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ON THE COMPENSATOR IN THE DOOB-MEYER1

DECOMPOSITION OF THE SNELL ENVELOPE∗2

SAUL D. JACKA† AND DOMINYKAS NORGILAS†3

Abstract. Let G be a semimartingale, and S its Snell envelope. Under the assumption that4
G ∈ H1, we show that the finite-variation part of S is absolutely continuous with respect to the5
decreasing part of the finite-variation part of G. In the Markovian setting, this enables us to identify6
sufficient conditions for the value function of the optimal stopping problem to belong to the domain7
of the extended (martingale) generator of the underlying Markov process. We then show that the8
dual of the optimal stopping problem is a stochastic control problem for a controlled Markov process,9
and the optimal control is characterised by a function belonging to the domain of the martingale10
generator. Finally, we give an application to the smooth pasting condition.11

Key words. Doob-Meyer decomposition, optimal stopping, Snell envelope, stochastic control,12
martingale duality, smooth pasting13

AMS subject classifications. 60G40, 60G44, 60J25, 60G07, 93E2014

1. Introduction. Given a (gains) process G = (Gt)t≥0, living on the usual15

filtered probability space (Ω,F ,F = (Ft)t≥0,P), the classical optimal stopping prob-16

lem is to find a maximal reward v0 = supτ≥0 E[Gτ ], where the supremum is taken17

over all F - stopping times. In order to compute v0, we consider, the value process18

vt = ess supτ≥t E[Gτ |Fσ], t ≥ 0. It is, or should be, well-known (see, for example,19

El Karoui [16], Karatzas and Shreve [31]) that under suitable integrability and regu-20

larity conditions on the process G, the Snell envelope of G, denoted by S = (St)t≥0,21

is the minimal supermartingale which dominates G and aggregates the value pro-22

cess at each F-stopping time σ ≥ 0, so that Sσ = vσ almost surely. Moreover,23

τσ := inf{r ≥ σ : Sr = Gr} is the minimal optimal stopping time, so, in particular,24

Sσ = vσ = E[Gτσ |Fσ] almost surely. A successful construction of the process S leads,25

therefore, to the solution of the initial optimal stopping problem.26

In the Markovian setting the gains process takes the form G = g(X), where g(·) is27

some payoff function applied to an underlying Markov process X. Under very general28

conditions, the Snell envelope is then characterised as the least super-mean-valued29

function V (·) that majorizes g(·). A standard technique to find the value function30

V (·) is to solve the corresponding obstacle (free-boundary) problem. For an exposition31

of the general theory of optimal stopping in both settings we also refer to Peskir and32

Shiryaev [39].33

The main aim of this paper is to answer the following canonical question of in-34

terest:35

Question. When does the value function V (·) belong to the domain of the ex-36

tended (martingale) generator of the underlying Markov process X?37

Very surprisingly, given how long general optimal stopping problems have been38

studied (see Snell [49]), we have been unable to find any general results about this.39

As the title suggests, we tackle the question by considering the optimal stopping40
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2 S. D. JACKA AND D. NORGILAS

problem in a more general (semimartingale) setting first. If a gains process G is41

sufficiently integrable, then S is of class (D) and thus uniquely decomposes into the42

difference of a uniformly integrable martingale, say M , and a predictable, increasing43

process, say A, of integrable variation. From the general theory of optimal stopping44

it can be shown that τ̄σ := inf{r ≥ σ : Ar > 0} is the maximal optimal stopping time,45

while the stopped process S τ̄σ = (St∧τ̄σ )t≥0 is a martingale. Now suppose that G is a46

semimartingale itself. Then its finite variation part can be further decomposed into47

the sum of increasing and decreasing processes that are, as random measures, mutually48

singular. Off the support of the decreasing one, G is (locally) a submartingale, and49

thus in this case it is suboptimal to stop, and we again expect S to be (locally) a50

martingale. This also suggests that A increases only if the decreasing component51

of the finite variation part of G decreases. In particular, we prove the following52

fundamental result (see Theorem 3.6):53

the finite-variation process in the Doob-Meyer decomposition of S
is absolutely continuous with respect to the decreasing part of the
corresponding finite-variation process in the decomposition of G.

54

This being a very natural conjecture, it is not surprising that some variants of it55

have already been considered. As a helpful referee pointed out to us, several versions56

of Theorem 3.6 were established in the literature on reflected BSDEs under various57

assumptions on the gains process, see El Karoui et. al. [17] (G is a continuous semi-58

martingale), Crepéy and Matoussi [9] (G is a càdlàg quasi-martingale), Hamadéne59

and Ouknine [23] (G is a limiting process of a sequence of sufficiently regular semi-60

martingales). We note that these results (except Hamadéne and Ouknine [23], where61

the assumed regularity of G is exploited) are proved essentially by using (or appro-62

priately extending) the related (but different) result established in Jacka [27]. There,63

under the assumption that S and G are both continuous and sufficiently integrable64

semimartingales, the author shows that a local time of S − G at zero is absolutely65

continuous with respect to the decreasing part of the finite-variation process in the66

decomposition of G. Our proof of Theorem 3.6 relies on the classical methods estab-67

lishing the Doob-Meyer decomposition of a supermartingale.68

The first part of section 3 is devoted to the groundwork necessary to establish69

Theorem 3.6. It turns out that an answer to the motivating question of this paper70

then follows naturally. In particular, in the second part of section 3, in Theorem 3.18,71

we show that, under very general assumptions on the underlying Markov process X,72

if the payoff function g(·) belongs to the domain of the martingale generator of X, so73

does the value function V (·) of the optimal stopping problem.74

In section 4 we discuss some applications. First, we consider a dual approach to75

optimal stopping problems due to Davis and Karatzas [10] (see also Rogers [43], and76

Haugh and Kogan [24]). In particular, from the absolute continuity result announced77

above, it follows that the dual is a stochastic control problem for a controlled Markov78

process, which opens the doors to the application of all the available theory related79

to such problems (see Fleming and Soner [19]). Secondly, if the value function of the80

optimal stoping problem belongs to the domain of the martingale generator, under a81

few additional (but general) assumptions, we also show that the celebrated smooth fit82

principle holds for (killed) one-dimensional diffusions.83
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COMPENSATOR OF THE SNELL ENVELOPE 3

2. Preliminaries.84

2.1. General framework. Fix a time horizon T ∈ (0,∞]. Let G be an adapted,85

càdlàg gains process on (Ω,F ,F = (Ft)0≤t≤T ,P), where F is a right-continuous and86

complete filtration. We suppose that F0 is trivial. In the case T = ∞, we interpret87

F∞ = σ
(
∪0≤t<∞ Ft

)
and G∞ = lim inft→∞Gt. For two F-stopping times σ1, σ188

with σ1 ≤ σ2 P-a.s., by Tσ1,σ2
we denote the set of all F-stopping times τ such that89

P(σ1 ≤ τ ≤ σ2) = 1. We will assume that the following condition is satisfied:90

(2.1) E
[

sup
0≤t≤T

|Gt|
]
<∞,91

and let

Ḡ be the space of all adapted, càdlàg processes such that (2.1) holds.

The optimal stopping problem is to compute the maximal expected reward92

v0 := sup
τ∈T0,T

E[Gτ ].93

94

Remark 2.1. First note that by (2.1), E[Gτ ] < ∞ for all τ ∈ T0,T , and thus v095

is finite. Moreover, most of the general results regarding optimal stopping problems96

are proved under the assumption that G is a non-negative (hence the gains) process.97

However, under (2.1), N = (Nt)0≤t≤T given by Nt = E[sup0≤s≤T |Gs||Ft] is a uni-98

formly integrable martingale, while Ĝ := N +G defines a non-negative process (even99

if G is allowed to take negative values). Then100

v̂0 := sup
τ∈T0,T

E[Nτ +Gτ ] = E
[

sup
0≤t≤T

|Gt|
]

+ sup
τ∈T0,T

E[Gτ ],101

and finding v̂0 is the same as finding v0. Hence we may, and shall, assume without102

loss of generality that G ≥ 0.103

The key to our study is provided by the family {vσ}σ∈T0,T
of random variables104

(2.2) vσ := ess sup
τ∈Tσ,T

E[Gτ |Fσ], σ ∈ T0,T .105

Note that, since each deterministic time t ∈ [0, T ] is also a stopping time, (2.2) defines106

an adapted value process (vt)0≤t≤T . For σ ∈ T0,T , it is tempting to regard vσ as the107

process (vt)0≤t≤T evaluated at the stopping time σ. It turns out that there is indeed a108

modification (St)0≤t≤T of the process (vt)0≤t≤T that aggregates the family {vσ}σ∈T0,T
109

at each stopping time σ (see Theorem D.7 in Karatzas and Shreve [31]). This process110

S is the Snell envelope of G.111

Theorem 2.2 (Characterisation of S). Let G ∈ Ḡ. The Snell envelope process112

S of G satisfies113

(2.3) Sσ = ess sup
τ∈Tσ,T

E[Gτ |Fσ], P− a.s., σ ∈ T0,T .114

Moreover, S is the minimal càdlàg supermartingale that dominates G.115

This manuscript is for review purposes only.



4 S. D. JACKA AND D. NORGILAS

For the proof of Theorem 2.2 under slightly more general assumptions on the116

gains process G consult Appendix I in Dellacherie and Meyer [12] or Proposition 2.26117

in El Karoui [16].118

IfG ∈ Ḡ, it is clear thatG is a uniformly integrable process. In particular, it is also119

of class (D), i.e. the family of random variables {Gτ1{τ<∞} : τ is a stopping time}120

is uniformly integrable. On the other hand, a right-continuous adapted process Z121

belongs to the class (D) if there exists a uniformly integrable martingale N̂ , such122

that, for all t ∈ [0, T ], |Zt|≤ N̂t P-a.s. (see e.g. Dellacherie and Meyer [12], Appendix123

I and references therein). In our case, by (2.3) and using the conditional version of124

Jensen’s inequality, for t ∈ [0, T ], we have125

|St|≤ E
[

sup
0≤s≤T

|Gs|
∣∣∣Ft] := Nt P-a.s.126

But, since G ∈ Ḡ, N is a uniformly integrable martingale, which proves the following127

Lemma 2.3. Suppose G ∈ Ḡ. Then S is of class (D).128

LetM0 denote the set of right-continuous martingales started at zero. LetM0,loc129

andM0,UI denote the spaces of local and uniformly integrable martingales (started at130

zero), respectively. Similarly, the adapted processes of finite and integrable variation131

will be denoted by FV and IV , respectively.132

It is well-known that a right-continuous (local) supermartingale P has a unique133

decomposition P = B−I where B ∈M0,loc and I is an increasing (FV ) process which134

is predictable. This can be regarded as the general Doob-Meyer decomposition of a135

supermartingale. Specialising to class (D) supermartingales we have a stronger result136

(this is a consequence of, for example, Protter [40] Theorem 16, p.116 and Theorem137

11, p.112):138

Theorem 2.4 (Doob-Meyer decomposition). Let G ∈ Ḡ. Then the Snell enve-139

lope process S admits a unique decomposition140

(2.4) S = M∗ −A,141

where M∗ ∈M0,UI , and A is a predictable, increasing IV process.142

Remark 2.5. It is normal to assume that the process A in the Doob-Meyer de-143

composition of S is started at zero. The duality result alluded to in the introduction144

is one reason why we do not do so here.145

An immediate consequence of Theorem 2.4 is that S is a semimartingale. In146

addition, we also assume that G is a semimartingale with the following decomposition:147

(2.5) G = N +D,148

where N ∈M0,loc and D is a FV process. Unfortunately, the decomposition (2.5) is
not, in general, unique. On the other hand, uniqueness is obtained by requiring the
FV term to also be predictable, at the cost of restricting only to locally integrable
processes. If there exists a decomposition of a semimartingale X with a predictable
FV process, then we say that X is special. For a special semimartingale we always
choose to work with its canonical decomposition (so that a FV process is predictable).
Let

G be the space of semimartingales in Ḡ.

149
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Lemma 2.6. Suppose G ∈ G. Then G is a special semimartingale.150

See Theorems 36 and 37 (p.132) in Protter [40] for the proof.151

The following lemma provides a further decomposition of a semimartingale (see152

Proposition 3.3 (p.27) in Jacod and Shiryaev [28]). In particular, the FV term of a153

special semimartingale can be uniquely (up to initial values) decomposed in a pre-154

dictable way, into the difference of two increasing, mutually singular FV processes.155

Lemma 2.7. Suppose that K is a càdlàg, adapted process such that K ∈ FV .156

Then there exists a unique pair (K+,K−) of adapted increasing processes such that157

K − K0 = K+ − K− and
∫
|dKs|= K+ + K−. Moreover, if K is predictable, then158

K+, K− and
∫
|dKs| are also predictable.159

2.2. Markovian setting.160

The Markov process. Let (E, E) be a metrizable Lusin space endowed with the161

σ-field of Borel subsets of E. Let X = (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈ R+) be a162

Markov process taking values in (E, E). We assume that a sample space Ω is such that163

the usual semi-group of shift operators (θt)t≥0 is well-defined (which is the case, for164

example, if Ω = E[0,∞) is the canonical path space). If the corresponding semigroup165

of X, (Pt), is the primary object of study, then we say that X is a realisation of a166

Markov semigroup (Pt). In the case of (Pt) being sub-Markovian, i.e. Pt1E ≤ 1E ,167

we extend it to a Markovian semigroup over E∆ = E ∪ {∆}, where ∆ is a coffin-168

state. We also denote by C(X) = (Ω,F ,Ft, Xt, θt,Px : x ∈ E, t ∈ R+) the canonical169

realisation associated with X, defined on Ω with the filtration (Ft) deduced from170

F0
t = σ(Xs : s ≤ t) by standard regularisation procedures (completeness and right-171

continuity).172

In this paper our standing assumption is that the underlying Markov process X is173

a right process (consult Getoor [20], Sharpe [46] for the general theory). Essentially,174

right processes are the processes satisfying Meyer’s regularity hypotheses (hypothèses175

droites) HD1 and HD2. If a given Markov semigroup (Pt) satisfies HD1 and µ is an176

arbitrary probability measure on (E, E), then there exists a homogeneous E-valued177

Markov process X with transition semigroup (Pt) and initial law µ. Moreover, a real-178

isation of such (Pt) is right-continuous (Sharpe [46], Theorem 2.7). Under the second179

fundamental hypothesis, HD2, t → f(Xt) is right-continuous for every α-excessive180

function f . Recall, for α > 0, a universally measurable function f : E → R is α-181

super-median if e−αtPtf ≤ f for all t ≥ 0, and α-excessive if it is α-super-median and182

e−αtPtf → f as t→ 0. If (Pt) satisfies HD1 and HD2 then the corresponding realisa-183

tion X is strong Markov (Getoor [20], Theorem 9.4 and Blumenthal and Getoor [7],184

Theorem 8.11).185

Remark 2.8. One has the following inclusions among classes of Markov processes:186

(Feller) ⊂ (Hunt) ⊂ (right)187

Let L be a given extended infinitesimal (martingale) generator of X with a domain188

D(L), i.e. we say a Borel function f : E → R belongs to D(L) if there exists a Borel189

function h : E → R, such that
∫ t

0
|h(Xs)|ds < ∞, ∀t ≥ 0, Px-a.s. for each x and the190

process Mf = (Mf
t )t≥0, given by191

(2.6) Mf
t := f(Xt)− f(x)−

∫ t

0

h(Xs)ds, t ≥ 0, x ∈ E,192

is a local martingale under each Px (see Revuz and Yor [42] p.285), and then we write193

h = Lf .194
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6 S. D. JACKA AND D. NORGILAS

Remark 2.9. Note that if A ∈ E and Px(λ({t : Xt ∈ A} = 0) = 1 for each195

x ∈ E, where λ is Lebesgue measure, then h may be altered on A without affecting196

the validity of (2.6), so that, in general, the map f → h is not unique. This is why197

we refer to a martingale generator.198

Optimal stopping problem. Let X = (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈ R+) be
a right process. Given a function g : E → R (with g(∆) = 0), α ≥ 0 and T ∈
R+ ∪ {∞} define a corresponding gains process Gα (we simply write G if α = 0)
by Gαt = e−αtg(Xt) for t ∈ [0, T ]. In the case of T = ∞, we make a convention
that Gα∞ = lim inft→∞Gαt . Let Ee, Eu be the σ-algebras on E generated by excessive
functions and universally measurable sets, respectively (recall that E ⊂ Ee ⊂ Eu). We
write

g ∈ Y, given that g(·) is Ee-measurable and Gα is of class (D).

For a filtration (Ĝt), and (Ĝt) - stopping times σ1 and σ2, with Px[0 ≤ σ1 ≤ σ2 ≤ T ] =199

1, x ∈ E, let Tσ1,σ2(Ĝ) be the set of (Ĝt) - stopping times τ with Px[σ1 ≤ τ ≤ σ2] = 1.200

Consider the following optimal stopping problem:201

V (x) = sup
τ∈T0,T (G)

Ex[e−ατg(Xτ )], x ∈ E.202

By convention we set V (∆) = g(∆). The following result is due to El Karoui et203

al. [18].204

Theorem 2.10. Let X = (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈ R+) be a right process205

with canonical filtration (Ft). If g ∈ Y, then206

V (x) = sup
τ∈T0,T (F)

Ex[e−ατg(Xτ )], x ∈ E,207

and (e−αtV (Xt)) is a Snell envelope of Gα, i.e. for all x ∈ E and τ ∈ T0,T (F)208

e−ατV (Xτ ) = ess sup
σ∈Tτ,T (F)

Ex[Gασ |Fτ ] Px-a.s.209

The first important consequence of the theorem is that we can (and will) work with210

the canonical realisation C(X). The second one provides a crucial link between the211

Snell envelope process in the general setting and the value function in the Markovian212

framework.213

Remark 2.11. The restriction to gains processes of the form G = g(X) (or Gα if214

α > 0) is much less restrictive than might appear. Given that we work on the canonical215

path space with θ being the usual shift operator, we can expand the state-space of X216

by appending an adapted functional F , taking values in the space (E′, E ′), with the217

property that218

(2.7) {Ft+s ∈ A} ∈ σ(Fs) ∪ σ(θs ◦Xu : 0 ≤ u ≤ t), for all A ∈ E ′.219

This allows us to deal with time-dependent problems, running rewards and other220

path-functionals of the underlying Markov process.221

Lemma 2.12. Suppose X is a canonical Markov process taking values in the space222

(E, E) where E is a locally compact, countably based Hausdorff space and E is its Borel223

σ-algebra. Suppose also that F is a path functional of X satisfying (2.7) and taking224

values in the space (E′, E ′) where E′ is a locally compact, countably based Hausdorff225

This manuscript is for review purposes only.



COMPENSATOR OF THE SNELL ENVELOPE 7

space with Borel σ-algebra E ′, then, defining Y = (X,F ), Y is still Markovian. If X226

is a strong Markov process and F is right-continuous, then Y is strong Markov. If X227

is a Feller process and F is right-continuous , then Y is strong Markov, has a càdlàg228

modification and the completion of the natural filtration of X, F, is right-continuous229

and quasi-left continuous, and thus Y is a right process.230

Example 2.13. If X is a one-dimensional Brownian motion, then Y , defined by231

Yt =

(
Xt, L

0
t , sup

0≤s≤t
Xs,

∫ t

0

exp(−
∫ s

0

α(Xu)du)f(Xs)ds

)
, t ≥ 0,232

where L0 is the local time of X at 0, is a Feller process on the filtration of X.233

3. Main results. In this section we retain the notation of subsection 2.1 and234

subsection 2.2.235

3.1. General framework. The assumption that G ∈ G (i.e. G is a semimartin-236

gale with integrable supremum and G = N+D is its canonical decomposition), neither237

ensures that N ∈ M0, nor that D is an IV process, the latter, it turns out, being238

sufficient for the main result of this section to hold. In order to prove Theorem 3.6239

we will need a stronger integrability condition on G.240

For any adapted càdlàg process H, define241

(3.1) H∗ = sup
0≤t≤T

|Ht|242

and243

(3.2) ||H||Sp= ||H∗||Lp := E
[
|H∗|p

]1/p
, 1 ≤ p ≤ ∞.244

245

Remark 3.1. Note that Ḡ = S1, so that under the current conditions we have246

that G ∈ S1.247

For a special semimartingale X with canonical decomposition X = B̄ + Ī, where248

B̄ ∈ M0,loc and Ī is a predictable FV process (with I0 = X0), define the Hp norm,249

for 1 ≤ p ≤ ∞, by250

(3.3) ||X||Hp= ||B̄||Sp+
∣∣∣∣∣∣ ∫ T

0

|dĪs|
∣∣∣∣∣∣
Lp

+ ||I0||Lp ,251

and, as usual, write X ∈ Hp if ||X||Hp<∞.252

Remark 3.2. A more standard definition of the Hp norm is with ||B̄||Sp replaced253

by ||[B̄, B̄]
1/2
T ||Lp . However, the Burkholder-Davis-Gundy inequalities (see Protter254

[40], Theorem 48 and references therein) imply the equivalence of these norms.255

The following lemma follows from the fact that Ī∗ ≤
∫ T

0
|dĪs|+ |I0|, P−a.s:256

Lemma 3.3. On the space of special semimartingales, the Hp norm is stronger257

than Sp for 1 ≤ p <∞, i.e. convergence in Hp implies convergence in Sp.258

In general, it is challenging to check whether a given process belongs to H1, and thus259

the assumption that G ∈ H1 might be too stringent. On the other hand, under the260

assumptions in the Markov setting (see subsection 3.2), we will have that G is locally261

in H1. Recall that a semimartingale X belongs to Hploc, for 1 ≤ p ≤ ∞, if there exists262
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8 S. D. JACKA AND D. NORGILAS

a sequence of stopping times {σn}n∈N, increasing to infinity almost surely, such that263

for each n ≥ 1, the stopped process Xσn belongs to Hp. Hence, the main assumption264

in this section is the following:265

Assumption 3.4. G is a semimartingale in both S1 and H1
loc.266

Remark 3.5. Given that G ∈ H1, Lemma 3.3 implies that Assumption 3.4 is267

satisfied, and thus all the results of subsection 2.1 hold. Moreover, we then have a268

canonical decomposition of G269

(3.4) G = N +D,270

with N ∈ M0,UI and a predictable IV process D. On the other hand, under As-271

sumption 3.4, the decomposition (3.4) still holds, however, N and D are only locally272

uniformly integrable martingale (started at zero) and the process of integrable varia-273

tion, respectively, i.e. Gσn ∈ M0,UI and Iσn is a process of IV, where {σn}n≥1 is a274

localising sequence.275

We finally arrive to the main result of this section:276

Theorem 3.6. Suppose Assumption 3.4 holds. Let A be a predictable, increasing277

IV process in the decomposition of the Snell envelope S, as in Theorem 2.4. Let D−278

(D+) denote the decreasing (increasing) components of D, as in Lemma 2.7. Then279

A is, as a measure, absolutely continuous with respect to D− almost surely on [0, T ],280

and µ, defined by281

µt :=
dAt

dD−t
, 0 ≤ t ≤ T,282

has a version that satisfies 0 ≤ µt ≤ 1 almost surely.283

Remark 3.7. As is usual in semimartingale calculus, we treat a process of bounded284

variation and its corresponding Lebesgue-Stiltjes signed measure as synonymous.285

The proof of Theorem 3.6 is based on the discrete-time approximation of the pre-286

dictable FV processes in the decompositions of S (2.4) and G (2.5). In particular, let287

Pn = {0 = tn0 < tn1 < tn2 < ... < tnkn = T}, n = 1, 2, ..., be an increasing sequence of288

partitions of [0, T ] with max1≤k≤kn t
n
k − tnk−1 → 0 as n→∞. Note that here T <∞289

is fixexd, but arbitrary. Let Snt = Stnk if tnk ≤ t < tnk+1 and SnT = ST define the290

discretizations of S, and set291

Ant = 0 if 0 ≤ t < tn1 ,292

Ant =

k∑
j=1

E[Stnj−1
− Stnj |Ftnj−1

] if tnk ≤ t < tnk+1, k = 1, 2, ..., kn − 1,293

AnT =

kn∑
j=1

E[Stnj−1
− Stnj |Ftnj−1

].294

295

If S is regular in the sense that for every stopping time τ and nondecreasing296

sequence (τn)n∈N of stopping times with τ = limn→∞ τn, we have limn→∞ E[Sτn ] =297

E[Sτ ], or equivalently, if A is continuous, Doléans [14] showed that Ant → At uniformly298

in L1 as n → ∞ (see also Rogers and Williams [44], VI.31, Theorem 31.2). Hence,299

given that S is regular, we can extract a subsequence {Anlt }, such that liml→∞Anlt =300

At a.s. On the other hand, it is enough for G to be regular:301
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Lemma 3.8. Suppose G ∈ Ḡ is a regular gains process. Then so is its Snell302

envelope process S.303

See Appendix A for the proof.304

Remark 3.9. If it is not known that G is regular, Kobylanski and Quenez [32],305

in a slightly more general setting, showed that S is still regular, provided that G is306

upper semicontinuous in expectation along stopping times, i.e. for all τ ∈ T 0,T and307

for all sequences of stopping times (τn)n≥1 such that τn ↑ τ , we have308

E[Gτ ] ≥ lim sup
n→∞

E[Gτn ].309

The case where S is not regular is more subtle. In his classical paper Rao [41]310

utilised the Dunford-Pettis compactness criterion and showed that, in general, Ant →311

At only weakly in L1 as n → ∞ (a sequence (Xn)n∈N of random variables in L1312

converges weakly in L1 to X if for every bounded random variable Y we have that313

E[XnY ]→ E[XY ] as n→∞).314

Recall that weak convergence in L1 does not imply convergence in probability,315

and therefore, we cannot immediately deduce an almost sure convergence along a316

subsequence. However, it turns out that by modifying the sequence of approximating317

random variables, the required convergence can be achieved. This has been done318

in recent improvements of the Doob-Meyer decomposition (see Jakubowski [29] and319

Beiglböck et al. [4]. Also, Siorpaes [48] showed that there is a subsequence that320

works for all (t, ω) ∈ [0, T ] × Ω simultaneously). In particular, Jakubowski proceeds321

as Rao, but then uses Komlós’s theorem [34] and proves the following (Jakubowski322

[29], Theorem 3 and Remark 1):323

Theorem 3.10. There exists a subsequence {nl} such that for t ∈ ∪∞n=1Pn and324

as L→∞325

(3.5)
1

L

( L∑
l=1

Anlt

)
→ At, a.s. and in L1.326

In particular, in any subsequence we can find a further subsequence such that (3.5)327

holds.328

Proof of Theorem 3.6. Let (σn)n≥1 be a localising sequence for G such that, for329

each n ≥ 1, Gσn = (Gt∧σn)0≤t≤T is in H1. Similarly, set Sσn = (St∧σn)0≤t≤T for a330

fixed n ≥ 1. We need to prove that331

(3.6) 0 ≤ Aσnt −Aσns ≤ (D−)σnt − (D−)σns a.s.,332

since then, as σn ↑ ∞ almost surely, as n → ∞, and by uniqueness of A and D−,333

the result follows. In particular, since A is increasing, the first inequality in (3.6) is334

immediate, and thus we only need to prove the second one.335

After localisation we assume that G ∈ H. For any 0 ≤ t ≤ T and 0 ≤ ε ≤ T − t336

we have that337

E[St+ε|Ft] = E
[

ess sup
τ∈Tt+ε,T

E[Gτ |Ft+ε]
∣∣∣Ft]338

≥ E
[
E[Gτ |Ft+ε]

∣∣∣Ft]339

= E[Gτ |Ft] a.s.,340341
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10 S. D. JACKA AND D. NORGILAS

where τ ∈ Tt+ε,T is arbitrary. Therefore342

(3.7) E[St+ε|Ft] ≥ ess sup
τ∈Tt+ε,T

E[Gτ |Ft] a.s.343

Then by (2.3) and using (3.7) together with the properties of the essential supremum344

(see also Lemma A.1 in the Appendix A) we obtain345

E[St − St+ε|Ft] ≤ ess sup
τ∈Tt,T

E[Gτ |Ft]− ess sup
τ∈Tt+ε,T

E[Gτ |Ft]346

≤ ess sup
τ∈Tt,T

E[Gτ −Gτ∨(t+ε)|Ft]347

= ess sup
τ∈Tt,t+ε

E[Gτ −Gτ∨(t+ε)|Ft](3.8)348

= ess sup
τ∈Tt,t+ε

E[Gτ −Gt+ε|Ft] a.s.349

350

The first equality in (3.8) follows by noting that Tt+ε,T ⊂ Tt,T , and that for any351

τ ∈ Tt+ε,T the term inside the expectation vanishes. Using the decomposition of G352

and by observing that, for all τ ∈ Tt,t+ε, (D+
τ − D+

t+ε) ≤ 0, while N is a uniformly353

integrable martingale, we obtain354

E[St − St+ε|Ft] ≤ ess sup
τ∈Tt,t+ε

E[D−t+ε −D−τ |Ft]355

= E[D−t+ε −D−t |Ft] a.s.(3.9)356357

Finally, for 0 ≤ s < t ≤ T , applying Theorem 3.10 to A together with (3.9) gives358

At −As = lim
L→∞

1

L

( L∑
l=1

k∑
j=k′

E[Stnlj−1
− Stnlj |Ftnlj−1

]
)

359

≤ lim
L→∞

1

L

( L∑
l=1

k∑
j=k′

E[D−
t
nl
j

−D−
t
nl
j−1

|Ftnlj−1
]
)

a.s.,(3.10)360

361

where k′ ≤ k are such that tnlk′ ≤ s < tnlk′+1 and tnlk ≤ t < tnlk+1 . Note that D− is also362

the predictable, increasing IV process in the Doob-Meyer decomposition of the class363

(D) supermartingale (G−D+). Therefore we can approximate it in the same way as364

A, so that D−t − D−s is the almost sure limit along, possibly, a further subsequence365

{nlk} of {nl}, of the right hand side of (3.10).366

We finish this section with a lemma that gives an easy test as to whether the given367

process belongs to H1
loc (consult Appendix A for the proof).368

Lemma 3.11. Let X ∈ G with a canonical decomposition X = L + K, where369

L ∈ M0,loc and K is a predictable FV process. If the jumps of K are uniformly370

bounded by some finite constant c > 0, then X ∈ H1
loc.371

3.2. Markovian setting. In the rest of the section (and the paper) we consider372

the following optimal stopping problem:373

(3.11) V (x) = sup
τ∈T 0,T

Ex[g(Xτ )], x ∈ E,374

for a measurable function g : E → R and a Markov process X satisfying the following375

set of assumptions:376
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Assumption 3.12. X is a right process.377

Assumption 3.13. sup0≤t≤T |g(Xt)|∈ L1(Px), x ∈ E.378

Assumption 3.14. g ∈ D(L), i.e. g(·) belongs to the domain of a martingale379

generator of X.380

Remark 3.15. Lemma 2.12 tells us that if X is Feller and F is an adapted path-381

functional of the form given in (2.7) then (a modification of) (X,F ) satisfies Assump-382

tion 3.12.383

Example 3.16. Let X = (Xt)t≥0 be a Markov process and let D(L̂) be the domain384

of a classical infinitesimal generator of X, i.e. the set of measurable functions f : E →385

R, such that limt→0(Ex[f(Xt)]− f(x))/t exists. Then D(L̂) ⊂ D(L). In particular,386

1. if X = (Xt)t≥0 is a solution of an SDE driven by a Brownian motion in Rd,387

then C2
b (Rd,R) ⊂ D(L̂);388

2. if the state space E is finite (so that X is a continuous time Markov chain),389

then any measurable and bounded f : E → R belongs to D(L̂)390

3. if X is a Lévy process on Rd with finite variance increments then C2
b (Rd,R) ⊂391

D(L̂)392

Note that the gains process is of the form G = g(X), while by Theorem 2.10, the393

corresponding Snell envelope is given by394

STt :=

{
V (Xt) : t < T,

g(XT ) : t ≥ T.
395

In a similar fashion to that in the general setting, Assumption 3.13 ensures the class396

(D) property for the gains and Snell envelope processes. Moreover, under Assump-397

tion 3.14,398

(3.12) g(Xt) = g(x) +Mg
t +

∫ t

0

Lg(Xs)ds, 0 ≤ t ≤ T, x ∈ E,399

and the FV process in the semimartingale decomposition of G = g(X) is absolutely400

continuous with respect to Lebesgue measure, and therefore predictable, so that (3.12)401

is a canonical semimartingale decomposition of G = g(X). Then, by Assumption 3.13,402

and using Lemma 3.11, we also deduce that g(X) ∈ H1
loc.403

Remark 3.17. When T < ∞, the optimal stopping problem, in general, is time-404

inhomogeneous, and we need to replace the process Xt by the process Zt = (t,Xt),405

t ∈ [0, T ], so that (3.11) reads406

(3.13) Ṽ (t, x) = sup
τ∈T0,T−t

Et,x[g̃(t+ τ,Xt+τ )], x ∈ E,407

where g̃ : [0, T ] × E → R is a new payoff function (consult Peskir and Shiryaev [39]408

for examples). In this case, Assumption 3.14 should be replaced by a requirement409

that there exists a measurable function h̃ : [0, T ] × E → R such that M g̃
t := g̃(Zt) −410

g̃(0, x)−
∫ t

0
h̃(Zs)ds defines a local martingale.411

The crucial result of this section is the following:412

Theorem 3.18. Suppose Assumptions 3.12,3.13 and 3.14 hold. Then V ∈ D(L).413
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12 S. D. JACKA AND D. NORGILAS

Proof. In order to be consistent with the notation in the general framework, let414

Dt := g(X0) +

∫ t

0

Lg(Xs)ds, 0 ≤ t ≤ T.415

Recall Lemma 2.7. Then D+ and D− are explicitly given (up to initial values) by416

D+
t : =

∫ t

0

Lg(Xs)
+ds,417

D−t : =

∫ t

0

Lg(Xs)
−ds.418

419

In particular, D− is, as a measure, absolutely continuous with respect to Lebesgue420

measure. By applying Theorem 3.6, we deduce that421

(3.14) V (Xt) = V (x) +M∗t −
∫ t

0

µsLg(Xs)
−ds, 0 ≤ t ≤ T, x ∈ R,422

where µ is a non-negative Radon-Nikodym derivative with 0 ≤ µs ≤ 1. Then we also423

have that
∫ t

0
|µsLg(Xs)

−|ds <∞, for every 0 ≤ t ≤ T .424

In order to finish the proof we are left to show that there exists a suitable mea-425

surable function λ : E → R such that At =
∫ t

0
µsLg(Xs)

−ds =
∫ t

0
λ(Xs)ds a.s., for all426

t ∈ [0, T ]. For this, recall that a process Z (on (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈ R+) or427

just on C(X)) is additive if Z0 = 0 a.s. and Zt+s = Zt+Zs ◦θt a.s., for all s, t ∈ [0, T ].428

Then, for any measurable function f : E → R, Zft = f(Xt)− f(x) defines an additive429

process. (Çinlar et al. [8] gives necessary and sufficient conditions for Zf to be a430

semimartingale.) More importantly, if Zf is a semimartingale, then the martingale431

and FV processes in the decomposition of Zf are also additive, see Theorem 3.18 in432

Çinlar et al. [8].433

Finally, we have that At =
∫ t

0
µsLg(Xs)

−ds, t ∈ [0, T ], is an increasing additive434

process such that dAt � dt. Set Kt = lim infs↓0,s∈Q(At+s−At)/s and β(x) = Ex[K0],435

x ∈ E. Then by Proposition 3.56 in Çinlar et al. [8], we have that, for t ∈ [0, T ],436

At =
∫ t

0
β(Xs)ds Px-a.s. for each x ∈ E.437

Remark 3.19. In some specific examples it is possible to relax Assumption 3.14.
Let S := {x ∈ E : V (x) = g(x)} be the stopping region. It is well-known that
S = V (X) is a martingale on the go region Sc, i.e. M c given by

M c
t
def
=

∫ t

0

1(Xs−∈Sc)dSs

is a martingale (see Lemma A.2). This implies that
∫ t

0
1(Xs−∈Sc)dAs = 0, and438

therefore we note that in order for V ∈ D(L), we need D to be absolutely con-439

tinuous with respect to Lebesgue measure λ only on the stopping region i.e. that440 ∫ ·
0

1(Xs−∈S)dDs � λ. For example, let E = R, fix K ∈ R+ and consider g(·) given441

by g(x) = (K − x)+, x ∈ E. We can easily show, under very weak conditions, that442

S ⊂ [0,K] and so we need only have that
∫ ·

0
1(Xs−<K)dDs is absolutely continuous.443

4. Applications: duality, smooth fit. In this section we retain the setting of444

subsection 3.2.445
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4.1. Duality. Let x ∈ E be fixed. As before, let Mx
0,UI denote all the right-446

continuous uniformly integrable càdlàg martingales (started at zero) on the filtered447

space (Ω,F ,F,Px), x ∈ E. The main result of Rogers [43] in the Markovian setting448

reads:449

Theorem 4.1. Suppose Assumption 3.12 and 3.13 hold. Then450

(4.1) V (x) = sup
τ∈T 0,T

Ex[Gτ ] = inf
M∈Mx

0,UI

Ex
[

sup
0≤t≤T

(
Gt −Mt

)]
, x ∈ E.451

We call the right hand side of (4.1) the dual of the optimal stopping problem. In452

particular, the right hand side of (4.1) is a ”generalised stochastic control problem453

of Girsanov type”, where a controller is allowed to choose a martingale from Mx
0,UI ,454

x ∈ E. Note that an optimal martingale for the dual is M∗, the martingale appearing455

in the Doob-Meyer decomposition of S, while any other martingale in Mx
0,UI gives456

an upper bound of V (x). We already showed that M∗ = MV , which means that,457

when solving the dual problem, one can search only over martingales of the form Mf ,458

for f ∈ D(L), or equivalently over the functions f ∈ D(L). We can further define459

DM0,UI
⊂ D(L) by460

DM0,UI
:= {f ∈ D(L) : f ≥ g, f is superharmonic, Mf ∈M0,UI}.461

To conclude that V ∈ DM0,UI
we need to show that V is superharmonic, i.e. for462

all stopping times σ ∈ T 0,T and all x ∈ E, Ex[V (Xσ)] ≤ V (x). But this follows463

immediately from the Optional Sampling theorem, since S = V (X) is a uniformly464

integrable supermartingale. Hence, as expected, we can restrict our search for the465

best minimising martingale to the set DM0,UI
.466

Theorem 4.2. Suppose that G = g(X) and the assumptions of Theorem 3.18467

hold. Let DM0,UI
be the set of admissible controls. Then the dual problem, i.e. the468

right hand side of (4.1), is a stochastic control problem for a controlled Markov process469

(X,Y f , Zf ), f ∈ DM0,UI
(defined by (4.2) and (4.3)), with a value function V̂ given470

by (4.4)471

Proof. For any f ∈ DMx
0,UI

, x ∈ E and y, z ∈ R, define processes Y f and Zf via472

Y ft := y +

∫ t

0

Lf(Xs)ds, 0 ≤ t ≤ T,(4.2)473

Zfs,t := sup
s≤r≤t

(
f(x) + g(Xr)− f(Xr) + Y fr

)
, 0 ≤ s ≤ t ≤ T,(4.3)474

475

and to allow arbitrary starting positions, set Zft = Zf0,t ∨ z, for z ≥ g(x) + y. Note476

that, for any f ∈ D(L), Y f is an additive functional of X. Lemma 2.12 implies that477

if f ∈ DM0,UI
then (X,Y f , Zf ) is a Markov process.478

Define V̂ : E × R2 → R by479

(4.4) V̂ (x, y, z) = inf
f∈DMx

0,UI

Ex,y,z[ZfT ], (x, y, z) ∈ E × R× R.480

It is clear that this is a stochastic control problem for the controlled Markov process481

(X,Y f , Zf ), where the admissible controls are functions in DM0,UI
. Moreover, since482

V ∈ DM0,UI
, by virtue of Theorem 4.1, and adjusting initial conditions as necessary,483

we have484

V (x) = V̂ (x, 0, g(x)) = Ex,0,g(x)[Z
V
T ], x ∈ E.485
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a486

4.2. Some remarks on the smooth pasting condition. We will now discuss487

the implications of Theorem 3.18 for the smoothness of the value function V (·) of the488

optimal stopping problem given in (3.11).489

Remark 4.3. While in Theorem 4.4 (resp. Theorem 4.9) we essentially recover (a490

small improvement of) Theorem 2.3 in Peskir [37] (resp. Theorem 2.3 in Samee [45]),491

the novelty is that we prove the results by means of stochastic calculus, as opposed492

to the analytic approach in [37] (resp. [45]).493

In addition to Assumption 3.13 and Assumption 3.14, we now assume that X is a494

one-dimensional diffusion in the Itô-McKean [26] sense, so that X is a strong Markov495

process with continuous sample paths. We also assume that the state space E ⊂ R is496

an interval with endpoints −∞ ≤ a ≤ b ≤ +∞. Nnote that the diffusion assumption497

implies Assumption 3.12. Finally, we assume that X is regular: for any x, y ∈ int(E),498

Px[τy <∞] > 0, where τy = min{t ≥ 0 : Xt = y}. Let α ≥ 0 be fixed; α corresponds499

to a killing rate of the sample paths of X.500

The case without killing: α = 0. Let s(·) denote a scale function of X, i.e. a501

continuous, strictly increasing function on E such that for l, r, x ∈ E, with a ≤ l <502

x < r ≤ b, we have503

(4.5) Px(τr < τl) =
s(x)− s(l)
s(r)− s(l)

,504

see Revuz and Yor [42], Proposition 3.2 (p.301) for the proof of existence and prop-505

erties of such a function.506

From (4.5), using regularity of X and that V (X) is a supermartingale of class507

(D) we have that V (·) is s-concave:508

V (x) ≥ V (l)
s(r)− s(x)

s(r)− s(l)
+ V (r)

s(x)− s(l)
s(r)− s(l)

, x ∈ [l, r].(4.6)509
510

Theorem 4.4. Suppose the assumptions of Theorem 3.18 are satisfied, so that511

V ∈ D(L). Further assume that X is a regular, strong Markov process with continuous512

sample paths. Let Y = s(X), where s(·) is a scale function of X.513

1. Assume that for each y ∈ [s(a), s(b)], the local time of Y at y, Ly, is singular514

with respect to Lebesgue measure. Then, if s ∈ C1, V (·), given by (3.11),515

belongs to C1.516

2. Assume that ([Y, Y ]t)t≥0 is, as a measure, absolutely continuous with respect517

to Lebesgue measure. If s′(·) is absolutely continuous, then V ∈ C1 and V ′(·)518

is also absolutely continuous.519

Remark 4.5. If G is the filtration of a Brownian motion, B, then Y = s(X) is a520

stochastic integral with respect to B (a consequence of martingale representation):521

(4.7) Yt = Y0 +

∫ t

0

σsdBs.522

Moreover, Proposition 3.56 in Çinlar et al. [8] ensures that σt = σ(Yt) for a suitably
measurable function σ and

[Y, Y ]t =

∫ t

0

σ2(Ys)ds.
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In this case, both, the singularity of the local time of Y and absolute continuity523

of [Y, Y ] (with respect to Lebesgue measure), are inherited from those of Brownian524

motion. On the other hand, if X is a regular diffusion (not necessarily a solution to525

an SDE driven by a Brownian motion), absolute continuity of [Y, Y ] still holds, if the526

speed measure of X is absolutely continuous (with respect to Lebesgue measure).527

Proof. Note that Y = s(X) is a Markov process, and let K denote its martingale528

generator. Moreover, V (x) = W (s(x)) (see Lemma 4.7 and the following remark),529

where, on the interval [s(a), s(b)], W (·) is the smallest nonnegative concave majorant530

of the function ĝ(y) = g ◦ s−1(y). Then, since V ∈ D(L),531

V (Xt) = V (x) +MV
t +

∫ t

0

LV (Xu)du, 0 ≤ t ≤ T,532

and thus533

W (Yt) = W (y) +MV
t +

∫ t

0

(LV ) ◦ s−1(Yu)du, 0 ≤ t ≤ T.534
535

Therefore, W ∈ D(K), since536

(4.8) W (Yt) = W (y) +MV
t +

∫ t

0

KW (Yu)du,537

for y ∈ [s(a), s(b)], 0 ≤ t ≤ T , with KW = LV ◦ s−1 ≤ 0.538

On the other hand, using the generalised Itô formula for concave/convex functions539

(see e.g. Revuz and Yor [42], Theorem 1.5 p.223) we have540

W (Yt) = W (y) +

∫ t

0

W
′

+(Yu)dYu −
∫ s(b)

s(a)

Lzt ν(dz),541

for y ∈ [s(a), s(b)], 0 ≤ t ≤ T , where Lzt is the local time of Yt at z, and ν is a542

non-negative σ-finite measure corresponding to the second derivative of −W in the543

sense of distributions. Then, by the uniqueness of the decomposition of a special544

semimartingale, we have that, for t ∈ [0, T ],545

(4.9) −
∫ t

0

KW (Yu)du =

∫ s(b)

s(a)

Lzt ν(dz) a.s.546

We prove the first claim by contradiction. Suppose that ν({z0}) > 0 for some547

z0 ∈ (s(a), s(b)). Then, using (4.9) we have that548

(4.10) −
∫ t

0

KW (Yu)du = Lz0t ν({z0}) +

∫ s(b)

s(a)

1{z 6=z0}L
z
t ν(dz) a.s.549

Since Lz0t is positive with positive probability and, by assumption, Ly, y ∈ [s(a), s(b)],550

is singular with respect to Lebesgue measure, the process on the right hand side of551

(4.10) is not absolutely continuous with respect to Lebesgue measure, which contra-552

dicts absolute continuity of the left hand side. Therefore, ν({z0}) = 0, and since z0553

was arbitrary, we have that ν does not charge points. It follows that W ∈ C1. Since554

s ∈ C1 by assumption, we conclude that V ∈ C1.555

This manuscript is for review purposes only.



16 S. D. JACKA AND D. NORGILAS

We now prove the second claim. By assumption, [Y, Y ] is absolutely continuous
with respect to Lebesgue measure (on the time axis). Invoking Proposition 3.56 in
Çinlar et al. [8] again, we have that

[Y, Y ]t =

∫ t

0

σ2(Yu)du

(as in Remark 4.5). A time-change argument allows us to conclude that Y is a time-
change of a BM and that we may neglect the set {t : σ2(Yt) = 0} in the representation
(4.8). Thus

W (Yt) = W (Y0) +

∫ t

0

1Nc(Yu)dMV
u +

∫ t

0

1Nc(Yu)KW (Yu)du

where N is the zero set of σ. Then, using the occupation time formula (see, for556

example, Revuz and Yor [42], Theorem 1.5 p.223) we have that557

−
∫ t

0

KW (Yu)du =

∫ t

0

f(Yu)d[Y, Y ]u =

∫ s(b)

s(b)

f(z)Lzt dz a.s.,558

where f : [s(a), s(b)] → R is given by f : y 7→ −KWσ2 1Nc(y). Now observe that, for559

0 ≤ r ≤ t ≤ T , η([r, t]) :=
∫ s(b)
s(a)

f(z)
(
Lzt −Lzr

)
dz and π([r, t]) :=

∫ s(b)
s(a)

(
Lzt −Lzr

)
ν(dz)560

define measures on the time axis, which, by virtue of (4.9), are equal (and thus both561

are absolutely continuous with respect to Lebesgue measure). Now define T l,l̄ :=562

{t : Yt ∈ [l, l̄]}, s(a) ≤ l ≤ l̄ ≤ s(b). Then the restrictions of η and π to T l,l̄,563

η|T l,l̄ and π|T l,l̄ , are also equal. Moreover, since Y is a local martingale, it is also a564

semimartingale. Therefore, for every 0 ≤ t ≤ T , Lzt is carried by the set {t : Yt = z}565

(see Protter [40], Theorem 69 p.217). Hence, for each t ∈ [0, T ],566

(4.11) η|T l,l̄([0, t]) =

∫ l̄

l

Lzt f(z)dz =

∫ l̄

l

Lzt ν(dz) = π|T l,l̄([0, t]),567

and, since l and l̄ are arbitrary, the left and right hand sides of (4.11) define mea-568

sures on [s(a), s(b)] ⊆ R, which are equal. It follows that ν is absolutely continuous569

with respect to Lebesgue measure on [s(a), s(b)] and f(z)dz = ν(dz). This proves570

that W ∈ C1 and W ′(·) is absolutely continuous on [s(a), s(b)] with Radon-Nikodym571

derivative f . Since the product and composition of absolutely continuous functions572

are absolutely continuous, we conclude that V ′(·) is absolutely continuous (since s′(·)573

is, by assumption).574

Remark 4.6. We note that for a smooth fit principle to hold, it is not necessary575

that s ∈ C1. Given that all the other conditions of Theorem 4.4 hold, it is sufficient576

that s(·) is differentiable at the boundary of the continuation region. On the other577

hand, if g ∈ D(L), V ∈ C1, even if g /∈ C1.578

Moreover, since V = g on the stopping region, Theorem 4.4 tells us that g ∈ C1579

on the interior of the stopping region. However, the question whether this stems580

already from the assumption that g ∈ D(L) is more subtle. For example, if g ∈ D(L)581

and g is a difference of two convex functions, then by the generalised Itô formula and582

the local time argument (similarly to the proof of Theorem 4.4) we could conclude583

that g ∈ C1 on the whole state space E.584
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Case with killing: α > 0. We now generalise the results of the Theorem 4.4 in the585

presence of a non-trivial killing rate. Consider the following optimal stopping problem586

(4.12) V (x) = sup
τ∈T 0,T

Ex[e−ατg(Xτ )], x ∈ E.587

Note that, since α > 0, using the regularity of X together with the supermartingale588

property of V (X) we have that589

V (x) ≥ V (l)Ex[e−ατl1τl<τr ] + V (r)Ex[e−ατr1τr<τl ], x ∈ [l, r] ⊆ E.(4.13)590591

Define increasing and decreasing functions ψ, φ : E → R, respectively, by592

ψ(x) =

{
Ex[e−ατc ], if x ≤ c
1/Ec[e−ατx ], if x > c

φ(x) =

{
1/Ec[e−ατx ], if x ≤ c
Ex[e−ατc ], if x > c

(4.14)593

594

where c ∈ E is arbitrary. Then, (Ψt)0≤t≤T and (Φt)0≤t≤T , given by595

Ψt = e−αtψ(Xt), Φt = e−αtφ(Xt), 0 ≤ t ≤ T,596

respectively, are local martingales (and also supermartingales, since ψ, φ are non-597

negative); see Dynkin [15] and Itô and McKean [26].598

Let p1, p2 : [l, r]→ [0, 1] (where [l, r] ⊆ E) be given by599

p1(x) = Ex[e−ατl1τl<τr ], p2(x) = Ex[e−ατr1τr<τl ].600

Continuity of paths of X implies that pi(·), i = 1, 2, are both continuous (the proof601

of continuity of the scale function in (4.5) can be adapted for a killed process). In602

terms of the functions ψ(·), φ(·) of (4.14), using appropriate boundary conditions, one603

calculates604

(4.15) p1(x) =
ψ(x)φ(r)− ψ(r)φ(x)

ψ(l)φ(r)− ψ(r)φ(l)
, p2(x) =

ψ(l)φ(x)− ψ(x)φ(l)

ψ(l)φ(r)− ψ(r)φ(l)
, x ∈ [l, r].605

Let s̃ : E → R+ be the continuous increasing function defined by s̃(x) = ψ(x)/φ(x).606

Substituting (4.15) into (4.13) and then dividing both sides by φ(x) we get607

V (x)

φ(x)
≥ V (l)

φ(l)
· s̃(r)− s̃(x)

s̃(r)− s̃(l)
+
V (r)

φ(r)
· s̃(x)− s̃(l)
s̃(r)− s̃(l)

, x ∈ [l, r] ⊆ E,608

so that V (·)/φ(·) is s̃-concave.609

Recall that (4.13) essentially follows from V (·) being α-superharmonic, so that it610

satisfies Ex[e−ατV (Xτ )] ≤ V (x) for x ∈ E and any stopping time τ . Since Φ and Ψ611

are local martingales, it follows that the converse is also true, i.e. given a measurable612

function f : E → R, f(·)/φ(·) is s̃-concave if and only if f(·) is α-superharmonic613

(Dayanik and Karatzas [11], Proposition 4.1). This shows that a value function V (·)614

is the minimal majorant of g(·) such that V (·)/φ(·) is s̃-concave.615

Lemma 4.7. Suppose [l, r] ⊆ E and let W (·) be the smallest nonnegative concave616

majorant of g̃ := (g/φ) ◦ s̃−1 on [s̃(l), s̃(r)], where s̃−1 is the inverse of s̃. Then617

V (x) = φ(x)W (s̃(x)) on [l, r].618

Proof. Define V̂ (x) = φ(x)W (s̃(x)) on [l, r]. Then, trivially, V̂ (·) majorizes g(·)619

and V̂ (·)/φ(·) is s̃-concave. Therefore V (x) ≤ V̂ (x) on [l, r].620
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On the other hand, let Ŵ (y) = (V/φ)(s̃−1(y)) on [s̃(l), s̃(r)]. Since V (x) ≥ g(x)621

and (V/φ)(·) is s̃-concave on [l, r], Ŵ (·) is concave and majorizes (g/φ) ◦ s̃−1(·) on622

[s̃(l), s̃(r)]. Hence, W (y) ≤ Ŵ (y) on [s̃(l), s̃(r)].623

Finally, (V/φ)(x) ≤ (V̂ /φ)(x) = W (s̃(x)) ≤ Ŵ (s̃(x)) = (V/φ)(x) on [l, r].624

Remark 4.8. When α = 0, let (ψ, φ) = (s, 1). Then Lemma 4.7 is just Proposition625

4.3. in Dayanik and Karatzas [11].626

With the help of Lemma 4.7 and using parallel arguments to those in the proof627

of Theorem 4.4 we can formulate sufficient conditions for V to be in C1 and have628

absolutely continuous derivative.629

Theorem 4.9. Suppose the assumptions of Theorem 3.18 are satisfied, so that630

V ∈ D(L). Further assume that X is a regular Markov process with continuous631

sample paths. Let ψ(·), φ(·) be as in (4.14) and consider the process Y = s̃(X).632

1. Assume that, for each y ∈ [s̃(a), s̃(b)], the local time of Y at y ∈ [s̃(a), s̃(b)],633

L̂y, is singular with respect to Lebesgue measure. Then if ψ, φ ∈ C1, V (·),634

given by (4.12), belongs to C1.635

2. Assume that [Y, Y ] is, as a measure, absolutely continuous with respect to636

Lebesgue measure. If ψ′(·), φ′(·) are both absolutely continuous, then V ′(·) is637

aslo absolutely continuous.638

Proof. First note that Y is not necessarily a local martingale, while ΦY is. Indeed,639

ΦY = Ψ. Hence640

(Nt)0≤t≤T :=
(∫ t

0

ΦtdYt + [Φ, Y ]t

)
0≤t≤T

641

is the difference of two local martingales, and thus is a local martingale itself. Using642

the generalised Itô formula for concave/convex functions, we have643

(4.16) ΦtW (Yt) = Φ0W (y) +

∫ t

0

W (Ys)dΦs +

∫ t

0

W
′

+(Ys)dNs −
∫ s̃(r)

s̃(l)

ΦtL̂
z
t ν(dz),644

for y ∈ [s̃(l), s̃(r)], 0 ≤ t ≤ T , where L̂zt is the local time of Yt at z, and ν is a645

non-negative σ-finite measure corresponding to the derivative W
′′

in the sense of646

distributions.647

On the other hand, if g ∈ D(L), then V ∈ D(L). Therefore,648

(4.17) e−αtV (Xt) = V (x) +

∫ t

0

e−αsdMV
s +

∫ t

0

e−αs{L−α}V (Xs)ds, 0 ≤ t ≤ T.649

Then, similarly to before, from the uniqueness of the decomposition of the Snell650

envelope, we have that the martingale and FV terms in (4.16) and (4.17) coincide.651

Hence, for t ∈ [0, T ],652 ∫ s̃(r)

s̃(l)

e−αtφ(Xt)L̂
z
t ν(dz) = −

∫ t

0

e−αs{L − α}V (Xs)ds a.s.653

Using the same arguments as in the proof of Theorem 4.4 we can show that both654

statements of this theorem hold. The details are left to the reader.655
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[14] C. Doléans, Existence du processus croissant naturel associé à un potentiel de la classe (D),686
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Appendix A. .753

Lemma A.1. For each 0 ≤ t ≤ T , the family of random variables {E[Gτ |Ft] : τ ∈754

Tt,T } is directed upwards, i.e. for any σ1, σ2 ∈ Tt,T , there exists σ3 ∈ Tt,T , such that755

E[Gσ1
|Ft] ∨ E[Gσ1

|Ft] ≤ E[Gσ3
|Ft], a.s.756

Proof. Fix t ∈ [0, T ]. Suppose σ1, σ2 ∈ Tt,T and define A := {E[Gσ1
|Ft] ≥757

E[Gσ2
|Ft]}. Let σ3 := σ11A + σ21Ac . Note that σ3 ∈ Tt,T . Using Ft-measurability of758

A, we have759

E[Gσ3
|Ft] = 1AE[Gσ1

|Ft] + 1AcE[Gσ2
|Ft]760

= E[Gσ1
|Ft] ∨ E[Gσ2

|Ft] a.s.,761762

which proves the claim.763

Lemma A.2. Let G ∈ Ḡ and S be its Snell envelope with decomposition S =764

M∗ −A. For 0 ≤ t ≤ T and ε > 0, define765

(A.1) Kε
t = inf{s ≥ t : Gs ≥ Ss − ε}.766

Then AKε
t

= At a.s. and the processes (AKε
t
) and A are indistinguishable.767

Proof. From the directed upwards property (Lemma A.1) we know that E[St] =768

supτ∈Tt,T E[Gτ ]. Then for a sequence (τn)n∈N of stopping times in Tt,T , such that769
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limn→∞ E[Gτn ] = E[St], we have770

E[Gτn ] ≤ E[Sτn ] = E[M∗τn −Aτn ] = E[St]− E[Aτn −At],771772

since M∗ is uniformly integrable. Hence, since A is non-decreasing,773

0 ≤ lim
n→∞

E[Sτn −Gτn ] = − lim
n→∞

E[Aτn −At] ≤ 0,774

and thus we have equalities throughout. By passing to a sub-sequence we can assume775

that776

(A.2) lim
n→∞

(Sτn −Gτn) = 0 = lim
n→∞

(Aτn −At) a.s.777

The first equality in (A.2) implies that Kε
t ≤ τn0

a.s., for some large enough n0 ∈ N,778

and thus AKε
t
≤ Aτn , for all n0 ≤ n. Since A is non-decreasing, we also have that779

0 ≤ AKε
t
− At ≤ Aτn − At a.s., n0 ≤ n, and from the second equality in (A.2) we780

conclude that AKε
t

= At a.s. The indistinguishability follows from the right-continuity781

of G and S.782

A.1. Proofs of results in section 2.783

Proof of Lemma 2.12. The completed filtration generated by a Feller process sat-784

isfies the usual assumptions, in particular, it is both right-continuous and quasi-left-785

continuous. The latter means that for any predictable stopping time σ, Fσ− = Fσ.786

Moreover, every càdlàg Feller process is left-continuous over stopping times and sat-787

isfies the strong Markov property. On the other hand, every Feller process admits788

a càdlàg modification (these are standard results and can be found, for example, in789

Revuz and Yor [42] or Rogers and Williams [44]). All that remains is to show that the790

addition of the functional F leaves (X,F ) strong Markov. This is elementary from791

(2.7).792

A.2. Proofs of results in section 3.793

Proof of Lemma 3.8. Let (τn)n∈N be a nondecreasing sequence of stopping times794

with limn→∞ τn = τ , for some fixed τ ∈ T0,T . Since S is a supermartingale, E[Sτn ] ≥795

E[Sτ ], for every n ∈ N. For a fixed ε > 0, Kε
τn (defined by (A.1)) is a stopping time,796

and by Lemma A.2, AKε
τn

= Aτn a.s. Therefore, since M∗ is uniformly integrable,797

E[SKε
τn

] = E[M∗Kε
τn
−AKε

τn
] = E[M∗τn −Aτn ] = E[Sτn ].798

Thus, by the definition of Kε
τn ,799

E[GKε
τn

] ≥ E[SKε
τn

]− ε = E[Sτn ]− ε.800

Let τ̂ := limn→∞Kε
τn . Note that the sequence (Kε

τn)n∈N is non-decreasing and dom-801

inated by Kε
τ . Hence τ ≤ τ̂ ≤ Kε

τ . Finally, using the regularity of G we obtain802

E[Sτ ] ≥ E[Sτ̂ ] ≥ E[Gτ̂ ] = lim
n→∞

E[GKε
τn

] ≥ lim
n→∞

E[Sτn ]− ε.803

Since ε is arbitrary, the result follows.804

Proof of Lemma 3.11. For n ≥ 1, define805

τn := inf{t ≥ 0 :

∫ t

0

|dKs|≥ n}.806
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Clearly τn ↑ ∞ as n→∞. Then for each n ≥ 1807

E[

∫ t∧τn

0

|dKs|] ≤ E[

∫ τn

0

|dKs|]808

= E[

∫ τn−

0

|dKs|] + |∆Kτn |]809

≤ n+ c.810811

Therefore, since X ∈ G,812

||Lτn ||S1≤ ||Xτn ||S1+E[

∫ τn

0

|dKs|] <∞,813

and thus, ||Xτn ||H1<∞, for all n ≥ 1.814
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