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Abstract. We present a method of calculating crystal field coefficients of rare-

earth/transition-metal (RE-TM) magnets within density-functional theory (DFT).

The principal idea of the method is to calculate the crystal field potential of the

yttrium analogue (“Y-analogue”) of the RE-TM magnet, i.e. the material where the

lanthanide elements have been substituted with yttrium. The advantage of dealing

with Y-analogues is that the methodological and conceptual difficulties associated

with treating the highly-localized 4f electrons in DFT are avoided, whilst the nominal

valence electronic structure principally responsible for the crystal field is preserved.

In order to correctly describe the crystal field potential in the core region of the

atoms we use the projector-augmented wave formalism of DFT, which allows the

reconstruction of the full charge density and electrostatic potential. The Y-analogue

crystal field potentials are combined with radial 4f charge densities obtained in self-

interaction-corrected calculations on the lanthanides to obtain crystal field coefficients.

We demonstrate our method on a test set of 10 materials comprising 9 RE-TM magnets

and elemental Tb. We show that the calculated easy directions of magnetization

agree with experimental observations, including a correct description of the anisotropy

within the basal plane of Tb and NdCo5. We further show that the Y-analogue

calculations generally agree quantitatively with previous calculations using the open-

core approximation to treat the 4f electrons, and argue that our simple approach may

be useful for large-scale computational screening of new magnetic materials.

Submitted to: J. Phys.: Condens. Matter
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1. Introduction

Rare-earth/transition-metal (RE-TM) compounds, particularly those containing

neodymium, samarium and dysprosium, are the highest performing permanent magnets

on the commercial market [1, 2]. The key factor underpinning the success of these

materials is the possibility of obtaining a huge magnetocrystalline anisotropy (MCA),

i.e. a preferential direction for an object to be magnetized independent of its macroscopic

shape [3], which originates from the highly-localized 4f electrons of the lanthanide

elements. Specifically, the unfilled shell of 4f electrons forms a non-spherically

symmetric charge cloud which sits in the (also non-spherically symmetric) crystal

potential. The interaction between the 4f cloud and the crystal potential, and

the interaction between the spin and orbital degrees of freedom of the 4f electrons

themselves, results in a strong coupling of the RE magnetism to the crystal potential [4].

The spin-spin RE-TM interaction further couples the magnetic moments of RE to

those of the transition metals iron or cobalt [5]. The TM provides a large saturation

magnetization and high Curie temperature, which combine with the high MCA to form

an excellent permanent magnet [6].

Experimental research into RE-TM permanent magnets has been carried out

for over 50 years [7, 8, 9, 10, 11]. Computational research, particularly that based

on parameter-free, “first-principles” methods, is a younger field by comparison [12].

However, the growth of computing power and a more widespread availability of

modelling codes has led to a rapid increase in recent years of computational works aimed

not only at understanding current RE-TM permanent magnets but also predicting the

properties of new materials yet to be synthesized experimentally [13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26]. Here a first-principles approach is highly desirable, since

the novel materials may require visiting a previously unexplored parameter space where

the reliability of empirical models is unknown.

However, an enduring challenge presented by RE-TM magnets for first-principles

calculations is how to simultaneously describe accurately the itinerant electrons of the

TM and the highly-localized 4f electrons of the lanthanide. Practical implementations

of density-functional theory (DFT) [27], a first-principles methodology which is highly

popular due to its versatility and accuracy, require approximating the exchange-

correlation (XC) contribution to the total energy of the electrons. Approximations based

on the local spin density and the homogeneous electron gas (LSDA/GGA) work very

well for itinerant electrons and form the basis of all widely-available DFT codes [28, 29].

Unfortunately, LSDA/GGA XC functionals do not describe the lanthanide elements

well, with the 4f electrons being too delocalized [30].

In a previous publication [31], we discussed some different approaches which

attempt to correct the LSDA/GGA description of 4f electrons. These approaches

include the “open core” scheme [32], which effectively removes the 4f states from the

valence band and freezes them in the core, dynamical mean-field theory (DMFT) [33],

the self-interaction correction [34], and the LSDA/GGA+U scheme [35]. In that
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publication we chose the (local) self-interaction correction (LSIC) [36] and combined it

with the disordered local moment (DLM) picture of finite temperature magnetism [37]

to calculate the magnetization and Curie temperatures of the entire series of RE-TM

magnets with formula RECo5 [31]. However, using the same approach to calculate

the MCA is problematic, because current LSIC and DLM implementations employ

a spherical approximation for the potential at the RE site. The most important

contribution to the MCA, i.e. from the crystal potential, is therefore incorrectly

described [38].

If we wish to continue with our LSIC/DLM approach to obtain a comprehensive

picture of RE-TM magnets, it is apparent that we must augment the original calculations

to account for the non-spherical potential at the RE site. Fortunately, an entire

theoretical framework has been developed to describe the effects of this asphericity,

namely crystal field (CF) theory [39, 40, 41, 42]. Here, the potential at the RE

site is expanded in terms of angular functions, and matrix elements with radial 4f

wavefunctions are quantified in terms of CF coefficients.

Knowledge of the CF coefficients, combined with a description of the finite

temperature TM magnetism, can lead to a very detailed picture of RE-TM

magnetism [42]. In particular, CF theory provides a theoretical framework to

understand the temperature-dependent contribution of the RE to the anisotropy,

which is not straightforward to extract from conventional band structure calculations.

Interesting temperature-dependent phenomena observed in RE-TM magnets include

spin reorientation transitions (as observed for NdCo5 [43]) or anomalous variation of

the magnetostriction (e.g. DyFe2 [44]). More exotic applications outside permanent

magnetism include engineering the crystal field to stabilize the magnetic moment of Ho

atoms on a Pt substrate [45].

The CF coefficients can be regarded as empirical parameters used to fit experimental

data [46], but they can also be calculated. The seminal crystal field models were

based on the potential set up by arrays of point charges [39, 40]. The advent of DFT

allowed the CF coefficients to be calculated from first principles [12], originally from the

electrostatic potential set up by the charge density [47], or later by also including the XC

contribution [17, 48, 49, 50]. As usual, the 4f electrons require special treatment, most

frequently via the open core scheme [12]. Recent work has also seen the development

of sophisticated techniques using DMFT to evaluate CF coefficients [20] or formulating

CF theory in a Wannier basis [51].

One reason that a number of different approaches can be found in the literature

is that CF theory is essentially empirical, and there is not a unique way of combining

it with non-empirical DFT. In particular, in CF theory the 4f electrons are spectators

which feel the crystal field but do not themselves influence it [52]. But in a standard

DFT calculation the CF potential contains contributions from all electrons, meaning

that special treatment of the 4f electron density (e.g. removing the non-spherical

components [17]) is required.

Here, we go a step further and present a method where we completely remove the
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4f electrons from the crystal field, by calculating the CF potential of the yttrium (Y)-

analogue of the RE-TM magnet. Here “Y-analogue” means that have we have replaced

all lanthanide atoms with yttrium; for instance, the Y-analogue of Sm2Co17 is Y2Co17.

Our decision to use Y is motivated by the fact that in its 3+ state, the valence electronic

structure of Y is formed from one d and two s electrons, matching that of a lanthanide

also in a 3+ state. As a consequence, the charge density of the Y-analogue is expected

to correspond closely to that of the RE-TM magnet excluding the 4f electrons, which is

precisely that required to calculate the nonspherical components of the crystal field. All

of the widely-used RE/TM magnets have isostructural Y-analogues, such as YCo5 [6],

YFe2 [6], Y2Co17 [6], Y2Fe14B [53] and YFe12−xMx (M = metal) [54]. Practically, the

approach is free from the complications of treating the XC energy of the 4f electrons,

and produces a potential which does not contain 4f contributions.

Of course, the validity of the Y-analogue approach depends on whether the valence

electrons of the lanthanide are well represented by Y. As a bare minimum, the lanthanide

must be in a 3+ state, so that the nominal valence configurations agree. For the widely

used RE-TM magnets we believe this requirement to be well satisfied [12], but some

care will be required in novel materials if the lanthanide is thought to undergo valence

fluctuations [25]. For such materials, the open-core approximation would encounter

the same problem as the Y-analogue model. In addition, our calculations on the

RE3+Co5 compounds revealed a small contribution from f -type states around the Fermi

level [31] which will be missing for the Y-analogue, as will be any effects due to the

(spherically-symmetric) spin polarization of the 4f electrons. Therefore the use of the Y-

analogue must be considered an approximation. However, the advantage of making this

approximation is then we are free to compute the potential using common LSDA/GGA

functionals, using widely available DFT codes.

Our manuscript describes the implementation of the Y-analogue scheme, focusing

particularly on two points. The first is that if the chosen DFT code is not an “all-

electron” code, i.e. it does not treat core and valence electrons on the same footing,

the charge density and potential will be incomplete in the core region of the atoms. By

performing the calculations within the projector-augmented wave (PAW) formalism [55],

as found in a number of popular codes including Quantum Espresso [56], GPAW [57] and

the Vienna Ab initio Simulation Package (VASP) [58], it is possible to restore this core

contribution as a post-processing step. In Secs. 2.3–2.6 we describe how this is done.

The second point is that in order to calculate CF coefficients, we require the

radial distribution of the 4f electrons. As we discuss in Section 2.7, here we use the

spherically symmetric 4f charge density obtained from a separate LSIC calculation.

Therefore our method consists of two separate strands, calculated with different codes:

one code provides the potential V (r) for the Y-analogue and the other code provides

the radial density n0
4f (r) for the spherically-symmetric approximated RE-TM compound.

Multiplying the two quantities and integrating yields the CF coefficients.

We have used our method to calculate CF coefficients for 10 materials, comprising 9

RE-TM magnets and elemental Tb. Where data is available we compare our calculations
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to previous work. The data demonstrate all of the correct qualitative trends with respect

to experiment, and are in good quantitative agreement with open-core calculations. We

therefore present the method as an approximate but simple scheme to calculate CF

coefficients.

The rest of our manuscript is organized as follows. In Section 2 we start with a

general overview of the crystal field picture and then discuss the specifics of obtaining

the potential in the PAW formalism. We also discuss the calculation of the spherically-

symmetric 4f density and some of the conventions regarding CF coefficients. In

Section 3 we present the calculated CF coefficients and compare to data previously

published. Finally in Section 4 we present our conclusions and discuss potential future

developments.

2. Theory

2.1. Crystal field picture

As comprehensively explained in Ref. [42] (and references therein), crystal field

theory describes atomic-like electrons, which are eigenstates of a central potential and

characterized by a set of quantum numbers |LSJMJ〉, perturbed by the CF potential

V (r). In the simplest case of a single magnetic sublattice subject to an external field B

with a spin-orbit coupling quantified by λ, the CF Hamiltonian is [42]

Ĥ = λL̂ · Ŝ + µB(L̂ + 2Ŝ) ·B +
∑
i

V (ri). (1)

Here ri denotes the position of a 4f electron. V (r) can be conveniently expanded

in terms of angular functions centred on the RE site. Using the (complex) spherical

harmonics Ylm(r̂), this expansion is

V (r) =
∑
lm

Vlm(r)Ylm(r̂). (2)

Matrix elements of
∑
i V (ri) are products of radial and angular parts. The angular

parts are rewritten and evaluated in terms of operators, and result in the appearance

of Stevens coefficients αJ , βJ and γJ , for l = 2, 4, 6 respectively [59]. The radial part

of the matrix element forms the CF coefficient, which is the quantity that we aim to

calculate in this work:

Blm =

(
2l + 1

4π

) 1
2 ∫

r2n0
4f (r)Vlm(r)dr (3)

The sign has been defined such that a negative Vlm(r) is attractive to an electron, which

is the opposite of a conventional electrostatic potential [42]. n0
4f (r) is a spherically-

symmetric charge density associated with 4f electrons which we discuss in Section 2.7,

while we discuss the (2l+1)/(4π) prefactor in Section 2.8. First, we focus on calculating

Vlm(r).
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2.2. Kohn-Sham potential

As mentioned in the Introduction, the original formulation of CF theory supposed the

perturbing potential V (r) to be electrostatic in origin [39]. However, in DFT the many-

body system of interacting electrons is mapped onto non-interacting Kohn-Sham (KS)

electrons, which experience both an electrostatic and an exchange-correlation potential.

As discussed in Ref. [12], it is reasonable to include the XC contribution to the CF

potential. However, since the XC potential is spin dependent one must either average

over spins [12] or introduce spin-dependent CF coefficients [20]. To keep things general,

we take the latter option and slightly modify (3) so that there is a dependence on spin

σ(=↑, ↓):

Bσ
lm =

(
2l + 1

4π

) 1
2 ∫

r2n0
4f (r)V

σ
lm(r)dr (4)

where, inverting (2) and inserting the KS potential,

V σ
lm(r) =

∫
V σ

KS(r)Y ∗lm(r̂)dr̂

=
∫

[VH(r) + V σ
XC(r)]Y ∗lm(r̂)dr̂. (5)

In our approach V σ
KS(r) is the self-consistent KS potential of the Y-analogue of the RE-

TM magnet. Above we have split the KS potential into the electrostatic potential VH(r)

(which includes electrostatic electron-electron and electron-nuclear interactions), and

the XC potential V σ
XC(r).

2.3. PAW

In principle, if one performs an all-electron DFT calculation (particularly using

atom-centred basis sets) then extracting V σ
lm(r) should be straightforward. However,

calculations which make some distinction between core and valence electrons, e.g. those

using pseudopotentials, do not deal directly with V σ
KS(r) but rather with “pseudized”

potentials and densities. The advantage of such schemes is that they remove the large

computational effort required to describe the rapidly varying electronic wavefunctions

in the core region [60].

The projector-augmented wave (PAW) formalism is a popular method to perform

such calculations [55]. The full electronic+nuclear charge density is replaced with

a pseudo-density ρ̃(r), which has an associated pseudo-electrostatic potential which

solves the Poisson equation ∇2ṼH(r) = −4πρ̃(r) (Hartree atomic units). The difference

between the full and pseudo-density is denoted ∆ρ(r). For each atom, an augmentation

region is defined, which is an atom-centred sphere with a radius of approximately 1–2.5

Bohr radii depending on the atom [61]. Crucially, outside the augmentation spheres

the full and pseudo-densities are identical (i.e. ∆ρ(r) vanishes). Inside, the pseudo-

density is constructed such that it has the same multipole moments as the full density.

Therefore, the full and pseudo-electrostatic potentials also match each other outside the

augmentation spheres [55, 57].
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We thus write down a PAW version of (5):

V σ
lm(r) =

∫
[ṼH(r) + V σ

XC(n↑(r), n↓(r))]Y ∗lm(r̂)dr̂

+ ∆VHlm(r). (6)

∆VHlm(r) is the angular-resolved correction to the electrostatic potential. Note that we

have now also specialized to the case that the XC potential depends only on the spin

densities at the point r, i.e. the LSDA [28]. The all-electron spin-density is given by

nσ(r) = ñσ(r) +
∑
lm

∆nσlm(r)Ylm(r). (7)

where ñσ(r) is the electronic, spin-resolved contribution to the pseudo-density and

∆nσlm(r) are the atom-centred corrections.

2.4. Angular expansions of pseudized quantities

To obtain the angular expansions of the pseudo-electrostatic potential ṼHlm(r) and the

electronic pseudo-density ñσlm(r), we use a Lebedev grid [62] of 5810 points on the unit

sphere with vectors r̂i and weights wi. For example,

ṼHlm(r) = 4π
∑
i

wiṼH(r̂ir)Y
∗
lm(r̂i). (8)

PAW codes generally include a postprocessing option to output ṼH(r) or ñσ(r) on a grid,

and the smoothness of the data allows one to obtain their values at arbitrary r through

interpolation.

2.5. Correction to the pseudo-electrostatic potential

Recalling that ∆ρ(r) vanishes outside the augmentation sphere, the correction to the

electrostatic potential is given by

∆VH(r) =
∫
dr′

∆ρ(r′)

|r− r′|
. (9)

The angular expansion of ∆VH(r) is therefore

∆VHlm(r) =
(

4π

2l + 1

) ∫
r′2dr′∆ρlm(r′)

rl<
rl+1
>

, (10)

with r< and r> respectively denoting the lesser and greater of r′ and r.

2.6. Correction to the pseudo-density ∆ρlm(r)

∆ρ(r) consists of two contributions [57]. The first is from the nuclei, and requires

replacing the soft “compensation charges” (which ensure the multipole moments of the

full and pseudo-density agree [55]) with the point charge at the origin with a −Z/r
potential. The second contribution is the correction to the electron pseudo-density

∆n(r), which restores the rapid variation of the electron density close to the origin and

also replaces the soft pseudo-core density with the contribution from the atomic-like
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core states. The resulting expression involves a number of PAW quantities and we give

it in Appendix A. Here, we simply stress that all the quantities required are either

already included in the PAW datasets or computed during the SCF calculation, so the

computational effort required to obtain ∆ρ(r) is minimal.

As well as using ∆ρ(r) to calculate ∆VH(r), the spin-resolved all-electron density

(7) allows the computation of the XC potential in the same angular representation.

Thus, using the steps described above, Appendix A and (6), the angular resolved CF

potential V σ
lm(r) appearing in (4) is obtained.

2.7. The spherically-symmetric 4f charge density

We now consider the other ingredient required to calculate the CF coefficients, which

is the spherically-symmetric 4f charge density n0
4f (r). In CF theory n0

4f (r) originates

from single-particle eigenfunction of the unperturbed central potential which enters the

matrix element of the CF potential, n0
4f (r) = |ψ4f (r)|2 [42], which is normalized as∫

r2n0
4f (r)dr = 1. (11)

Of course, the Y-analogue model used to obtain V σ
lm(r) does not provide n0

4f (r),

since the stated aim of the model was to remove the 4f electrons. However, an

approach which aligns closely to the CF picture is to perform an atomic-like calculation

for a spherically-symmetric potential, where the potential corresponds to the RE atom

embedded in the crystal. Here we describe such an approach, based on scattering theory

and the local self-interaction correction (LSIC) [36].

The LSIC is an implementation of the SIC within the multiple-scattering, Korringa-

Kohn-Rostoker (KKR) Green’s function formalism of DFT [63]. In particular, the

KS potential is by construction in “muffin tin” form, i.e. the potential is spherically

symmetric within non-overlapping atom-centred spheres and surrounded by a flat

potential interstitial region (it is also possible to use the “atomic sphere” construction,

which removes the interstitial region and allows the overlap of spheres) [63]. Previously

we used such calculations (which are done at the scalar-relativistic level) as starting

points for fully-relativistic DLM calculations on RE-TM compounds for the entire

RECo5 series from Y–Lu inclusive [31].

The scalar-relativistic potential obtained for the RE site from a self-consistent LSIC

calculation can be inserted into the problem of the scattering of a free electron by an

isolated, spherically-symmetric and finite-ranged potential. Apart from the regular and

irregular solutions Z and J , the central quantity in such a problem is the t-matrix [64].

The Green’s function of the scattered electron is

G(r, r′, E) = Z(r, E)t(E)Z×(r′, E)

− Z(r, E)J×(r′, E) (12)

where × denotes a left-hand solution to the radial equation, and matrix multiplication

over angular indices has been implied (see Refs. [64, 65] for details). The single-particle
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Figure 1. The spherically-symmetric 4f electron density n0
4f (r) calculated for 10

compounds: NdCo5, SmCo5, Tb (solid lines); NdFe12, SmFe12 (dashed); NdFe12N,

SmFe12N, TbFe2, DyFe2 (dotted); Sm2Co17 (long dash). The data fall onto four

distinct curves depending on the lanthanide.

density nSP is obtained from the Green’s function as

nSP(r) = − 1

π
Tr
∫
C
G(r, r, E)dE (13)

The contour C is a rectangle in the complex plane which encloses the energies of the

bound 4f states, which in an LSIC calculation typically sit ∼1 Ry below the Fermi

level [31]. For the light lanthanides (i.e. atomic numbers smaller than Gd) all of the

bound 4f states are included. For the heavy lanthanides only the states belonging to

the unfilled spin subshell are enclosed in the contour, since these states are the ones

responsible for the crystal field effects.

Since Z and J have the form of radial functions multiplied by spherical harmonics,

it is quite straightforward to use (12) and (13) to extract the spherically-symmetric part

of nSP. We then normalize this function to satisfy (11) and set the result equal to n0
4f (r),

i.e.

n0
4f (r) =

∫
nSP(r)dr̂∫

ΩMT
nSP(r′)dr′

. (14)

The normalization in (14) has been performed within the muffin tin sphere ΩMT.

Accordingly, when calculating the CF coefficients from (4) the integral is also performed

up to the muffin tin radius.

In Fig. 1 we plot n0
4f (r) obtained for each of the 10 materials in our test set (more

details regarding the test set can be found in Sec. 3.1). The most notable feature of

Fig. 1 is that n0
4f (r) depends on the lanthanide but not on the host compound. As

a result, the 10 curves are effectively reduced to 4, corresponding to the number of

lanthanides in the test set (Nd, Sm, Tb and Dy). We note that, without applying the

LSIC, the self-consistent calculations are difficult to converge.

Physically, the observation that n0
4f (r) depends on the lanthanide but not the host

compound is consistent with the picture of atomic-like 4f electrons. Practically, this

behaviour could be useful for studies screening a large number of candidate compounds
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based on their CF coefficients. To a good approximation, Fig. 1 supports the idea that

one need not recalculate n0
4f (r) for every compound, but rather predefine one function

for each lanthanide to be used for the full set of candidates. Then the computational

work would be restricted to calculating only the potential V σ
lm(r) for the Y-analogues.

For the current manuscript, however, we have recalculated n0
4f (r) for each compound.

2.8. “B” and “A” CF coefficients and axis orientation

Since we have chosen to expand the potential in terms of complex spherical harmonics

(2), it is natural to work with the CF coefficients conventionally labelled B. These

coefficients correspond to expanding the potential with Wybourne operators, which are

related to the spherical harmonics by the prefactor appearing in (3) [41, 42]. Within

this normalization one can distinguish “real” and “imaginary” CF coefficients depending

on the relationship between Blm and Bl−m. For the materials considered here we have

chosen the crystal axes such that the imaginary CF coefficients are zero, so Blm = Bl−m.

In the past and present CF literature it is more common to find CF coefficients

[Alm〈rl〉] which are based on Stevens operators [41]. Ref. [41] gives a table of factors

αlm which allow the conversion [Alm〈rl〉] = αlmBlm to be performed. To facilitate

comparison with previous work we perform this conversion and report our results using

the Stevens form. We stress that despite the notation, [Alm〈rl〉] should be considered a

single quantity in our calculations (hence the square brackets) and cannot be be factored

into Alm and 〈rl〉.
We also point out an issue relevant to materials with non-orthogonal axes, e.g.

hexagonal crystals. In the expansion of (2), the conventional relation between polar

and cartesian co-ordinates applies, i.e. r̂ = (sin θ cosφ, sin θ sinφ, cos θ). For cubic and

tetragonal crystal structures, it makes sense to choose the crystal axes to coincide with

the three cartesian directions. However, for a hexagonal system with the c axis pointing

in the z direction, one can choose a crystal axis also to point in the x or y direction.

The reason that such a choice has an impact on CF coefficients, specifically those

with nonzero m, is illustrated in Fig. 2(a). Here the SmCo5 structure is shown, focusing

on the ab plane containing the Sm atoms. Figure 2(a) obeys the convention given in

the book by Bradley and Cracknell [66], so that one of the hexagonal lattice vectors is

parallel to the −y direction. Such a system will in general have a nonzero B66, which is

also equal to B6−6. However, one could construct a hexagonal co-ordinate system with

a hexagonal vector parallel to the x direction, corresponding to a 90◦ rotation in the

ab plane. Since Y6±6 ∝ e±6iφ, B66 and B6−6 would flip sign with this choice of axes.

Physically, the difference occurs because in one case a vector with φ = 0 and its origin

at the RE site points towards the nearest neighbour Co atom, while for the other case

the vector points exactly between two.

In this work, we mainly follow the convention of Fig. 2(a) when dealing with

hexagonal systems. The key exception is Sm2Co17, where we have a hexagonal vector

pointing along the x direction [Fig. 2(b)]. This choice of axes for Sm2Co17 ensures that
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Figure 2. (a) The RECo5 (CaCu5) crystal structure [9], showing just the ab plane

containing the RE atom. The hexagonal unit cell according to the convention of

Ref. [66] is shown with the cartesian axes and polar co-ordinate representation. (b) The

RE2Co17 (Th2Zn17) crystal structure. Notice how the unit cell is rotated compared

to (a), but the hexagonal array of Co atoms surrounding the RE are in the same

orientation. Grey circles represent Co, purple RE and black represents pairs of Co

atoms (dumbbells).

the imaginary B coefficients are zero, and actually gives a local environment for the Sm

atoms which is more similar to SmCo5 [i.e. nearest in-plane Co atoms lying close to the

φ = 0 direction, which can be seen by comparing Figs. 2(a) and (b)].

We have drawn attention to this issue because not all codes agree on the cartesian

orientation of hexagonal axes. For instance, the Hutsepot KKR code [67] used to

perform the LSIC calculation uses the orientation of Fig. 2(a) for hexagonal crystals

by default. However, in the Quantum Espresso package [56] or the Atomic Simulation

Environment (ASE) [68] hexagonal axes are defined with a lattice vector pointing parallel

to the x direction [Fig. 2(b)]. With this in mind we think it useful when reporting crystal

field coefficients with nonzero m for hexagonal structures to also give the relationship

between crystal axes and θ and φ.

Finally, we note an additional potential source of confusion is that in experimental

literature there are B coefficients which are distinct from those introduced above. These

alternative B coefficients are the [Alm〈rl〉] quantities multiplied by the appropriate

Stevens coefficient αJ , βJ or γJ , depending on l [69]. For clarity, we do not refer
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to these quantities any further here.

2.9. Anisotropy constants from crystal field coefficients

This work focuses on the calculation of CF coefficients. However, experimental studies

involving magnetization measurements more commonly report anisotropy constants,

which (for a uniaxial system) come from an expansion of the free energy in terms of the

magnetization direction (θ0, φ0):

E(θ0, φ0) = K1 sin2 θ0 +K2 sin4 θ0 +K3 sin6 θ0

+K4 sin6 θ0 cos 6φ0. (15)

For Tb, where there is no contribution from the TM, we can calculate the Ki

values by diagonalizing the Hamiltonian in (1) within the ground J manifold (L=S=3,

J = 6). We choose the magnitude of the external field in (1) to be very large (5000 T)

which constrains the magnetization to point along the chosen field direction B̂. The zero

temperature (ground state) energy is thus obtained as a function of magnetization angle,

which can be fitted to the expression 15. In the case that the l = 2 term dominates, the

following relation is satisfied [42]:

K1 = −3J(J − 0.5)αJ [A20〈r2〉]. (16)

For a general RE-TM magnet it is not straightforward to relate CF coefficients

to the Ki constants. This is because the CF coefficients only contain the contribution

of the RE, but the TM will also contribute to the anisotropy [42]. However, making

the reasonable assumption that the RE provides the dominant contribution, one can

use the CF coefficients to at least make qualitative statements about the anisotropy.

For instance, multiplying the signs of the Stevens factor αJ and [A20〈r2〉] gives the

sign of negative K1, assuming the l = 2 term is dominant (16). Similarly, for cubic

systems like the Laves phase compounds (where the first nonzero CF coefficient has

l = 4), the product of [A40〈r4〉] and βJ will be positive for an easy [111] direction

and negative for [001]. The latter behaviour can be verified by plotting the potential

B40Y40(θ) +B4±4Y4±4(θ) in the φ = 0 plane multiplied by the sign of the Stevens factor,

and seeing if the result is maximal or minimal along the [001] direction.

2.10. Computational details

We calculated the potential V σ
lm(r) including the PAW corrections (6) for the Y-

analogues of RE-TM magnets using the GPAW code, version 1.4.0 [57]. We used the latest

freely available GPAW PAW datasets (version 0.9.2) [61]. The calculations were performed

using a plane wave basis set, expanding the wavefunctions up to a maximum plane wave

kinetic energy of 1200 eV. The reciprocal space sampling was performed using Γ-centred

k-point meshes and converged for each material, resulting in k-meshes of 20x20x20 for

YCo5, Y and YFe2, 8x8x12 for YFe12 and YFe12N, and 12x12x12 for Y2Co17, and the

Kohn-Sham states occupied according to a Fermi-Dirac distribution with a width of
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Table 1. Structural parameters used in the calculations, with the Wyckoff positions

occupied by each inequivalent atom given. Lattice parameters and muffin tin radii are

in Å, internal co-ordinates of the indicated Wyckoff positions are dimensionless.

Material Space group; Lattice parameters; Internal co-ordinates Source and reference
RE site symmetry MT radius

SmCo5 191 (P6/mmm) a = 4.974, c = 3.978 Sm(1a), Co(2c), Co(3g) Exp. at 5 K [70]
D6h rMT=1.645

NdCo5 191 (P6/mmm) a = 5.006, c = 3.978 Nd(1a), Co(2c), Co(3g) Exp. at 5 K [70]
D6h rMT=1.661

Sm2Co17 166 (R3̄m) a = 8.398, c = 12.218 Sm(6c), Co(6c), Co(9d), Co(18f), Co(18h) Exp. at 300 K [71]
C3v rMT=1.781 z6c,Sm = 0.343; z6c,Co = 0.099; x18f = 0.283; (Nd2Co17; see text)

(x, z)18h = (0.171,0.486)
NdFe12 139 (I4/mmm) a = 8.533, c = 4.681 Nd(2a), Fe(8f), Fe(8i), Fe(8j) DFT-GGA [50]

D4h rMT=1.667 x8i = 0.359; x8j = 0.268
NdFe12N 139 (I4/mmm) a = 8.521, c = 4.883 Nd(2a), N(2b), Fe(8f), Fe(8i), Fe(8j) DFT-GGA [50]

D4h rMT=1.667 x8i = 0.361; x8j = 0.274
SmFe12 139 (I4/mmm) a = 8.497, c = 4.687 Sm(2a), Fe(8f), Fe(8i), Fe(8j) DFT-GGA [50]

D4h rMT=1.667 x8i = 0.359; x8j = 0.270
SmFe12N 139 (I4/mmm) a = 8.517, c = 4.844 Sm(2a), N(2b), Fe(8f), Fe(8i), Fe(8j) DFT-GGA [50]

D4h rMT=1.667 x8i = 0.361; x8j = 0.274
TbFe2 227 (Fd3̄m); Td a = 7.341, rMT=1.589 Tb(8b), Fe(16c) Exp. at 300 K [70]
DyFe2 227 (Fd3̄m); Td a = 7.338, rMT=1.589 Dy(8b), Fe(16c) Exp. at 300 K [70]
Tb 194 (P63/mmc) a = 3.606, c = 5.698 Tb(2c) Exp. at 300 K [72]

D3h rMT=1.764

0.01 eV. The exchange-correlation energy was modelled with the LSDA [28]. The PAW

corrections (Appendix A) were extracted using our own Python scripts.

To calculate the spherically-symmetric 4f electron density n0
4f (r) we used the

Hutsepot KKR code [67] to calculate the spherically-symmetric potential at the RE

site within the muffin-tin approximation. The muffin tin radii are reported in Table 1.

We used the LSDA + LSIC [36] to model the XC energy, where the angular momentum

channels were corrected according to the scheme described in Ref. [31]. Using this

potential we solved the atomic problem on a logarithmic radial grid to obtain the

Green’s function and density [(13) and (14)]. Finally, V σ
lm(r) and n0

4f (r) were combined

to calculate CF coefficients from (4) and converted into [Alm〈rl〉] notation [41].

3. Results

3.1. Materials considered

In Table 1 we list the 10 materials considered in this work. In our set of materials

we have included the archetypal Sm-Co magnets SmCo5 [7] and Sm2Co17 [8], and also

examples of the 1:12 magnet class e.g. NdFe12N, which are currently the subject of

research due to their potential as hard magnetic materials with reduced RE content [73].

We have also included the Laves phase magnets TbFe2 and DyFe2 whose alloy is the

highly magnetostrictive Terfenol-D compound [74, 75], and also elemental Tb [76]. Tb

is an interesting test since the Y-analogue has no atoms in common with the original

structure.

Table 1 also gives the structural parameters (lattice constants and internal co-
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Table 2. Calculated crystal field coefficients, in K (i.e. [Alm〈rl〉]/kB). The two

numbers reported for each lm combination corresponds to spin up/down respectively,

and the bold number corresponds to the spin of the asymmetric 4f electron cloud, as

discussed in the text.

Material [A20〈r2〉] [A40〈r4〉] [A43〈r4〉] [A44〈r4〉] [A60〈r6〉] [A63〈r6〉] [A64〈r6〉] [A66〈r6〉]

SmCo5 -402/-400 -30/-22 — — 5/4 — — -137/-115
DMFT [20] -313/-262 -40/-55 — — 35/25 — — -731/-593

NdCo5 -421/-415 -36/-26 — — 6/5 — — -174/-146
Sm2Co17 -199/-208 -20/-7 116/108 — -1/-1 -22/-25 — -54/-48

open core [49] -194 -15 74 — -2 -61 — -139
NdFe12 -116/-110 4/15 — -205/-145 10/7 — -29/-21 —

open core [50] -77 — — — — — — —
DMFT [20] -71/-116 -5/-1 — -76/-270 62/54 — -224/-107 —

NdFe12N 188/364 -62/-13 — -161/-101 -17/-16 — -1/-3 —
open core [50] 367 — — — — — — —
DMFT [20] 477/653 75/112 — -105 /-141 32/63 — -65/-91 —

SmFe12 -100/-96 1/10 — -154/-112 8/6 — -21/-15 —
open core [50] -47 — — — — — — —
DMFT [20] -184/-211 -21/-18 — -41 /-136 45/40 — -95/-58 —

SmFe12N 272/414 -47/-6 — -121/-75 -14/-13 — -2/-3 —
open core [50] 371 — — — — — — —
DMFT [20] 195/225 78/70 — 22/-91 47/25 — -97/-82 —

TbFe2 — 28/29 — 139/143 -2/-2 — 39/38 —
DyFe2 — 26/26 — 128/132 -2/-2 — 34/32 —
Tb -59/-60 -4/-3 — — 4/4 — — 36/36

ordinates) used in the calculations. In order to be able to best compare our CF

coefficients to previous calculations we have where possible used the same structural

parameters. Accordingly, as indicated in Table 1 structural parameters have been

sourced both from experimental and computational works. For Sm2Co17 we follow

Ref. [49] and use the structural parameters of the related compound Nd2Co17 [71], which

avoids the experimental difficulties associated with performing neutron experiments on

Sm compounds.

As clearly explained in Ref. [42], depending on the point symmetry of the RE site

only certain CF coefficients will be nonzero. Furthermore, for the purposes of calculating

matrix elements for f electrons we need only calculate CF coefficients for even values of

l, up to a maximum l = 6. In order to check that our computational method is robust we

calculated the decomposition of the potential (6) for all lm combinations and confirmed

that the only nonzero terms were those expected from the point symmetry [66].

3.2. CF coefficients

Table 2 gives the CF coefficients calculated for our set of materials. We also reproduce

the values of CF coefficients calculated previously in the literature for some of the

materials [20, 49, 50].

For our calculations, and Ref. [20], two numbers are reported for each lm,

corresponding to the CF coefficient calculated using V ↑lm(r) and V ↓lm(r). One of the

two numbers has been written in bold, corresponding to the coefficient that (in the

zero temperature, scalar-relativistic picture) is the potential felt by the partially filled
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4f spin subshell. Expanding on this point, we first note that we have chosen the

TM spins to point in the ↑ direction. Furthermore, the RE-TM coupling is generally

antiferromagnetic between spins [5]. Therefore, for the light REs Nd and Sm the

partially filled 4f subshell has ↓ spin character, so the relevant CF coefficient is

calculated using V ↓lm(r). For the heavy REs, the 4f ↓ spin subshell is filled, so V ↑lm(r)

is relevant for TbFe2 and DyFe2. For elemental Tb we chose ↑ to be the majority spin

direction, so the unfilled 4f spin subshell is ↓. We note that, except for NdFe12N and

SmFe12N, we calculate the difference between V ↑lm(r) and V ↓lm(r) to be rather small. We

now discuss each material in more detail.

3.2.1. SmCo5 and NdCo5 SmCo5 crystallizes in the CaCu5 structure, which is

hexagonal with one formula unit in the unit cell [9]. SmCo5 is characterized by a

large uniaxial anisotropy [77], which is understood in terms of CF theory based on

the approximate relation (16) between the first anisotropy constant and lowest order

CF coefficient, K1 ∝ −αJ [A20〈r2〉] [42]. The positive value of 13/315 for the Stevens

αJ coefficient of Sm3+ [42] means that SmCo5 should have a large, negative value of

[A20〈r2〉] [78].

Recently, Ref. [20] calculated the CF coefficients of SmCo5 within DMFT, and

also provided a useful summary of past calculations and experimental measurements.

Experimentally measured values of [A20〈r2〉] vary between -180 and -420 K, whilst

calculations found values between -160 and -755 K. There is no particular consensus

about the other CF coefficients, although the computational works agreed in finding

[A40〈r4〉] to be negative and [A60〈r6〉] to be positive. We reproduce the results of the

DMFT calculations with our own results in Table 2.

Our calculations based on the Y-analogue model of SmCo5 find values of

the [A20〈r2〉] coefficient (-402/-400 K) which fall into the previously reported

experimental/calculated ranges. The variation in sign of [A20〈r2〉], [A40〈r4〉] and

[A60〈r6〉] also follows that observed in previous calculations. Despite the different

methodologies involved, our calculated values are reasonably close to the DMFT

results [20], with the exception of [A66〈r6〉]. This CF coefficient controls the basal plane

anisotropy. However, it does not affect the ground-J multiplet of Sm [42]. Furthermore,

higher order CF coefficients decay more quickly with temperature [42]. Therefore, the

effect of [A66〈r6〉] on the strongly uniaxial SmCo5 is expected to be difficult to observe,

and has not been measured experimentally [78].

For comparison we also considered the isostructural NdCo5 compound. Within the

Y-analogue model, any differences between CF coefficients calculated for SmCo5 and

NdCo5 must be attributed to (a) the slightly different lattice parameters (Table 1) and

(b) the different 4f electron density (Fig. 1). We see from Table 2 that the calculated CF

coefficients are actually very similar for both materials. However, Nd3+ has a negative

Stevens factor (-7/1089) [42], which means NdCo5 should have an in-plane anisotropy

(negative K1), This is exactly what is observed experimentally [79]. Furthermore, unlike

SmCo5 the anisotropy within the basal plane has also been measured experimentally,
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with the easy direction found to point between Co atoms [69] [φ = 30◦ in Fig. 2(a)].

This easy direction is indeed consistent with the negative [A66〈r6〉] which we calculate,

since the Stevens γJ (l=6) coefficient of Nd3+ is negative [42].

3.2.2. Sm2Co17 The magnet Sm2Co17 forms in the Th2Zn17 structure. This structure

is closely related to SmCo5 by an ordered substitution of one in three Sm atoms with a

pair (dumbbell) of Co atoms [9]. Although there is a distortion of the local environment,

the Sm atoms are still surrounded by a hexagon of effectively coplanar Co atoms, as

shown in Fig. 2(b). However, as is also clear from Fig. 2(b) the dumbbells lower the

hexagonal symmetry so that CF coefficients with m = ±3 are nonzero. What is not

shown in Fig. 2 is the tripling of the unit cell along the c direction compared to SmCo5,

due to the stacking of two Sm atoms and a dumbbell. Again we stress that our choice

of axes in Fig. 2(b) is unconventional compared to Fig. 2(a), but physically gives a

closer correspondence between the (θ, φ) co-ordinate system and the positions of atoms

in SmCo5.

Now considering the calculated [Alm〈rl〉] in Table 2, we see that introducing the Co

dumbbells results in reduced coefficients compared to SmCo5. In particular, [A20〈r2〉] is

halved. The value of -208 K is still negative however, supporting uniaxial anisotropy as

is observed experimentally [9]. In terms of anisotropy within the basal plane, [A66〈r6〉]
is negative like in SmCo5, but is weaker by a factor of 2.

Ref. [49] reported calculations of the CF coefficients of Sm2Co17, modelling the Sm

in the 3+ state with the open-core approximation. We reproduce the calculated values

in Table 2, and find very close agreement with our Y-analogue model. The exception

is for the l = 6 coefficients, with Ref. [49] finding values a factor of 3 larger than

our calculations. As for SmCo5, there is no experimental data for these coefficients.

However, we think that it is reasonable that our calculations show a reduction in

[A66〈r6〉] for Sm2Co17 compared to SmCo5, due to the disrupted hexagonal symmetry.

3.2.3. NdFe12, NdFe12N, SmFe12, SmFe12N Members of the 1:12 magnet class have a

tetragonal, ThMn12 crystal structure with the RE surrounded by 3 TM sublattices.

The interstitial 2b positions can also be occupied by nonmetal atoms, forming e.g.

NdFe12N [73]. The fourfold symmetry in the ab plane gives rise to nonzero CF coefficients

with m±4. However, it is the lowest order coefficient [A20〈r2〉] (which decays the slowest

with temperature) which is expected to have the largest effect on the uniaxial anisotropy.

As for the materials above, a negative value of [A20〈r2〉] is expected to yield uniaxial

anisotropy for Sm and planar anisotropy for Nd, based on the sign of the Stevens

coefficient.

Table 2 shows our calculated CF coefficients for NdFe12, NdFe12N, SmFe12 and

SmFe12N. The most striking feature is the sign reversal of [A20〈r2〉] upon nitrogenation,

switching from negative to positive. These signs mean that SmFe12 and NdFe12N should

have uniaxial anisotropy, and NdFe12 and SmFe12N should be planar. Nitrogenation

also provides a negative contribution to [A40〈r4〉], but weakens [A44〈r4〉]. The l = 6 CF



Crystal field coefficients of Y analogues of RE-TM magnets using PAW-DFT 17

coefficents are small for all of the materials.

Also in Table 2 we reproduce reported CF coefficients calculated with DMFT [20]

and with the open core approximation [50] (only the l=2 coefficients are reported in

Ref. [50]). Focusing first on [A20〈r2〉] we find that the three methods calculate the

same signs. Furthermore there is close numerical agreement between our Y-analogue

calculations and the open core calculations [50], as for Sm2Co17. However, there is no

systematic level of agreement of these calculations with DMFT, with for instance similar

values calculated for NdFe12 but variations up to a factor of two for the other materials.

The agreement between the Y-analogue model and DMFT for the higher order CF

coefficients is similarly unsystematic, with for instance opposite signs found for [A40〈r4〉]
but quite close agreement for [A44〈r4〉]. Like for SmCo5, the DMFT calculations find

larger values of l=6 coefficients than in the Y-analogue model.

We note that both the DMFT and Y-analogue calculations find that nitrogenation

introduces a significant difference between the ↑ and ↓ CF coefficients. At first sight,

this observation is puzzling since N is nonmagnetic. However, as shown in Ref. [50] the

introduction of N strengthens the magnetization by approximately 2.5 µB per formula

unit, which our calculations find is due to an enhanced Fe magnetization at the 8f sites.

The 8f sites sit halfway between RE planes, so it is not unreasonable that an enhanced

spin polarization here will affect the ↑ and ↓ CF coefficients by differing amounts.

Finally, comparing the Y-analogue calculations between Nd and Sm compounds

we see that the same qualitative behavior of the CF coefficients is observed. However,

unlike for SmCo5 and NdCo5 there are some numerical differences, particularly for the

nitrided compounds where there is a large difference in c parameter for NdFe12N and

SmFe12N.

3.2.4. TbFe2 and DyFe2 The Laves phase REFe2 compounds are notable for their large

room temperature magnetostrictions, particularly the alloy Tb0.27Dy0.73Fe2 (Terfenol-

D) [74, 75]. Unlike the other materials in our test set the Laves phase (MgCu2) structure

is cubic, yielding a zero [A20〈r2〉] coefficient. They are also key examples of RE-TM

magnets based on heavy REs with practical applications.

In Table 2 we give the CF coefficients calculated using the Y-analogue model for

TbFe2 and DyFe2. We point out that although four coefficients are presented for each

material, only [A40〈r4〉] and [A60〈r6〉] are independent, with the cubic symmetry fixing

the ratios B44 : B40 and B64 : B60 [66]. The first notable feature is that the calculated

coefficients are almost identical for TbFe2 and DyFe2. As a consequence, within CF

theory any different behavior of the anisotropy must come from the Stevens factors.

The βJ (l=4) factors are 2/16335 and -8/135135 for Tb3+ and Dy3+, respectively.

The γJ coefficients also have opposite signs [42]. Therefore, one would expect TbFe2

and DyFe2 to have different easy directions of magnetization, either [111] or [100].

Specifically, based on the positive l = 4 CF coefficients one would expect an easy

direction of [111] for TbFe2 and [100] for DyFe2 (Sec. 2.9). This behaviour is exactly

what is observed experimentally; indeed the easy directions of all of the heavy RFe2
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compounds follow the sign of βJ [70].

To our knowledge the CF coefficients of TbFe2 and DyFe2 have not been calculated

from first principles previously. Experimental determination of these cubic terms is also

expected to be difficult due to the large magnetostrictive effect. For example, based

on Mössbauer measurements the authors of Ref. [80] were unable to determine precise

values of [Alm〈rl〉], except that A40 was of order 10 K/a4
0. Furthermore, the ratio A60/A40

was determined to be -0.04a−2
0 . As pointed out in Sec. 2.8, we cannot extract Alm from

〈rl〉 so a direct comparison is not possible. However, our value of [A40〈r4〉] is also of

order 10 K, and our calculated ratio [A60〈r6〉]/[A40〈r4〉] is -0.08. Therefore we can at

least say that the sign of the ratio of the l = 4 and 6 CF coefficients is consistent with

Ref. [80], and also that the magnitudes are reasonable.

3.2.5. Tb The final material we consider is elemental Tb. Here, every atom in the

system is replaced with Y, so arguably this material presents the most difficult challenge

to the Y-analogue model, even though the nominal valence electron configurations are

the same.

Tb is hexagonal, and has the same nonzero CF coefficients as NdCo5. Indeed, as

seen in Table 2 the relative magnitudes of the different CF coefficients of Tb follow

those of NdCo5 reasonably closely, except for the crucial difference of [A66〈r6〉], which is

positive for Tb. Noting that Tb3+ has negative Stevens αJ and γJ coefficients like Nd3+,

the calculated CF coefficients lead to easy plane anisotropy, with a preferred direction in

the basal plane of φ = 0, i.e. pointing between the nearest in-plane Tb atoms [Fig. 2(a)].

The calculated easy direction matches that observed experimentally [69].

Unlike the other materials in our test set, there are no other magnetic sublattices

present in Tb. Therefore, we can use the method described in Sec. 2.9 to calculate

anisotropy constants at 0 K, obtaining values of -17, -12 and 5 MJm−3 for K1, K2 and

K3, and -0.2 MJm−3 for K4. These numbers are smaller than the values reported from

low temperature high-field measurements, e.g. -60 MJm−3 for K1 only, and -2.4 MJ for

K4 [76, 81]. However it is important to remember that our calculations do not include

magnetostrictive effects, which are highly important in Tb. For instance, the high-field

magnetization curve clearly shows a hysteresis, which has been attributed to a plastic

deformation of the crystal [81].

4. Conclusions and outlook

Aside from the numerical results of our work contained in Table 2, we can summarize

our results qualitatively as follows:

• The signs of our calculated CF coefficients are consistent with experimentally-

observed/previously calculated magnetization directions for all 10 materials (easy

axis: SmCo5, Sm2Co17, NdFe12N, SmFe12; easy plane: NdCo5, NdFe12, SmFe12N,

Tb; [111] axis: TbFe2; [001] axis, DyFe2).
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• For systems with data available (NdCo5 and Tb), the signs of the [A66〈r6〉]
coefficients are also consistent with the experimentally-observed basal plane

anisotropy.

• Our calculated CF coefficients are generally close (within 50 K/4 meV) of previously

reported open core calculations.

• The trend across the Sm-Co series behaves intuitively, with CF coefficients

weakened for lower symmetry (SmCo5 vs Sm2Co17).

Taken together, our results demonstrate that the Y-analogue model is a viable method

of calculating CF coefficients of RE-TM magnets. Of course, it is not the only

method, and we do not claim that it is any more accurate than previously published

work [12, 17, 20, 47, 48, 49, 50, 51]. In our opinion the strength of the Y-analogue model

is in the simplicity of the calculation of the CF potential V (r). Whilst implemented in

some DFT codes like OpenMX [82], the open-core approximation (which appears to give

similar CF coefficients to the Y-analogue model), is not yet universally available. By

contrast, the PAW dataset for Y is distributed as standard in all of the popular DFT

codes. We also find the calculations involving Y to be numerically stable. As such,

we would expect a high degree of reproducibility of the CF potential calculated for Y-

analogues using different codes, similar to that demonstrated e.g. for bulk moduli [83].

As noted in Sec. 2, the CF potential must be supplemented by the radial 4f charge

density n0
4f (r) in order to calculate the CF coefficient. Unfortunately, calculating n0

4f (r)

is not completely straightforward, requiring a way of dealing with the 4f electrons like

the LSIC. However, as we argued in the discussion surrounding Fig. 1, the same n0
4f (r)

could be used to calculate the CF coefficients for a range of compounds containing a

given lanthanide. This further approximation would then mean only the CF potential

needed to be calculated for each compound, enabling high throughput computational

screening of materials based on their calculated CF coefficients and scaling up the work

of e.g. Refs. [19, 26].

From the point of view of assessing the predictive power of our calculations,

the most interesting avenue for future exploration is to go beyond calculating CF

coefficients and instead target quantities that can be directly compared to experiments,

e.g. magnetization versus field curves, from which anisotropy constants Ki (15) are

extracted. Although we tentatively discussed anisotropy constants for Tb, our ability

to compare to experiment was limited due to us not taking any magnetoelastic effects

into account. Including such effects will be crucial if we are to properly account for the

magnetostriction of the heavy RE materials, including elemental Tb [76, 81] and the

Laves phase Tb1−xDyxFe2 compounds [74].

More generally, we did not attempt to determine Ki for the RE-TM compounds

here since the CF coefficients do not include the contribution to the anisotropy from

the TM. However, we have previously calculated the TM contribution for GdCo5 (which

has no crystal field effects) and obtained values of Ki in quantitative agreement with

experiment, over a range of temperatures [84]. Therefore, by combining the method
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presented here with our previous work [84] and finite temperature CF theory [42], we

should have the necessary tools to calculate temperature-dependent anisotropy constants

of RE-TM magnets entirely from first principles.
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Appendix A. Explicit expression for correction to the pseudo-density

Here we give the explicit expression for the angular expansion of the correction to the

pseudo-density. We use standard GPAW notation [57]. The difference between the full and

pseudized density ∆ρ(r) is the sum of the electronic contribution ∆n(r) and a nuclear

part:

∆ρ(r) = ∆n(r)− Zδ(r)−
∑
lm

Qlmglm(r) (A.1)

Here, Z is the nuclear charge (a positive number), Qlm are the compensation charges

used to ensure the multipole moments of ∆ρ(r) are zero, and glm are functions which in

GPAW are Gaussians multiplied by real spherical harmonics. The spin-resolved correction

for the electronic density is

∆nσ(r) =
nc(r)− ñc(r)

2
+∑

i1i2

Dσi1i2 [φi1(r)φi2(r)− φ̃i1(r)φ̃i2(r)]. (A.2)

Here, nc and ñc are the full and pseudo core densities. D is the atomic density matrix and

φ, φ̃ are the partial waves, which together allow the reconstruction of the wavefunction

in the rapidly-varying region close to the nucleus. i is a composite index standing for

(ν, l,m) where ν plays the role of the principal quantum number of the partial waves.

Z, glm, nc, ñc, φ and φ̃ are properties of the PAW dataset, while Qlm and Dσi1i2

are determined in the self-consistent calculation. Noting that the compensation charges

and the partial waves have the forms glm(r) = gl(r)Y
R
lm(r̂) and φi1(r) = φνl(r)Y

R
lm(r̂)

respectively, with the R denoting real spherical harmonics, the angular expansions of

∆ρ and ∆nσ are readily obtained. The only slight complication is the use of real

spherical harmonics in GPAW, which means that one must take some care with integrals

like
∫
dr̂Y ∗lm(r̂)Y R

l′m′(r̂) and
∫
dr̂Y ∗lm(r̂)Y R

l1m1
(r̂)Y R

l2m2
(r̂).
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