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AMC:    Absolute mean curvature 

ANOVA:  Analysis of variance 

BLS:   Bavarian Longitudinal Study 

BW:   Birth weight 

CI:   Confidence interval 

DARTEL:  Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra 

FA:  Fractional anisotropy 

FS-IQ:   Full-scale IQ 

FT:   Full-term 

FWE:   Family-wise error 

FWHM:  Full-width at half maximum 

GA:   Gestational age 

INTI:   Intensity of neonatal treatment index 

IP:   Intermediate progenitor 

lGI:   Local gyrification index 

MPRAGE:  Magnetization Prepared Rapid Acquisition Gradient Echo 

MRI:   Magnetic resonance imaging 

PMG:   Polymicrogyria 

PoCC:   Postcentral Gyrus 

RGC:   Radial glia cell 

ROI:   Region of interest 

SE:   Standard error 

SES:   Socioeconomic status 

LTC:   Lateral temporal cortex 

TE:   Time to echo 

TFCE:   Threshold-free cluster enhancement 

TI:   Time to inversion 

TR:   Time to repetition 

VLBW:  Very low birth weight 

VP:   Very preterm 

VP/VLBW:  Very preterm/very low birth-weight 

WAIS:   Wechsler Adults Intelligence Scale 

 



Abstract 

Gyrification is a hallmark of human brain development, starting in the second half of 

gestation in primary cortices, followed by unimodal and then transmodal associative cortices. 

Alterations in gyrification have been noted in premature-born newborns and children, 

suggesting abnormal cortical folding to be a permanent feature of prematurity. Furthermore, 

both gyrification and prematurity are tightly linked with cognitive performance, indicating a 

link between prematurity, gyrification, and cognitive performance. To investigate this 

triangular relation, we tested the following two hypotheses: firstly, gyrification is aberrant in 

premature-born adults, and secondly, aberrant gyrification contributes to the impact of 

prematurity on adult cognitive performance.  

 

One hundred and one very premature-born adults (i.e., adults born before 32 weeks of 

gestation, and/or with birth weight below 1500g) and 111 mature-born adults were assessed 

by structural MRI and cognitive testing at 26 years of age. Gyrification was measured by local 

cortical absolute mean curvature (AMC), evaluated through structural MRI. Cognitive 

performance was assessed by the Wechsler-Adult-Intelligence-Scale, full-scale IQ test. Two-

sample t-tests, regression and mediation analyses were used to assess AMC group differences 

and the relation between AMC, birth-related variables, and full-scale IQ.  

 

Three key findings were identified. 1) Local AMC was widely increased in fronto-temporo-

parietal primary and associative cortices of very premature-born adults. Increase of AMC was 

inversely associated with gestational age and birth weight and positively associated with 

medical complications at birth, respectively.  

2) Increased AMC of temporal associative cortices specifically contributed to the association 

between prematurity and reduced adult IQ (two-path mediation), indicating that aberrant 



gyrification of temporal associative cortices is critical for impaired cognitive performance 

after premature birth.  

3) Further investigation of the relationship of gyrification between the early folding 

postcentral cortices and associative temporal cortices, folding later during neurodevelopment, 

revealed that the effect of gyrification abnormalities in associative temporal cortices on adult 

IQ is influenced itself by gyrification abnormalities occurring in the early folding postcentral 

cortices (three-path mediation). These results indicate that gyrification development across 

cortical areas in the brain conveys prematurity effects on adult IQ.  

 

Overall, these results provide evidence that premature birth leads to permanently aberrant 

gyrification patterns suggesting an altered neurodevelopmental trajectory. Statistical 

mediation modelling suggests that both aberrant gyrification itself as well as its propagation 

across the cortex express aspects of impaired neurodevelopment after premature birth and 

lead to reduced cognitive performance in adulthood. Thus, markers of gyrification appear as 

potential candidates for prognosis and treatment of prematurity effects. 

 

 



Introduction 

Premature birth, i.e. birth before 37 weeks of gestation and/or birth weight below 2500g, has a 

worldwide prevalence of more than 10% (Volpe, 2009; Blencowe et al., 2012). It is 

associated with an increased risk (i.e., 30-60% of premature-born individuals) for birth 

complications and adverse long-term outcomes including brain abnormalities and impaired 

cognitive functions (Volpe, 2009). Particularly, very premature individuals, who are born 

very preterm (VP; gestational age < 32 weeks) and/or have a very low birth weight (VLBW; 

< 1500 g), have a substantially increased risk (more than 50%) for long-term neurocognitive 

impairments, psychiatric disorders, and lower socio-economic status (Saigal and Doyle, 2008; 

Nosarti et al., 2012; D’Onofrio et al., 2013). The increased risk for cognitive impairments is 

thought to be caused by perinatal brain injury due to hypoxia, ischemia, haemorrhage, 

infections, and inflammatory processes as well as neonatal pain and stress and subsequent 

alterations in brain development (Volpe, 2009). 

At the microscopic level, these processes primarily impair the development of pre-

myelinating oligodendrocytes, GABA-ergic interneurons, and subplate neurons, which play a 

fundamental role in the development of cortical microstructure, morphology, and connectivity 

(Back et al., 2002; Deng, 2010; Buser et al., 2012; Kinney et al., 2012; Ball et al., 2013; Dean 

et al., 2013; Salmaso et al., 2014). For example, subplate neurons, which control the 

formation of cortical microcircuits mainly during gestational weeks 18 to 35, are highly 

vulnerable to transient hypoxia resulting in lasting subplate neuron dysfunction and 

consequently abnormal microcircuit formation (Kanold and Luhmann, 2010; Kostovic et al., 

2014; McClendon et al., 2017). Corresponding with changes at the microscopic level, 

macroscopic alterations in both white matter and grey matter have been described after 

premature birth. Whereas impairments of white matter integrity where found to be widespread 

across the whole forebrain (Skranes et al., 2007; Eikenes et al., 2011; Ball et al., 2012, 2014; 

Meng et al., 2016), grey matter abnormalities, such as volume reduction, were found mainly 



in medial and temporal lobes as well as subcortical structures, such as the thalamus, striatum, 

and basal forebrain (Pierson et al., 2007; Nosarti et al., 2008; Meng et al., 2016; Grothe et al., 

2017; Karolis et al., 2017). These structural brain changes are tightly associated with 

cognitive impairments (Northam et al., 2011; Farajdokht et al., 2017). For example, aberrant 

thalamo-cortical connectivity in premature newborns is associated with cognitive 

performance at two years of age (Ball et al., 2015); impaired cognitive functioning was 

associated with grey and white matter abnormalities in the inferior frontal gyrus, bilateral 

temporal lobes and corpus callosum in preterm born subjects in young adulthood (Nosarti et 

al., 2014). These neurocognitive changes suggest that basic processes of brain development 

are critically affected by premature birth leading to cognitive impairments and altered brain 

structure in adulthood.  

One such key developmental process influencing for adult brain morphology and function is 

cortex gyrification or cortical folding (Zilles et al., 2013). Gyrification refers to the process of 

cortical folding (Zilles et al., 2013), which is a main characteristic of brain development not 

only in humans, but also in other mammalian species of so-called gyrencephalic brains (Zilles 

et al., 2013). In humans, gyrification is considered a neurodevelopmental milestone of the last 

trimester of gestation and the early postnatal period, leading to an increased cortical surface of 

the human brain relative to a limited skull capacity (Zilles et al., 2013; Sun and Hevner, 

2014). While recent studies provide evidence for a consistent developmental trajectory across 

brain regions starting in primary cortices followed by unimodal and then transmodal 

associative cortices (Hill et al., 2010; Garcia et al., 2018), the exact underlying mechanisms 

of gyrification are still unclear. Distinct hypotheses either emphasise the impact of 

asymmetric grey matter growth within the cortical plate (Armstrong et al., 1991; Kriegstein et 

al., 2006; Ronan et al., 2014) or the effect of axonal tension by white matter fiber tracts 

connecting the cortex with distant cortical or subcortical areas (Van Essen, 1997; Mota and 

Herculano-Houzel, 2015). To quantify brain gyrification, several measures have been 



developed over the last two decades (Luders et al., 2006; Schaer et al., 2008; Zilles et al., 

2013). The current gold-standard measure, gyrification index, was originally described on 

two-dimensional coronal brain slices, reflecting the ratio of the complete and outer 

(superficially exposed) contours (Zilles et al., 1988). In the last decade, tools to measure 

gyrification in-vivo at each vertex of a three-dimensional brain image were developed, either 

by a surface-based approach, called local gyrification index (Schaer et al., 2008) or by 

computation of absolute mean curvature (AMC) as an estimation of cortical convolution 

(Luders et al., 2006). In the latter method, which is used in this paper, change in normal 

direction along the cortical surface is measured and expressed as mean curvature. Large 

negative values correspond to sulci and large positive values correspond to gyri. Absolute 

values of mean curvature express the local amount of gyrification and can be considered a 

measure of the sharpness of gyri and sulci (Luders et al., 2006). A very strong positive 

correlation has been shown between AMC-based gyrification and total surface area (for an 

explanatory figure, please see (Luders et al., 2006)). Based on these measures, both high 

regional and inter-subject variability have been demonstrated for gyrification (Zilles et al., 

2013), with cortical folding having highest levels in ‘associative’ parieto-occipito-temporal 

and prefrontal cortices (Zilles et al., 1988) and consistent differences between males and 

females (Luders et al., 2008). This likely reflects brain morphology as a consequence of 

different genetic, developmental, environmental, and functional influences (Zilles et al., 

2013).  

Prior studies have demonstrated that prematurity affects gyrification, showing aberrant 

cortical folding in premature-born newborns (Kersbergen et al., 2016; Lefèvre et al., 2016) 

and young children (Zhang et al., 2015). Although gyrification is a highly dynamic process 

that can be altered across the lifespan (Hogstrom et al., 2013) or during shorter periods of 

environmental stress such as periods of malnutrition (Bernardoni et al., 2018), it is unknown 

whether aberrant gyrification in premature-born infants results in permanent alterations.  



Regional variance in gyrification may explain cognitive impairments associated with 

premature birth. It has been shown that variance in local gyrification of fronto-parietal 

cortices accounts for more than 10% of variance in general intelligence scores in normal 

healthy young persons (Gregory et al., 2016). In line with this association, aberrant 

gyrification was described in several pathological neurodevelopmental conditions. For 

example, a decrease in gyrification was found in attention deficit hyperactivity disorder 

(Wolosin et al., 2009) and dyslexia (Casanova et al., 2004), while increased gyrification was 

described in Williams syndrome (Gaser et al., 2006), autism (Jou et al., 2010), and 

schizophrenia (Palaniyappan and Liddle, 2012; Schultz et al., 2013). However, it is unknown 

whether abnormal gyrification is relevant for reduced long-term outcomes of prematurity.  

Thus, gyrification is a hallmark of brain development during the second half of gestation and 

shows a sequential development starting in unimodal cortices and then extending to temporal 

associative cortices. It interferes with prematurity regarding both, its developmental starting 

period and its association with impaired general cognitive capacities. We hypothesised that 

premature birth leads to long-lasting cortical folding anomalies. Furthermore, these 

aberrations may express the effect of altered neurodevelopment after prematurity on adult 

cognitive performance. We tested our hypotheses through calculation of both curvature-based 

estimations of gyrification derived from structural MRI and cognitive ability as evaluated by 

intelligence assessments. The two parameters were subsequently investigated using canonical 

statistical testing and mediation analyses in a large cohort of very premature-born young 

adults (VP/VLBW) and age-matched controls born at full-term (FT).  

 

 



Material and methods 

Participants  

The participants examined in this study are part of the Bavarian Longitudinal Study (BLS), a 

geographically defined, whole-population sample of neonatal at-risk children and healthy full 

term controls who were followed from birth into adulthood (Riegel et al., 1995; Wolke and 

Meyer, 1999). Of the initial 682 infants born very preterm  (<32 weeks) and/or with very low 

birth weight (< 1500g), 411 were eligible for the 26-year follow-up assessment, and 260 

(63.3%) participated in psychological assessments (Breeman et al., 2015). Of the initial 916 

full term born infants from the same obstetric hospitals that were alive at 6 years, 350 were 

randomly selected as control subjects within the stratification variables of sex and family 

socioeconomic status in order to be comparable with the VP/VLBW sample. Of these, 308 

were eligible for the 26-year follow-up assessment, and 229 (74.4%) participated in 

psychological assessments. All of the 260 subjects from the VP/VLBW group underwent an 

initial screening for MR-related exclusion criteria, which included: (self-reported) 

claustrophobia, inability to lie still for > 30 minutes, unstable medical conditions (e.g. severe 

asthma), epilepsy, tinnitus, pregnancy, non-removable, MRI incompatible metal implants and 

a history of severe CNS trauma or disease that would impair further analysis of the data. Also, 

patients that could not participate at the functional MRI part of the examination due to 

restricted motor function of the hands, impaired vision, or incapacity to understand the 

functional MRI paradigm. The most frequent reason not to perform the MRI exam, however, 

was a lack of motivation. The remaining eligible, 101 VP/VLBW and 111 FT individuals 

underwent MRI at 26 years of age. The distribution of gestational age and birth weight in the 

VP/VLBW group is depicted in the supplemental information (Figure S1). 

The MRI examinations took place at two sites: The Department of Neuroradiology, Klinikum 

rechts der Isar, Technische Universität München, (n=145) and the Department of Radiology, 

University Hospital of Bonn (n=67). The study was carried out in accordance with the 



Declaration of Helsinki and was approved by the local institutional review boards. Written 

consent was obtained from all participants. All study participants received travel expenses and 

a small payment for attendance. A more detailed description of participants, including 

incidental brain MRI findings can be found in previous publications (Bauml et al., 2015; 

Grothe et al., 2017) and the supplementary material. 

 

Birth-related variables:  

Gestational age (GA) was estimated from maternal reports on the first day of the last 

menstrual period and serial ultrasounds during pregnancy. In cases where the two measures 

differed by more than two weeks, clinical assessment at birth with the Dubowitz method was 

applied (Dubowitz et al., 1970). Maternal age, birth weight (BW), duration of hospitalization, 

and Intensity of Neonatal Treatment Index (INTI), which reflects the duration and intensity of 

medical treatment after birth, were obtained from obstetric records (Riegel et al., 1995; 

Gutbrod et al., 2000). Family socioeconomic status (SES) was assessed through structured 

parental interviews within 10 days of childbirth. SES was computed as a weighted composite 

score based on the profession of the self-identified head of each family together with the 

highest educational qualification held by either parent (Bauer, 1988). Daily assessments of 

care level, respiratory support, feeding dependency and neurological status (mobility, muscle 

tone, and neurological excitability) were performed. Each of the six variables was scored on a 

4-point rating scale (0-3). The INTI was computed as the mean score of daily ratings during 

the first 10 days of life or until a stable clinical state was reached, depending on which 

occurred first, ranging from 0 (best state) to 18 (worst state). 

 

Cognitive assessment in adulthood 

At 26 years of age, study participants were assessed using the short version of the German 

Wechsler Adults Intelligence Scale, Third edition (WAIS-III) (von Aster et al., 2006). The 



assessment took place prior to and independent of the MRI scan and was carried out by 

trained psychologists who were blinded to group membership. Consecutively, full-scale 

intelligence quotient (FS-IQ) performance was computed. 

 

MRI data acquisition 

MRI examinations were performed at both sites on either a Philips Achieva 3T or a Philips 

Ingenia 3T system using an 8-channel SENSE head-coils. Subject distribution among scanner 

was as follows: Bonn Achieva 3T: 5 VP/VLBW, 12 FT, Bonn Ingenia 3 T: 33 VP/VLBW, 17 

FT, Munich Achieva 3T: 60 VP/VLBW, 65 FT, Munich Ingenia 3T: 3 VP/VLBW, 17 FT. To 

account for possible confounds by the scanner-specific differences, all statistical analyses 

included categorical dummy regressors for scanner identity as covariates of no interest. 

Sequence parameters were kept identical across all scanners. Scanners were checked regularly 

to provide optimal scanning conditions. MRI physicists at the University Hospital Bonn and 

Klinikum rechts der Isar regularly scanned imaging phantoms, to ensure within-scanner signal 

stability over time. Signal-to-noise ratio (SNR) was not significantly different between 

scanners (one-way ANOVA with factor “scanner-ID” [Bonn 1, Bonn 2, Munich 1, Munich 2]; 

F(3,182) = 1.84 , p = 0.11). The image protocol included a high-resolution T1-weighted, 3D-

MPRAGE sequence (TI=1300 ms, TR = 7.7 ms, TE = 3.9 ms, flip angle 15°; field of view: 

256 mm x 256 mm) with a reconstructed isotropic voxel size of 1 mm3. All images were 

visually inspected for artifacts and passed homogeneity control implemented in the CAT12 

toolbox (Gaser and Dahnke, 2016). 

 

Surface-based morphometry analysis 

First, all images saved as DICOMs were transformed to Nifti-format using dcm2nii (Li et al., 

2016). The CAT12 toolbox comprises a processing pipeline for surface-based morphometry, 

which includes an established novel algorithm for extracting the cortical surface (Dahnke et 



al., 2013), which then allows for the computation of multiple morphometric parameters, 

including gyrification based on the absolute mean curvature (AMC) approach (Luders et al., 

2006). 

In brief, T1-weighted images underwent tissue segmentation into grey matter, white matter 

and cerebrospinal fluid. Topological correction was performed through an approach based on 

spherical harmonics (Yotter et al., 2011). An adapted volume-based diffeomorphic DARTEL 

algorithm was then applied to the surface for spherical registration. Local curvature-based 

gyrification index, AMC, was extracted based on absolute mean curvature (Luders et al., 

2006). Central cortical surfaces were created for both hemispheres separately. Finally, all 

scans were re-sampled and smoothed with a Gaussian kernel of 20 mm (FWHM). 

 

Statistical analysis 

To determine differences in AMC between groups, a two-sample t-test was performed using 

the batch-mode implemented in SPM12, adjusting for sex and scanner as covariates of no 

interest. Contrasts were processed using threshold-free cluster enhancement (TFCE) (Smith 

and Nichols, 2009) and statistical significance was defined as p<0.05, family-wise error 

(FWE) corrected. The pattern of between group difference of AMC (VP/VLBW > FT) was 

saved as binary cluster and introduced as explicit mask into multiple regression analyses. In 

three separate multiple regression analyses, either GA, BW, or INTI served as regressors of 

interest, and residuals of the other two covariates were introduced as regressors of no interest, 

in addition to sex and scanner.  

 

Linking prematurity, AMC, and IQ; mediation analysis  

To determine the association between gyrification and FS-IQ in premature-born adults, 

multiple regression analysis was performed with AMC as dependent variable, FS-IQ as 



regressor of interest, and sex and scanner as regressors of no interest in the VP/VLBW group 

only. All results were obtained using TFCE at p<0.05, FWE corrected.  

In order to test whether AMC mediates the influence of premature birth on FS-IQ, a 

mediation analysis was performed using the PROCESS toolbox (version 3.0) (Hayes, 2017). 

Mean AMC values were extracted subject-wise from between-group differences in AMC, as 

depicted in Figure 1.  Firstly, the influence of prematurity as a group effect on FS-IQ was 

investigated using multiple regression analysis (dependent variable: FS-IQ, covariate of 

interest: premature birth, covariate of no interest: sex). Secondly, to investigate whether 

differences in gyrification have a mediating effect on the association between prematurity and 

FS-IQ, mediation analysis was performed. In the mediation model, prematurity at birth was 

entered as causal variable, FS-IQ as the outcome variable, mean AMC within the group 

difference cluster as the mediator variable; and MRI scanner and sex as covariates of no 

interest. Path coefficients were estimated using (unstandardised) regression coefficients from 

multiple regression analyses, and statistical significance of the indirect effect was tested using 

a nonparametric bootstrap approach (with 5000 repetitions) to obtain 95% confidence 

intervals. Thirdly, in order to get more specific spatial information about the mediation effect 

of gyrification of prematurity on IQ, we used distinct parts of the widespread group difference 

cluster of AMC and tested them separately for mediation effects. Particularly, mean AMC per 

subject was extracted in a ROI-based manner using the Desikan-Killiany atlas (Desikan et al., 

2006) from both the postcentral (PoCC, mean AMC of postcentral gyrus ROI) and the lateral 

temporal cortices (LTC, mean AMC of middle and superior temporal gyrus ROIs) bilaterally. 

These primary and associative cortices have been used for two reasons: 1) the gyrification of 

primary and associative cortices are distinctively relevant for IQ, with associative cortex 

gyrification being more tightly linked with IQ in healthy young adults (Gregory et al., 2016); 

2) primary cortex and associative cortex gyrification start in a sequential manner, with earlier 

gyrification of primary cortices (Hill et al., 2010; Garcia et al., 2018), suggesting that 



prematurity has distinct effects on primary and associative cortex gyrification. The ROI-based 

averaging approach based on a given brain atlas was chosen due to technical limitations for 

vertex-wise mediation analysis. Detailed schemes of mediation analyses are shown in Figure 

3. Path coefficients are calculated as previously described.  

Finally, we tested whether gyrification development across the brain – primary cortices first, 

associative cortices later – is relevant for the impact of prematurity on IQ. Only LTC 

gyrification was a significant mediation variable between prematurity and IQ in a parallel 

mediation analysis of LTC and PoCC gyrification. No significant mediation was seen 

between PoCC, gyrification, and IQ in this model. However, primary cortex gyrification 

precedes folding of associative cortices and thus may be more affected by prematurity and 

associated hypoxic/hypoxemic adverse events. We therefore predicted that primary cortex 

gyrification acts as a mediator of cortical folding of association cortices. A subsequent three-

path ‘sequential’ mediation analysis was performed, testing whether aberrant cortical folding 

in the PoCC has an indirect effect on FS-IQ in VP/VLBW subjects via aberrant cortical 

folding in the LTC and whether this mediates the impact of prematurity at birth (or its 

different aspects GA, BW, INTI, mediation analysis in the VP/VLBW group only) on adult 

FS-IQ. For the detailed path-model see figure 4 (path coefficients are calculated as described 

before). 

 

Data Availability Statement 

Patient data used in this study are not publicly available but stored by the principal 

investigators of the Bavarian Longitudinal Study. 



Results 

Sample characteristics 

Group demographic and clinical background variables are shown in Table 1. There were no 

significant differences between the VP/VLBW and FT group regarding age at scanning 

(p=0.765), sex (p=0.167), SES at birth (p=0.492), and maternal age (p=0.889). By design, 

VP/VLBW subjects had significantly lower GA (p<0.001) and lower BW (p<0.001). They 

were hospitalised for a longer time after birth (p<0.001). VP/VLBW subjects had 

significantly lower FS-IQ scores (p<0.001). 

 

Widespread increases of AMC in premature-born adults, being associated with birth-related 

variables 

In order to test for group differences in gyrification between VP/VLBW and FT subjects, we 

conducted a vertex-wise two-sample t-test for AMC, correcting for sex and scanner (Figure 1, 

Table 2). We found significantly increased AMC in both hemispheres with predominance in 

the right hemisphere, namely in bilateral lateral temporal, right lateral frontal and right 

parietal cortices as well as in bilateral pre- and postcentral cortices. We did not find 

significantly decreased AMC clusters in the VP/VLBW group.  

In order to test whether AMC increases in premature-born adults were indeed linked with 

premature birth, we performed vertex-wise multiple regression analyses of the relationship 

between AMC and variables related to premature birth, namely GA, BW, and INTI, in the 

VP/VLBW group only, restricted to the AMC group difference cluster (Figure 2; Tables S2.1-

3). Due to the high collinearity between GA, BW, and INTI as determined by Pearson 

correlation (GA and BW: r = 0.316 (p = 0.001); GA and INTI: r = -0.483 (p < 0.001); BW 

and INTI: r = -0.269 (p=0.007)), we chose one parameter as covariate of interest, respectively, 

and residualised the other two parameters before including them as covariates of no interest. 

For GA, we found a negative association with AMC, predominantly in the right lateral 



temporal lobe and the bilateral lateral frontal lobe, as well as in the central region, the right 

temporoparietal junction, and left medial temporal lobe (Figure 2A). For BW, we found a 

negative association with AMC in lateral temporal and frontal cortices, the left 

temporoparietal junction, and left medial temporal lobe (Figure 2B). For INTI, we found a 

positive association with AMC in bilateral frontal cortices (Figure 2C). These results suggest 

that AMC increases in premature-born adults are indeed linked to the degree of prematurity 

mostly in frontoparietal, pre- and postcentral cortices, and that different aspects of prematurity 

affect regionally distinct cortices. 

 

Increased AMC of temporal associative cortices contributes to the association between 

prematurity and IQ  

Cognitive performance has been linked to gyrification (Gregory et al., 2016) and premature 

birth is associated with reduced cognitive performance in adult life (Saigal and Doyle, 2008). 

To test whether aberrant gyrification in premature-born adults, measured as increased AMC, 

is associated with aberrant cognitive impairment, defined by reduced FS-IQ, we conducted a 

multiple regression analyses in the VP/VLBW group only with AMC as dependent variable 

and FS-IQ as independent variable. Deviations due to sex and scanner were controlled for. 

We observed a significant negative association between AMC and FS-IQ in bilateral lateral 

and anterior temporal cortices as well as in the occipitotemporal junction (Figure 3, Table S3). 

The negative association between FS-IQ and AMC was most evident for anterolateral 

temporal cortical areas, which are also significantly negatively correlated with GA. No 

significant positive association was seen between AMC and FS-IQ.  

We further tested whether aberrant gyrification, i.e. increased AMC, mediates the association 

between prematurity and IQ. Prematurity was significantly associated with lower FS-IQ 

(regression coefficient: 8.347, SE: 1.714, standardised coefficient beta: 0.322; 95%-CI: 4.97-

11.73 p<0.001). In a first mediation analysis using averaged mean AMC across the group 



difference cluster as mediator, the direct effect of premature birth as a group factor on adult 

FS-IQ was not significant (c1’=3.75 ± 2.12; p=0.079). However, the bootstrapped 95%-CI 

determined that the indirect effect mediated by mean AMC across groups was significantly 

different from zero (b1=5.09±1.39; 95%-CI: 2.55-7.96), indicating the mediating effect of 

mean AMC on the association between prematurity and IQ (Figure 3B).  

In order to get more detailed spatial information about the mediation effect of gyrification on 

FS-IQ we used distinct ROI-based clusters from the postcentral cortices, PoCC, and lateral 

temporal cortices, LTC, serving as surrogate for the primary and secondary folding cortices 

respectively as mediators. We included AMC of both PoCC and LTC as mediators in a 

parallel analysis to test for mediation effects on adult FS-IQ in premature-born adults (Figure 

3C). In this mediation analysis, the direct effect of prematurity on FS-IQ remained significant 

(c2=4.75 ± 1.98; p=0.018, 95%-CI: 0.84-8.67). The indirect mediation effect of the PoCC was 

not significant (a2=1.51 ± 0.96; 95%-CI: -0.26-3.53) while mean AMC in the LTC did show a 

significant mediation effect between prematurity and FS-IQ (b2=2.72 ± 1.56; 95%-CI: 0.52-

5.09). In conclusion, we observed a statistical mediation effect for gyrification in temporal 

association cortices but not for primary postcentral cortices. 

 

Gyrification development across the brain contributes to the association between prematurity 

and IQ 

Finally, we asked whether gyrification development across the brain – starting with primary 

cortices, followed by associative cortices – is relevant for the impact of prematurity on IQ. 

We performed a three-path mediation analysis, which extends the previous two-path 

mediation model (Figure 3B and 3C). Specifically, we expected gyrification in primary 

postcentral cortices to propagate prematurity effects on the gyrification of temporal cortices. 

In more detail (Figure 4A), setting prematurity as dichotomous causal variable and adult FS-

IQ as outcome variable with mean AMC in the bilateral PoCC being the first mediator and 



mean AMC in bilateral LTC being the second mediator, the direct effect of prematurity on 

adult FS-IQ did remain significant (c3=4.75 ± 1.96; p=0.018). The indirect effect mediated by 

mean AMC in the PoCC was not significant (a3 =1.46±0.96; 95%-CI: -0.31-3.48) while the 

indirect effect mediated by mean AMC in the LTC was significant (b3 =1.41±0.71; 95%-CI: 

0.23-3.00) (Figure 4A). Critically, mean AMC in the PoCC had a significant indirect 

mediation effect via mediation of mean AMC in LTC on FS-IQ (ab3 =1.22±0.56; 95%-CI: 

0.23-2.39), indicating that prematurity effects on the mediation effect of lateral temporal 

cortices gyrification is translated by postcentral cortices gyrification.  

In order to address in more detail which aspects of prematurity modulate postcentral cortices 

gyrification, we restricted the last mediation analysis to premature-born adults and performed 

again a ‘sequential’ three-path mediation analysis. In more detail, we investigated whether the 

effect of GA on FS-IQ is sequentially mediated by AMC in the PoCC and the LTC (Figure 

4B). We used the same models also for BW and INTI, respectively, instead of GA (see 

below). Partial correlation analysis, controlled for sex and scanner, revealed a significant 

association of FS-IQ with GA (r=0.276; p=0.007), BW (r=0.306; p=0.003), and INTI (r=-

0.220; p=0.032), respectively. The direct effect of GA on FS-IQ was not significant 

(c4=0.79±0.63; p=0.212) in the mediation model. The indirect effect mediated by mean AMC 

in the PoCC was not significant (a4=0.09±0.21; 95%-CI: -0.30-0.58) while the indirect effect 

mediated by mean AMC in the LTC was significant (b4=0.62±0.27; 95%-CI: 0.15-1.20). 

Interestingly, mean AMC in the PoCC had a significant mediation effect via mediation of 

mean AMC in LTC on FS-IQ (ab4=0.32±0.17; 95%-CI: 0.05-0.70). This result indicates that 

gestational age impacts IQ through mediatory effects of temporal associative cortices 

gyrification, which in turn are mediated by gyrification changes in primary postcentral 

cortices.  

Analogous results were obtained when inserting BW or INTI as causal variables. For BW, the 

mediating effect of PoCC was not significant (a5=0.0003±0.001; 95%-CI: -0.003-0.003) while 



the mediating effects of LTC (b5=0.0024±0.0014; 95%-CI: 0.0001-0.0055) and of PoCC via 

LTC (ab5=0.0025±0.0011; 95%-CI: 0.0007-0.0049) were significant. For INTI, the mediating 

effect of PoCC was not significant (a6=-0.048±0.105; 95%-CI: -0.291-0.133), while the 

mediating effects of LTC (b6=-0.191±0.123; 95%-CI: -0.491- -0.004) and of PoCC via LTC 

(ab6=-0.179±0.084; 95%-CI: -0.363- -0.038) were significant. Both results indicate that 

effects of birth weight and medical complications at birth on the mediation effect of temporal 

associative cortex gyrification are itself influenced by changes in primary postcentral cortex 

gyrification. When considering the final results and the fact that primary cortices are 

distinctively affected by prematurity as they fold earlier than associative cortices, these results 

suggest that the development of gyrification across the brain contributes to the impact of 

gestational age on IQ. In particular, ‘early’ effects on primary postcentral cortices gyrification 

seem to convey prematurity effects on subsequent gyrification processes in temporal 

association cortices and on their relevance for cognitive performance. 

 

 



Discussion 

Using structural MRI and intelligence assessments, we demonstrated for the first time, that 

widespread increases of gyrification in very premature-born adults contribute to the 

association between prematurity and general IQ reduction. Results suggest that impaired 

gyrification is an important marker of prematurity effects on the development of both brain 

morphology and cognitive performance.  

 

Prematurity and gyrification  

Gyrification is permanently altered after premature birth 

We found that AMC-based gyrification was increased in VP/VLBW adults, namely in 

bilateral fronto-temporo-parietal cortices with an emphasis on the right hemisphere (Figure 1). 

This result was not influenced by gender and/or scanner differences, as we controlled for 

these factors. The AMC value computes mean cortical curvature by equating an increase in 

amplitude and frequency of cortical folding to an increase in absolute mean curvature. 

Furthermore, AMC-based gyrification is strongly correlated with total surface area which 

signifies that an increase of cortical curvature, termed gyrification translates to increased total 

cortical surface area (Luders et al., 2006). AMC increases were correlated to premature birth 

variables (Figure 2), indicating that they were indeed linked to prematurity. In particular, 

AMC was associated with GA, after correction for BW and INTI, in bilateral lateral frontal 

cortices and right-sided lateral temporo-parietal cortices (Figure 2A). Furthermore, AMC was 

associated with BW, independent from GA and INTI, in mostly left-hemispherical lateral 

frontal and lateral temporal areas (Figure 2B). We found an additional covariance between 

medical complications at birth and AMC in these areas, indicating that gyrification is a key 

process affected by premature birth and its complications (Figure 3B). Interestingly, all 

variables related to premature birth consistently showed an association with early folding pre- 

and postcentral cortices (White et al., 2010; Zilles et al., 2013; Sun and Hevner, 2014). 



Associations with associative cortices that are known to fold later during pregnancy and in the 

postnatal period (Hill et al., 2010; Garcia et al., 2018) were also present, however less 

consistent. 

 

In a former study of 19-year-old premature-born adults, surface area was used as a measure of 

cortical expansion and was found to be decreased in premature-born individuals in lateral 

fronto-temporo-parietal cortices (Skranes et al., 2013). The pattern of aberrant cortical surface 

alterations is well in line with our results indicating that prematurity consistently affects 

distinct areas of the brain. However, since cortical surface area and AMC are different 

measures of cortical structure they have to be compared with caution. More directly related to 

our findings, Zhang et al. investigated sulcus depth and surface area in preterm-born, seven-

year-old children and found shallower anterior superior temporal sulci. Surface area was 

shown to be partly decreased (in the posterior superior temporal cortex) and partly increased 

(in medial frontoparietal cortex) (Zhang et al., 2015).  The authors state that while the global 

gyrification index was decreased in very preterm-born children, the cortex appeared visibly 

more convoluted with most obvious cortical folding abnormalities found in areas of increased 

relative surface are, such as the medial frontoparietal cortex.  

In conclusion, the widespread pattern of aberrant gyrification in both hemispheres and the 

direction of altered gyrification towards an increase in AMC are consistent with previous 

reports and can be considered long lasting effects of prematurity on brain morphology. 

 

Possible causes of aberrant cortical folding in prematurity 

To date, the forces and mechanisms that drive the process of cortical folding during brain 

development in late pregnancy and early postnatal life are not completely understood. Two 

main hypotheses exist that explain gyrification as a physical process of folding, underpinned 

by distinct biological mechanisms. These are: the axonal-tension model (Van Essen, 1997; 



Mota and Herculano-Houzel, 2012) and the different-tangential expansion model (Ronan et 

al., 2014). According to the latter theory, the balanced proliferation of neuronal progenitors 

that reside in the ventricular and subventricular zone is important for the formation of cortical 

folds through their influence on cortical expansion and architecture (Sun and Hevner, 2014). 

In particular, subplate neurons constitute an important cell population that has been shown to 

influence these processes of cortical growth and architecture formation (Kostovic and Rakic, 

1990; Hoerder-Suabedissen et al., 2013). 

The subplate is a transient cell compartment in the developing brain that is important for 

guiding thalamocortical and corticocortical connections of the cortical plate and thus for 

establishing cortical microarchitecture (Kostovic and Rakic, 1990; Judaš et al., 2010; 

Hoerder-Suabedissen and Molnár, 2015). The subplate, which is most prominent in late 

maturing and developing association cortices has been shown to be selectively vulnerable to 

transient hypoxia and hypoxia-ischemia in premature birth resulting in impaired dendritic 

arborization and altered cortical microstructure (Kanold and Shatz, 2006; Dean et al., 2013; 

Zilles et al., 2013; McClendon et al., 2017). As this is a basic mechanism of 

neurodevelopment, it can be hypothesised that subplate damage in prematurity has an impact 

on cortical folding by altering cortical growth and microstructure (Zilles et al., 2013; Sun and 

Hevner, 2014).  

 

Prematurity, gyrification, and cognitive performance 

Gyrification in temporal association cortices specifically contributes to the impact of 

prematurity on reduced IQ. 

We have shown that gyrification in temporal association cortices, but not in earlier folding 

primary cortices, statistically mediates the association between prematurity and reduced IQ 

(Figure 3).  This underscores the importance of later-developing, associative cortices for 

cognitive development and is in line with a recent study on healthy controls investigating 



associations between gyrification and cognitive ability (Gregory et al., 2016). Gregory et al. 

found the highest correlation between gyrification and IQ in bihemispheric medial and lateral 

fronto-parietal cortices and the highest variability of cortical folding in the superolateral 

temporal lobe. In contrast, we found the lateral temporal association cortices to be most 

tightly linked to FS-IQ in prematurely born adults. This may be explained by the high 

variability of cortical folding in these regions that may be influenced by the cognitive 

development of preterm infants from birth until adulthood.  

This raises the question whether aberrant cortical folding is rather the consequence or the 

cause of impaired cognitive development leading to reduced FS-IQ. In earlier post-mortem 

studies, the pattern of cortical folding was thought to remain nearly constant after one year of 

age (Armstrong et al., 1995). However, recent studies suggest that behavioural or 

environmental factors do have an impact on gyrification later in life. For example, changes in 

cortical folding have been shown in professional keyboard players and meditation 

practitioners (Amunts et al., 1997; Luders et al., 2012). Also, gyrification has been shown to 

decrease with aging, independently from changes in cortical thickness, surface area and 

volume (Hogstrom et al., 2013; Klein et al., 2014) and to be different in male and female 

subjects (Luders et al., 2008).  More recently, a study on anorexic patients demonstrated that 

nutritional factors have a rather short-term impact on cortex morphology: in anorexic patients, 

gyrification was significantly decreased but changed back to normal after body weight 

restoration (Bernardoni et al., 2018). These studies suggest plasticity of cortical folding to 

some extent across the lifespan.  

 

Development of the cortical folding pattern expresses the impact of prematurity on reduced 

IQ 



In our sequential mediation analysis, we observed an indirect statistical mediation effect of 

postcentral cortices gyrification on full-scale IQ after premature birth via lateral temporal 

cortices gyrification (Figure 4).  

When interpreting this result, one has to reflect the difference concepts of mediation in a 

statistical and biological context. Statistical mediation is used to identify and to further 

characterise mechanisms underlying an observed relationship via introducing one or more 

variables as mediators (Hayes and Rockwood, 2017). The term ‘mediation’ reflects mainly 

two concepts in a biological context: A biological mediator either influences an observed 

relationship across different scales (e.g. local brain circuits generating a certain kind of 

behaviour) or across different scales and time points (e.g. the progression of cortex 

development influences cognitive capacities). Thus, caution is advised when transferring 

results from statistical mediation to biological models, because in a statistical pathway 

mediation analysis alternative pathways, which are not included in the model, are ignored, 

irrespective of their biological significance. In conclusion, while statistical mediation can 

support or oppose a factor’s contribution to a given relationship between two variables, it 

ignores alternative pathways and thus falls short of explaining complex and concurrent 

relationships in a biological model. 

The sequential mediation effect we have observed for PoCC and LTC is interesting because 

these distinct cortical areas show different timelines of gyrification during gestational or 

postnatal brain development (Garcia et al., 2018). The postcentral cortices have been shown 

to develop rather early during gestation as do other primary sensory and motor regions of the 

brain starting in the second trimester (Dubois et al., 2008). In contrast, cortical folding in 

associative cortices has been shown to start later during gestation and to extend into the 

postnatal period (Hill et al., 2010; Zilles et al., 2013). A recent study on cortical folding in 

preterm infants postulated a distinct developmental trajectory based on MR imaging between 

gestational week 28 and 38 (Garcia et al., 2018). The described trajectory of preterm cortical 



growth starts around the central sulcus and then migrates peripherally towards the associative 

cortices (Garcia et al., 2018). This model suggests that gyrification should not be treated as a 

local phenomenon during cortical development but that it is important to perceive gyrification 

as a global and interrelated developmental step. A study investigating diffusion properties of 

the cortex in premature-born and term-born individuals between 27 and 47 weeks post 

conception showed the highest decrease of cortical fractional anisotropy (FA) as a marker of 

development in frontal, temporal and parietal association cortices (Ball et al., 2013). This 

cortical development may in part be related to the dynamics of cortical folding in these areas 

during the last trimester. Our results show the involvement of primary and associative cortices 

in permanent gyrification aberrancies. Furthermore, we have shown that the variance of AMC 

in primary cortices is sequentially associated with the variance of AMC in associative 

cortices. Given the temporal coincidence of gyrification in primary cortices and premature 

birth we interpret our results in the following way: Adverse events during premature birth, 

such as hypoxia, lead to perturbation of cortical folding in early folding cortices which in turn 

influences aberrant cortical folding in primary cortices on the one hand by a shifted trajectory.  

Thus, we hypothesize that gyrification in primary cortices might be a prognostic marker for 

the disruption of neurodevelopment at preterm birth, which should be further investigated in 

other cohorts of premature-born individuals. Furthermore, we propose the hypothesis that 

gyrification in secondary, associative cortices might be suitable as a treatment target after 

premature birth. For the latter point, one should keep in mind the aforementioned dynamics of 

post-natal gyrification including altered gyrification of professionals in keyboard playing and 

mediation practice (Amunts et al., 1997; Luders et al., 2012) . 

 

Strengths and limitations 

Some points should be carefully considered when interpreting our results. First, the current 

sample is biased to VP/VLBW adults with less severe neonatal complications, less functional 



impairments, and higher IQ. Individuals with stronger birth complications and/or severe 

lasting impairments in the initial BLS sample were more likely both to be excluded in initial 

screening for MRI due to exclusion criteria for MRI (for example infantile cerebral palsy). 

Thus, differences in gyrification between VP/VLBW and term control adults reported here are 

conservative estimates of true differences. Second, the study sample was limited by MRI- and 

study-related contraindications including a history of severe neurological disorders (e.g. 

epilepsy, multiple sclerosis, cerebral haemorrhage, traumatic brain injury, tinnitus), severe 

back problems, (potential) pregnancy, severely impaired vision, as well as non-removable 

ferromagnetic implants (e.g. pacemakers). Third, the current sample has the strength of large 

size (101 VP/VLBW and 111 FT adults), enhancing the generalizability of our findings. A 

strength of our study is that a relevant impact of patient age on gyrification measures at the 

time of the MRI scan is excluded due to the inclusion of preterm and term subjects who had 

approximately the same age of 26 years. When interpreting our results about the significant 

mediation of prematurity effects on adult full-scale IQ by gyrification measures one has to 

keep in mind that the statistical model is inherently limited as explained in the ‘Discussion’ 

section. We have identified aberrant AMC-based gyrification in different, primary and 

associative cortical areas serving as markers of impaired neurodevelopmental processes which 

contribute to prematurity effects on adult full-scale IQ in a sequential statistical mediation 

model. However, complementary effects as well as markers and mechanisms of impaired 

neurodevelopment, for example as assessed by structural or functional connectivity may also 

have a mediating effect on adult cognitive performance. These markers have to be taken into 

account in further studies in order to create a more general understanding of cognitive 

impairments after premature birth.  One technical limitation of our study includes the measure 

of local gyrification, which varies among studies and is heavily dependent on the software 

used, limiting comparability. In our study, we used a curvature-based approach to locally 

measure gyrification of the brain via AMC. This measure cannot be used interchangeably 



with surface-based lGI which has been used in most studies so far (Luders et al., 2006; Schaer 

et al., 2008). A recent study examining anorexic patients compared these two measures and 

demonstrated that the direction of alterations (increased vs. decreased gyrification) is 

generally opposite for AMC and lGI while the cortical areas identified as abnormal 

corresponded well between the two measures (Ronan et al., 2014; Bernardoni et al., 2018).  

 

Conclusion 

We have shown widespread differences in gyrification between premature-born adults and 

full-term controls suggesting that disturbances of gyrification in the last trimester alter brain 

morphology permanently. This alteration in brain morphology is functionally relevant since it 

is associated with FS-IQ and contributes to the effect of prematurity on reduced cognitive 

performance. While there may be various other potential measures of brain structure, 

structural and functional connectivity that could potentially mediate preterm effects on 

cognitive performance, gyrification seems to be an important morphological characteristic 

and expression of aberrant brain development in this respect. Moreover, we showed that this 

effect is specific for the lateral temporal associative cortex. Finally, we suggested the 

importance of the development of gyrification from early-folding, postcentral cortices 

towards more lateral, associative cortices through our sequential mediation model. We 

propose that gyrification in early folding cortices might potentially serve as a prognostic 

marker after premature birth while gyrification in cortices that fold later during development 

might serve as treatment target for specific therapeutic interventions aiming at improving the 

neurocognitive outcomes of premature birth.  
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Tables: 

Table 1: Demographical, clinical, and cognitive data. 

 
 VP/VLBW (n=101) FT (n=111)  

 M SD Range M SD Range p value 

Sex (male/female) 58/43   66/45   0.167 

Age (years) 27.71 ± 0.61 25.7 – 28.3 26.84 ± 0.74 25.5 – 28.9 0.765 

GA (weeks) 30.5 ± 2.1 25 - 36 39.7 ± 1.1 37 - 42 <0.001 

BW (g) 1325 ± 313 630 - 2070 3398 ± 444 2120 - 4670 <0.001 

Hospitalization (days) 72.2 ± 26.4 24 - 170 6.9 ± 3.0 2 - 26 <0.001 

INTI (a.u.) 11.6 ± 3.8 3 – 18 - - - n.a. 

SESa (a.u.) 29/44/28  1-3 35/50/26  1-3 0.760 

Maternal age (years) 29.5 ± 4.8 16 - 41 29.4 ± 5.2 18 - 42 0.889 

Full-scale IQb (a.u.) 94.1 ± 12.7 64 - 131 102.5 ± 11.9 77 - 130 <0.001 

 

Statistical comparisons: sex, SES with χ2 statistics; age, GA, BW, Hospital, maternal age, IQ with two sample t-

tests. 

Abbreviations: GA, gestational age; BW, birth weight; Hospital, duration of hospitalization; INTI, Intensity of 

Neonatal Treatment (Morbidity) Index; SES, socioeconomic status at birth; maternal age, maternal age at birth; 

IQ intelligence quotient. 
a1=upper class, 2=middle class, 3=lower class 
bData are based on 97 VP/VLBW and 108 FT born persons. 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Cortical areas of increased absolute mean curvature index in prematurely born 

adults compared to term-born controls. 

 

p (FWE-corrected) Cluster size (number of significant vertices) Overlap of atlas region 

Left hemisphere   

0.00900 11604 12% postcentral 

10% supramarginal 

9% superiortemporal 

9% precentral 

8% lateraloccipital 

8% inferiorparietal 

7% middletemporal 

6% precuneus 

5% superiorparietal 

5% inferiortemporal 

4% fusiform 

4% parsopercularis 

3% rostralmiddlefrontal 

2% parstriangularis 

1% parahippocampal 

1% entorhinal 

1% parsorbitalis 

1% lingual 

 

 

Right hemisphere   

0.00640 14509 10% postcentral 

9% inferiorparietal 

9% precentral 

7% rostralmiddlefrontal 

7% lateraloccipital 

6% supramarginal 

5% middletemporal 

5% precuneus 

5% inferiortemporal 

4% superiortemporal 

4% superiorfrontal 

4% superiorparietal 

3% parstriangularis 

3% medialorbitofrontal 

3% fusiform 

3% caudalmiddlefrontal 

2% parsopercularis 

2% posteriorcingulate 

2% lateralorbitofrontal 

2% cuneus 

1% rostralanteriorcingulate 

1% parsorbitalis 

1% paracentral 

1% caudalanteriorcingulate 

 

 

A two-sample t-test was performed between prematurely born adults (VP/VLBW, n=101) and full-term controls 

(FT, n=101). Sex and scanner served as covariates of no interest. Results are thresholded at p<0.05, FWE-

corrected, threshold-free cluster enhancement was used. Atlas labeling was performed according to the Desikan-

Killiany atlas (Desikan et al., 2006).Abbreviations: VP/VLBW: very preterm and/or very low birth weight; FT: 

full-term; FWE: family-wise error. 



Figure legends: 

Figure 1. Increased absolute mean curvature in very premature-born adults. Statistical 

parametric map of group comparison for AMC between VP/VLBW and FT adults. 

Bihemispheric lateral and medial views are shown. Two-sample t-test, p<0.05, FWE-

corrected, threshold-free cluster enhancement was used. Color bars indicate p-values for 

increased AMC in the VP/VLBW group. Warm colors represent lower p-values. 

Abbreviations: AMC: absolute mean curvature, FT: full-term, VP/VLBW: very preterm 

and/or very low birth weight. 

 

Figure 2. Associations of increased absolute mean curvature with variables of premature 

birth.  

A) Statistical parametric map of negative associations between AMC and GA within the 

VP/VLBW group, controlled for residuals of BW and INTI, sex and scanner.  

B) Statistical parametric map of negative associations between AMC and BW within the 

VP/VLBW group, controlled for residuals of GA and INTI, sex and scanner. 

C) Statistical parametric map of positive associations between AMC and INTI within the 

VP/VLBW group, controlled for residuals of GA and BW, sex and scanner. 

Bihemispheric lateral and medial views are shown. Multiple regression analyses, p<0.05, 

FWE-corrected, threshold-free cluster enhancement was used. Between-group difference in 

AMC were used as explicit mask. Color bars indicate p-values for associations between AMC 

and GA (A), BW (B), and INTI (C), respectively, in the VP/VLBW group. Warm colors 

represent lower p-values.  

Abbreviations: AMC: absolute mean curvature, FT: full-term, VP/VLBW: very preterm 

and/or very low birth weight, GA: gestational age; BW: birth weight; INTI: intensity of 

neonatal treatment index. 

 



Figure 3. Linking increased absolute mean curvature, reduced full-scale IQ, and 

prematurity.  

A) Statistical parametric map of negative associations between FS-IQ and AMC within the 

VP/VLBW group. Bihemispheric lateral and medial views are shown. Multiple regression 

analyses, p<0.05, FWE-corrected, threshold-free cluster enhancement was used. Between-

group difference in AMC were used as explicit mask.  Color bars indicate p-values for 

negative associations between AMC and FS-IQ in the VP/VLBW group. Warm colors 

represent lower p-values.  

Two-way path diagrams are shown to illustrate results of mediation analyses: 

B) Scheme of mediation analysis for mean AMC of the group difference cluster of Figure 1.  

C) Scheme of mediation analysis for mean AMC restricted to bilateral postcentral cortices 

and to bilateral lateral temporal cortices. 

Abbreviations: AMC: absolute mean curvature, FT: full-term, FS-IQ: full-scale IQ, LTC: 

lateral temporal cortex, PoCC: postcentral cortex, VP/VLBW: very preterm and/or very low 

birth weight. 

 

Figure 4. Brain gyrification development mediates the association between prematurity 

and adult full-scale IQ.  

Three-way path diagrams are shown to illustrate results of mediation analyses: 

A) ‘Sequential’ mediation analysis comparing the mediating effects of AMC in the 

postcentral cortices (PoCC) and the lateral temporal cortices (LTC) between prematurity (= 

causal variable) and FS-IQ (= outcome variable). Indirect mediating effect of LTC-AMC 

alone is significant (1.41±0.71; 95%-CI: 0.23-3.00). Sequential mediation effect of PoCC-

AMC on FS-IQ via LTC-AMC is significant (1.22±0.56; 95%-CI: 0.23-2.39) 

B) ‘Sequential’ mediation analysis comparing the mediating effects of AMC in the PoCC and 

the LTC between gestational age (= causal variable) and FS-IQ (= outcome variable). Indirect 



mediating effect of LTC-AMC alone is significant (0.63±0.27; 95%-CI: 0.15-1.20). 

Sequential mediation effect of PoCC-AMC on FS-IQ via LTC-AMC is significant 

(0.32±0.17; 95%-CI: 0.05-0.70) 

Abbreviations: AMC: absolute mean curvature, FS-IQ: full-scale IQ, PoCC: postcentral 

cortices, LTC: lateral temporal cortices, CI: confidence interval. 

 

 

 

 

 


