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Abstract: N-Arylitaconimides, accessible from maleic anhydride, anilines and 

paraformaldehyde, react with arene diazonium salts in a Pd-catalyzed Matsuda-Heck arylation 

to the pharmacologically relevant E-configured 3-arylmethylidene pyrrolidine-2,5-diones (also 

known as arylmethylidene succinimides) through an exo-selective -H-elimination. The 

coupling proceeds at ambient temperature with the simple and easy-to-handle precatalyst Pd-

II-acetate under ligand- and base-free conditions. Notable features are high isolated yields as 
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2

well as regio- and stereoselectivities, and short reaction times. In a comparative investigation, 

aryl iodides, bromides and triflates were shown to be inferior coupling reagents in this reaction. 

The 3-arylmethylidene pyrrolidine-2,5-diones undergo a second Matsuda-Heck coupling, 

which proceeds via an endo-selective -H-elimination to give diarylmethyl substituted 

maleimides as coupling products. These products can also be accessed in one flask by sequential 

addition of different arene diazonium salts to the starting itaconimide. The potential of 3-

arylmethylidene succinimides as photoswitches was tested. Upon irradiation of the E-isomer at 

300 nm partial isomerization to the Z-isomer (E : Z = 65 : 35 in the photostationary state) was 

observed. The isomerization was found to be nearly completely reversible by irradiating the 

mixture at 400 nm.
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3

Introduction

3-Arylmethylidene pyrrolidine-2,5-diones of the general formula exo-1 have found diverse 

applications (Figure 1). Compounds exo-1bu and exo-1bv,1 for example, were tested as 

inhibitors of the type 2 5-reductase (T2-5-reductase), an enzyme responsible for the 

reduction of testosterone to the more potent androgen dihydrotestosterone.1,2 Inhibitors of T2-

5-reductase, such as the clinically used drug finasteride, are potentially useful for the treatment 

of benign prostate hyperplasia.3,4 The 3-arylmethylidene pyrrolidine-2,5-dione exo-1ae has 

been investigated with regard to its vasorelaxant activity, which was reported to be in the range 

of the standard drug doxazosin.5 Compounds of the general formula exo-1 have been used as 

Michael acceptors for irreversible, site-specific thiol bioconjugation,6 as test substrates for 

asymmetric transformations,7-9 and as starting materials to access other heterocyclic systems, 

such as pyrolo quinolines10 or coumarins.11 Recently, 3-arylmethylidene pyrrolidine-2,5-diones 

were investigated as reactants in multicomponent reactions for the synthesis of several 

interesting spirocyclic scaffolds.12-15 Hydrogenation of compounds exo-1 leads to 3-benzyl 

succinimides, which are also an important structural pattern in medicinal chemistry. For 

example, compound 2 was identified as an inhibitor of the leukocyte common antigen-related 

phosphatase, a potential target for the treatment of neurological diseases.16 By using Ir-catalysts 

in combination with chiral biphenyl-oxazoline-phosphine ligands the hydrogenation of 

compounds exo-1 to 3-benzyl succinimides can be achieved with very high levels of 

enantioselectivity.7
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Figure 1. Structures of biologically relevant 3-arylmethylidene-pyrrolidine-2,5-diones exo-1 

and a 3-benzylsuccinimide 2.

Almost all syntheses of 3-arylmethylidene pyrrolidine-2,5-diones exo-1 reported in the 

literature use a phospha-Michael-addition / Wittig-olefination sequence. This route, originally 

developed by Hedaya and Theodoropulos as a two-step synthesis,17 starts from maleimides 3 

which react with phosphines in a conjugate addition / tautomerization reaction to ylides 4. These 

undergo a Wittig-olefination with aromatic aldehydes in the second step (Scheme 1a). 

Although several modifications and improvements, including a catalytic variant,18 have been 

published since the original report,6,19-23 some disadvantages of this approach remain: in 

general, elevated temperatures and protic solvents are required to achieve useful levels of 

conversion, which may affect hydrolytic stability of the succinimide structure;24 the required 

benzaldehydes are sometimes prone to oxidation and need to be purified beforehand; other 

carbonyl groups that may also undergo Wittig olefination reactions are not tolerated; the 

inevitable formation of stoichiometric amounts of phosphine oxides can hamper product 

isolation and purification if the 3-arylmethylidene pyrrolidine-2,5-diones have similar polarity.
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Scheme 1. Phospha-Michael addition / Wittig-olefination (previous routes)

vs. Matsuda-Heck route (this work).
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In continuation of our previous investigations25-27 into the development and application of 

Matsuda-Heck reactions,28 i. e. the Pd-catalyzed Heck-type coupling of arene diazonium salts 

with alkenes,29-36 we wondered whether an alternative approach to 3-arylmethylidene 

pyrrolidine-2,5-diones exo-1 that starts from itaconimides 5 and stable and isolable arene 

diazonium salts 6 might be a competitive or even advantageous alternative to the phospha-

Michael-addition / Wittig-olefination approach. Important questions to be answered in this 

context are: will the final -H-elimination step36 leading to the liberation of the coupling 

products proceed exo- or endo-selectively (i. e. to exo-1 or to endo-1), or to a mixture of exo- 

and endo-isomers? Is it possible to identify conditions for selective single and double arylations, 

and will the double arylation products 7 be formed as exo- or endo isomers? (Scheme 1b).

Literature precedence on Heck-arylation approaches to exo-arylmethylidene-pyrrolidine-2,5-

diones and related lactams is scarce: we are aware of an intramolecular Heck-reaction with an 

aryl iodide for the synthesis of tetrahydroquinoline derivatives that were tested for their anti-

hyperalgesic activity37 and of an intermolecular Heck reaction between aryl iodides and exo-

methylene lactams as a route to benzyl- and benzylidene pyrrolizidinones.38 Heck reactions of 
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6

maleimides 3 with aryl iodides give the expected 3-arylmaleimides, but were found to be 

challenging due to increased hydrolysis of the products at elevated temperatures and prolonged 

reaction times.24 These obstacles were overcome by the development of special reaction 

conditions for the Pd-catalyzed coupling. For a single example these conditions were applied 

to a 3-methylmaleimide, resulting in the formation of a 3-arylmethylidene-2,5-dione of the 

general formula 1 rather than the expected 3-methyl-4-arylmaleimide. The formation of the 

unexpected exo-arylmethylidene product was explained by a Pd-catalyzed isomerization of the 

3-methylmaleimide to an itaconimide 5, which subsequently undergoes a Heck-reaction. 

Results and discussion

Synthesis of N-arylitaconimides 5. As a test substrate for the development and optimization 

of the envisaged Matsuda-Heck-coupling N-phenylitaconimide (5a) was chosen. This 

compound39 was, like a number of other N-arylitaconimides such as 5b,40 previously 

synthesized from itaconic anhydride and anilines in a two-step ring-opening / cyclizative 

condensation sequence. Recently, this method was further developed into a one-flask synthesis 

by using improved conditions for the cyclizative condensation and applied to the synthesis of 

5a and several other N-arylitaconimides.41 We synthesized 5a from N-phenylmaleimide (3a) 

and paraformaldehyde by adaptation of the phospha-Michael-addition / Wittig-olefination 

sequence.9 The yield is virtually identical to that reported for the itaconic anhydride route 

outlined above,41 and the potential separation and purification problems were not observed for 

this particular derivative (Scheme 2).

Scheme 2. Synthesis of N-phenylitaconimide (5a).

N

O

O
3a

N

O

O
5a (56%)

Paraformaldehyde (5 equiv.)
PPh3 (1 equiv.), HOAc, 120 °C
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7

With a view to the synthesis of the T2-5-reductase inhibitors exo-1bu and exo-1bv (Figure 1) 

we also synthesized N-(3-hydroxyphenyl)itaconimide (5b)40 by using the tandem phospha-

Michael / Wittig-olefination method. To this end maleic anhydride was first reacted with 3-

hydroxyaniline (9) to furnish the N-arylmaleimide 3b,42 which was then converted to 5b with 

paraformaldehyde and triphenylphosphine in 65% yield over two steps (Scheme 3).

Scheme 3. Synthesis of N-(3-hydroxyphenyl)itaconimide (5b).
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Optimized coupling conditions for arene diazonium salts and alternative coupling 

partners. The conditions for the Matsuda-Heck coupling were optimized for the reaction of N-

phenylitaconimide (5a) and 4-methoxybenzenediazonium salt 6a (Table 1). In the first 

experiments, equimolar ratios of both coupling partners were used. The most important 

variables in Matsuda-Heck reactions are the precatalyst, the solvent and the presence (or 

absence) of a base. In many cases good results can be obtained by using Pd(OAc)2 as a 

precatalyst without additional ligands. Donor ligands often have detrimental effects on the 

stability of the arene diazonium salts and on the overall reactivity and should therefore be 

avoided.29,43,44 Some controversy exists about the influence of bases on Matsuda-Heck 

reactions. Matsuda and coworkers routinely used NaOAc in their pioneering studies,45 but later 

investigations revealed that addition of this base has no or even negative effects on the rate of 

the reaction and on the yield.29 However, in our previous studies we found examples for both 

beneficial and detrimental effects of adding NaOAc, depending on the arene diazonium salt, 
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8

the olefin and the solvent used.46 Routinely tested solvents in Matsuda-Heck reactions are 

acetonitrile, which is known to stabilize the catalytically active species through coordination,47 

and methanol.30

Table 1. Optimization of Matsuda-Heck coupling conditions.

N

O

O
5a (n equiv.)

H3CO

N2BF4
+

6a (1.0 equiv.)

Pd(OAc)2 (5 mol %), solvent,
NaOAc (m equiv.); T; 0.5 h

N

O

Oexo-1aa
H3CO

N

O

Oendo-7aa

H3CO

OCH3

+

entry solventa) NaOAc 

(equiv.)

T/° C 5a (equiv.) Conversionb) exo-1aa 

(yield)c)

endo-7aa 

(yield)c)

1 CH3CN -- 20 1.0 incomplete n. d. n. d.

2 CH3CN 4.0 20 1.0 incomplete n. d. n. d.

3 methanol -- 20 1.0 quantitative 72 26

4 methanol 4.0 20 1.0 traces n. d. n. d.

5 methanol -- 23 1.0 quantitative 83 10

6 methanol -- 23 1.2 quantitative 94 n. d.

7 methanol --  1.2 quantitative 95 n. d.

8d) methanol --  0.33 quantitative n. d. 65

a)Initial concentration of diazonium salt 6a: 0.0625 M. b)Qualitatively determined by TLC. 

c)Isolated yields; n. d.: not determined. d)Initial concentration of diazonium salt 6a: 0.0938 M; 

reaction time 18 h.

In acetonitrile the formation of a Matsuda-Heck coupling product was observed both under 

basic and under base-free conditions, but the conversion remained incomplete (entries 1, 2). In 
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9

methanol the addition of NaOAc resulted in a nearly complete inhibition of the coupling 

reaction (entry 4), whereas the arene diazonium salt was rapidly and quantitatively consumed 

under base-free conditions (entry 3). From this reaction mixture two coupling products exo-1aa 

and endo-7aa could be isolated in 72% and 26% yield.

Compound exo-1aa was identified by comparison of its NMR-data with those reported in the 

literature21 and additionally the assigned structure was corroborated by 2D-NOE spectroscopy. 

A strong NOE between the ortho-H of the 4-methoxyphenyl substituent and the CH2 group 

supports the assigned exo-E-structure. Compound endo-7aa has not been described in the 

literature but could easily be distinguished from the alternative exo-isomer, because only one 

set of signals with double intensity was observed for all protons and carbons of the 4-

methoxyphenyl substituent, and two singlets for the methine proton and the proton at position 

4 of the heterocycle were observed.

In an attempt to suppress the formation of the double Matsuda-Heck product endo-7aa the 

reaction temperature was lowered to 23 °C. The selectivity towards exo-1aa was indeed 

notably improved, but we could still isolate 10% of endo-7aa (entry 5). In the next step, we 

increased the amount of itaconimide 5a to 1.2 equivalents while keeping the reaction 

temperature at 23 °C. Compound exo-1aa was isolated in 94% yield, without the formation of 

any double arylation product (entry 6). Virtually the same result was obtained at ambient 

temperature under otherwise identical conditions (entry 7). In all cases the reaction was 

complete within 30 minutes. We noted that, in contrast to the starting materials 5a and 6a, the 

Matsuda-Heck product exo-1aa is only sparingly soluble in methanol at the chosen initial 

substrate concentration of 0.0625 mol•L1. This allowed us to readily isolate the product by 

filtration. Additional purification by chromatography is normally not required.

The double Matsuda-Heck product endo-7aa was selectively synthesized in 65% yield by using 

three equivalents of the arene diazonium salt 6a in methanol at a higher initial concentration of 
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10

0.0938 M and a reaction time of 18 h. Under these conditions we could not detect any mono 

aryl product exo-1aa (entry 8).

Although arene diazonium salts are generally considered to be more reactive electrophilic 

coupling partners in Pd-catalyzed reactions, systematic comparative investigations to prove this 

superior reactivity are rare. For these reasons we investigated Mizoroki-Heck reactions of 

itaconimide 5a with 4-methoxybenzenes bearing iodide (8a), triflate (8b) or bromide (8c) as 

leaving groups (Table 2). Optimal reaction conditions for the coupling of these reagents with 

electron deficient alkenes are known to differ significantly from the preferred conditions for 

arene diazonium salts, as can be seen from a recent comprehensive literature survey.48 For these 

reasons we did not include the optimized conditions for the Matsuda-Heck coupling of 5a and 

6a (Table 1, entry 7) in this comparative investigation, but chose previously established reaction 

conditions for the coupling of acyclic electron deficient alkenes48 and exo-methylene -

lactones49 with aryl halides and triflates as general guidance. Such conditions normally involve 

the use of DMF as a solvent at elevated reaction temperatures, reaction times of several hours, 

triethylamine as a base, an excess of the electrophilic coupling partner and very often activating 

phosphine ligands. In a first experiment 4-methoxyiodobenzene (8a) was reacted with 

itaconimide 5a in DMF at 90 °C, using Pd(OAc)2 as a precatalyst without addition of an 

activating phosphine ligand (entry 1). Although 8a was used in excess (1.2 equivalents) we did 

not observe the formation of any double arylation product, but isolated exo-1aa in 60% yield 

as the only product. Monitoring the reaction by TLC revealed that long reaction times are indeed 

required to achieve a synthetically useful conversion. By addition of tri-o-tolylphosphine as a 

ligand under otherwise identical conditions the yield of exo-1aa could be increased to 70%, but 

we still did not detect any double arylation product (entry 2). In a third experiment we could 

show that elevated reaction temperatures are necessary, because at ambient temperature no 

conversion was observed and both starting materials were recovered unchanged (entry 3). 

Applying the conditions of entry 2 to the triflate 8b resulted in a very low yield of 26% (entry 
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11

4). For the bromide 8c sodium acetate-trihydrate was tested as an alternative base (entry 5). In 

this case an even higher temperature of 140 °C was necessary, but the reaction was still very 

slow compared to the analogous diazonium salt.

Table 2. Comparative investigation of alternative coupling partners 8.

N

O

O
5a (1.0 equiv.)

H3CO

X
+

8 (1.2 equiv.)

Pd(OAc)2 (5 mol %)
DMF; base (n equiv.)
ligand (n mol %); T; t N

O

Oexo-1aa

H3CO

entry 8 X Ligand (mol %) Base (equiv.) T (° C) t (h) Yield of 

exo-1aa (%)

1 8a I -- NEt3 (3.0) 90 18 60

2 8a I P(o-tolyl)3 (10) NEt3 (3.0) 90 18 70

3 8a I P(o-tolyl)3 (10) NEt3 (3.0) 20 18 --a)

4 8b OTf P(o-tolyl)3 (10) NEt3 (3.0) 90 18 26

5 8c Br P(o-tolyl)3 (10) NaOAc•3H2O (1.0) 140 1 21

a)No conversion.

In summary, these experiments clearly prove that arene diazonium salts are significantly more 

reactive in this coupling reaction than aryl iodides, and that aryl triflates and bromides can not 

be used to synthesize exo-arylmethylidene-2,5-diones in preparatively useful yields.

Scope of Matsuda-Heck coupling reactions with itaconimides. The optimized conditions for 

Matsuda-Heck reactions of N-phenylitaconimide (5a) (Table 1, entry 7) were in the next step 

applied to the coupling of 5a with various arene diazonium salts 6b-t (Table 3, entries 2 – 20). 

From these examples only the coupling reaction with 2-nitrobenzene diazonium salt 6q fails 

completely and results in the formation of a complex mixture of products (entry 17). Notably, 

with 2-bromobenzene diazonium salt 6p the coupling product exo-1ap was obtained in 72% 
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12

yield in which the bromine atom is unscathed. All other arene diazonium salts 6 tested in this 

transformation reacted to the expected 3-arylmethylidene-2,5-pyrrolidinediones exo-1 in very 

good to excellent yields and perfect regio- and stereoselectivities. These examples also include 

the vasorelaxant agent exo-1ae5 (entry 5). For the synthesis of the T2-5-reductase inhibitors 

exo-1bu and exo-1bv1 (Figure 1) N-(3-hydroxyphenyl)itaconimide (5b) was coupled with 

diazonium salts 6u (entry 21) and 6v (entry 22), respectively, under the same optimized 

conditions.

Table 3. Scope of Matsuda-Heck reactions with itaconimides 5a,b.

N

O

O
5 (1.2 equiv.)

R1

N2BF4

+

6 (1.0 equiv.)

Pd(OAc)2 (5 mol %),
methanol (16 mL per

mmol of 6); 20 °C; 0.5 h
N

O

O
exo-1

R1

R3

R2

R4

RR
R3

R2

R4

entry 5 R 6 R1 R2 R3 R4 exo-1 Yield (%)

1 5a H 6a OCH3 H H H exo-1aa 95

2 5a H 6b OBn H H H exo-1ab 81

3 5a H 6c OH H H H exo-1ac 92

4 5a H 6d F H H H exo-1ad 91

5 5a H 6e Cl H H H exo-1ae 91

6 5a H 6f Br H H H exo-1af 93

7 5a H 6g CN H H H exo-1ag 86

8 5a H 6h C(O)CH3 H H H exo-1ah 94

9 5a H 6i NHAc H H H exo-1ai 90

10 5a H 6j NO2 H H H exo-1aj 89

11 5a H 6k H H H H exo-1ak 88

12 5a H 6l H CH3 H H exo-1al quant.

13 5a H 6m H CN H H exo-1am 89
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14 5a H 6n H H OCH3 H exo-1an 87

15 5a H 6o H H F H exo-1ao 99

16 5a H 6p H H Br H exo-1ap 72

17 5a H 6q H H NO2 H exo-1aq --a)

18 5a H 6r OH Br H H exo-1ar 95

19 5a H 6s OH CO2CH3 H H exo-1as 93

20 5a H 6t OCH3 OCH3 H OCH3 exo-1at 90

21 5b OH 6u H NO2 H H exo-1bu 79

22 5b OH 6v Cl H Cl H exo-1bv 96

a)complex mixture of products.

Iterative Matsuda-Heck coupling. In the course of our investigation into the optimization of 

the Matsuda-Heck coupling (Table 1, entry 3) we noted that a considerable amount of the ,-

diarylation product endo-7aa is obtained if itaconimide 5a and diazonium salt 6a are used in an 

equimolar ratio. This product can even be synthesized selectively at ambient temperature by 

using three equivalents of the arene diazonium salt and prolonged reaction times (Table 1, entry 

8). These results are remarkable, because ,-diarylation reactions of electron deficient olefins 

are by no means facile processes. This is for instance underlined by our observation that during 

the analogous Mizoroki-Heck couplings (Table 2) no ,-diarylation products were detected, 

although the aryl halides were used in excess and the reactions were conducted at elevated 

temperatures over long reaction times. A survey of pertinent literature confirms that Heck-type 

,-diarylation reactions of terminal alkenes or arylation reactions of ,-disubstituted alkenes 

such as cinnamic acid derivatives indeed require much more forcing conditions (elevated 

temperatures, long reactions times, elaborate bases and ligands) than the monoarylation of 

electron deficient terminal alkenes.50-56 Analogous Matsuda-Heck couplings have scarcely been 

Page 13 of 50

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

reported in the literature: Konno et al.57 and Cacchi et al.58 described successful Matsuda-Heck 

reactions of electron deficient acyclic olefins with aliphatic substituents in the -position, and 

Taylor and Correia reported the stereoselective -arylation of cinnamates.59 Very recently, 

Lucks and Brunner found that a heterogeneous catalyst system of Pd immobilized on AlPO4 is 

particularly reactive in the ,-diarylation of acrylates and a few other electron deficient 

alkenes.35 In all these examples modifications of the standard reaction conditions for Matsuda-

Heck couplings of electron deficient olefins were required, such as elevated reaction 

temperatures35,57,58 or the use of less common methanol-acetonitrile solvent mixtures in 

combination with a base.59 In light of this literature precedence we thought that the facile 

formation of the double arylation product endo-7aa at ambient temperature deserves further 

attention and investigated the scope of a repetitive Matsuda-Heck coupling, starting from 

various 3-arylmethylidene pyrrolidine-2,5-diones exo-1 and arene diazonium salts 6. A 

potential obstacle for the development of a repetitive coupling reaction was observed during 

the optimization study of the first arylation step and the investigation into the scope of the 

Matsuda-Heck reaction with N-arylitaconimides. The products exo-1 are, in contrast to the N-

arylitaconimides 5 and the arene diazonium salts 6, in general sparingly soluble in methanol at 

the concentrations routinely used for the coupling step and precipitate from the solution. While 

this facilitates the purification of the coupling products, as outlined above, it might impede a 

second arylation. For these reasons we started this part of the investigation with solubility tests, 

in order to identify a solvent that would allow us to conduct the second coupling under 

homogeneous reaction conditions. To this end, the envisaged starting material exo-1aa (15 mg, 

corresponding to 5.7 mol) was mixed with 0.5 mL of various solvents at ambient temperature, 

which would result in a concentration of ca. 0.11 mol•L1 if the starting material dissolves 

completely. Among the solvents tested this is only the case for hexafluoroisopropanol (HFIP) 

and 1,4-dioxane, whereas in methanol, ethanol, 2-propanol, 1-butanol, acetonitrile, ethyl acetate 

and THF substantial amounts of exo-1aa remain undissolved. Repeating the solubility tests with 
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1.0 mL of these solvents (corresponding to an initial starting material concentration of 0.057 

mol•L1), THF also produced a homogeneous solution. The three solvents HFIP, 1,4-dioxane 

and THF were then tested in the Matsuda-Heck coupling of 5a and 6a under basic as well as 

base-free conditions (Table 4).

Table 4. Screening of alternative solvents for the Matsuda-Heck coupling of 5a and 6a.a)

entry Solventb) NaOAc (equiv.) Resultc)

1 (CF3)2CHOH -- trace amounts of exo-1aa

2 (CF3)2CHOH 4.0 trace amounts of exo-1aa

3 1,4-dioxane -- incomplete conversion to exo-1aa

4 1,4-dioxane 4.0 incomplete conversion to exo-1aa

5 THF -- incomplete conversion to exo-1aa

6 THF 4.0 trace amounts of exo-1aa

a)Itaconimide 5a used in excess (1.2 equiv.). b)Initial substrate concentration 0.0625 M. 
c)Qualitative assessment; reactions monitored by TLC.

In HFIP (entries 1, 2) only trace amounts of the Matsuda-Heck product exo-1aa were detected 

by TLC in the presence and in the absence of NaOAc. In 1,4-dioxane (entries 3, 4) notable 

conversion to the product was observed under basic as well as base-free conditions, but 

considerable amounts of unreacted starting material 5a were also detected. The same result was 

obtained with THF in the absence of NaOAc (entry 5), whereas in the presence of the base only 

trace amounts of the product were detected on TLC (entry 6). For these reasons we returned to 

methanol as a solvent for the second Matsuda-Heck reaction, but used a lower initial substrate 

concentration than for the Matsuda-Heck arylation of itaconimides 5.

The reaction of exo-1aa with arene diazonium salt 6a furnished under these standard conditions 

the diaryl product endo-7aa in 86% yield (Table 5, entry 1). Hence, the overall yield for this 

two-step synthesis of endo-7aa from N-phenyl itaconimide 5a is 81%. This is substantially 

higher than the 65% yield obtained for the one-pot double arylation of 5a with 6a (Table 1, 
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entry 8). Compound exo-1aa was coupled in a comparable yield of 83% with the p-chloro 

substituted arene diazonium salt 6e to the diarylated product endo-7ae (entry 2). Interestingly, 

the reaction of the p-chlorobenzylidene succinimide exo-1ae with the p-methoxy substituted 

arene diazonium salt 6a, which would give the same product endo-7ae, fails completely (entry 

3). The unsubstituted benzylidene succinimide exo-1ak, however, reacts with the same 

diazonium salt 6a to the product endo-7ka in a somewhat lower, but still synthetically useful 

yield (entry 4). The highest yields were obtained for the trimethoxybenzylidene substituted 

succinimide exo-1at and diazonium salts 6a and 6e, which react to the products endo-7ta and 

endo-7te, respectively, in nearly quantitative yields (entries 5, 6). These observations suggest 

that more electron rich arylmethylidene units facilitate the second Matsuda-Heck arylation, a 

conclusion that has previously been drawn by Taylor and Correia in the course of their 

investigation into Matsuda-Heck couplings of cinnamates.59 We then investigated Matsuda-

Heck couplings of the trimethoxybenzylidene succinimide exo-1at with several other arene 

diazonium salts 6 (entries 7 – 12). The reaction fails only for the p-acetyl substituted arene 

diazonium salt 6h (entry 8), whereas all other diazonium salts tested undergo a coupling with 

exo-1at, albeit in yields lower than those obtained with the diazonium salts 6a and 6e. With the 

m-nitro substituted arene diazonium salt 6u conversion remains incomplete and unidentified 

side products are formed. Purification of the coupling product endo-7tu is difficult due to very 

similar polarities and could only be achieved with significant loss of yield (entry 10). An 

interesting exception in this series is the reaction of exo-1at and the p-nitro substituted arene 

diazonium salt 6j (entry 9 and Figure 2). For this combination quantitative conversion was 

observed, but the reaction was rather sluggish and gave the exo-coupling products E- and Z-

exo-7tj in a ratio of 4 : 1 as an inseparable mixture, which was contaminated with several 

unidentified byproducts. Assignment of the E-configuration to the major isomer is based on 

2D-NOE-spectroscopy.
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Figure 2. Structures of E- and Z-exo-7tj and indicative NOE-interaction.

Table 5. Scope of iterative Matsuda-Heck coupling.

R4

N2BF4

+

6 (1.2 equiv.)

Pd(OAc)2 (5 mol %),
methanol (40 mL per mmol

of exo-1); 20 °C; 18 h
N

O

O

exo-1

R1

R2

R3

R5

N

O

O
endo-7

R1

R4

R5

R3

R2

entry exo-1 R1 R2 R3 6 R4 R5 endo-7 Yield (%)

1 exo-1aa OCH3 H H 6a OCH3 H endo-7aa 86

2 exo-1aa OCH3 H H 6e Cl H endo-7ae 83

3 exo-1ae Cl H H 6a OCH3 H endo-7ea --a,b)

4 exo-1ak H H H 6a OCH3 H endo-7ka 74

5 exo-1at OCH3 OCH3 OCH3 6a OCH3 H endo-7ta 96

6 exo-1at OCH3 OCH3 OCH3 6e Cl H endo-7te 95

7 exo-1at OCH3 OCH3 OCH3 6f Br H endo-7tf 42

8 exo-1at OCH3 OCH3 OCH3 6h C(O)CH3 H endo-7th --a)

9 exo-1at OCH3 OCH3 OCH3 6j NO2 H exo-7tj 96c)

10 exo-1at OCH3 OCH3 OCH3 6u H NO2 endo-7tu 10d)

11 exo-1at OCH3 OCH3 OCH3 6r OH Br endo-7tr 59

12 exo-1at OCH3 OCH3 OCH3 6s OH CO2CH3 endo-7ts 27

a)No conversion. b)endo-7ea and endo-7ae are identical. c)Product exo-7tj was obtained as a 
mixture of E- and Z-isomers (E : Z = 4 : 1, determined by 1H NMR spectroscopy) and minor 
amounts of unidentified byproducts. d)Low yield is caused by loss of material during 
purification.
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To conclude this part of the study we investigated the possibility of performing sequential 

Matsuda-Heck arylations in a one-flask reaction. To this end N-phenyl itaconimide (5a) was 

first reacted with diazonium salt 6a using the optimized conditions for a monoarylation. The 

reaction mixture was then diluted by addition of methanol, and the second arene diazonium salt 

6e was added. Pleasingly, the double arylation product endo-7ae was isolated in 69% yield 

(Scheme 4).

Scheme 4. Repetitive one-flask Matsuda-Heck arylation of itaconimide 5a.

Pd(OAc)2 (5 mol %), methanol, 6a
(0.83 equiv.) 20 °C, 0.5 h; then add

6e (1.2 equiv.), methanol, 20 °C, 18 h
N

O

O

5a

N

O

Oendo-7ae (69%)

H3CO

Cl

A comment on regioselectivity of the iterative Matsuda-Heck arylations. We are currently 

unable to provide conclusive explanations for the different regioselectivities of the iterative 

arylation steps. Mechanistic scenarios must take into account that the regioselectivity of Heck-

type reactions may arise from kinetic or thermodynamic control. Thermodynamic control 

requires a sufficiently stable Pd-hydride from the -H-elimination step, which catalyzes a 

subsequent double bond migration through a hydropalladation/-H-elimination cycle (“chain 

walking” mechanism)60-62 or through a 1,2-dyotropic shift followed by a -H-elimination.63 

This scenario is sometimes referred to as “post-Mizoroki-Heck double-bond migration”64 and 

it can be provoked by adding stabilizing ligands, e. g. chloride, to the reaction mixture (Jeffery-

conditions).62 In the case of Matsuda-Heck reactions cationic Pd-species are proposed as 

intermediates, unless strongly coordinating anionic bases or counterions are present.47 The 

cationic Pd-hydrides resulting from the -H-elimination step are destabilized by the positive 
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charge, and consequently virtually no subsequent double bond migration occurs, as shown by 

Correia and co-workers for the Matsuda-Heck reaction of 2,3-dihydrofuran.47 Although this 

does exclude the possibility of post-Matsuda-Heck isomerizations completely, they are rather 

unlikely. Under kinetic control the regioselectivity of Heck-type reactions is determined during 

the -H-elimination step65 and can be biased by electronic effects in the substrate,66 through 

catalyst control36,67 or by conformational constraints.26 To proceed efficiently, these 

eliminations normally require a H-C-C-Pd dihedral angle close to 0° (syn--hydride 

elimination) and a vacant coordination site at the transition metal,68,69 because syn--hydride 

eliminations are initiated by an agostic interaction between the -C-H bond and the metal.70 For 

the example of the iterative Matsuda-Heck arylation of N-phenylitaconimide 5a and diazonium 

salts 6a in the first and 6e in the second step the following mechanistic scenario unfolds 

(Scheme 5): the first Matsuda-Heck arylation starts with a carbopalladation (migratory 

insertion) of the C-C-double bond of 5a to give initially the Pd--complex 8a, which can then 

undergo rotation around the exo-C-C-bond to access two syn-conformations suitable for exo--

H-elimination. The experimentally observed product E-exo-1aa would result from conformer 

8b, whereas formation of Z-exo-1aa would require a -H-elimination from conformer 8c. If the 

dihedral angle between Pd and the syn-endo-H is sufficiently small, -H-elimination could also 

lead to the maleimide endo-1aa. The second Matsuda-Heck reaction starts with a 

carbopalladation of the exo-double bond of E-exo-1aa to furnish the Pd--complex 10a. 

Clockwise or counterclockwise rotation around the exo-C-C-bond is now required to bring the 

exo-H and Pd into a syn-orientation (conformer 10b), from which -H-elimination may occur 

to yield E- and Z-exo-7ae. In contrast, formation of the experimentally exclusively observed 

product endo-7ae must proceed through -elimination of the syn-endo-H, unless it is formed 

via a post-Matsuda-Heck double bond migration as outlined above.71 In future investigations 

we plan a complete analysis of the catalytic cycle, with a focus on the different -H-elimination 
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pathways, based on DFT-calculations. DFT-methods have previously been used to gain a 

deeper insight into the mechanism of Matsuda-Heck reactions, e. g. with a view towards 

rationalizing E/Z-selectivity,72 understanding the role of catalyst stabilizing additives,73 or the 

origin of enantiocontrol in asymmetric Matsuda-Heck reactions.74,75

Scheme 5. Formation of regio- and stereoisomeric Matsuda-Heck-products.
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Investigation into the photochemically induced E/Z-isomerization of 3-arylmethylidene 

succinimides exo-1. The photochemically triggered E/Z-isomerization of double bonds is one 

of the most important functional principles of molecular switches.76 Because biological and 

biochemical studies are the main area of application of these switches, a long-wave excitation 

(ideally in the visible range) is desirable. Besides azobenzenes77 highly substituted olefins are 

potential candidates for photoswitches. In this context we were interested to find out whether 
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compounds exo-1 could also be suitable as photoswitches. First we qualitatively investigated 

the photophysical and photochemical behaviour of the five derivatives exo-1ac, exo-1an, exo-

1ar, exo-1as and exo-1at. All of these compounds exhibit a broad absorption band between 300 

and 350 nm in the UV spectrum (Table 6).

Table 6. UV-Absorption maxima of compounds 1 in acetonitrile

entry exo-1 max [nm]a) lg  b) PSS [nm]c)

1 exo-1ac 320 4.499 324

2 exo-1an 330 4.045 328

3 exo-1ar 315 4.396 321

4 exo-1as 307 4.496 309

5 exo-1at 319 4.366 323

a)Before excitation. b) in L•mol-1•cm-1. c)After excitation (PSS)

When irradiated with relatively intensive UV light (500 W Hg arc lamp, edge filter > 295 nm, 

acetonitrile) they underwent a non-specific decomposition. If, on the other hand, these 

compounds were exposed to narrow-band UV-B light (interference filter 300 nm / edge filter > 

295 nm) a partial E  Z-isomerisation was observed. This is indicated by a small bathochromic 

shift (4-6 nm) of the absorption maximum (except exo-1an) and very weakly increased 

absorption above 400 nm in the UV spectra. Furthermore, the occurrence of some isosbestic 

points in the irradiation spectra proves a selective A  B-reaction.78 The absorption maxima 

in the photostationary state (PSS) are summarized in table 6. These spectral changes are 

completely reversible upon irradiation with narrow-band blue light (interference filter 400 nm 

/ edge filter > 295 nm) suggesting a reversible E/Z-isomerisation (Scheme 6).
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Scheme 6. E/Z-Isomerization of exo-1.
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To prove this assumption we examined the example exo-1at in more detail. For this purpose 

we investigated the irradiation by NMR spectroscopy in CD2Cl2 (c = 5.3 mM, IRR = 300 nm). 

After several hours the photostationary state is reached with 65% of E- and 35% of Z-isomer. 

Irradiation of the same sample with blue light (IRR = 400 nm) caused nearly complete reverse 

reaction (E/Z-ratio = 95 : 5). It should be noted that the E- and Z-isomers of exo-1at could also 

be separated by HPLC confirming the ratio determined by NMR (see supporting information 

for details). Furthermore, we found that the thermal reverse reaction is very slow at ambient 

temperature. In summary, compounds exo-1 undergo a reversible photochemical E/Z-

isomerization. However, the E  Z-isomerisation is not complete. Nevertheless, these findings 

are promising and efficient photoswitches could be accessible by structural variation, e. g. by 

introducing bulky substituents on the aromatic rings.

Conclusions

In summary, we found that itaconimides undergo rapid Pd-catalyzed Heck-type arylation 

reactions with arene diazonium salts to furnish arylmethylidene succinimides with high E-

selectivity. In a comparative investigation we could demonstrate that diazonium salts are indeed 

much more reactive than the analogous aryl iodides or triflates, and that a second arylation can 

be achieved only with diazonium salts. Interestingly, the two arylation reactions proceed with 

different regioselectivities, which we attribute to diverging exo- and endo--hydride 

elimination pathways. We could demonstrate that the C-C double bond in exo-arylmethylidene 
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succinimides exo-1 is in principle photoswitchable, but that the E/Z-isomerization remains 

incomplete.

Experimental Section

General methods. All experiments were conducted in dry reaction vessels under an atmosphere 

of dry nitrogen. Solvents were purified by standard procedures. 1H NMR spectra were obtained 

at 300 MHz, 400 MHz, 500 MHz or 600 MHz in CDCl3 with CHCl3 (δ = 7.26 ppm) as an 

internal standard. Coupling constants are given in Hz. 13C NMR spectra were recorded at 75 

MHz, 101 MHz, 125 MHz or 150 MHz in CDCl3 with CDCl3 (δ = 77.1 ppm) as an internal 

standard. Whenever the solubility or stability of the sample or signal separation were 

insufficient in CDCl3, it was replaced by one of the following solvents: acetone-d6 (acetone-d5 

as internal standard for 1H NMR spectroscopy, δ = 2.05 ppm, CD3COCD3 as internal standard 

for 13C NMR spectroscopy, δ = 29.8 ppm); DMSO-d6 (DMSO-d5 as internal standard for 1H 

NMR spectroscopy,  = 2.50 ppm, DMSO-d6 as internal standard for 13C NMR spectroscopy, 

 = 39.5 ppm). 19F NMR spectra were recorded at 376 MHz with trifluoroacetic acid (0.1 M in 

DMSO-d6) as external standard. In all cases where signal assignments are given for 1H- and 

13C-NMR data, these are based on 2D-NMR-spectra such as H,H-COSY, HSQC, HMBC and 

NOESY. IR spectra were recorded as ATR-FTIR spectra. Wavenumbers () are given in cm1. 

The peak intensities are defined as strong (s), medium (m) or weak (w). Low- and high 

resolution mass spectra were obtained by EI-TOF or ESI-TOF. 4-Methoxyphenyltriflate (8b) 

was synthesized following a literature procedure79 and its analytical data match those previously 

described.80 These arene diazonium salts were synthesized following previously published 

procedures: 6a-b,81 6c,46 6d,82 6e,83 6f,84 6g,83 6h,85 6i,86 6j,84 6k-l,87 6m-n,88 6o,85 6p-q,88 6r-

6s,46 6t,89 6u.88 Diazonium salt 6v has been mentioned in the literature,90 but no synthetic 

procedure and characterization data were provided.
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N-Phenylitaconimide (5a). Synthesized by analogy to a literature procedure:9 Maleimide 3a 

(8.6 g, 50 mmol) was dissolved in glacial acetic acid (40 mL) and PPh3 (13.1 g, 50 mmol) and 

paraformaldehyde (7.5 g, 250 mmol) were added. The reaction mixture was heated to reflux for 

one hour. After cooling to ambient temperature, water (100 mL) was added and the aqueous 

phase was extracted three times with ethyl acetate (100 mL each). The combined organic phases 

were washed with brine (100 mL) and dried over MgSO4 and concentrated under reduced 

pressure. The crude product was purified by column chromatography on silica, using 

hexanes/ethyl acetate mixtures of increasing polarity as eluent, to furnish 5a (5.2 g, 28 mmol, 

56%): colourless solid, mp 117 - 120 °C (reported in the literature:91 mp 118 – 120 °C); 1H 

NMR (400 MHz, CDCl3) δ 7.49 (dd, J = 7.4, 7.4 Hz, 2H), 7.46 - 7.40 (m, 1H), 7.34 (d, J = 7.8 

Hz, 2H), 6.47 (d, J = 1.7 Hz, 1H), 5.74 (d, J = 1.5 Hz, 1H), 3.54 - 3.51 (s, 2H); 13C{1H} NMR 

(101 MHz, CDCl3) δ 172.9, 168.6, 133.1, 132.0, 129.3, 128.8, 126.5, 121.9, 34.1; IR (ATR)  

1702 (s), 1662 (m), 1496 (m), 1385 (s), 1142 (s); HRMS (EI) calcd for C11H9NO2 [M+] 

187.0633, found 187.0626.

N-(3-Hydroxyphenyl)maleimide (3b). Synthesized by analogy to a literature procedure:92 

Maleic anhydride (8) (392 mg, 4.0 mmol) and 3-aminophenol (9) (470 mg, 4.3 mmol) were 

dissolved in glacial acetic acid (25 mL) and stirred at reflux temperature until the reaction was 

completed (ca. 5 h). After cooling to ambient temperature water (50 mL) and ethyl acetate (100 

mL) were added to the reaction mixture and the layers were separated. The organic phase was 

washed with saturated sodium bicarbonate solution (3 times 30 mL), dried with MgSO4 and 

concentrated under reduced pressure. The crude product was purified by column 

chromatography on silica, using hexanes/ethyl acetate mixtures of increasing polarity as eluent 

to furnish 3b (688 mg, 3.6 mmol, 91%): yellowish solid, mp 135 °C (reported in the literature:42 

mp 134 – 135 °C); 1H NMR (300 MHz, acetone-d6) δ 8.58 (s, 1H), 7.32 – 7.16 (m, 1H), 7.02 – 

6.94 (s, 2H), 6.90 –6.74 (m, 3H); 13C{1H} NMR (75 MHz, acetone-d6) δ 170.4, 158.5, 135.2, 
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134.0, 130.3, 118.4, 115.5, 114.5; IR (ATR)  3321 (w), 1693 (s), 1598 (m), 1150 (m), 825 (s); 

HRMS (EI) calcd for C10H7NO3 [M+] 189.0426, found 189.0422.

N-(3-Hydroxyphenyl)itaconimide (5b). Following the procedure for 5a, maleimide 3b (567 

mg, 3.0 mmol) was converted to 5b (438 mg, 2.2 mmol, 72%): colourless solid, mp: 168 - 169 

°C (reported in the literature:93 mp 111 – 112 °C); 1H NMR (300 MHz, acetone-d6) δ 8.57 (s, 

1H), 7.28 (ddd, J = 8.9, 4.8, 1.4 Hz, 1H), 6.93 –6.78 (m, 3H), 6.26 (td, J = 2.5, 0.4 Hz, 1H), 

5.73 (td, J = 2.1, 0.4 Hz, 1H), 3.52 (t, J = 2.3 Hz, 2H); 13C{1H} NMR (75 MHz, acetone-d6) δ 

173.5, 169.2, 158.5, 135.8, 134.9, 130.2, 120.0, 118.9, 116.0, 115.0, 34.6; IR (ATR)  3285 

(bw), 1694 (s), 1665 (m), 1226 (s), 1139 (s); HRMS (EI) calcd for C11H10NO3 [M+H]+ 

204.0661, found 204.0672.

2,4-Dichlorophenyldiazoniumtetrafluoroborate (6v). A solution of 2,4-dichloroaniline (972 

mg, 6.00 mmol) in aq. HBF4 (48 wt-%, 2.00 mL, 7.80 mmol) and water (2.00 mL) was cooled 

to 0 °C. A solution of NaNO2 (414 mg, 6.00 mmol) in water (1.00 mL) was added dropwise 

and the reaction mixture was stirred for 0.5 h at 0 °C. The resulting precipitate was filtered off, 

dissolved in acetone (3 mL) and re-precipitated by addition of diethyl ether (150 mL). Filtration 

and drying in vacuo furnished 6v (66 %, 1.030 g, 4.00 mmol): colourless solid; 1H NMR (400 

MHz, DMSO-d6) δ 8.86 (d, J = 9.0 Hz, 1H), 8.54 (d, J = 1.5 Hz, 1H), 8.10 (dd, J = 8.9, 1.5 Hz, 

1H); 13C{1H} NMR (101 MHz, DMSO-d6) δ 147.6, 136.8, 135.5, 132.4, 130.7, 115.5; IR (ATR) 

 3095 (m), 2287 (w), 1739 (s), 1367 (m), 1055 (s); HRMS (ESI) calcd for C6H3
35Cl2N2 [M]+ 

172.9668, found: 172.9669.

General procedure for the Matsuda-Heck reaction of N-arylitaconimides with arene 

diazonium salts. The appropriate N-arylitaconimide 5a (56 mg, 0.30 mmol) or 5b (61 mg, 0.30 

mmol) was dissolved in methanol (4.0 mL). Pd(OAc)2 (2.8 mg, 5 mol %) and the corresponding 

arene diazonium tetrafluoroborate 6 (0.25 mmol) were added and the mixture was stirred at 

ambient temperature for 0.5 h. The products precipitate from the mixture and were isolated by 

filtration of the reaction mixture through a short pad of celite, which was subsequently washed 
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with methanol (10 mL) to remove unreacted starting material 5. The pad of celite is then flushed 

with ethyl acetate (10 mL) to dissolve the product. Evaporation of the ethyl acetate solution 

furnished the products exo-1 without additional purification steps.

(E)-3-(4-Methoxybenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1aa). Following the 

general procedure, 6a (56 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1aa (70 mg, 0.24 mmol, 95%): off-white solid, mp 149 – 151 °C (reported in the literature:21 

mp 175 – 177 °C); 1H NMR (300 MHz, CDCl3) δ 7.68 (t, J = 2.2 Hz, 1H), 7.52 – 7.45 (m, 4H), 

7.43 – 7.32 (m, 3H), 6.99 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 3.70 (d, J = 2.3 Hz, 2H); 13C{1H} 

NMR (75 MHz, CDCl3) δ 173.3, 170.4, 161.4, 135.1, 132.3, 132.3, 129.2, 128.5, 127.0, 126.6, 

120.4, 114.8, 55.6, 34.4; IR (ATR)  2923 (m), 1764 (m), 1699 (s), 1597 (m), 1373 (m); HRMS 

(EI) calcd for C18H15NO3 [M+] 293.1052, found 293.1048.

(E)-3-(4-(Benzyloxy)benzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ab). Following the 

general procedure, 6b (75 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ab (75 mg, 0.20 mmol, 81%): colourless solid, mp 190 - 191 °C; 1H NMR (600 MHz, DMSO-

d6) δ 7.67 (d, J = 8.9 Hz, 2H), 7.55 - 7.49 (m, 3H), 7.49 - 7.46 (m, 2H), 7.45 - 7.39 (m, 3H), 

7.37 - 7.32 (m, 3H), 7.14 (dm, J = 8.9 Hz, 2H), 5.20 (s, 2H), 3.82 (d, J = 2.3 Hz, 2H); 13C{1H} 

NMR (151 MHz, DMSO-d6) δ 173.6, 170.2, 159.7, 136.7, 132.7, 132.6, 132.3, 128.8, 128.5, 

128.2, 128.0, 127.8, 127.2, 127.0, 122.4, 115.4, 69.4, 34.1; IR (ATR)  1772 (w), 1702 (s), 

1598 (m), 1170 (s), 827 (m); HRMS (ESI) calcd for C24H20NO3 [M+H]+ 370.1443, found 

370.1435.

(E)-3-(4-Hydroxybenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ac). Following the 

general procedure, 6c (52 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ac (64 mg, 0.23 mmol, 92%): off-white solid, mp 270 °C (dec.); 1H NMR (600 MHz, DMSO-

d6) δ 10.13 (s, 1H), 7.55 (d, J = 8.7 Hz, 2H), 7.53 - 7.49 (m, 2H), 7.48 (t, J = 2.2 Hz, 1H), 7.42 

(tt, J = 7.7, 1.3 Hz, 1H), 7.36 - 7.33 (m, 2H), 6.88 (dm, J = 8.7 Hz, 2H), 3.78 (d, J = 2.3 Hz, 

2H); 13C{1H} NMR (151 MHz, DMSO-d6) δ 173.6, 170.3, 159.4, 133.1, 132.8, 132.6, 128.8, 
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128.2, 127.2, 125.3, 121.1, 116.0, 34.1; IR (ATR)  3393 (w), 1769 (m), 1689 (s), 1596 (s), 

1385 (s), 1158 (s); HRMS (ESI) calcd for C17H14NO3 [M+H]+ 280.0974, found 280.0971.

(E)-3-(4-Fluorobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ad). Following the 

general procedure, 6d (52 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ad (64 mg, 0.23 mmol, 91%): off-white solid, mp 194 - 197 °C (reported in the literature:21 

mp 232 – 233 °C); 1H NMR (400 MHz, CDCl3) δ 7.71 (s, 1H), 7.57 - 7.48 (m, 4H), 7.45 - 7.36 

(m, 3H), 7.18 (dd, J = 8.2, 8.2 Hz, 2H), 3.73 (s, 2H); 13C{1H} NMR (101 MHz, CDCl3) δ 172.9, 

170.0, 163.7 (d, J = 253.2 Hz), 134.1, 132.3 (d, J = 8.6 Hz), 132.0, 130.4 (d, J = 3.3 Hz), 129.2, 

128.7, 126.5, 122.7 (d, J = 2.3 Hz), 16.5 (d, J = 21.9 Hz), 34.1; 19F{1H} NMR (376 MHz, 

CDCl3)  108.3; IR (ATR)  1762 (w), 1702 (s), 1650 (m), 1598 (m), 1173 (s), 1160 (s); 

HRMS (ESI) calcd for C17H13FNO2 [M+H]+ 282.0900, found 282.0930.

(E)-3-(4-Chlorobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ae). Following the 

general procedure, 6e (57 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ae (67 mg, 0.23 mmol, 91%): colourless solid, mp 232 - 233 °C (reported in the literature:5 

mp 233 – 235 °C); 1H NMR (500 MHz, DMSO-d6) δ 7.74 (d, J = 8.6 Hz, 2H), 7.60 - 7.50 (m, 

5H), 7.44 (t, J = 7.4 Hz, 1H), 7.38 - 7.33 (m, 2H), 3.86 (d, J = 2.3 Hz, 2H); 13C{1H} NMR (125 

MHz, DMSO-d6) δ 173.4, 169.8, 134.5, 133.1, 132.6, 132.0, 131.3, 129.1, 128.9, 128.3, 127.1, 

126.2, 34.1; IR (ATR)  1762 (w), 1701 (s), 1499 (m), 1173 (s), 825 (m); HRMS (ESI) calcd 

for C17H13
35ClNO2 [M+H]+ 298.0635, found 298.0645.

(E)-3-(4-Bromobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1af). Following the 

general procedure, 6f (68 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1af (79 mg, 0.23 mmol, 93%): off-white solid, mp 234 – 235 °C (reported in the literature:21 

mp 235 – 236 °C); 1H NMR (600 MHz, DMSO-d6) δ 7.74 – 7.62 (m, 4H), 7.56 (t, J = 1.7 Hz, 

1H), 7.52 (dd, J = 7.7, 7.7 Hz, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.36 (d, J = 7.6 Hz, 2H), 3.84 (d, 

J = 1.6 Hz, 2H); 13C{1H} NMR (151 MHz, DMSO-d6) δ 173.4, 169.8, 133.4, 132.6, 132.2, 
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132.0, 131.4, 128.9, 128.3, 127.1, 126.3, 123.5, 34.1; IR (ATR)  1763 (m), 1702 (s), 1638 (m), 

1485 (m), 1172 (s); HRMS (ESI) calcd for C17H13
79BrNO2 [M+H]+ 342.0130, found 342.0129.

(E)-3-(4-Cyanobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ag). Following the 

general procedure, 6g (54 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ag (62 mg, 0.22 mmol, 86%): off-white solid, mp 233 °C (dec.); 1H NMR (600 MHz, DMSO-

d6) δ 7.96 (dm, J = 8.5 Hz, 2H), 7.90 (dm, J = 8.4 Hz, 2H), 7.64 (t, J = 2.4 Hz, 1H), 7.55 - 7.50 

(m, 2H), 7.45 (tt, J = 7.5, 1.3 Hz, 1H), 7.38 - 7.34 (m, 2H), 3.91 (d, J = 2.4 Hz, 2H); 13C{1H} 

NMR (151 MHz, DMSO-d6) δ 173.3, 169.6, 138.7, 132.8, 132.5, 130.8, 130.6, 129.0, 128.9, 

128.4, 127.1, 118.6, 111.8, 34.2; IR (ATR)  2232 (w), 1764 (w), 1703 (s), 1645 (w), 1172 (m), 

689 (s); HRMS (ESI) calcd. for C18H13N2O2 [M+H]+ 289.0977, found 289.0984.

(E)-3-(4-Acetylbenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ah). Following the 

general procedure, 6h (56 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ah (72 mg, 0.24 mmol, 94%): off-white solid, mp 177 - 181 °C (dec.); 1H NMR (600 MHz, 

DMSO-d6) δ 8.04 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.64 (t, J = 2.2 Hz, 1H), 7.57 - 

7.49 (m, 2H), 7.44 (dd, J = 7.3, 1.4 Hz, 1H), 7.39 - 7.31 (m, 2H), 3.91 (d, J = 2.4 Hz, 2H), 2.62 

(s, 3H); 13C{1H} NMR (151 MHz, DMSO-d6) δ 197.5, 173.4, 169.8, 138.4, 137.0, 132.6, 131.3, 

130.5, 128.9, 128.7, 128.4, 128.0, 127.2, 34.3, 26.9; IR (ATR)  1765 (w), 1703 (s), 1677 (s), 

1643 (m), 1348 (m), 1175 (s); HRMS (ESI) calcd for C19H16NO3 [M+H]+ 306.1130, found 

306.1115.

(E)-N-(4-((2,5-Dioxo-1-phenylpyrrolidine-3-ylidene)methyl)phenyl)acetamide (exo-1ai). 

Following the general procedure, 6i (62 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were 

converted to exo-1ai (72 mg, 0.23 mmol, 90%): colourless solid, mp 260 - 265 °C (dec.); 1H 

NMR (600 MHz, DMSO-d6) δ 10.19 (s, 1H), 7.68 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 

7.48 (dd, J = 7.5, 7.5 Hz, 2H), 7.47 (t, J = 2.2 Hz, 1H), 7.40 (tt, J = 7.5, 1.3 Hz, 1H), 7.32 (dm, 

J = 7.5 Hz, 1H), 3.80 (d, J = 2.2 Hz, 2H), 2.05 (s, 3H); 13C{1H} NMR (151 MHz, DMSO-d6) δ 

173.6, 170.1, 168.8, 140.9, 132.7, 132.5, 131.4, 128.9, 128.8, 128.2, 127.2, 123.2, 119.0, 34.2, 
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24.1; IR (ATR): 3324 (w), 1760 (w), 1697 (s), 1649 (m), 1177 (s); HRMS (ESI) calcd for 

C19H17N2O3 [M+H]+ 321.1239, found 321.1260.

(E)-3-(4-Nitrobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1aj). Following the general 

procedure, 6j (59 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-1aj (69 

mg, 0.22 mmol, 89%): yellow solid, mp 227 - 229 °C (dec.; reported in the literature for an E/Z-

mixture:22 mp 140 - 142 °C); 1H NMR (600 MHz, DMSO-d6) δ 8.31 (dm, J = 8.8 Hz, 2H), 7.99 

(dm, J = 8.9 Hz, 2H), 7.70 (t, J = 2.4 Hz, 1H), 7.53 (dd, J = 7.9, 7.5 Hz, 2H), 7.45 (tt, J = 7.6, 

1.2 Hz, 1H), 7.37 (dd, J = 8.0, 1.2 Hz, 2H), 3.93 (d, J = 2.4 Hz, 2H); 13C{1H} NMR (151 MHz, 

DMSO-d6) δ 173.2, 169.6, 147.4, 140.5, 132.5, 131.3, 130.0, 129.8, 128.9, 128.4, 127.1, 124.0, 

34.2; IR (ATR)  1764 (w), 1701 (s), 1647 (m), 1515 (s), 1347 (s); HRMS (ESI) calcd for 

C17H12N2O4 [M+] 308.0792, found 308.0790.

(E)-3-Benzylidene-1-phenylpyrrolidine-2,5-dione (exo-1ak). Following the general 

procedure, 6k (48 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-1ak (59 

mg, 0.22 mmol, 88%): colourless solid, mp 191 - 193 °C (reported in the literature:7 mp 189 - 

190 °C); 1H NMR (300 MHz, DMSO-d6) δ 7.70 (dd, J = 8.0, 1.2 Hz, 2H), 7.58 (t, J = 2.2 Hz, 

1H), 7.56 - 7.46 (m, 5H), 7.44 (tt, J = 7.5, 1.4 Hz, 1H), 7.37 (dd, J = 8.0, 1.4 Hz, 2H), 3.87 (d, 

J = 2.3 Hz, 2H); 13C{1H} NMR (75 MHz, DMSO-d6) δ 173.4, 169.9, 134.1, 132.7, 132.6, 130.3, 

129.9, 129.0, 128.8, 128.2, 127.1, 125.3, 34.1; IR (ATR)  1775 (w), 1703 (s), 1657 (m), 1388 

(m), 1123 (m); HRMS (ESI) calcd for C17H13NO2 [M+] 263.0946, found 263.0945.

(E)-3-(3-Methylbenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1al). Following the 

general procedure, 6l (52 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1al (69 mg, 0.25 mmol, quant.): colourless solid, mp 172 °C; 1H NMR (600 MHz, DMSO-d6) 

δ 7.55 - 7.48 (m, 5H), 7.44 (tt, J = 7.5, 1.3 Hz, 1H), 7.39 (dd, J = 7.6, 7.6 Hz, 1H), 7.36 (dd, J 

= 8.0, 1.3 Hz, 2H), 7.28 (d, J = 7.6 Hz, 1H), 3.86 (d, J = 2.3 Hz, 2H), 2.38 (s, 3H); 13C{1H} 

NMR (151 MHz, DMSO-d6) δ 173.5, 170.0, 138.4, 134.1, 132.8, 132.6, 130.8, 130.7, 129.0, 
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128.8, 128.3, 127.6, 127.2, 125.1, 34.2, 21.0; IR (ATR)  1765 (w), 1702 (s), 1651 (m), 1160 

(m), 695 (s); HRMS (ESI) calcd for C18H16NO2 [M+H]+ 278.1181, found 278.1161.

(E)-3-(3-Cyanobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1am). Following the 

general procedure, 6m (54 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1am (64 mg, 0.22 mmol, 89%): yellowish solid, mp 213 - 216 °C; 1H NMR (300 MHz, DMSO-

d6) δ 8.18 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.91 (ddd, J = 7.9, 1.1, 1.1 Hz, 1H), 7.70 (dd, J = 

7.9, 7.9 Hz, 1H), 7.61 (t, J = 2.3 Hz, 1H), 7.56 - 7.49 (m, 2H), 7.47 – 7.41 (m, 1H), 7.39 – 7.34 

(m, 2H), 3.95 (d, J = 2.4 Hz, 2H); 13C{1H} NMR (75 MHz, DMSO-d6) δ 173.3, 169.6, 135.3, 

134.5, 133.5, 133.0, 132.5, 130.3, 130.2, 128.8, 128.3, 127.9, 127.1, 118.4, 112.3, 33.9; IR 

(ATR)  2230 (w), 1760 (w), 1700 (s), 1643 (m), 1380 (m), 1182 (s); HRMS (ESI) calcd for 

C18H13N2O2 [M+H]+ 289.0977, found 289.0993.

(E)-3-(2-Methoxybenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1an). Following the 

general procedure, 6n (56 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1an (64 mg, 0.22 mmol, 87%): off-white solid, mp 163 - 165 °C (reported in the literature:94 

mp 159 - 160 °C); 1H NMR (600 MHz, DMSO-d6) δ 7.87 (t, J = 1.8 Hz, 1H), 7.63 (dd, J = 7.8, 

0.9 Hz, 1H), 7.54 - 7.50 (m, 2H), 7.48 - 7.42 (m, 2H), 7.35 (d, J = 7.3 Hz, 2H), 7.14 (d, J = 8.3 

Hz, 1H), 7.07 (dd, J = 7.5, 7.5 Hz, 1H), 3.89 (s, 3H), 3.80 (d, J = 2.2 Hz, 2H); 13C{1H} NMR 

(151 MHz, DMSO-d6) δ 174.0, 170.5, 158.6, 133.1, 132.2, 129.7, 129.3, 128.7, 127.6, 127.3, 

125.3, 122.9, 121.2, 112.1, 56.2, 34.4; IR (ATR)  1758 (w), 1703 (s), 1598 (w), 1382 (w), 696 

(s); HRMS (ESI) calcd for C18H16NO3 [M+H]+ 294.1130, found 294.1123.

(E)-3-(2-Fluorobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ao). Following the 

general procedure, 6o (52 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ao (69 mg, 0.25 mmol, 99%): colourless solid, mp 159 - 161 °C (dec.); 1H NMR (500 MHz, 

DMSO-d6) δ 7.79 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 2.0 Hz, 1H), 7.57 – 7.50 (m, 3H), 7.45 (t, J = 

7.5 Hz, 1H), 7.40 – 7.27 (m, 4H), 3.85 (d, J = 2.0 Hz, 2H); 13C{1H} NMR (126 MHz, DMSO-

d6) δ 173.3, 169.6, 160.7 (d, J = 250.5 Hz), 132.5, 132.2 (d, J = 9.0 Hz), 129.9, 128.9, 128.3, 
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127.8, 127.2, 125.1 (d, J = 3.5 Hz), 123.4 (d, J = 6.3 Hz), 121.8 (d, J = 11.5 Hz), 116.0 (d, J = 

21.7 Hz), 34.0; IR (ATR)  1774 (w), 1703 (s), 1498 (m), 1198 (m), 697 (s); HRMS (ESI) calcd 

for C17H13FNO2 [M+H]+ 282.0930, found 282.0902.

(E)-3-(2-Bromobenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ap). Following the 

general procedure, 6p (68 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were converted to exo-

1ap (61 mg, 0.18 mmol, 72%): colourless solid, mp 155 - 157 °C (dec.); 1H NMR (600 MHz, 

DMSO-d6) δ 7.80 (dd, J = 7.8, 1.5 Hz, 1H), 7.79 (dd, J = 7.9, 1.1 Hz, 1H), 7.76 (t, J = 2.4 Hz, 

1H), 7.56 – 7.50 (m, 3H), 7.45 (tt, J = 7.3, 1.3 Hz, 1H), 7.40 (ddd, J = 7.9, 7.9, 1.6 Hz, 1H), 

7.38 – 7.36 (m, 2H), 3.84 (d, J = 2.4 Hz, 2H); 13C{1H} NMR (151 MHz, DMSO-d6) δ 173.3, 

169.6, 133.4, 133.3, 132.5, 131.5, 130.3, 130.2, 128.9, 128.4, 128.4, 128.3, 127.2, 125.4, 33.5; 

IR (ATR)  1761 (w), 1705 (s), 1500 (m), 1384 (m), 1171 (m); HRMS (ESI) calcd for 

C17H13
79BrNO2 [M+H]+ 342.0130, found 342.0140.

(E)- 3-(3-Bromo-4-hydroxybenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1ar). 

Following the general procedure, 6r (72 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were 

converted to exo-1ar (85 mg, 0.24 mmol, 95%): off-white solid, mp 185 °C (dec.); 1H NMR 

(600 MHz, DMSO-d6) δ 10.97 (s, 1H), 7.85 (s, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.51 (dd, J = 7.7, 

7.7 Hz, 2H), 7.47 (s, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 7.6 Hz, 2H), 7.06 (d, J = 8.5 Hz, 

1H), 3.82 (s, 2H); 13C{1H} NMR (151 MHz, DMSO-d6) δ 173.5, 170.0, 155.8, 135.4, 132.7, 

131.6, 131.0, 128.8, 128.2, 127.2, 126.9, 122.8, 116.7, 110.0, 34.0; IR (ATR)  3405 (w), 1770 

(m), 1691 (s), 1505 (m), 1169 (s); HRMS (ESI) calcd for C17H13
79BrNO3 [M+H]+ 358.0079, 

found 358.0108.

Methyl (E)-5-((2,5-dioxo-1-phenylpyrrolidin-3-ylidene)methyl)-2-hydroxybenzoate (exo-

1as). Following the general procedure, 6s (67 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were 

converted to exo-1as (78 mg, 0.23 mmol, 93%): off-white solid, mp 195 °C; 1H NMR (600 

MHz, DMSO-d6) δ 10.85 (s, 1H), 8.07 (d, J = 2.3 Hz, 1H), 7.86 (dd, J = 8.8, 2.3 Hz, 1H), 7.55 

(t, J = 2.3 Hz, 1H), 7.54 - 7.50 (m, 2H), 7.43 (tt, J = 7.5, 1.3 Hz, 1H), 7.37 - 7.34 (m, 2H), 7.11 
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(d, J = 8.7 Hz, 1H), 3.92 (s, 3H), 3.82 (d, J = 2.3 Hz, 2H); 13C{1H} NMR (151 MHz, DMSO-

d6) δ 173.4, 170.0, 168.2, 160.6, 136.7, 132.9, 132.6, 131.7, 128.8, 128.2, 127.1, 125.7, 123.4, 

118.4, 114.6, 52.7, 34.0; IR (ATR)  1703 (s), 1682 (s), 1591 (m), 1216 (m), 698 (s); HRMS 

(ESI) calcd for C19H16NO5 [M+H]+ 338.1028, found 338.1046.

(E)-1-Phenyl-3-(3,4,5-trimethoxybenzylidene)pyrrolidine-2,5-dione (exo-1at).

1

2 3
N

45
6 O

7

O
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10 11
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1314
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1819 20MeO21

MeO
22

MeO
23

Following the general procedure, 6t (71 mg, 0.25 mmol) and 5a (56 mg, 0.30 mmol) were 

converted to exo-1at (79 mg, 0.23 mmol, 90%): colourless solid, mp 172 - 173 °C; 1H NMR 

(500 MHz, CDCl3) δ 7.65 (t, J = 2.3 Hz, 1H, H6), 7.50 (tm, J = 7.7 Hz, 2H, H11,13), 7.44 – 7.35 

(m, 3H, H10,12,14), 6.75 (s, 2H, H16,20), 3.92 (s, 3H, H21), 3.90 (s, 6H, H22,23), 3.78 (d, J = 2.3 Hz, 

2H, H2); 13C{1H} NMR (126 MHz, CDCl3) δ 173.2 (C3), 170.1 (C5), 153.7 (C17,19), 140.4 (C18), 

135.6 (C6), 132.1 (C9), 129.6 (C15), 129.3 (C11,13), 128.7 (C12), 126.6 (C10,14), 122.0 (C1), 107.8 

(C16,20), 61.1 (C21), 56.4 (C22,23), 34.4 (C2); IR (ATR)  1772 (m), 1700 (s), 1652 (m), 1575 (m), 

1115 (s); HRMS (ESI) calcd for C20H20NO5 [M+H]+ 354.1341, found 354.1343.

(E)-1-(3-Hydroxyphenyl)-3-(3-nitrobenzylidene)pyrrolidine-2,5-dione (exo-1bu). 

Following the general procedure, 6u (119 mg, 0.50 mmol) and 5b (122 mg, 0.60 mmol) were 

converted to exo-1bu (128 mg, 0.40 mmol, 79%): yellowish solid, mp 212 °C (dec.; reported 

in the literature:1 mp 198 - 199 °C); 1H NMR (300 MHz, DMSO-d6) δ 9.74 (s, 1H), 8.50 (t, J = 

1.5 Hz, 1H), 8.27 (ddd, J = 8.2, 2.2, 0.7 Hz, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.78 (dd, J = 7.9, 7.9 

Hz, 1H), 7.71 (t, J = 2.2 Hz, 1H), 7.30 (t, J = 8.3 Hz, 1H), 6.84 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H), 

6.80 - 6.75 (m, 2H), 3.92 (d, J = 2.3 Hz, 2H); 13C{1H} NMR (75 MHz, DMSO-d6) δ 173.0, 

169.4, 157.6, 148.2, 135.8, 135.8, 133.3, 130.5, 130.1, 129.5, 128.3, 124.6, 124.0, 117.5, 115.3, 

114.1, 33.9; IR (ATR)  3281 (bw), 1770 (m), 1693 (s), 1653 (s), 1526 (s); HRMS (ESI) calcd 

for C17H13N2O5 [M+H]+ 325.0824, found 325.0839.
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(E)-3-(2,4-Dichlorobenzylidene)-1-(3-hydroxyphenyl)pyrrolidine-2,5-dione (exo-1bv). 

Following the general procedure, 6v (130 mg, 0.50 mmol) and 5b (122 mg, 0.60 mmol) were 

converted to exo-1bv (167 mg, 0.48 mmol, 96%): orange solid, mp 255 °C (dec.; reported in 

the literature:1 mp 269 °C); 1H NMR (500 MHz, DMSO-d6) δ 9.79 (s, 1H), 7.82 (d, J = 2.3 Hz, 

1H), 7.82 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 2.4 Hz, 1H), 7.56 (dd, J = 8.4, 1.9 Hz, 1H), 7.30 (dd, 

J = 8.3, 8.3 Hz, 1H), 6.84 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H), 6.79 - 6.74 (m, 2H), 3.82 (d, J = 2.5 

Hz, 2H); 13C{1H} NMR (126 MHz, DMSO-d6) δ 173.2, 169.4, 157.7, 135.3, 135.0, 133.3, 

131.2, 130.8, 129.6, 129.6, 129.2, 128.1, 126.3, 117.6, 115.4, 114.2, 33.7; IR (ATR)  3374 

(bw), 1765 (m), 1697 (s), 1387 (m), 1181 (s); HRMS (ESI) calcd for C17H12
35Cl2NO3 [M+H]+ 

348.0194, found 348.0185.

Synthesis of (E)-3-(4-methoxybenzylidene)-1-phenylpyrrolidine-2,5-dione (exo-1aa) via 

Mizoroki-Heck reaction. Iodo-4-Methoxybenzene (8a) as coupling partner (table 2, entries 1 

and 2): To a solution of 8a (70 mg, 0.30 mmol) and 5a (47 mg, 0.25 mmol) in DMF (2.0 mL) 

were added NEt3 (105 μL, 0.75 mmol), Pd(OAc)2 (2.8 mg, 5 mol%) and tri-(o-tolyl)-phosphine 

(7.6 mg, 10 mol%). The solution was heated to 90 °C in DMF (2.0 mL) at 90 ° C for 18 h. After 

cooling to ambient temperature the reaction mixture was diluted with CH2Cl2 (30 mL), washed 

with water (20 mL) and brine (20 mL). The organic extracts were dried with MgSO4, filtered 

and concentrated at reduced pressure. The crude product was purified by column 

chromatography using silica gel and eluent mixtures of hexanes and ethyl acetate with 

increasing polarity to furnish exo-1aa (51 mg, 0.18 mmol, 70%) as an off-white solid. By 

following this procedure without addition of the ligand tri-(o-tolyl)-phosphine the same 

coupling product exo-1aa (44 mg, 0.15 mmol, 60%) was obtained. 4-Methoxyphenyltriflate (8b) 

as coupling partner (table 2, entry 4): the same procedure as outlined above was used, but 8a 

was replaced by 8b (77 mg, 0.30 mmol). The identical coupling product exo-1aa (19 mg, 0.07 

mmol, 26%) was obtained. Bromo-4-methoxybenzene (8c) as coupling partner (table 2, entry 

5): Pd(OAc)2 (2.8 mg, 5 mol%) and tri-(o-tolyl)-phosphine (7.6 mg, 10 mol%) were suspended 
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in DMF (2.00 mL) and the mixture was stirred for 20 minutes at ambient temperature. 4-

Bromoanisole (8c, 38 L, 0.30 mmol) was then added, followed by 5a (47 mg, 0.25 mmol) and 

NaOAc•3H2O (34 mg, 0.25 mmol). The reaction mixture was heated to 140 ° C and stirred at 

this temperature for 1 h. After cooling to ambient temperature, the reaction mixture was diluted 

with CH2Cl2 (15 mL) and washed with water (30 mL). The aqueous layer was separated and 

extracted three times with CH2Cl2 (15 mL each). The combined organic extracts were dried 

with MgSO4, filtered and evaporated. The crude product was purified by column 

chromatography on silica gel using hexanes / ethyl acetate mixtures of increasing polarity as 

eluent to furnish exo-1aa (15 mg, 0.05 mmol, 21%). All analytical data of the coupling product 

exo-1aa are identical to those reported above.

General procedure for the Matsuda-Heck reaction of arylmethylidene-N-

phenylsuccinimides with arene diazonium salts. The appropriate precursor exo-1 (0.25 

mmol) was dissolved in methanol (10.0 mL). Pd(OAc)2 (2.8 mg, 5 mol %), followed by the 

corresponding arene diazonium salt 6 (0.30 mmol) were added, and the mixture was stirred at 

ambient temperature for 18 h. After evaporation of all volatiles in vacuo the residue was purified 

by column chromatography on silica, using hexanes-ethyl acetate mixtures of increasing 

polarity as eluents.

3-(Bis-(4-methoxyphenyl)methyl)-1-phenyl-1H-pyrrol-2,5-dione (endo-7aa).

1
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Following the general procedure, exo-1aa (73 mg, 0.25 mmol) and 6a (67 mg, 0.30 mmol) were 

converted to endo-7aa (86 mg, 0.22 mmol, 86%). Alternative synthesis from 5a (table 1, entry 

8). To a solution of 5a (47 mg, 0.25 mmol) in methanol (8.0 mL) was added Pd(OAc)2 (2.8 mg, 

5 mol %) and arene diazonium tetrafluoroborate 6a (166 mg, 0.75 mmol). The reaction mixture 
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was stirred at ambient temperature for 18 h, evaporated, and the residue was purified by column 

chromatography on silica using hexanes-ethyl acetate mixtures of increasing polarity to furnish 

endo-7aa (32 mg, 0.16 mmol, 65%): colourless oil; 1H NMR (400 MHz, CDCl3) δ 7.43 (dd, J 

= 7.7, 7.7 Hz, 2H, H13/15), 7.35 (d, J = 7.5 Hz, 2H, H12/16), 7.32 (t, J = 7.2 Hz, 1H, H14), 7.13 (d, 

J = 8.3 Hz, 4H, H17,21,22,26), 6.89 (d, J = 8.3 Hz, 4H, H18,20,23,25), 6.28 (s, 1H, H2), 5.33 (s, 1H, 

H6), 3.80 (s, 6H, H27,28); 13C{1H} NMR (101 MHz, CDCl3) δ 169.6 (C3), 169.3 (C5), 158.8 

(C19,24), 152.5 (C1), 131.8 (C7,8), 131.6 (C11), 129.5 (C17,21,22,26), 129.0 (C12,16), 128.6 (C2), 127.6 

(C14), 125.8 (C12,16), 114.3 (C18,20,23,25), 55.3 (C27,28), 46.4 (C6); IR (ATR)  2925 (w), 1714 (s), 

1604 (w), 1510 (s), 1388 (m); HRMS (ESI) calcd for C25H21NO4 [M+] 399.1471, found 

399.1460.

3-((4-Chlorophenyl)(4-methoxyphenyl)methyl)-1-phenyl-1H-pyrrole-2,5-dione (endo-

7ae). Following the general procedure, exo-1aa (73 mg, 0.25 mmol) and 6e (68 mg, 0.30 mmol) 

were converted to endo-7ae (84 mg, 0.21 mmol, 83%). Alternative synthesis from 5a (scheme 

4). To a solution of 5a (56 mg, 0.30 mmol) in methanol (4.0 mL) was added Pd(OAc)2 (2.8 mg, 

5 mol %) and arene diazonium tetrafluoroborate 6a (56 mg, 0.25 mmol). The reaction mixture 

was stirred at ambient temperature for 0.5 h and then diluted by addition of methanol (6.0 mL). 

Arene diazonium salt 6e (68 mg, 0.30 mmol) was then added and the mixture was stirred at 

ambient temperature for 18 h, evaporated, and the residue was purified by column 

chromatography on silica using hexanes-ethyl acetate mixtures of increasing polarity to furnish 

endo-7ae (70 mg, 0.17 mmol, 69%): colourless oil; 1H NMR (500 MHz, CDCl3) δ 7.46 - 7.41 

(m, 2H), 7.37 - 7.31 (m, 5H), 7.15 (dm, J = 8.5 Hz, 2H), 7.12 (dm, J = 8.7 Hz, 2H), 6.90 (dm, 

J = 8.7 Hz, 2H), 6.27 (d, J = 1.6 Hz, 1H), 5.34 (s (br.), 1H), 3.80 (s, 3H); 13C{1H} NMR (126 

MHz, CDCl3) δ 169.4, 169.1, 159.1, 151.7, 138.4, 133.4, 131.5, 130.9, 129.9, 129.7, 129.2, 

129.1, 129.0, 127.8, 125.8, 114.5, 55.4, 46.7; IR (ATR)  1709 (s), 1598 (w), 1490 (m), 1386 

(m), 1250 (m); HRMS (EI) calcd for C24H18
35ClNO3 [M+] 403.0970, found 403.0978.
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3-((4-Methoxyphenyl)(phenyl)methyl)-1-phenyl-1H-pyrrole-2,5-dione (endo-7ka). 

Following the general procedure, exo-1ak (66 mg, 0.25 mmol) and 6a (67 mg, 0.30 mmol) were 

converted to endo-7ka (67 mg, 0.18 mmol, 74%): yellowish solid, mp 139 – 141 °C; 1H NMR 

(600 MHz, CDCl3) δ 7.46 - 7.41 (m, 2H), 7.38 – 7.34 (m, 4H), 7.33 (tt, J = 7.5, 1.3 Hz, 1H), 

7.29 (tt, J = 7.3, 1.3 Hz, 1H), 7.24 – 7.20 (m, 2H), 7.15 (dm, J = 8.7 Hz, 2H), 6.90 (dm, J = 8.8 

Hz, 2H), 6.29 (d, J = 1.7 Hz, 1H), 5.38 (s (br.), 1H), 3.80 (s, 3H); 13C{1H} NMR (151 MHz, 

CDCl3) δ 169.6, 169.3, 159.0, 152.2, 139.9, 131.6, 131.5, 129.7, 129.1, 129.0, 129.0, 128.6, 

127.8, 127.5, 125.9, 114.4, 55.4, 47.3; IR (ATR)  1702 (s), 1513 (m), 1500 (m), 1397 (s), 693 

(s); HRMS (EI) calcd for C24H19NO3 [M+] 369.1365, found 369.1364.

3-((4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methyl)-1-phenyl-1H-pyrrole-2,5-dione 

(endo-7ta). Following the general procedure, exo-1at (88 mg, 0.25 mmol) and 6a (67 mg, 0.30 

mmol) were converted to endo-7ta (110 mg, 0.24 mmol, 96%): off-white solid, mp 139 – 140 

°C; 1H NMR (500 MHz, CDCl3) δ 7.46 - 7.40 (m, 2H), 7.37 - 7.30 (m, 3H), 7.15 (dm, J = 8.6 

Hz, 2H), 6.90 (dm, J = 8.8 Hz, 2H), 6.41 (s, 2H), 6.32 (d, J = 1.7 Hz, 1H), 5.30 (d, J = 1.2 Hz, 

1H), 3.84 (s, 3H), 3.80 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 169.6, 169.3, 159.0, 153.6, 

152.1, 137.4, 135.4, 131.6, 131.3, 129.6, 129.1, 128.8, 127.8, 125.8, 114.4, 105.8, 61.0, 56.3, 

55.4, 47.5; IR (ATR)  1702 (s), 1615 (m), 1505 (m), 1399 (m), 1126 (s), 698 (s); HRMS (EI) 

calcd for C27H25NO6 [M+] 459.1682, found 459.1685.

3-((4-Chlorophenyl)(3,4,5-trimethoxyphenyl)methyl)-1-phenyl-1H-pyrrole-2,5-dione 

(endo-7te). Following the general procedure, exo-1at (88 mg, 0.25 mmol) and 6e (68 mg, 0.30 

mmol) were converted to endo-7te (110 mg, 0.24 mmol, 95%): yellowish oil; 1H NMR (600 

MHz, CDCl3) δ 7.46 - 7.40 (m, 2H), 7.38 - 7.31 (m, 5H), 7.17 (dm, J = 8.4 Hz, 2H), 6.39 (s, 

2H), 6.33 (d, J = 1.7 Hz, 1H), 5.32 (d, J = 1.0 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 6H); 13C{1H} NMR 

(151 MHz, CDCl3) δ 169.4, 169.0, 153.7, 151.2, 137.9, 137.6, 134.5, 133.6, 131.4, 129.9, 129.3, 

129.2, 129.2, 127.9, 125.8, 105.8, 61.0, 56.3, 47.6; IR (ATR)  1710 (s), 1590 (m), 1502 (m), 

1386 (m), 1125 (s); HRMS (EI) calcd for C26H22
35ClNO5 [M+] 463.1181, found 463.1173.
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3-((4-Bromophenyl)(3,4,5-trimethoxyphenyl)methyl)-1-phenyl-1H-pyrrole-2,5-dione 

(endo-7tf).

26
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Following the general procedure, exo-1at (88 mg, 0.25 mmol) and 6f (81 mg, 0.30 mmol) were 

converted to endo-7tf (53 mg, 0.11 mmol, 42%): yellowish oil; 1H NMR (600 MHz, CDCl3) δ 

7.49 (dm, J = 8.5 Hz, 2H, H18,20), 7.45 - 7.42 (m, 2H, H6,8), 7.36 - 7.32 (m, 3H, H5,7,9), 7.11 

(dm, J = 8.3 Hz, 2H, H17,21), 6.38 (s, 2H, H11,15), 6.33 (d, J = 1.7 Hz, 1H, H1), 5.30 (d, J = 1.1 

Hz, 1H, H27), 3.84 (s, 3H, H23), 3.81 (s, 6H, H24,25); 13C{1H} NMR (151 MHz, CDCl3) δ 169.4 

(C2), 169.0 (C4), 153.7 (C12,14), 151.1 (C26), 138.4 (C16), 137.6 (C13), 134.4 (C10), 132.2 (C18,20), 

131.4 (C3), 130.2 (C17,21), 129.2 (C1), 129.2 (C6,8), 127.9 (C7), 125.8 (C5,9), 121.8 (C19), 105.8 

(C11,15), 61.0 (C23), 56.3 (C24,25), 47.7 (C27); IR (ATR)  1710 (s), 1593 (m), 1385 (m), 1123 

(m), 528 (m); HRMS (EI) calcd for C26H22
79BrNO5 [M+] 507.0676, found 507.0680.

(E)-3-((4-Nitrophenyl)(3,4,5-trimethoxyphenyl)methylene)-1-phenylpyrrolidine-2,5-

dione ((E)-exo-7tj) and (Z)-3-((4-nitrophenyl)(3,4,5-trimethoxyphenyl)methylene)-1-

phenylpyrrolidine-2,5-dione ((Z)-exo-7tj). Following the general procedure, exo-1at (88 mg, 

0.25 mmol) and 6j (71 mg, 0.30 mmol) were converted to a 4 : 1 mixture of (E)- and (Z)-exo-

7tj, which was contaminated with minor amounts of unidentified byproducts (107 mg, 0.24 

mmol, >90%): yellowish oil. NMR-data of the major isomer (Z)-exo-7tj, obtained from the 

mixture: 1H NMR (500 MHz, CDCl3) δ 8.22 (dm, J = 8.9 Hz, 2H, CHCNO2), 7.53 – 7.27 (m, 

7H, CHCHCNO2, Ph), 6.41 (s, 2H, C6H2(OCH3)3), 3.89 (s, 3H, p-OCH3), 3.80 (s, 6H, m-

OCH3), 3.73 (s, 2H, C(O)CH2); 13C{1H} NMR (126 MHz, CDCl3) δ 172.1, 167.6, 153.7, 153.1, 

150.0, 147.8, 139.5, 145.7, 134.3, 131.7, 130.0, 129.2, 128.8, 126.5, 124.6, 123.5, 122.8, 106.4, 

61.1, 56.5, 36.2. Selected 1H NMR data of the minor isomer (E)-exo-7tj, obtained from the 
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mixture: 1H NMR (500 MHz, CDCl3) δ 8.29 (dm, J = 8.9 Hz, 2H, CHCNO2), 6.46 (s, 2H, 

C6H2(OCH3)3).

3-((3-Nitrophenyl)(3,4,5-trimethoxyphenyl)methyl)-1-phenyl-1H-pyrrole-2,5-dione 

(endo-7tu). Following the general procedure, exo-1at (88 mg, 0.25 mmol) and 6u (71 mg, 0.30 

mmol) were converted to endo-7tu (12 mg, 0.03 mmol, 10%): yellowish oil; 1H NMR (600 

MHz, CDCl3) δ 8.19 (ddd, J = 7.0, 2.3, 2.3 Hz, 1H), 8.13 - 8.12 (m, 1H), 7.60 - 7.55 (m, 2H), 

7.47 - 7.43 (m, 2H), 7.37 - 7.33 (m, 3H), 6.40 (s, 2H), 6.38 (d, J = 1.7 Hz, 1H), 5.44 (d, J = 1.5 

Hz, 1H), 3.85 (s, 3H), 3.82 (s, 6H); 13C{1H} NMR (151 MHz, CDCl3) δ 169.2, 168.7, 154.0, 

150.2, 148.7, 141.7, 138.0, 134.5, 133.5, 131.3, 130.1, 129.7, 129.3, 128.1, 125.8, 123.4, 122.9, 

105.9, 61.1, 56.4, 47.9; IR (ATR)  1711 (s), 1591 (m), 1529 (s), 1125 (m), 729 (m); HRMS 

(EI) calcd for C26H22N2O7 [M+] 474.1422, found 474.1422.

3-((3-Bromo-4-hydroxyphenyl)(3,4,5-trimethoxyphenyl)methyl)-1-phenyl-1H-pyrrole-

2,5-dione (endo-7tr).
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Following the general procedure, exo-1at (88 mg, 0.25 mmol) and 6r (86 mg, 0.30 mmol) were 

converted to endo-7tr (77 mg, 0.15 mmol, 59%): yellowish oil; 1H NMR (600 MHz, CDCl3) δ 

7.46 - 7.41 (m, 2H, H13,15), 7.36 - 7.32 (m, 3H, H12,14,16), 7.32 (d, J = 2.1 Hz, 1H, H21), 7.07 (dd, 

J = 8.5, 2.1 Hz, 1H, H17), 7.00 (d, J = 8.4 Hz, 1H, H18), 6.38 (s, 2H, H22,26), 6.33 (d, J = 1.7 Hz, 

1H, H2), 5.75 (s, 1H, H30), 5.26 (d, J = 1.2 Hz, 1H, H9), 3.84 (s, 3H, H28), 3.81 (s, 6H, H27,29); 

13C{1H} NMR (151 MHz, CDCl3) δ 169.4 (C3), 169.1 (C5), 153.7 (C23,25), 151.9 (C19), 151.3 

(C1), 137.6 (C24), 134.6 (C10), 132.9 (C11), 132.0 (C21), 131.4 (C8), 129.2 (C17), 129.2 (C13,15), 

129.1 (C2), 127.9 (C14), 125.8 (C12,16), 116.6 (C18), 110.8 (C20), 105.8 (C22,26), 61.0 (C28), 56.4 
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(C27,29), 47.1 (C9); IR (ATR)  3427 (w), 1707 (s), 1493 (m), 907 (s); HRMS (EI) calcd for 

C26H22
79BrNO6 [M+] 523.0625, found 523.0643.

Methyl 5-((2,5-dioxo-1-phenyl-2,5-dihydro-1H-pyrrol-3-yl)(3,4,5-trimethoxyphenyl)-

methyl)-2-hydroxybenzoate (endo-7ts). Following the general procedure, exo-1at (88 mg, 

0.25 mmol) and 6s (80 mg, 0.30 mmol) were converted to endo-7ts (34 mg, 0.07 mmol, 27%): 

yellowish oil; 1H NMR (500 MHz, CDCl3) δ 10.78 (s, 1H), 7.70 (d, J = 2.4 Hz, 1H), 7.46 - 7.42 

(m, 2H), 7.37 - 7.31 (m, 4H), 7.01 (d, J = 8.6 Hz, 1H), 6.38 (s, 2H), 6.34 (d, J = 1.7 Hz, 1H), 

5.29 (d, J = 1.2 Hz, 1H), 3.95 (s, 3H), 3.84 (s, 3H), 3.81 (s, 6H); 13C{1H} NMR (126 MHz, 

CDCl3) δ 170.3, 169.5, 169.2, 161.1, 153.8, 151.5, 137.6, 135.8, 134.8, 131.5, 130.0, 129.6, 

129.2, 129.0, 128.0, 125.8, 118.6, 112.7, 105.9, 61.0, 56.4, 52.7, 47.4; IR (ATR) n 3150 (w), 

2940 (w), 1705 (s), 1401 (m), 1126 (s); HRMS (EI) calcd for C28H25NO8 [M+] 503.1580, found 

503.1568.
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