as the product of the relaxation time and the cost per iteration.

4·3. The spectral gap of the Gibbs sampler on Gaussian distributions
The Markov chain {x(t)} generated by a Gibbs Sampler targeting a Gaussian multivari-

ate distribution N(µ,Σ) is a Gaussian autoregressive process evolving as x(t+ 1) | x(t) ∼
N(Bx(t) + b,Σ−BΣBT), see for example Lemma 1 in Roberts & Sahu (1997). The details 225

of the Gibbs sampler, such as the order that its components are updated or blocked together,
are reflected in the precise form of B. This representation implies that the rate of convergence
of the Gibbs sampler is ρ(B), the largest absolute eigenvalue of the matrix B, see Theorem 1
of Roberts & Sahu (1997). This characterisation of the L2(π) rate of convergence has provided
useful insights into the performance of the Gibbs sampler and has lead to much more efficient 230

modifications of the basic algorithm, see for example Papaspiliopoulos et al. (2003, 2007). How-
ever, in high-dimensional scenarios it is often very challenging to compute ρ(B) explicitly as a
function of the important parameters of the model, such as p and N in the crossed effects models
considered here. Hence as a tool for understanding the complexity of the Gibbs sampler in diffi-
cult problems this approach has limited scope. In this article we will make it useful by combining 235

it with the multigrid decomposition developed below, which collapses the problem to studying
the spectral gaps of two Gaussian subchains, {ā(t)} and {δa(t)}, that turn out to be amenable to
direct analysis.

5. COMPLEXITY ANALYSIS FOR CROSSED RANDOM EFFECT MODELS

5·1. Multigrid decomposition of the Gibbs samplers 240

The results we derive in this paper stem from the following result, the proof of which is given
in the Appendix.

THEOREM 1. (Multigrid decomposition) Let {a(t)} be the Markov chain generated either by
the Gibbs sampler or the collapsed Gibbs sampler for balanced levels designs. Then, the timewise
transformations {ā(t)} and {δa(t)} obtained from {a(t)} are each a Markov chain and they are 245

independent of each other.

A crucial point here is that the independence of ā and δa under the posterior distribution, see
Proposition 1, does not imply that the corresponding chains {ā(t)} and {δa(t)} are indepen-
dent of each other. The following very simple example makes this point clear. Consider a Gibbs
sampler that targets a bivariate Gaussian for (x, y) with correlation ρ and standard Gaussian 250

marginals. Then the transformation x and z = y − ρx orthogonalises the target, but the corre-
sponding stochastic processes {x(t)} and {z(t)} obtained by timewise transformation of the
original chain {(x, y)(t)} are not independent Markov chains, see, e.g., the cross-correlogram in
Figure 1 of the supplementary material. Although this is a toy example, there are many instances
where an independence factorisation of the target distribution does not require that of the MCMC 255

algorithm adopted. In the following sections we use Theorem 1 in conjunction with the theory
from Section 4·3 to characterise the complexity of the two samplers.
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5·2. Timewise transformations and convergence of Markov chains
The multigrid decomposition in Theorem 1 identifies two timewise transformations of the

Markov chain {a(t)} produced by either of the algorithms considered in this article, each of260

which evolves independently of each other as a Markov chain. We can relate the rate of conver-
gence of the Markov chains involved in this decomposition using the following two technical
lemmata that are proved in the supplementary material.

LEMMA 1. Let {x(t)} be a Markov chain with invariant distribution π and {y(t)} be a time-
wise transformation given by y(t) = φ(x(t)), where φ is an injective function. Then {y(t)} is a265

Markov chain with the same rate of convergence as {x(t)}.

Lemma 1 is similar in spirit to Theorem 6 of Johnson & Geyer (2012), where it is shown that
various properties of Markov chains are preserved under one-to-one timewise transformations.

LEMMA 2. Let {x(t)} be a Markov chain with state space X1 ×X2 and target distribution
π1 ⊗ π2. If the stochastic processes {x1(t)} and {x2(t)} obtained by projection on theX1 andX2270

components are two independent Markov chains, then the rate of convergence of {x(t)} equals
the supremum between the rates of convergence of {x1(t)} and {x2(t)}.

Therefore, for balanced levels designs the rate of convergence of the Markov chain {a(t)},
generated either by the Gibbs sampler or the collapsed Gibbs sampler, is the larger of the rates
of the two chains {ā(t)} and {δa(t)}. In the remainder of Section 5 we analyse these two chains275

using the theory summarised in Section 4·3 and use the results to characterize the complexity of
the Gibbs sampler and its collapsed version.

5·3. Complexity analysis for balanced cells designs
The following result characterises the rate of convergence of one of the two timewise transfor-

mations involved in the multigrid decomposition.280

PROPOSITION 3. For balanced levels designs the rate of convergence of the Markov chain
{ā(t)} defined in Theorem 1 equals maxk

Nτ0
Nτ0+Ikτk

for the Gibbs Sampler and 0 for the col-
lapsed Gibbs Sampler, and this rate is the same for any order that the different blocks are up-
dated.

Proof. For the Gibbs Sampler, the subchain {ā(t)} is a Gaussian Gibbs Sampler, with (K + 1)285

one-dimensional components. We can explicitly work out that its autoregressive matrix B takes
the form

B =


0 −1 . . . −1
0
... L
0

 (9)

where L is a K ×K lower triangular matrix with diagonal elements equal to (r1, . . . , rK), with

rk =
Nτ0

Nτ0 + Ikτk
. (10)

The correctness of (9) is shown in the supplementary material verifying directly that E{ā(t+ 1) |290

ā(t)} = Bā(t) + b with an induction argument.
Since L is a lower triangular matrix its spectrum coincides with its diagonal elements

(r1, . . . , rK). For each k = 1, . . . ,K, let v(k) be the eigenvector with eigenvalue rk. It is easy to
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check that the (K + 1)-dimensional vectorw(k) = (−r−1k
∑K

`=1 v
(k)
` , v

(k)
1 , . . . , v

(k)
K ) is an eigen-

vector of B with eigenvalue rk. Thus (r1, . . . , rk) are also eigenvalues of B. Finally note that 295

(1, 0, . . . , 0) is an eigenvector of B with eigenvalue 0. With these ingredients the proof of the
claim for the Gibbs sampler follows immediately.

For the collapsed Gibbs Sampler, ā(t) is obtained from ā(t− 1) by simulating ā(k)(t) from

L
{
ā(k)(t) | y, ā(1)(t), . . . , ā(k−1)(t), ā(k+1)(t− 1), . . . , ā(K)(t− 1)

}
,

for k = 1, . . . ,K. By Proposition 1, this procedure produces independent and identically dis- 300

tributed draws from L
{
ā(−0) | y

}
, or equivalently L{ā | y} if ā(0) is jointly updated with ā(k).

These rates do not depend on the order that the different components are updated. This is triv-
ially true for the collapsed Gibbs since the components are independent. For the Gibbs sampler
the argument is as follows. The Gibbs Sampler rate of convergence is invariant with respect to
cyclic permutations of the order of update of the components, see e.g. Roberts & Sahu (1997, 305

p.297). Thus we can always assume a(0) to be the first component to be updated. Then the result
follows by relabeling the components a(1) to a(K) according to their update order and replicating
the argument developed in the previous paragraphs. �

The main result of this section follows rather easily from Proposition 3.

THEOREM 2. For balanced cells designs, the relaxation time of the Gibbs Sampler is 1 + 310

maxk=1,...,K
Nτ0
Ikτk

, and that of the collapsed Gibbs Sampler is 1, i.e. the sampler produces inde-
pendent and identically distributed draws from the target, and these rates do not depend on the
order that different components are updated.

Proof of Theorem 2. Let {a(t)} be the Markov chain generated by the Gibbs Sampler or its
collapsed version. Lemma 1 implies that {(ā, δa)(t)} is a Markov chain with the same rate of 315

convergence as {a(t)}. Thus, by means of Theorem 1 and Lemma 2, the rate of convergence of
{a(t)} equals the maximum between the rate of convergence of {ā(t)} and the one of {δa(t)}.
Proposition 1 implies that {δa(t)} performs independent sampling from L{δa | y} and thus its
rate of convergence is 0 and the rate of convergence of {a(t)} equals the one of {ā(t)}. To
conclude, Proposition 3 and the definition of relaxation times as reciprocal of the spectral gap 320

imply the statement to be proved. �

The theorem completely characterises the relaxation time of the Gibbs sampler and the col-
lapsed Gibbs sampler for balanced cells designs. Considering the computational cost of the al-
gorithms, we find that each of the algorithms requires an O(N) computation at initialisation to
precompute data averages. In the Appendix we show that both algorithms have the same cost per 325

iteration, which is proportional to the number of parameters, p. Therefore, the collapsed Gibbs
sampler is an O(p) implementation of exact sampling from the posterior.

We now consider asymptotic regimes. The more classical asymptotic regime, which we will
refer to as infill asymptotics, keeps the number of factors and levels fixed, hence K and p fixed,
and increases the number of observations per cell, hence N grows. The other more modern 330

asymptotic regime, which we will refer to as outfill asymptotics, increases p with N , e.g. con-
sidering the observations per cell bounded and increasing the number of levels and/or factors. It
is this type of asymptotic that it is more interesting in recommendation applications.

Regardless of the asymptotic regime considered the relaxation time of the collapsed Gibbs
sampler is O(1). On the other hand, that of the Gibbs sampler depends on the regime consid- 335

ered. In infill asymptotics Theorem 2 implies that the relaxation time of the algorithm is O(N).
An intuition for this deterioration of the algorithm with increasing data size can be obtained by



10 PAPASPILIOPOULOS, ROBERTS, ZANELLA

considering the analysis of non-centered parameterisations for hierarchical models in Section 2
of Papaspiliopoulos et al. (2007); the parameterisation of the crossed effect model is non-centred
and the infill asymptotics regime makes the data increasingly informative per random effect,340

hence we should anticipate the deterioration. Therefore, in this regime the complexity of both al-
gorithms isO(N) but in practice the collapsed will be much more efficient. In outfill asymptotics,
bothN and the number of factor levels Ik’s are growing, hence by Theorem 2 the relaxation time
of the Gibbs sampler is no worse than O(N) but no better than O(N1−1/K). The lower bound
on the relaxation time can be deduced from the balanced cells design assumption, which implies345 ∏K
k=1 Ik ≤ N and mink Ik ≤ N1/K ; the bound is achievable when I1 = · · · = IK . On the other

hand, the number of parameters can grow as different powers of N . For example, if the number
of levels for all but one factor are fixed and those of the remaining factor are increasing, e.g. fixed
number of customers and increasing number of products, then p isO(N) and the relaxation time
of the Gibbs sampler is alsoO(N), resulting in a Gibbs Sampler complexity ofO(N2), whereas350

the collapsed Gibbs sampler is O(N).

5·4. Complexity analysis for balanced levels designs
The strategy for obtaining complexity results for balanced levels designs is the same as for

balanced cells and Proposition 3 is again instrumental. However, in this case the analysis is
much more complicated since the second timewise transformation, {δa(t)}, no longer samples355

independently from its invariant distribution; in fact its invariant distribution does not factorise
as in the case of balanced cells. Nonetheless, Lemma 2 and Proposition 3 imply immediately the
following lower bound on the relaxation time of the Gibbs sampler.

THEOREM 3. For balanced levels designs, the relaxation time of the Gibbs Sampler is at least
1 + maxk=1,...,K

Nτ0
Ikτk

.360

From Proposition 3 we also know that the rate of the collapsed Gibbs sampler is that of
{δa(t)}. Therefore, obtaining explicit rates of convergence for {δa(t)} is the step needed for
characterising the relaxation time of both algorithms in balanced levels designs. We are able to
do this forK = 2 in Proposition 4 below. Our theory is based on an auxiliary process {i(t)} with
discrete state space {1, . . . , I1} × {1, . . . , I2} that evolves according to a two component Gibbs365

Sampler, iteratively updating i1 | i2 and i2 | i1, with invariant distribution p(i1, i2) = ni1i2/N .

PROPOSITION 4. For balanced levels designs with K = 2, the rate of convergence of the
Markov chain {δa(t)} is

Nτ0
Nτ0 + I1τ1

Nτ0
Nτ0 + I2τ2

ρaux ,

where ρaux is the rate of convergence of the auxiliary Gibbs sampler {i(t)}.370

Proof. The chain {δa(t)} is a two-component Gibbs Sampler that alternates updates from
L
{
δa(1) | y, δa(2)

}
and L

{
δa(2) | y, δa(1)

}
. Thus, {δa(1)(t)} is marginally a Markov chain and

its rate of convergence equals the one of {δa(t)}, see e.g. Roberts & Rosenthal (2001). Let B1

and B2 defined by E[δa(1) | δa(2), y] = B1δa
(2) + b1 and E[δa(2) | δa(1), y] = B2δa

(1) + b2. It
is then a simple computation that δa(1)(t) is a Gaussian autoregressive process with autoregres-375

sion matrix B1B2. Since for balanced levels design it holds
n
(k)
j τ0

n
(k)
j τ0+τk

= rk, it can be deduced

from (4) and (7) that B1 = −r1P1, where P1 is a I1 × I2 matrix being the transition kernel of
the update i2|i1 of the auxiliary process. Similarly, one can show B2 = −r2P2, where P2 is a
I2 × I1 matrix being the transition kernel of the update i1|i2 of the auxiliary process. Hence, the
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autoregressive matrix of δa(1)(t) is r1r2P1P2, where P1P2 is the transition kernel of the aux- 380

iliary Gibbs sampler {i(t)}. Consequently, the spectrum of the autoregressive matrix is r1r2λi,
where λi are the eigenvalues of P1P2. The largest |λi| is of course 1 since P1P2 is a stochastic
matrix. However, since δa(1) is constrained to have zero sum, by Lemma 3 in the Appendix the
rate of convergence of δa(1)(t) is not given by the largest modulus eigenvalue of the autoregres-
sive matrix, but the largest modulus eigenvalue whose eigenvector has zero sum, i.e., we need 385

to consider only the subspace orthogonal to the vector of 1’s. Therefore, the rate of convergence
of {δa(t)} equals r1r2 times the second largest modulus eigenvalue of P1P2, which is ρaux by
definition. �

With Proposition 4 in place, the main result of this Section on the relaxation time of the
algorithms follows immediately. 390

THEOREM 4. For balanced levels designs with K = 2, the rate of convergence of the Gibbs
Sampler and the collapsed Gibbs Sampler are given by, respectively,

max

{
Nτ0

Nτ0 + I1τ1
,

Nτ0
Nτ0 + I2τ2

}
,

Nτ0
Nτ0 + I1τ1

Nτ0
Nτ0 + I2τ2

ρaux ,

where ρaux is the rate of convergence of the auxiliary Gibbs sampler {i(t)} with invariant dis-
tribution p(i1, i2) = ni1i2/N . 395

Note that if the design is in fact balanced cells, the rates given in Theorem 4 match those of
Theorem 3, as they should, since ρaux = 0 in this case.

A corollary to this Theorem is that the relaxation time of the Gibbs sampler is
1 + maxk=1,2

Nτ0
Ikτk

and that of the collapsed Gibbs sampler is no larger than 1 +

min{Nτ0I1τ1
, Nτ0I2τ2

, Taux}, where Taux is the relaxation time of the auxiliary process {i(t)}. An 400

implication of this is that the collapsed Gibbs Sampler is never slower than the standard Gibbs
Sampler and it is has good mixing both when the amount of data per level is low and high. To
see this, note first the ratios N/I1 and N/I2 coincide with the number of datapoints per col-
umn and row, respectively, in the data incidence matrix with entries ni1i2 and thus their value
increases as the amount of data per level increases. On the contrary the relaxation time Taux of 405

the auxiliary process {i(t)} tends to decrease as the amount of data per level increases because
the latter corresponds to adding more edges in the conditional independence graph, hence larger
connectivity in the state space of the auxiliary process. Unfortunately, it is not true in general that
the minimum across Nτ0

I1τ1
, Nτ0I2τ2

and Taux is uniformly bounded over N . Consider for example a
design where users and items are split into two communities of equal size, and users inside each 410

community have rated all items from their community and no item from the other community.
In this case the random walk {i(t)} is reducible. Therefore Taux =∞ and, provided both N/I1
and N/I2 go to infinity, the relaxation time of the collapsed Gibbs Sampler diverges as N goes
to infinity.

We now address the case of number of factors K > 2 that Theorem 4 does not cover. A 415

conjecture we make in this paper is that 1 + maxk=1,...,K
Nτ0
Ikτk

is the relaxation time of the Gibbs
sampler also for K > 2. We have experimented numerically quite extensively, since for specific
examples we can compute the relaxation time by computing numerically the largest eigenvalue
of an explicit matrix, and we have not been able to find a counter-example. The missing step
for a generic result would be to show that {δa(t)} always mixes faster than {ā(t)}. Such a 420

result would also immediately prove, due to Proposition 3, that the collapsed Gibbs sampler has
lower relaxation time than the Gibbs sampler for arbitrary number of factors for balanced levels
designs. On the other hand, numerical experimentation has also showed that certain extensions
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of Theorem 4 are not true. We know that the convergence rate of the collapsed Gibbs sampler
can be larger than

∏
k=1,...,K

Nτ0
Ikτk

when K > 2; we also know that the rate will depend on the425

order that the different components are updated. We return to these points in the Discussion.
We close the section with some asymptotic considerations on the complexity. The fol-

lowing arguments assume that the relaxation time of the Gibbs sampler is the conjectured
1 + maxk=1,...,K

Nτ0
Ikτk

; we will not consider the collapsed Gibbs sampler in the following con-
siderations since we do not have conjecture for its rate when K > 2. The asymptotic behaviour430

of the Gibbs sampler relaxation time depends on the regime under consideration as it was for
balanced cells designs. The relaxation time can be as bad as O(N), for example if the number
of levels of at least one factor is fixed as N grows; it can be O(N1−1/K) in the regime where
I1 = . . . = IK and N = O(IK1 ); but it can also be O(1) in the sparse observation regime where
N = I1 = . . . = I2. The Appendix discuss the computational cost per iteration, which for these435

designs can grow quadratically with the number of parameters, as opposed to linearly in the
case of balanced cells. In terms of its growth with the observations, this can be O(1), in infill
asymptotics regimes where the number of levels of factors does not grow with N ; it can be
O(N2/K) when I1 = . . . = IK and N = O(IK1 ); but it can also be O(N) in the sparse regime
N = I1 = . . . = I2. Connecting now to the observation in Gao & Owen (2017), we obtain that440

for K = 2 when N = O(I21 ) and I1 = I2, the complexity of the Gibbs sampler is O(N3/2),
hence the algorithm is not scalable.

6. SIMULATION STUDIES

6·1. Simulated data with missingness completely at random
First we consider simulated data with K = 2 and I1 = I2. We assume data to be missing445

completely at random, where for each combination of factors we observe a datapoint, i.e., ni1i2 =
1, with probability 0.1 independently of the rest, and otherwise we have a missing observation,
i.e., ni1i2 = 0. Since the relaxation time of the samplers under consideration does not depend on
the the value of the observations y, but only on their presence or absence, we can set yi1i2 = 0
without affecting the computed convergence rates. In this context our theory does not apply450

directly because the designs under consideration are not balanced in general. However, we can
still compute numerically the convergence rate of the Gibbs Sampler and its collapsed version in
the context of known precisions, using the results discussed in Section 4·3, to explore to which
extent the qualitative findings of our theory still apply. Figure 1(a) displays the behaviour of the
relaxation time of the Gibbs Sampler and its collapsed version in an outfill asymptotic regime,455

where both the number of datapoints and factor levels increase. For the simulations we fixed the
precision terms τk to 1 and take I1 in the set {50, 500, 1000, 2000}. The results suggest that the
relaxation time of the Gibbs Sampler diverges with N , while the relaxation time of its collapsed
version converges to 1 as N increases. This is consistent with the theoretical results of previous
section. In fact, we can compare the relaxation times that we computed numerically with the460

theoretical values computed as if the design were balanced levels, which of course it is not here.
The figure shows an extremely close match, which showcases the use of our theory beyond
the specific designs that have facilitated the analysis. This suggests that the theory previously
developed is relevant beyond cases that strictly satisfy balanced levels. Since the cost per iteration
of both samplers is O(N), the results in Figure 1(a) suggest that, for the asymptotic regime465

considered in this section, the computational complexity of the Gibbs Sampler is O(N3/2) and
the one of the collapsed Gibbs Sampler is O(N).
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6·2. ETH Instructor Evaluations dataset
We now consider a real dataset containing university lecture evaluations by students at ETH

Zurich. The dataset is freely available from the R package lme4 (Bates et al., 2015) under the 470

name InstEval. It contains 73421 observations, each corresponding to a score ranging from 1 to 5,
assigned to a lecture together with 6 factors potentially impacting such score, such as identity of
the student giving the rating or department that offers the course. See the lme4 help material for
more details on the dataset. We fit model (1) to the InstEval dataset. Following the notation in (1),
we have N = 73421, K = 6 and (I1, . . . , IK) = (2972, 1128, 4, 6, 2, 14). Clearly, a categorical 475

response calls for a generalised linear model extension of (1), however the point of this analysis
is to test the algorithms, and (1) is not an outright unreasonable model to fit for this dataset.

First we consider the case where the values of the precisions {τk} are assumed to be known.
As in Section 6·1, we compute the true relaxation times numerically, and compare them to the
theoretical predictions implied by Theorem 4. The resulting values for various combination of 480

factors are reported in the supplementary Material. The relaxation time of the collapsed Gibbs
sampler is up to three orders of magnitude smaller than the one of the Gibbs sampler. In all cases
considered, the theoretical predictions matched closely the actual values computed numerically.

Next consider the case of unknown precisions, where the hyperparameters τk are given a prior
distribution and the posterior of interest is the joint distribution of a and τ = (τ0, . . . , τK). We 485

consider two popular prior specifications for τ , the first being a flat prior p(τ−1/2k ) ∝ 1 and
the second a half-Cauchy prior τ−1/2k ∼ Cauchy+(0, 1), see Gelman (2006) and Polson et al.
(2012) for a discussion. Under both prior specifications, we consider five Markov chain Monte
Carlo schemes. The first two schemes alternate sampling τ from the conditional distribution
L{τ | a} and updating a with the Gibbs Sampler and its collapsed version, respectively. In the 490

flat prior case, the exact update τ ∼ L{τ | a} is straightforward, while in the half-Cauchy case
the latter is replaced by a Metropolis-Hastings update. The third and fourth schemes add pa-
rameter expansion (Liu & Wu, 1999; Meng & Van Dyk, 1999). See the supplementary mate-
rial for full details on the implementation of these first four schemes. Finally, the fifth scheme
is the No U-Turn sampler (Hoffman & Gelman, 2014), a state-of-the-art Hamiltonian Monte 495

Carlo scheme implemented in the R package RStan (Stan Development Team, 2018). In or-
der to avoid potential issues related to using flat priors with a very low number of factor lev-
els, we excluded the factor with only two levels from the analysis, resulting in K = 5 and
(I1, . . . , IK) = (2972, 1128, 4, 6, 14).

Table 1 reports runtimes for the five schemes together with effective sample sizes. It can be 500

seen that the first four schemes have similar runtimes, but the ones using the collapsed methodol-
ogy proposed in this paper induce a much faster mixing compared to the others. In this example
the use of parameter expansion has little effect on mixing, giving some improvement in the flat
prior case and some more deterioration in the half-Cauchy case. Hamiltonian Monte Carlo has
a cost per iteration that is two orders of magnitude larger than the other schemes, resulting in 505

the lowest effective sample sizes per unit of computation time. The supplementary material con-
tains figures displaying autocorrelation functions versus CPU time for the Gibbs samplers, again
showcasing the much improved mixing of the collapsed one.

Finally, to obtain a higher level sense of the practicality of the approach we pursue in this
article, we also fit the same crossed effect model in a frequentist fashion using the R package 510

lme4, which took 40.9 seconds to run. All computations were performed on the same desktop
computer with 16GB of RAM and an i7 Intel processor. It is worth noting that the first four
schemes were directly implemented using a high level language such as R, so we would expect
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Scheme time per Effective Sample Size / time (1/s)
1000 iter. (a(0), ā(1), ā(2), ā(3), ā(4), ā(5)) (σ0, σ1, σ2, σ3, σ4, σ5)

GS 13.2s (0.07, 11.0, 2.12, 0.16, 0.21, 0.87) (60.9, 15.9, 36.8, 3.56, 2.53, 2.14)
GS+PX 13.5s (0.06, 10.7, 2.02, 0.08, 0.11, 0.95) (59.6, 41.2, 43.9, 0.85, 0.58, 2.33)
HMC 1112.6s (0.11, 0.78, 0.19, 0.08, 0.25, 0.68) (0.99, 0.51, 0.99, 0.10, 0.41, 0.18)
cGS 14.2s (65.9, 42.1, 18.1, 70.5, 62.3, 35.0) (55.1, 14.7, 34.5, 17.7, 33.9, 2.51)

cGS+PX 14.4s (62.5, 44.1, 19.9, 62.9, 63.2, 34.6) (55.1, 38.0, 41.9, 19.2, 33.0, 2.96)
GS 15.0s (0.07, 9.87, 1.86, 0.16, 0.23, 0.85) (51.6, 14.1, 31.5, 1.33, 3.84, 2.19)

GS+PX 13.8s (0.07, 10.9, 1.85, 0.07, 0.18, 0.84) (56.9, 39.9, 43.6, 0.80, 0.70, 1.71)
HMC 1186.9s (0.08, 0.30, 0.08, 0.10, 0.08, 0.24) (0.79, 0.27, 0.55, 0.18, 0.14, 0.09)
cGS 15.5s (74.0, 39.0, 17.7, 77.6, 57.2, 31.6) (51.8, 13.7, 30.1, 4.84, 15.0, 2.40)

cGS+PX 14.6s (59.1, 43.7, 18.8, 63.2, 61.6, 33.2) (54.7, 38.0, 40.4, 0.72, 0.92, 1.88)
Table 1. Comparison of sampling schemes on the InstEval data. The first five lines refer to flat
priors for σk = 1/

√
τk, the second five lines to half-Cauchy ones. GS and cGS refer to the Gibbs

Sampler and the collapsed version with precision updates, while +PX indicates combination
with the parameter expanded methodology. HMC referes to the RStan implementation of the
No U-Turn sampler. Numbers are averaged over 10 runs of 10000 iterations for each scheme,
discarding the first 1000 samples as burn-in.

significant further speed-ups by using a low-level language and use of distributed computing for
the precomputations needed for the Gibbs samplers.515

7. DISCUSSION

There are many directions this work can move forward. First we highlight the two that are
most imminent. One is to investigate the conjecture made in Section 5·4 that the relaxation time
of the Gibbs sampler for balanced levels designs is 1 + maxk=1,...,K

Nτ0
Ikτk

. If this is true we also
obtain that the collapsed Gibbs sampler has always smaller rate for such designs. The other is520

to obtain a characterisation of the rate of the collapsed Gibbs sampler for such designs when
K > 2. From numerical experimentation we know that the natural extension of the expression
of Theorem 4 is not true for K > 2, hence a different line of attack is needed.

Finally, we mention two important possible directions of future research that would help pro-
viding a clearer picture about the scalablity of likelihood-based inferences for crossed effect525

models. The first is to provide theoretical understanding regarding the extent to which sparse
linear algebra methods can reduce the computational complexity of the matrix operations in-
volved in the exact marginalizations of the space of factors. The second is to develop rigorous
complexity results for the case of fully Bayesian inferences with unknown variances.
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SUPPLEMENTARY MATERIAL 535

Supplementary material available at Biometrika online includes proofs of Lemmas 1, 2 and 3,
additional figures and details on the simulation study in Section 6·2 and R code to implement
the MCMC schemes under consideration.

APPENDIX

Proof of Theorem 1. For concreteness and without affecting the validity of the argument we 540

assume that the algorithm updates factors and their levels in ascending order, i.e., first simulates
a(0), then a(1)1 , a(1)2 , and so on and so forth. We first establish the result for the Gibbs sampler,i.e.,
part 1. Note that due to the conditional independence structure the algorithm can be equivalently
represented as one that samples in blocks according to the conditional laws L

{
a(k) | y, a(−k)

}
.

For each iteration t, each such draw, a(k)(t) can be transformed to ā(k)(t) and δa(k)(t). Proposi- 545

tion 1 establishes that the

L
{
ā(k)(t), δa(k)(t) | y, a(0)(t), . . . , a(k−1)(t), a(k+1)(t− 1), . . . , a(K)(t− 1)

}
=

L
{
ā(k)(t) | y, ā(0)(t), . . . , ā(k−1)(t), ā(k+1)(t− 1), . . . , ā(K)(t− 1)

}
× (11)

L
{
δa(k)(t) | y, δa(1)(t), . . . , δa(k−1)(t), δa(k+1)(t− 1), . . . , δa(K)(t− 1)

}
.

Appealing to the equivalence of local and global Markov properties, as in Section 3 of Besag 550

(1974), we obtain that the processes {ā(t)} and {δa(t)}, obtained as functions of {a(t)}, are
each a Markov chain with respect to its own filtration, and independent of each other.

The collapsed Gibbs Sampler case is analogous. Here the sampler iterates the updates of
L
{
a(k) | y, a(−0,−k)

}
for k = 1, . . . ,K. It can be easily deduced from Proposition 1 that

L
{
ā(−0), δa | y

}
= L

{
ā(−0) | y

}
L{δa | y}. Therefore, transforming each draw a(k)(t) to 555

ā(k)(t) and δa(k)(t), we obtain

L
{
ā(k)(t), δa(k)(t) | y, a(1)(t), . . . , a(k−1)(t), a(k+1)(t− 1), . . . , a(K)(t− 1)

}
=

L
{
ā(k)(t) | y, ā(1)(t), . . . , ā(k−1)(t), ā(k+1)(t− 1), . . . , ā(K)(t− 1)

}
×

L
{
δa(k)(t) | y, δa(1)(t), . . . , δa(k−1)(t), δa(k+1)(t− 1), . . . , δa(K)(t− 1)

}
.

It follows that the processes {ā(−0)(t)} and {δa(t)}, obtained as functions of {a(t)}, are each a 560

Markov chain with respect to its own filtration, and independent of each other. �

LEMMA 3. Let {x(t)} be a d-dimensional gaussian AR(1) process with E[x(t+ 1) | x(t)] =
Bx(t) + b, for some fixed b, and stationary distribution N(µ,Σ) concentrated on the hyper-
plane

∑
i xi = 0 and Σ of rank d− 1. Then the rate of convergence of {x(t)} equals the largest

modulus eigenvalue of B whose eigenvector has zero sum. 565

Cost per iteration of the Gibbs Sampler and its collapsed version
In order to implement the Gibbs Sampler, the computation of the one and two-dimensional

marginals {n(k)} and {n(l,k)} of the data incidence table are required, as well as the computation
of the weighted averages {ỹ(k)j } of the data. Such precomputation needs to be performed only
once and requires O(N) operations in general. Then, at each iteration of the Gibbs Sampler the 570

update of a(0) and each a(k)j can be accomplished inO(
∑

l Il) andO(
∑

l 6=k Il) operations using
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(2) and (4), respectively, resulting in a total of O(
∑

k Ik
∑

l 6=k Il) operations for each Gibbs
sweep. The latter can be as bad as O(p2), where p =

∑
k Ik is the number of parameters and its

relationship with N depends on the asymptotic regime under consideration.
For the collapsed Gibbs Sampler one needs to additionaly precompute {s(k)} defined in Propo-575

sition 2, which can be done in O(p) operations given {n(k)}. Therefore the collapsed Gibbs
Sampler has a precomputation cost of order O(N), similarly to the standard Gibbs Sampler.
Moreover, the updates of a(0) from (8) for k = 1, . . . ,K require O(

∑
k Ik

∑
l 6=k Il) operations

altogether, which is at mostO(p2). Thus the collapsed Gibbs Sampler has also the same cost per
iteration of the standard Gibbs Sampler.580

In the balanced cells case, the only precomputation required is the one of {ỹ(k)j }, which has
O(N) cost. Also, each Gibbs or collapsed Gibbs sweep can be accomplished inO(p) operations,
rather than O(p2), using (3), (5) and the version of (8) for balanced cells.
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