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Time Reversal of the Overdamped Langevin Equation and Fixman’s Law

Oliver T. Dyer and Robin C. Ball*
Dept of Physics, University of Warwick, Coventry CV4 TAL, UK.
(Dated: April 15, 2019)

We show that the first order Langevin equation for the overdamped dynamics of an interacting
system has a natural time reversal of simple but surprising form. This leads to a clear derivation of
Fixman’s relation for how interactions modify the time dependent response of the system, and we
show the application to the time dependent diffusion of dilute polymer coils. We find the generalized
“Fixman Law” for dissipation with a memory kernel, and we also discuss the case of the second

order Langevin Equation.
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Our starting point is a background system in thermal
equilibrium at temperature 7', a minority of whose de-
grees of freedom are given by z;(t). If we apply small
enough additional forces Fj(t) to these degrees of free-
dom, then the classical Fluctuation-Dissipation Theorem
leads to the Langevin model for their dynamics as

dl‘i
dt

- /t dt'GLY (¢ — ) Fy(t') + wilt) (1)
where
kT Gij(t —1') = (ui(t)u; (') (2)

are the velocity fluctuations measured in the undriven
system and GZ(.;F) (t—t') = 0(t—t")G;;(t—t') is the strictly
causal part of G.

The above becomes the Langevin Equation for an in-
teracting system if we take the forces F;(t) = fi(z(t))
to be conservative interactions layered on top of the un-
derlying equilibrium system. For example the z; and
added forces might be the coordinates of colloidal parti-
cles interacting due to added surface charges, or the co-
ordinates of (sub-)molecules experiencing the connecting
bond forces of a polymer chain. Notice that this interpre-
tation would imply inertial effects are already subsumed
in the G;;(t) (although we will revisit this later).

We obtain simple results by focussing on the case where
there is sufficient separation of timescales to take Gl(-;-L) (t—
t') = M;;6(t —t') where M,; is an instantanecous mobility
and correspondingly G;;(t —t') = 2M;;6(t — t'). Our
Langevin Equation then becomes

dxr i
dt

We now seek a time reversal of this equation with t# =
—t and xf(tf) = x(t) obeying
dzf

i = M f (@™ (7)) + ufl (t7) (4)

= M;; fi(z(t)) + ui(t). (3)

which requires that the time reversal of the random ve-
locity contribution be given by

At first sight the second term above is puzzling because
the random velocity should be unbiased, but this is con-
ditional on the past: u(t) is independent of past (' < t).
Correspondingly ur(tgr) should be independent of future
x(t' > t) and the difference of condition matters because
z(t' > t) clearly cumulates influence from the earlier ran-
dom velocity terms u(t).

Useful correlation identities follow from the above
by considering that for ¢ > ' we should have
(WP ()R (HR)) = 0 where vR(tg) = vi(t) = My, f, (w(t))
is the velocity response to the conservative forces. Substi-
tuting back in terms of unreversed quantities then leads
to

<ui(t);(t') >= =2 <v(t)v;(t') >, t<t' (6)
whereas this correlation is zero for ¢ > t’. From this the
response function of the interacting system Gi—?t t—t) =
(@;()2;(t'))/(kBT) can be expressed as

(vi(t)v;(t'))/(kBT). (7)

The above follows by substituting dz;/dt = v;(t) + wu;(¢)
and using our relation further above to eliminate cross
terms.

The above result was first obtained by Fixman by Dif-
fusion Equation arguments [7, 8], in the polymer context
which we discuss below, but in a manner which did not
convince later authors albeit they found some numeri-
cal evidence to support it when ¢ ~ ¢ [9]. Its power
is that it expresses the diffusion of the interacting sys-
tem in terms of the bare non-interacting value minus a
restraining contribution from the additional forces.

Gt —t') =Gyt —t) —



APPLICATION TO POLYMER DIFFUSION

The archetypal application is to the motion of colloid
and polymer systems in a Newtonian solvent, where the
x;(t) are the 3N coordinates of Nparticle position vec-
tors 7, (t) and the joint mobility tensor is that of Oseen
with M — Oy = g=— (I + ##) for off-diagonal blocks

8TNTmn
m # n and diagonal blocks given by O,,,, = ﬁ] . For

an isolated polymer coil of N beads equation () then be-
comes

<7%n(t)7%’m(t/)> = 2Omn6(t - t/) - <77n(t)77m(t/)> (8)

where the leading term is Kirkwood’s approximation and
all the time dependent memory is captured in the counter
terms correlating the velocity contribution

which is driven by the conservative forces holding the
polymer chain together. Focussing for simplicity on the
coil centre of mass R(t) = > nTn(t)/N, the correspond-
ing velocity autocorrelation function is then given by

A(t—t') = (V()V(t)) = 2Dk d(t—t') — Ap(t—t') (10)

where D = N72%"  (Oyp) is the classical Kirkwood
diffusivity and all the memory in the polymer centre of
mass motion comes from the Fixman term

Ap(t=t) = N2 3" (Ot (£)-Font () For (#')- O ().

mnm’n’
(11)
The long time polymer coil diffusivity is then given by

DL:DK—A:DK—/ AF(T)dT
0

and given that Dy, is the natural experimental measure-
ment whilst Dg is a direct configurational moment, it
is important to understand their difference A all arising
from the Fixman term.

In Fig. 1 we show the time-dependence of Ap(t) in
Gaussian and swollen chains measured in Wavelet Monte
Carlo dynamics simulations [10][??7?]. In each case the
longer time data is tolerably consistent with the natural
scaling form Ap(t) = (Re/72)?h(t/72) as plotted where
we have used the rms chain end-to-end radius R, ~ N”
as the natural scale of length and measured values of
the relaxation time 7z of the longest Rouse mode as the
natural scale of time, and this behaviour on its own would
lead to a contribution to A proportional to R?/7z o
Dk . We also see short time structure Ap(t) = g(N)f(¢)
to times of order unity which on its own would lead to
a contribution to A proportional to g(/N), and for the
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FIG. 1. Unscaled autocorrelation of A against time scaled by
a surrogate for the Zimm time (both scale as ~ N*"). The
dashed curves indicate the gradient of the line onto which the
curves of different N collapse, with the power calculated as
the powers in Fig. 7?7 divided by 3v.

particular case t = 0 earlier work [9] showed that g(N)
does appear to approach 1/N albeit slowly.

In Fig. we show the corresponding cumulative inte-
grals for A(t) = fot Ap(t')dt' in scaled variables, as far as
we can measure them above noise. Assuming these plots
do go far enough to capture all the short time parts, the
total values of Ay /Dy inclusive of the scaling parts are
estimated by finding the vertical shifts to align to a mas-
ter curve in the scaled variables with plateau value zero,
as shown in the third panel.

The measured estimates of Ay /Dy are shown in Fig.
THREE plotted against the anticipated correction to
scaling which is N™'/R™' o N¥~!. These enable us
to give the first quantitative estimates of the asymptotic
values for true long time diffusion coefficient compared
to the Kirkwood short time formula,

D—DK__(A) [ -33+03%
Dk \Dk/)n.o |-914£02%

D—DK__A [ -33+03%
Dx % 1-91+02%

good solvent

phantom chains.

good solvent

phantom chains.



0.04 -

0.02-

tltz
0

0.001 0.0J0, 40

-0.02+ 3

~0.04|- G

-0.06-"

FIG. 2. Upper curves: fractional decrease in diffusivity, found by numerically integrating the data in Fig.
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autocrrelation function Ap(t), plotted against the upper time limit of integration, for various chain lengths N. Data has been
truncated when noise begins to dominate additional contributions leading to incomplete curves, especially in (b) for swollen
chains. The lower curves show the same data shifted vertically to a common master curve, with plateau value zero and shown
in gray, the shift for each curve then giving an estimate of the eventual long time plateau of the relative decrease in diffusivity.

Fig. 4

in the Supplementary Material gives a different presentation of these master curves.

These corrections intrude wherever a measured chain dif-
fusivity or mobility, such as might be observed by dy-
namic light scattering or sedimentation respectively, is
compared with the Kirkwood formula given in terms of
configurational statistics. Direct determination of these
corrections from simulation without use of the Fixman
law would be very hard, as this would require direct mea-
surement of D to better than 1% which would entail sim-
ulation (with full hydrodynamics included) far in excess
of 10* chain relaxation times for each chain length. Di-
rect determination by experiment would face the added
difficulties of determining the configurational statistics to
better than 1% and controlling any influence of polydis-
persity.

SECOND ORDER LANGEVIN EQUATION

The basis for the second order langevin equation is
slightly different, but it leads to a matching time reversal
result. Our starting point is the random forces ¢;(t) with
observed autocorrelation (¢;(t)¢;(t')) = 2kgT Z;;0(t—t')
which are conjugate to a subset of variables x;(t) of the
underlying bath which are held (almost) stationary. Now
attaching both conservative forces and inertia tensor m;;
to these degrees of freedom leads to the second order
Langevin equation

dQCL'j

dx.:
m”——{—Z x]

g T i = fiz() + @) (12)
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FIG. 3. Plateau values of A/Dg for different chain lengths,
plotted against the correction to scaling variable R/N. For
both gaussian and swollen chains these show good straight line
plots with extrapolated values and error ranges for n — oo
indicated by the dashed lines with values shown in Eqn . The
strong curvature of the swollen chain plot at small N comes
mainly from non-scaling of the rms end-to-end radius used.

We now pose the analogous time reversed equation

d2x dzl
Mij s + Zide,Jg = (" (") + oF ("),

(diF)? 13)



with 2%(tg = —t) = x(t) as before, and by inspection
this requires

SR = 0u(t) — 22,0, (14)
This looks quite different from the first order case, but
it turns out to exactly agree in the limit of inertia being
negligible. Multiplying through by the mobility matrix
Z~1 to obtain the random currents, and eliminating %
using just the first order Langevin equation (3) leads back

to the time reversal of the random currents as before (5).

GENERALISATION TO MEMORY MEDIA

Finally we have considered the generalisation to first
order Langevin equation for motion in a time dependent
(or memory) medium, seeking insight into the status of
Fixman’s law in relation to other fluctuation-dissipation
type results. We start from

() = /G(t — YV F@(E))dE +ult) = Gx f+u

where for causality G(t—t") = 0 for ¢ < ' and we will also
allow ourselves the shorthand notation f(t) = f(z(t)).
We leave indices implicit now but for the multivariate
case (G is a matrix, in terms of which

(u@®u” () =kT (Gt —t')+ GT (¥ —1)).

Time Reversal Symmetry

If we simply negate all time arguments to tg = —t
our equation of motion becomes —dzg/dtr = Gg * fr +
u(—tg), where xr(tr) = z(t) = z(—tg) and similarly for
fr and Gg = Ggr(tg) = G(t) = G(—tg). This matches
the natural time reverse equation

drr/dtr = G * fr +ur(tr),
by taking
up(tr) = —u(—tr) — (G + GR) * fr.

This important complication is that we now have both
causal G * fr and anti-causal Gg * fr propagation from
the conservative forces entering our time reversal and re-
sults from it.

We show in the supplementary material that from the
above it follows at some length that

(uf"y = —=(G+Gr)* (ff")-
where

—(fff t<t
0 t>t

(FO @) - = {

It is then a matter of straightforward substitution to find
Ap(t =) = (@), — (37

= Gr* (fIT)_*Gr+ G (fIT), +G.
(15)

This final memory medium version of Fixman’s law is
clearly new and different. Specialising to ¢ > ¢’ for clarity,
Ap(t —t') can be expressed as

/ | dudu' (Gl =) S(u) (Gr(t — ) - fu)")

which is the correlation of the causal response to the
applied causal forces with the corresponding anti-causal
response, with the added restriction that only causally or-
dered factors of forces contribute. This can be computed
given observations of the force autocorrelation function
< f fT> and knowledge of G, but it is certainly quite differ-
ent from conventional Fluctuation-Dissipation Theorem
type results.
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SUPPLEMENTARY MATERIAL
Our general equation of motion is
i(t) = /G(t — ) f(z(t')dt' + u(t)

where for causality G(t—t') =0, ¢ < t' and we will also
allow ourselves the shorthand notation f(t) = f(x(¢)).
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FIG. 4. Fractional decrease in diffusivity, found by numerically integrating the data in Fig. 77?7 for the autocrrelation function
Ar(t), plotted against the upper time limit of integration, for various chain lengths N. Master curves shown in gray were
obtained by vertical linear shift of the data in the long time regime, and these are shown in gray behind (and extending) the
curves for each N. The shifted master curves then give an estimate of the eventual long time plateau of the relative decrease

in diffusivity for each curve.

For the multivariate case, that is where z, f and u
all become time dependent vectors, the above displayed
equation applies with G being a matrix which for re-
versible backgorund dynamics is symmetric, and we have
(u®)uT(t") = kT (G(t —t') + GT(t' — t)).

It proves useful to express the random velocity contri-
butions as

u(t) = /K(t —t)h(t')dt'

where (h(t)hT(t')) = 6(t — t')1 is white noise and K (t —
t') = 0 for t < t’ is strictly causal. Then we can interpret
h(t) as the innovation, that is what is new in the noise
at time ¢, with the important consequence that h(t) is
uncorrelated with everything from earlier times,

() =0,t>t.

The defining property of K is that the autocorre-
lation of wu(t) reconstructs correctly, so we require
KT (Gt —t)+ G (' —t)) = [K({t—t")KT (' —t")d¢”.

These equations have a natural time convolution struc-
ture, starting with

dx/dt =G f + K * h.

(16)

We will use R to denote negation of time arguments,
equivalent in effect to a transpose of the times as indices.
Then we can write

(uwu") = kT (G + G}) = K x K},. (17)
Time Reversal Symmetry
If we simply negate all time arguments to tgp = —t in

our equation of motion we obtain

—dLL'R/dtR = GR*fR+KR*hR.

Here zg(tr) = x(t) = z(—tgr) and similarly for fr and
hgr, whilst Gg = Gr(tr) = G(t) = G(—tg) and similarly
for Kg. The form of the equation of motion is clearly not
preserved under this simple time negation, but if we allow
a more complex time reversal mapping for the innovation
under which h — R[h] we can write

dxgr/dtr = G x fr + K % R[h],

which agrees with the original equation provided K
R[h] = — (G + GR) * fr — KR * hg leading to

Rh =-K ' (G+GRr)*fr— K '+ Kg*hg.

Now we can use this to find a time reversed partner to
eqn 16, which is that (R[h](tr)fE(t))) = 0 for tg > t).
This can in turn be time negated to (R[h](¢) f7(¢')) =0
for t < t’ where R[h]g = —KR*(G—i-GR)*f—K};l*K*h
leading to

Kp'« K« (hf') = —Kp* (G+Gr)*(ffT) for t<t.

(18)

The cross correlation of A and f for reversible
underlying

We now seek to bring equations 16 and 18 together
as a single expression for (hf”). This can be done in
closed form for the case where the underlying dynamics
is reversible, so that (G + G)gr = (G + G%) from which
it follows that G = GT and G = Gﬁ. In terms of K
this leads to K « Kt = Kg * KT and hence Kgl * K =
KT % (K%)~1, which can be substituted on the LHS of
Eqn (18). We can also convolve both sides of the latter by
(KT)~1 which being causal preserves the time inequality,
leading after some simplifications to the top line in



—(ffT) t<t
0 t>t"

(KR) ™ # (hfT) (1) = {

The bottom line of the above follows simply by convolv-
ing Eq (16) by (K%)~! which being anticausal preserves
its time inequality. Finally it is convenient to denote the
joint RHS above as — <ffT>_ and then write the whole

relation as (hf?) = —KF% « (ff*)_ and hence

(ufTy = —(G+GR) = (ff7)_

Application to correlation function

Now we come to the heart of the matter and consider
(22" =(uu" )y + G+ (ffT) G

19
+{(uf") « GR + G = (fu) (19)

where the first term direct from the innovation auto-
correlation corresponds to the “free” value of the LHS in
the absence of any internal forces f. In the third term

6

we can substituted <u fT> using the previous subsection
to give

<ufT>>kG£:—(G+G£)*<ffT>_*G§ (20)

and the fourth term is this both transposed and time re-
T

versed for which we need to note ((ffT>_> = <ffT>+
R

where <ffT> = <ffT>+ + <ffT>7, leading net of some
cancellations to

At—t) = (#d7),,  ~(@3") = GRs(ffT)_+GRtG+(ffT) *GC.

It is important to bear in mind that this result already
assumes that the underlying noise is time reversible and
hence both G and G are symmetric under 7.

For the instantaneous case considered by Fixman
where G(t —t') = ¢gd(t — t'), we have G = Gg and the
above result simplifies down to that of Fixman,

(22"), —(i2") = (ww™)

free

where w(t) = g f(z(t)) is the direct contribution to the
motion due to the conservative forces.



