
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

  
Abstract—This paper deals with the high accurate 

current set-points solution for Interior Permanent-Magnet 
Synchronous Motors (IPMSM) in wide-speed range 
applications. Considering voltage and current constraints, 
the operating regions can be divided into Maximum Torque 
Per Ampere (MTPA), Maximum Current (MC), Field 
Weakening (FW) and Maximum Torque Per Voltage (MTPV) 
regions, which requires to solve different non-linear 
functions in real time to obtain optimal current set-points. 
Traditional methods including curve-fitting methods and 
polynomial approximation (PA) methods are not easy to 
obtain these solutions, especially involving magnetic 
saturation problems. In this paper, Newton- Raphson (N-R) 
algorithm for improving the control accuracy of the current 
set-points is proposed. Meanwhile, parameters influence 
including magnetic saturation and resistive voltage drop is 
fully investigated. Compared with PA method, the proposed 
method is able to converge to accurate solutions in few 
numbers of iterations with reduced execution time, which 
can be easily implemented on an off-the-shelf Digital Signal 
Processor (DSP). Both simulation results and experimental 
results on an 8kW IPMSM rig are conducted showing good 
agreement with the expected results. 

 
Index Terms—Cross Saturation, flux-weakening control, 

interior permanent-magnet synchronous motors (IPMSM), 
magnetic Saturation, Newton-Raphson (N-R) method, 
resistive voltage drop 

I. INTRODUCTION 
nterior Permanent Magnet Synchronous Motors (IPMSM) 
are widely used in industrial applications such as in hybrid 

and electric vehicles, thanks to their high efficiency, wide speed 
range and power density capabilities. In some applications such 

 

as electric vehicles, where a wider speed range is required, the 
operating regions of an IPMSM needs to be extended from 
constant-torque region to constant-power region[1][2]. In general, 
the operating conditions can be summarized in four regions: 
Maximum Torque Per Ampere (MTPA), Maximum Current 
(MC), Field Weakening (FW), and Maximum Torque Per 
Voltage (MTPV). 

When the motor is operating under the base speed, the 
maximum torque per ampere (MTPA), which aims at 
minimising the copper loss, becomes more attractive. The 
works proposing MTPA control strategies can be mainly 
divided into three categories: 1) Mathematical-model-based 
MTPA calculations[3][4]; 2) Signal injection-based MTPA point 
tracking[5]-[8]; 3) Searching-method-based MTPA[9][10]. First 
methods including curve-fitting[3] and polynomial 
approximation[4], are proposed to solve nonlinear MTPA 
formula directly. However, inductance is regarded as linear 
variation with current and cross-saturation effect is ignored. 
Second methods utilized high frequency current injections [5][6] 
or voltage injections[8], MTPA points can be detected either 
from the torque or the speed response. However, the injected 
current signals may result in torque ripple problems. Third 
methods, aiming at minimising copper losses, present gradient 
method in [9][10]. However, most of the time, the variation of 
inductances with respect to the current is neglected for 
computation and implementation simplicity. 

When the speed of IPMSM goes up above base speed in MC 
region and FW region, the flux-weakening methods are needed, 
presented in [11]-[16]. Defined by the way to acquire more 
negative d-axis current, two approaches for implementing the 
flux-weakening control are presented as feedforward [11]-[14] and 
feedback [15]-[17] methods. In the feedforward approaches [11]-
[14], the intersections (solutions) involving current circle, 
voltage ellipse and torque hyperbola requires solving complex 
nonlinear equations online. To simplify the solving process, 
resistive voltage drop and magnetic saturation are often 
neglected[3][11], which loses the accuracy of the current set-
points. The resistive voltage drop, which causes the voltage 
ellipse shifting, can be compensated from control part in [11] or 
from calculation part using “Chord method” proposed in [12]-
[14]. In the feedback approaches [15]-[17], the negative d-axis 
current is automatically adjusted by tracking the voltage 
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constraint while the speed is increasing. These methods are 
considered robust because they do not need the prior knowledge 
of motor parameters, but this is at the expense of reduced 
performance during transients [17]. When the motor is operating 
in deep flux-weakening region, so-called MTPV region 
mentioned in [18]-[20], the MTPV is the intersection of the 
voltage ellipses with the highest torque hyperbola at saturated 
stator voltage. The common method proposed in [19] and [20] 
are mathematical model-based MTPV calculations. The same 
problems are parametric sensitive. 

All aforementioned open loop methods have an advantage on 
high dynamic response. However, in most of cases, the 
variation of inductances with respect to the current is neglected 
for computation simplicity. In fact, there are always some 
parameters uncertainties including inductance variations and 
permanent magnetic linkage variations [21]-[26]. Two common 
solutions including PA methods and parameter identification 
methods are investigated in related works. The former one 
applies PA methods for curve-fitting, such as first-order PA 
method in [21][22]. The inductance is considered linear 
variation with current. However, cross-saturation is ignored. 
The second-order PA methods, to achieve inductance 
approximation, are introduced to obtain MTPA and FW curves, 
which makes the curves a fourth order complicate nonlinear 
equations, discussed in [23]-[25]. The latter one such as PSO 
(Particle Swarm Optimization) are presented in [27]-[29], the 
identification results are compared with experimental results 
obtained by current decay test. The experimental accuracy is 
also key issue for practical use. 

Nevertheless, to the best knowledge of the authors, a 
complete theory, which (a) covers all operation regions (such 
as MTPA, MC, FW, MTPV) ,(b) allows for an analytical 
computation of optimal currents set-points, (c) considers stator 
resistance and variable inductance , is not yet available. 

In this paper, a novel and accurate feedforward Newton-
Raphson searching method in all operating regions is proposed, 
while taking into account both the resistive voltage drop and the 
magnetic saturation. The proposed method is characterized by 
the following:(a) Analysis of all the operating regions (MTPA, 
MC, FW, MTPV); (b) Implicit problem formulation (the 
nonlinear solutions involving current circle, voltage ellipse and 
torque hyperbola); (c) Real-time implementation on a digital 
microcontroller with few iterations and reduced computation 
burdens. Both simulation and experimental results under 
different conditions prove the effectiveness and rapidity of the 
proposed methods. 

The paper is organized as follows: in Section II, the different 
operation modes for IPMSM are described. In Section III, the 
proposed N-R searching method is elaborated. The influence of 
resistive voltage drop and magnetic saturation is explained in 
Section IV. Simulation and experimental results are presented 
in Section V and Section VI respectively. Conclusions are given 
in Section VII. 

II. ANALYSIS OF OPERATING MODES FOR IPMSM 
In this Section, the operating loci introduced in the 

introduction are extended and described by mean of analytical 

equations and figures. Within the rotating reference frame, the 
equations for an IPMSM can be written as follows: 

d
d s d e q

q
q s q e d

du R i
dt

d
u R i

dt

ψ ω ψ

ψ
ω ψ

 = + −

 = + +


  
(1) 

d d d f

q q q

L i
L i

ψ ψ

ψ

= +
 =

 (2) 

Where, ud and uq are the d-q-axis stator voltages; id and iq are 
dq-axis current; Ld and Lq are the dq-axis inductance, Rs, ψf , p 
are the stator resistance, the permanent-magnet flux linkage and 
the pole pairs, respectively. ωe is the electrical angular 
frequency. 

There are also two additional constraints to be taken into 
account. The first one is related to the current constraints of the 
motor or the inverter (3). The second one is related to the 
voltage constraints (4). 

2 2 2
max,pkd qi i I+ ≤  (3) 

2 2 2
maxd qu u U+ ≤  (4) 

where Umax (Udc/√3) is the maximum voltage for SVPWM. 

  
(a) Branch I:MTPA (n ≤ nb)  (b) Branch II: MC (nb < n ≤ no, T𝑒𝑒∗ ≥ TMC) 

  
(c) Branch II: FW (nb < n ≤ no, TD < T𝑒𝑒∗＜TMC) (d) Branch II MTPA:(nb <
n ≤ no, T𝑒𝑒∗ ≤ TD) 

  
(e) Branch III:MC(no < n ≤ nv, T𝑒𝑒∗ ≥ TMC ) (f) Branch III:FW (no < n ≤
nv, T𝑒𝑒∗＜TMC) 
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(g) Branch IV:MTPV(n ≥ nv, T𝑒𝑒∗ ≥ TI) (h) Branch IV:FW (n ≥ nv, T𝑒𝑒∗＜TI) 

Fig.1 The operating modes in the dq-axis current plane 
 

As can be seen in (3), the current constraints trajectory in the 
dq-axis forms a circle (curve AH in Fig.1), whose center is the 
origin and the radius is Imax,pk. Substituting (1) and (2) into (3), 
and neglecting the resistance drop, (4) can be rewritten as the 
following: 

2 2 2( ) ( ) ( / 3)e q q e d d dce fL i L i Uω ω ω ψ− + + ≤  (5) 
Equation (5) describes the iso-voltage constraints ellipse 

shrunk with the increasing speed in the dq-axis current plane, 
whose center Q is (-ψf/Ld, 0). The electromagnetic torque is 
given by the following equation: 

3 [ +( ) ]
2e f q d q d qT p i L L i iψ= −  (6) 

The effective operating regions are shown in Fig.1, which 
consists of MTPA region (curve OA), MC region (curve AH), 
FW region (area OAHQ) and MTPV region (curve HQ). 
Defining superscript * as any generic set-point, 𝑇𝑇𝑒𝑒∗ is the torque 
set-point, which at steady state is equal to the load torque 𝑇𝑇L. 𝑛𝑛∗ 
is the speed set-point, n is the measured speed, 𝑛𝑛b is the base 
speed, 𝑛𝑛max is the maximum speed defined by the mechanic 
components (i.e. shaft, bearings, etc.), and n𝑜𝑜 is the boundary 
speed defined by the iso-voltage constraint ellipse passing 
through the origin.  n𝑣𝑣  is the deep-flux-weakening speed 
defined by iso-voltage constraint ellipse passing through the 
intersection of MTPV locus and current circle (point H in Fig. 
2(g)). Defining also 𝑇𝑇L0 as the torque hyperbola at no load, 𝑇𝑇D 
as the cut-off torque identified by the intersection of the MTPA 
locus with the iso-voltage ellipse at speed set-points (point D in 
Fig.1(c) and Fig.1(d)), 𝑇𝑇I as the cut-off torque identified by the 
intersection of the MTPV locus with the iso-voltage ellipse at 
speed set-points (point I in Fig. 1(g) and Fig.1(h)), and 𝑇𝑇MC as 
the maximum torque for a measured speed in MC region.  

 
Fig.2 The flow chart of different operating modes 

The operating mode selector provides the right mode taken 
into account together with the proposed Newton-Raphson 
searching method explained in Section. III, which presents four 
main branches selecting one mode among the following ones: 
MTPA, MC, FW and MTPV. The relationship for speed and the 
torque is explained in the following paragraphs with aid of Fig. 
1 and Fig. 2. In the following paragraphs, the four branches are 
described as follows: 

Branch I (𝑛𝑛 ≤ 𝑛𝑛b) 
In this branch, the speed 𝑛𝑛 is lower than the base speed 𝑛𝑛b 

and the IPMSM is operating on the MTPA curve OA, shown in 
Fig.1(a).  The red star is the steady operating point C and it is 
defined by the intersection of the MTPA and the load torque 
curves. The MTPA solution is formulated as (7) aiming at 
copper loss minimization problem: 

*2 *2

* * * *

min ( )

. . 1.5p[ ( ) ]
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 +
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The Lagrange multiplier is applied to obtain the solution: 
*2 *2 * * * *( , , ) ( ) [ 1.5p( ( ) )]d q s d q e f q d q q dH i i R i i T i L L i iλ λ ψ= + + − + −  (8) 

The partial derivative of (8) is obtained as (9): 
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(9) 

Solving the first two equations in (9) by eliminating the 
parameter λ , the MTPA relationship for dq-axis currents can 
be expressed as (10): 

* * * *

*2 *2 *

1.5p[ ( ) ]

( ) ( ) 0
e f q d q q d

d q d d q q f d

T i L L i i
MTPA

L L i L L i i

ψ

ψ

 = + −


− − − + =
 (10) 

Branch II: (𝑛𝑛𝑏𝑏 < 𝑛𝑛 ≤ 𝑛𝑛𝑜𝑜) 
If the speed 𝑛𝑛 is higher than base speed 𝑛𝑛b and less than the 

boundary speed  𝑛𝑛o, voltage constraint ellipse shrinks to point 
A. More negative d-axis current is needed to make the dq-axis 
current set-points move along MC circle along curve AB shown 
in Fig.1(b), limited by both voltage constraint and current 
constraint, which can be expressed in (11). 𝑇𝑇𝑀𝑀𝑀𝑀  can be 
calculated at the same time in (11): 

*2 *2 2
max

* 2 * 2 2

* * *

( ) ( ) ( )
3

3 [ +( ) ]
2

d q

dc
e q q e d d e f

MC f q d q d q

i i I
UMC L i L i

T p i L L i i

ω ω ω ψ

ψ


 + =

 + + =



= −

 
(11) 

When the measured speed 𝑛𝑛 is approaching the speed set-
point 𝑛𝑛∗ and if the condition 𝑇𝑇𝐷𝐷 < 𝑇𝑇𝑒𝑒∗＜𝑇𝑇𝑀𝑀𝑀𝑀  is satisfied, the dq-
axis current set-point will move along the voltage ellipse curve 
BD towards point G in FW region shown in Fig.1(c). Point D is 
the voltage constraint ellipse at speed set-point 𝑛𝑛∗ intersected 
with MTPA curve marked in Fig.1(c) and Fig.1(d). 𝑇𝑇𝐷𝐷 can be 
calculated in (12) and the first equation in (12) comes from (10): 

MTPA
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Y N
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(12) 

In this case, the dq-axis current set-points are limited by both 
torque hyperbola and voltage constraint expressed in (13): 

* * * *

* 2 * 2 2
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3
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e q q e d d e f

T i L L i i
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If the condition  Te∗ < TD  is satisfied, the point F, the 
intersection between voltage constraints ellipse and the load 
torque curve, is located outside the top left quadrant, the final 
operating point can’t go across the boundary MTPA curve OA 
and finally it settles at point E, shown in Fig.1(d). Curve DE is 
part of MTPA curve can be expressed as (10) as well. 

Branch III: (𝑛𝑛𝑜𝑜 < 𝑛𝑛 ≤ 𝑛𝑛𝑣𝑣) 
When the measured speed is higher than 𝑛𝑛𝑜𝑜  and if the 

measured speed 𝑛𝑛 is approaching the set-point speed 𝑛𝑛∗, The 
dq-axis current set-point will move along the MC circle shown 
in Fig.1(e). In this case, the dq-axis current set-point is limited 
by both current constraint and voltage constraint can be 
expressed in (11). If the condition T𝑒𝑒∗ ≤ TMC is satisfied, the dq-
axis current set-point will move along the voltage ellipse at 
speed 𝑛𝑛∗  curve BD and balance at point G shown in Fig.1(f), 
as can be expressed as (13) as well. 

Branch IV: (𝑛𝑛𝑣𝑣 ≤ 𝑛𝑛＜𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚) 
When the measured speed is higher than 𝑛𝑛𝑣𝑣  (iso-voltage 

constraint ellipse passing through the intersection of MTPV 
locus and current circle), the motor is operating in MTPV 
region (deep flux-weakening region). If the measured speed 𝑛𝑛 
is lower than the set-point speed 𝑛𝑛∗, The dq-axis current set-
point will move along the MTPV curve shown in Fig.1(g). 
MTPV solution is formulated as (14) aiming at output power 
minimization: 

* *
* *

*

* 2 * 2 2
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d d q q
d d q q

d
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e q q e d d e f
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(14) 

Solving (14), the MTPV relationship for dq-axis currents can 
be expressed as first equation in (15). In this MTPV mode, the 
dq-axis current set-point is limited by both MTPV curve and 
voltage constraint: 

* 2 * * 2

* 2 * 2 2

( ) ( ) ( ) ( )( ) 0
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3
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 − − + − − + =



+ + =
  

(15) 

If the condition T𝑒𝑒∗＜TI is satisfied, the dq-axis current set-
point will move along the voltage ellipse at speed 𝑛𝑛∗  (curve IK) 
and balance with the load torque (point K) shown in Fig.2(h), 
as can be expressed as (13) as well. 
𝑇𝑇𝐼𝐼  is cut-off torque, identified by the intersection of the 

MTPV locus with the iso-voltage ellipse at speed set-points. 𝑇𝑇𝐼𝐼  
can be calculated in (16). The first equation of (16) comes from 
MTPV solution (15): 

* 2 * * 2
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(16) 

The challenge in solving (10)-(16) is discussed below: 
1) The solutions of (10)-(16) are nonlinear with a square root 

operation, which is quite complex to solve by real-time 
controller directly. In addition, the equations (11)-(16) contain 
electrical angular velocity that requires real-time measurements, 
which increases the difficulty of solving equations. 

2) The parameters in the equations cannot remain constant. 
When the magnetic saturation and cross saturation is significant, 
the inductance Ld and Lq will decrease with the increase of the 
dq-axis currents. The voltage constraints ignore the effect of 
resistance, which also affects the control accuracy, which will 
be further discussed in Section IV. 

3) The solutions of these equations can be listed in advance 
in a pre-made table; however, considering inductance variation 
and resistance variation, these tables tend to be huge because it 
is necessary to create many separate tables.  

III. THE PROPOSED NEWTON-RAPHSON SEARCHING 
METHOD FOR DIFFERENT OPERATING MODES 

The second-order N-R method is a fast convergence 
procedure to solve nonlinear equations f(x,y) = 0 and g(x,y)=0, 
in our particular application, where x is 𝑖𝑖𝑑𝑑∗  and y is 𝑖𝑖𝑞𝑞∗ : 

1

2

( , ) 0
( , ) 0

z f x y
z g x y

= =
 = =

 (17) 

Equation (17) is our target function to find a value of x,y. 
Assuming that function (17) is continuous and there exists a 
continuous second-order partial derivative in the neighborhood 
at the point (x0, y0), (17) can be expanded into Taylor series in 
(18) and equation (19) is the Jacobian matrix of (17):

  
0 0

0 0

0 0 0 0

0 0 0 0

( , ) ( , )

( , ) ( , )

x yx x y y
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y
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f x y f x y

x y
J

g
f x y f f

g x y g xx y g x y
x y

y g g

∂ ∂ 
     ∂ ∂ = = →   ∂ ∂     
 ∂ ∂ 

 (19)
 

Substituting  ∆𝑥𝑥 = 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 ,  ∆𝑦𝑦 = 𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘 , 𝑥𝑥0 = 𝑥𝑥𝑘𝑘 
and 𝑦𝑦0 = 𝑦𝑦𝑘𝑘  into (18), which the solutions in (17) can be 
expressed as (20) in iterative form: 

1 1

,
1

( , )
[ ]

( , )k k

k k k k

x x y y
k kk k

x x f x y
J

g x yy y
+ −

= =
+

   
= −   

   
 (20)

 

If the condition (21) is satisfied 
( ) ( ) ( ),  ,  , , ) 0(  x k k y k k x k k y k kg x y f x y f x y g x y− ≠  (21)
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When the inverse Jacobian matrix is substituted into (20), a 
second order N-R iterative form can be listed as (22): 

1

1

,  ,  ,  ,  
,  ,  ,  ,  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) (

,  ,  ,  ,  
,  ,  ) ( , ( ,  ) )

k k y k k k k y k k
k k

x k k y k k x k k y k k

k k x k k k k x k k
k k

x k k y k k x k k y k k

f x y g x y g x y f x y
x x

g x y f x y f x y g x y
g x y f x y f x y g x yy y

g x y f x y f x y g x y

+

+

−
= + −


− = +

 −

 
(22) 

Where xk+1 and yk+1 (𝑖𝑖𝑑𝑑𝑘𝑘+1∗  and 𝑖𝑖𝑞𝑞𝑘𝑘+1∗ ) are the new estimate of 
x and y, xk and yk (𝑖𝑖𝑑𝑑𝑘𝑘∗  and 𝑖𝑖𝑞𝑞𝑘𝑘∗ )  are the previous estimate of x 
and y (𝑖𝑖𝑑𝑑∗  and 𝑖𝑖𝑞𝑞∗) respectively, f(xk, yk) and g(xk, yk) (𝑓𝑓(𝑖𝑖𝑑𝑑𝑘𝑘,

∗ 𝑖𝑖𝑞𝑞𝑘𝑘∗ ) 
and 𝑔𝑔(𝑖𝑖𝑑𝑑𝑘𝑘,

∗ 𝑖𝑖𝑞𝑞𝑘𝑘∗ )) are the target functions using xk and yk (𝑖𝑖𝑑𝑑𝑘𝑘∗  and 
𝑖𝑖𝑞𝑞𝑘𝑘∗ ) ( in most cases,  f(xk, yk) ≠ 0 and g(xk, yk) ≠ 0 because xk is 
not the correct solution). k is an integer iteration index that starts 
with 1. The iterative procedure starts by substituting a first 
guess x(0) and y(0) into (22) to get a second estimate. This 
second estimate is then substituted into (22) to get a third 
estimate. This process is repeated until the geometric distance 
of the two iterations results are very small (E is defined as 
current setting precision discussed in Section V): 

2 2
1 1+k k k kx x y y E+ +− − <（ ） （ ）  (23) 

 
Fig.3 N-R method algorithm flow chart 
 

The N-R algorithm flow chart is shown in Fig.3. The initial 
value for the first guess is set at first. N represents the maximum 

number of iterations. The Jacobian matrix and the initial target 
function values f(id0 ,iq0) and g(id0 ,iq0) are used for the N-R 
iterative algorithm. Then id1 and iq1 are update using (22). The 
iterative process are repeated until the error reaches a small 
value (i.e. minor than 0.012 ), the current set-points rapidly 
converge to the optimal values. If the maximum number of 
iterations N is exceeded, equation (22) is not converging and 
the searching algorithm has to be re-initialized. 

According to four different branches shown in Fig.3, the N-
R searching method uses different target functions and Jacobian 
matrices in Table I to obtain the optimal current set-points. The 
proposed method is capable of considering the magnetic 
saturation and the resistive voltage drop as it will be later shown 
in the Section IV.  

IV. THE INFLUENCE OF THE RESISTIVE VOLTAGE DROP 
AND MAGNETIC SATURATION 

A. Magnetic Saturation and Cross Saturation 
In most torque control applications, accurate inductance 

information is required for torque estimation and for an optimal 
current set-points selection. However, due to the magnetic 
saturation, the inductances vary nonlinearly depending on the 
current. In Fig.4, five measured dq-axis inductance values 
acquired by static inductance experiments discussed in [30][31] 
are compared with FEA results. 

 
              (a)                                                (b) 

Fig.4 Experimental results compared with FEA results (a)d-axis 
inductance (b)q-axis inductance 
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TABLE I 
TARGET FUNCTIONS AND JACOBI MATRICES FOR DIFFERENT OPERATING MODES (DQ-AXIS INDUCTANCES ARE COMING FROM ID AND IQ LUTS) 

Target function for MTPA, MC, FW，MTPV Jacobi matrix 

* * * * * *

* * * *2 *2

3( , ) [ ( ) ] 0
2

( , ) ( ) ( ) 0

I d q e f q d q d q

I d q f d d q d d q q

f i i T p i L L i i
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g i i i L L i L L i

ψ

ψ

 = − + − =

 = + − − − =

 
* *

MTPA
* *

3 3( ) [ ( ) ]
2 2

2( ) 2( )

d q q f d q d

f d q d d q q

p L L i p L L i
J

L L i L L i

ψ

ψ

 − − − + − =  
+ − − −  

 

* * 2 2 2
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* * 2 2 2

( , ) =0

( , ) ( ) ( ) ( ) 0
3

II d q d q
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II d q s d e q q s q e d d e f

f i i i i I
MC Ug i i R i L i R i L iω ω ω ψ
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ω ω ω ψ ω ω ψ
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It is quite difficult and complicate to give an analytic 
relationship to describe both magnetic saturation and cross-
saturation directly, so in order to reduce measurement repetition, 
a small table with averaged values from experimental 
measurements and FEA results is used in practice. The size of 
original tables is 11×11 shown in Fig.6(a). 

 
Fig.5 sample points relationship for second-order bilinear interpolation 
method 

 
(a) 

 
(b) 

Fig.6 Expansion of the inductance data table (a)dq-axis inductance LUT 
without using SBIM (b)dq-axis inductance LUT using SBIM 
 

In order to reduce the execution time discussed in Section VI, 
the second-order bilinear interpolation method (SBIM) is 
utilized to expand a small inductance tables to a larger one. In 
Fig.5, the blue points are four known points listed as: Q11 = f 
(x1, y1). , Q12 = f (x1,y2), Q21 = f (x2, y1) and Q22 = f (x2, y2), and 
the blue points are one unknown point P. If the value is required 
from the unknown function f(x,y) at point P. The SBIM can be 
expressed in the following steps: 

Step 1. Using linear interpolation in the x direction 
2 1

1 11 21
2 1 2 1

2 1
2 12 22

2 1 2 1

(R ) ( ) ( )

(R ) ( ) ( )

x x x xf f Q f Q
x x x x
x x x xf f Q f Q
x x x x

− − ≈ + − −
 − − ≈ +
 − −  

(24) 

Step 2. Using linear interpolation in the y direction 
2 1

1 2
2 1 2 1

( ) ( ) ( )y y y yf P f R f R
y y y y

− −
≈ +

− −  
(25) 

Step 3. The final unknown point P is introduced as (26) 

11 21
2 2 1 2

2 1 2 1 2 1 2 1

12 22
2 1 1 1

2 1 2 1 2 1 2 1

(Q ) (Q )( , ) ( )( ) ( )( )
( )( ) ( )( )

(Q ) (Q )( )( ) ( )( )
( )( ) ( )( )

f ff x y x x y y x x y y
x x y y x x y y

f fx x y y x x y y
x x y y x x y y

≈ − − + − −
− − − −

+ − − + − −
− − − −

 

(26
) 

Expansion results of the inductance data table can be 
simulated, as shown in Fig.6(b).  
B. The Influence of the Resistive Voltage Drop 

If the stator resistive voltage drop is considered, the voltage 
equation (1) and (2) at steady state can be rewritten as: 

d s d e q q

q s q e d d e f

u R i L i
u R i L i

ω

ω ω ψ

= −
 = + +

 (27) 

Noting that the temperature variation was negligible during 
the experiments presented in Section VI, the resistance is 
assumed to be constant. Substituting (27) into (4), the equation 
can be rewritten as (28), which indicates the voltage constraints 
trajectory accounting for the stator resistive voltage drop. 

2 2 2( ) ( ) ( )
3
dc

s d e q q s q e d d e f
UR i L i R i L iω ω ω ψ− + + + ≤  (28) 

The corrected curve for (28) forms a series of slant ellipses 
with speed, whose centers are moving with the increase of the 
motor speed. If the general equation of the ellipse is defined as 

2 2 0d d q q d qAi Bi i Ci Di Ei F+ + + + + =  (29) 

Equation (29) corresponds to (28) with the coefficients A, B, 
C, D, E and F described as: 

2 2 2

2 2 2

2 2 2 2

2 ( )

2

2 ( )
3

s e d s e d q

s e q s e f

dc
e q f e f

A R L B R L L

C R L D R
UE L F

ω ω

ω ω ψ

ω ψ ω ψ


 = + = −
 = + =

 = − = −


 (30) 

As shown in Fig.7, the non-standard ellipse trajectory is 
composed of four elements: Center coordinates (xc,yc), Semi-
major axis a, Semi-minor axis b, and the inclination angle θc, 
which can be solved with the coefficients (31) : 

2 2

2 2 2 2

2 2 1, , arctan( )
4 4 2

2 22 , 2
( ) ( )

c c c
BE CD BD AE Bx y

AC B AC B A C
F Fa b

A C A CA C B A C B
F F

θ− − = = = − − −
− − = = − − + − + + + +



 
(31) 

 In conclusion, if the resistive voltage drop is considered, the 
intersection of the current constraint circle and the voltage 
constraint ellipse, marked as stars in Fig.7, should be moved 
from point B1 to point B2. 

 
Fig.7 The locus of the voltage constraints ellipse (ignoring or 

considering the resistive voltage drop) 
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 Compared with the state-of-art, the N-R method combined 

with variable inductance LUT proposed in this paper has some 
advantages listed as follows: 

1) The proposed N-R method is based on iterative operations, 
the intersections of complex nonlinear equations (10)-(16) 
involving current circle, voltage ellipse and torque hyperbola 
can be solved in real-time digital controllers.  

2) According to different operating region, such as MTPA, 
MC, FW and MTPV region, the N-R searching method can 
switch different target functions and Jacobian matrices in Table 
I to obtain the optimal current set-points. 

 3) Thanks to the LUTs, the proposed N-R method can cope 
with the actual motor parameter variation, such as dq-axis 
inductance, resistance and permanent magnetic flux linkage. 
The controllability, accuracy improvement, and reduced 
computation burden achieved by using the LUTs will be 
demonstrated in Section VI.  

V. SIMULATION RESULTS 

 
Fig.8 Wide-speed range control method based on N-R method 

 
In order to better verify the proposed control strategy in 

different operation modes shown in Fig.2, the control loop is 
constructed like the block diagram shown in Fig.8 and 8kW 
IPMSM parameters are presented in Table II. Noting that the 
MTPV locus does not intersect the MC circle, it will not be 
discussed in this Section V and Section VI. 

TABLE II 
IPMSM PARAMETERS 

IPMSM VALUES UNITS 
Rated torque 32 N.m 

Base speed nb 2400 rpm 
Max speed nmax 6000 rpm 

Boundary speed n0 2953 rpm 
Stator resistance 0.1 Ω 
PM flux linkage 0.06722 Wb 

Pole pairs 4  

 
A. The Whole Convergence Process for MTPA Mode 

Taking initial value id0 iq0 (-30A, 20A) and (-4A, 12A) as the 
first guess, the iterative convergence process of the N-R 
algorithm in MTPA mode is shown in Table III. Comparing the 
operation condition I and II, due to the magnetic saturation 
effect of the inductance, the inductance is going down with a 
larger given torque. Comparing the operation condition I and 
III, symbol E is defined as current setting precision in the 

equation (23). When E is set to be 0.012, three steps of iteration 
are required to reach the MTPA set-points (-16.20A, 75.78A). 
When E is set to be 0.0012, it takes four steps of iteration to 
reach the MTPA set-points (-16.208A, 75.768A). In this case, 
the accuracy is increased as the cost of more resources occupied. 
In this particular work, according to current sensor 0.2A/mV, 
the current setting precision E is set to be 0.012. 

 
B. Simulation Results For Different Operation Regions 

Fig.9(a) corresponds to Fig.1(a) for the algorithm branch I, 
the speed set-points is set to be 500rpm less than the base speed 
2400rpm. The IPMSM is ramping from 0rpm to 500rpm at max 
torque 32N.m, which corresponds to point A in dq-axis current 
plane and then go to steady state at no load, which corresponds 
to point Lo. The speed command is then stepped to 1000rpm, 
the IPMSM is ramping to point A and again settles down at 
point Lo. If the load torque is added at 1s, the operating point is 
moving from point Lo to point C along MTPA curve and 
balance at 10N.m finally. 

Fig.9(b) corresponds to Fig.1(a)(b)(c)(d) for the algorithm 
branch II, the speed command 𝑛𝑛∗ is set to be 2800rpm (between 
base speed 𝑛𝑛𝑏𝑏 2400rpm and 𝑛𝑛𝑜𝑜 2953rpm). IPMSM is ramping 
with max torque 32N.m at point A. When the measured speed 
𝑛𝑛 is higher than 2400rpm, the operating mode selector switch 
to the MC region and the flux is weakened by increasing the d-
axis current set-points in the negative directions. As the 
measured speed reaches 2800rpm, the dq-axis current starts to 
settle down to point Lo passing by point D along the voltage 
ellipses 𝑛𝑛∗. If the load torque is added at 1.15s, the operating 
point is moving from point Lo to point E along MTPA curve. 

Fig.9(c) corresponds to Fig.1(a)(e)(f) for the algorithm 
branch III, the speed set-points is firstly set to be 1000rpm 
below the base speed, the IPMSM is ramping with max torque 
32N.m at point A and balance to steady state. When the speed 
set-point 𝑛𝑛∗ steps to 3600rpm (higher than the boundary speed 
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TABLE III  
THE INFLUENCE BETWEEN THE INITIAL VALUES AND NUMBER 

OF ITERATIONS IN MTPA MODE 
OPERATING 
CONDITIONS 

CONVERGENT PROCESS FOR ID AND IQ SET-
POINTS 

I 

Te=32N.m 
E=0.012 

Ld=0.325mH 
Lq=0.521mH 

(-30,20)→(-8.85,74.11)→(-16.33,75.78)→(-
16.20,75.77) 

(-4,12)→(-5.00,78.40)→(-16.43, 75.64) →(-
16.19,75.78) 

II 

Te=5N.m 
E=0.012 

Ld=0.335mH 
Lq=0.544mH 

(-30,20)→(-2.60,12.90)→(-0.49,12.38)→(-
0.47,12.38) 

(-4,12)→(-0.51,12.37)→(-0.47,12.38) 

III 

Te=32N.m 
E=0.0012 

Ld=0.325mH 
Lq=0.521mH 

(-30,20)→(-8.854,74.103)→(-16,333.75.776) 
→(-16.208,75.768) 

(-4,12)→(-4.998,78.396)→(-16.433, 75.639)→(-
16.210, 75.777)→(-16.208,75.769) 

IV 

Te=5N.m 
E=0.0012 

Ld=0.335mH 
Lq=0.544mH 

(-30,20)→(-2.601,12.896)→(-0.487,12.382) 
→(-0.474, 12.379) 

(-4,12)→(-0.511,12.374)→(-0.474,12.379) 
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n0 2953rpm), the d-axis current will decrease towards point B 
along the MC circle. When the measured speed 𝑛𝑛  reaches 
steady state at 3600rpm, the operating will go along the voltage 
ellipse towards point Lo and, as soon as the load torque is added 
at 1.2s, it will balance at point G with the final torque. 

 
(a) 

 
(b) 

 
 (c) 

Fig.9 Simulation results with different operating modes (a) branch I (b) 
branch II (c) branch III 
 

VI. EXPERIMENTAL RESULTS 
Several experimental tests are carried out to verify the 

effectiveness of the proposed method. The test bench is made 

up of a rated 8kW target IPMSM (peak power 20kW) with 
resolver as position sensor, a 100Nm torque sensor, a 5:1 
reducer and a magnetic powder brake as load, as shown in 
Fig.10. A DSP (Type:TMS320F28335) is used as core device 
for the controller. The inverter is a three-phase IGBT power 
module (Type: Infineon FS400R07A1E3), two current sensors, 
DC-link voltage sensor and some protection circuits. The 
switching frequency is 10kHz (Ts=100us). 

 

 
Fig.10 8kW IPMSM rig and DSP-based controller 

 
A. Experimental Results For Different Operation 

Regions 
The experimental results for testing MTPA region (branch I, 

Fig.1(a)) dealing with magnetic saturation are shown in 
Fig.11(a)(d). The initial speed set-points n∗ in orange and the 
measured speed n in pink in Fig.11(a) are 500rpm. When the 
speed set-points step to 1000rpm (n ≤ nb), the dq-axis current 
set-points are -16A and 76.8A (at max torque 32N.m). The dq-
axis inductance goes saturation at 0.326mH (decline 2.7%) and 
0.522mH (decline 4.2%), respectively, due to the high starting 
current. After reaching 1000rpm, the dq-axis inductance will be 
0.334mH and 0.545mH, quite close to the rated inductance 
value (Ld=0.335mH and Lq=0.545mH).When the load torque is 
added to 15N.m, the dq-axis current set-points are -4.8A and 
38A, while the dq-axis inductance will be 0.332mH (decline 
0.9%) and 0.537mH (decline 1.5%). 

The experiment results for testing branch II (corresponding 
to Fig.1(a)(b)(c)(d)) are shown in Fig.11(b)(e). The initial speed 
is 1500rpm at steady state. After the speed set-points step to 
2700rpm (nb < n ≤ no), IPMSM began to accelerate and the 
given torque (max torque 32N.m) is assigned by N-R searching 
method to obtain dq-axis current set-points at -16A and 76.8A  
(point A). When the speed increases higher than the base speed 
2400rpm(switch to MC region), deeper flux-weakening d-axis 
current is required to shift the point from A to B along the 
current circle. Later on, when the speed reaches the speed set-
points, the reference torques finally balance with a load torque 
5N.m along the voltage ellipse in FW region and finally balance 
on MTPA curve (point E).  

The experiment results for testing branch III (corresponding 
to Fig.1(a)(e)(f)) are shown in in Fig.11(c)(f). The measured 
speed n is 2000rpm at steady state. After the speed set-points 
steps to 3600rpm (n > no), IPMSM began to enter the speed 
transition. The given torque (at max torque 32N.m) is assigned 
by N-R searching method to -16A and 76.8A at point A. When 
the speed increases higher than the base speed 2400rpm, deeper 
flux-weakening is required to limit voltage, shifting the point 
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from A to B along the current constraints circle. Later on, the 
speed is approaching the speed set-points 3600rpm, the 
reference torques finally balance with a load torque 5 N.m along 

the voltage constraints ellipse towards point G. 
 
 

 
(a) branch I                                                                              (d) branch I 

 
(b) branch II                                                                                (e) branch II 

          
(c) branch III                                                                                 (f) branch III 

Fig.11 The experimental results for different branches: waveform of torque , speed set-points , speed measurement and phase B current(a) branch 
I (b) branch II (c) branch III; waveform of dq-axis current set-points and measurement (d) branch I (e) branch II (f) branch III 
 
B. Experimental Results For Control Accuracy And 

Computation Burden 
 

Fig.12 shows the proposed method dealing with parameter 
mismatch in MC region as discussed in Section IV. At the initial 
steady state I, the IPMSM is spinning at the speed of 3000rpm. 
Fig. 12 shows the large q-axis current error when the fixed 
values of Ld = 0.335 mH, Lq = 0.545 mH and Rs=0Ω are used. 
The q-axis current measurement differs significantly from the 

current set-points, due to large mismatch of the motor 
parameters. Therefore, the performance of the IPMSM is 
degrading. When the variable parameters have been 
compensated by LUT later on in steady state II, the q-axis 
current set-points control errors reduce from about 20A to about 
0A. The main reason is that the corrected voltage ellipse 
considering the resistive voltage drop in the dq-axis current 
plane forms a series of slant ellipses. The resistive voltage drop 
forces the current set-points to move from point B1 to point B2 
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corresponding to Fig.7, discussed in section IV. This proves the 
necessity of updating Ld and Lq and considering the influence 
for resistive voltage drop. 

In order to test the execution time of different methods, the 
IO pin in the DSP is set to be high before the proposed method 
and reset it to low after the function has executed, as shown in 
Fig.13(a). The duration of the pulse can be measured in the 
oscilloscope, shown as histogram in Fig.13(b). In the method 1, 
the N-R method is applied with dq-axis inductance matrices 
(size:11×11) and expanded by SBIM took least computation 
time 45.85us. In method 2, the second-order PA method is used 
for the inductance curve-fitting mentioned in [23] and [24], the 
solution in Table I occupies 56.2us. In method 3, the N-R 
method needs 65.8us combined with 61 × 61 inductance 
matrices. In method 4, the square root operation is saved in 
advance using premade tables and 61×61 inductance matrices 
are applied for parameter compensation. Comparing method 3 
and method 4, the proposed N-R method occupied 18.1us less 
resource than square root operation, since the proposed N-R 
method is based only on iteration and selection operations. 
Comparing method 1 and method 3, the SBIM can reduce the 
size of LUTs and 20us execution time margin is saved. 

 
Fig.12 Experiment results with parameter mismatch at 3000rpm 

 
(a)                                                          (b) 

Fig.13 Experiment results for execution time (a) in PWM period (b) 
dealing with four different methods 

 

VII. CONCLUSION 
In this paper, the operating modes for IPMSM are divided 

into MTPA region, MC region, FW region and MTPV region. 
The target non-linear functions for optimal current set-points 
are presented. In order to get more accurate solution, N-R feed-
forward searching method is proposed to find the optimal 

current set-points in iterative forms. It has been highlighted that 
neglecting the resistive voltage drop and magnetic saturation 
leads the actual current trajectory to deviate from the optimal 
one, resulting in reduced accuracy. Therefore, LUT combined 
with second-order bilinear interpolation method is used for 
variable parameters compensation. 

The simulations and experimental results are demonstrating 
the validity and accuracy of the proposed searching method. 
This has been verified in various operation cases and also the 
case dealing with parameter mismatch. The applied method has 
been proved to improve the control accuracy of IPM machines 
in wide-speed range, while reducing the computation burden at 
the same time. 
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