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Abstract 13 

The potential role of natural textile fibres as environmental pollutants has been speculated 14 

upon by some environmental scientists, however, there is a general consensus that their 15 

biodegradability reduces their environmental threat. Whilst the risks that they pose remain 16 

poorly understood, their environmental prevalence has been noted in several recent 17 

microplastic pollution manuscripts. Here we highlight the extent to which natural textile 18 

fibres dominate fibre populations of upstream reaches of the River Trent, UK, as well as 19 

the atmospheric deposition within its catchment, over a twelve month microplastic 20 

sampling campaign. Across 223 samples, natural textile fibres represented 93.8% of the 21 

textile fibre population quantified.  Moreover, though microplastic particles including 22 

synthetic fibres are known to be pervasive environmental pollutants, extruded textile 23 

fibres were absent from 82.8% of samples. Natural textile fibres were absent from just 24 

9.7% of samples. 25 

Highlights 26 

 Natural textile fibres dominate freshwater and atmospheric fibre populations 27 

 Environmental concentrations, of textile fibres vary greatly through time and space 28 

 Upstream textile fibre concentrations can exceed that of the Marne River in Paris 29 

 Atmospheric deposition is a potential source of textile fibres in remote locations 30 

 Atmospheric deposition of textile fibres is not correlated to precipitation 31 

Keywords 32 

Textile fibres, Microplastic, Temporal variation, Atmospheric deposition, Surface water, 33 

Wastewater 34 
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1. Introduction 36 

Mismanaged plastic waste is known to exert a variety of pressures on the environment. 37 

As awareness of these pressures has grown, efforts have been made to reduce plastic 38 

consumption by industry, governments and the general public, including the increased use 39 

of plastic alternatives. However, the potential environmental impacts of plastic alternatives 40 

are seldom considered in an environmental discourse that is currently so concerned with 41 

plastic waste. In 2015, Ladewig et al. (2015) highlighted the potential environmental 42 

threat of one such alternative for plastic textile fibres: natural textile fibres. Natural textile 43 

fibres, such as cotton and wool, are the product of multiple environmentally hazardous 44 

anthropogenic processes and are, therefore, inherently unnatural. For example, the 45 

commercial production of cotton fibres requires large volumes of water, pesticides and 46 

herbicides (Suran, 2018). The wastewaters of the textile industry have also long been 47 

recognised as point sources of chemical pollutants (Correia et al. 1994). 48 

Unlike microplastic textile fibres, natural textile fibres have received little environmental 49 

attention. Fibres have the potential to entangle the gut contents of organisms that ingest 50 

them (Lusher et al. 2013), and any chemical effects of fibres are exacerbated by the 51 

relatively large surface area to volume ratio that they possess. The propensity for organic 52 

pollutants to adsorb to the surface of microplastic particles has been previously reported 53 

(Bakir et al. 2014), however, the extent to which this is true of natural textile fibres is 54 

currently poorly understood. Nevertheless, the faster degradation of natural textile fibres 55 

in comparison to microplastic fibres is a potential route for the release of toxic compounds, 56 

including dyes, into the environment (Ladewig et al. 2015). 57 

The prevalence of natural textile fibres alongside synthetic textile fibres and microplastic 58 

fragments in the gastrointestinal tract of terrestrial birds was reported by Zhao et al. 59 

(2016), and in invertebrates by Remy et al. (2015). Dris et al. also acknowledge the 60 

presence of natural and synthetic textile fibres in atmospheric fallout (Dris et al. 2016; 61 

2017), as well as the River Seine and one of its tributaries (Dris et al. 2018). However, 62 
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since Ladewig et al. (2015), few other publications have acknowledged the potential 63 

environmental significance of natural textile fibres. 64 

Though natural textile fibres are underrepresented in environmental literature, in the field 65 

of forensic science the relative proportions of textile fibres of different type and colour 66 

have been reported on a number of anthropogenic surfaces (Table 1). This work 67 

consistently records higher abundances of natural textile fibres in comparison to synthetic 68 

textile fibres. The findings of these studies are not necessarily representative of 69 

environmental matrices, but provide further evidence of the environmental prevalence of 70 

natural textile fibres. 71 

Table 1: Prevalence of natural textile fibres in some forensic science and microplastic 72 

publications. NS corresponds to information that is not stated. 73 

 74 

In the study of microplastic pollution, determining the proportion of a fibre population that 75 

is synthetic has been restricted by the methodologies used to analyse textile fibres. The 76 

visual identification of microplastic particles is a widely used and acceptable technique 77 

when supported by the chemical analysis of a subsample of particles (Lusher et al. 2017). 78 

However, within the study of microplastic pollution, the visual identification of synthetic 79 
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textile fibres in particular has been criticised for its susceptibility to human error (Remy et 80 

al. 2015), despite being recognised as an important initial step in the classification of 81 

textile fibres to their main groups (Greaves and Saville, 1995; Nayak et al. 2012). 82 

One common method of determining the chemical composition of microplastic particles, 83 

possessing the capability to conclusively identify synthetic polymers, is Fourier Transform 84 

Infrared (FTIR) spectroscopy. However, the difficulties of obtaining clear FTIR spectra from 85 

the small, often curved, surfaces of textile fibres is a limitation of FTIR spectroscopy that 86 

some have not been able to overcome. Microplastic surveys have, in the past, chosen to 87 

omit textile fibres from their study entirely (e.g. Foekema et al., 2013; Van Cauwenberghe 88 

et al., 2015), or to apply an analytical technique, such as FTIR spectroscopy, to only a 89 

small subsample of observed fibres and extrapolate from the identities of the fibres that 90 

could be chemically analysed (e.g. Dris et al. 2016). 91 

Understanding the relative environmental concentrations of different types of textile fibre 92 

will facilitate a more critical consideration of the environmental impacts of textile fibres as 93 

a whole. Three broad categories of textile fibre are commonly used in the textile industry: 94 

1. natural fibres derived from the processing of plant fibres, such as cotton, and animal 95 

fibres, such as wool; 2. regenerated fibres, such as rayon, which are reconstituted from 96 

the dissolved cellulose of plant materials and shaped into fibres by extrusion; and 3. 97 

synthetic fibres, formed by the extrusion of petrochemical based compounds. There are 98 

key visual distinctions, beyond those frequently used in the study of microplastic pollution, 99 

that differentiate between natural textile fibres and those formed by extrusion. The 100 

structures and formation of fibres in each of these three categories, including the extrusion 101 

process, are described in detail in Greaves and Saville (1995) and Hearle (2009).  102 

By exploiting these visual characteristics in the study of microplastic pollution it is possible 103 

to categorise textile fibres as either natural or extruded using simple stereomicroscopy. 104 

This more accurate preliminary characterisation of textile fibres will enable the 105 

consideration of textile fibres in microplastic studies where suitable analytical techniques 106 
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are not available, and will reduce the number of fibres in need of subsequent spectroscopic 107 

identification where they are. 108 

Synthetic textile fibres have received considerable negative press in the reporting of 109 

microplastic pollution. Therefore, though textile fibres represent only one type of fibre use, 110 

a thorough and accurate understanding of the threats that textile fibres of all types pose, 111 

which is not reliant on extensive extrapolation, is of great social and environmental 112 

importance. With the aim of placing synthetic textile fibre pollution into a broader 113 

environmental context of anthropogenic particulate pollutants, this study expands existing 114 

criteria for the visual categorisation of textile fibres used in microplastic quantification to 115 

quantify the textile fibre population of 223 samples of river water and atmospheric 116 

deposition from 14 sites across the River Trent Catchment, UK. These findings provide 117 

strong support for the concerns detailed by Ladewig et al. (2015). 118 

2. Materials and Methods 119 

2.1.  Site descriptions 120 

Surface water samples were collected from 10 sites in the Trent catchment; three on the 121 

River Trent (RT), three on the River Leen (RL) and four on the River Soar (RS) (Figure 1). 122 

The location of these sites enabled the consideration of textile fibre concentrations near 123 

the sources of each river (RT1, RL1, RS1), immediately upstream (RT2, RL2) and 124 

immediately downstream (RT3, RL3, RS2, RS3) of urban population centres, and at sites 125 

that do (RS2-44) and do not (RT 1-3, RL 1-3, and RS1) receive wastewater treatment 126 

plant effluent, a known source of synthetic fibres (Leslie et al. 2017). 127 

Atmospheric fallout was collected from the roofs of four buildings across the University of 128 

Nottingham’s (UoN’s) three UK teaching campuses (Figure 1). The UoN’s University Park 129 

(UP) Campus is a 300 acre plot bordered on its south side by the approximately 50 acre 130 

Highfields Park and on its north by the approximately 500 acre Wollaton Hall Deer Park. 131 

Sites A and B are located on UP. Site A is located on the roof of one of University of 132 

Nottingham’s main teaching buildings, which neighbours the central administrative 133 
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building. It also spans a primary thoroughfare across the University Park Campus. The 134 

location of site B, on the roof of the University Of Nottingham’s main gymnasium, is 135 

surrounded by student accommodation. 136 

Approximately 650 m from UP, the UoN’s 65 acre Jubilee Campus (JC) is surrounded by 137 

residential housing. Site C is located on JC. Site D is located on the UoN’s 100 acre Sutton 138 

Bonington Campus. Approximately 12 km south of UP, Sutton Bonnington lies close to the 139 

rural border of Nottinghamshire and Leicestershire. 140 

Access to the roofs is restricted to maintenance staff only, and clear signage stressed the 141 

importance to maintenance staff of staying clear of sampling apparatus at each site. 142 

 143 

Figure 1: Locations of freshwater (numbered) and atmospheric (lettered) sampling sites 144 

within the Trent Catchment, UK. Green areas represent the urban areas of Stoke-on-Trent 145 

(River Trent), Nottingham (River Leen), Leicester (River Soar upstream) and 146 

Loughborough (River Soar downstream). 147 

 148 

 149 
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2.2.  Sample collection 150 

From the bank of the river at each freshwater sampling site, a 2 L paint kettle attached to 151 

a 5 m telescopic metal pole was used to retrieve 30 L of surface water. The water was 152 

concentrated in the field by passing it through a 63 µm sieve, removing the suspended silt 153 

and clay fractions of the suspended solids within the sample. The residue retained on the 154 

sieve was washed into a 200 ml glass bottle using distilled water. As the lids of the bottles 155 

were plastic, each lid was lined with aluminium foil that was replaced for each sampling 156 

occasion. Samples were collected every four weeks over a 12 month period. 157 

Samples of atmospheric fallout were collected fortnightly using an approach similar to that 158 

of Dris et al. (2016). The sampling apparatus consisted of a 2.5 L amber glass bottle, into 159 

which fallout was funnelled by a 12 cm diameter (0.0113 m2) glass funnel. Each fortnight 160 

the glass funnel was thoroughly rinsed with distilled water, ensuring its entire surface was 161 

rinsed, before replacing the amber glass bottle. Samples were collected over the same 12 162 

month period as freshwater samples. 163 

2.3.  Sample processing 164 

All freshwater samples were treated with hydrogen peroxide (H2O2) in order to digest 165 

organic material within the sample. The use of varying concentrations of H2O2 in the 166 

digestion of organic matter is common in the study of microplastic pollution, including 15% 167 

(Zhao et al. 2016) 30% (Liebezeit and Dubaish, 2012; Mathalon and Hill, 2014; Tagg et 168 

al. 2015) and 35% (Mintenig et al. 2017), and its effect on the appearance of plastic 169 

particles has been documented by Nuelle et al. (2014). In this study, 30% H2O2 was added 170 

to each aqueous sample. The sample was heated to 75ºC for 4-5 hours. Initially, 100 ml 171 

of H2O2 was added to each sample, however, during this stage of the third sampling 172 

occasion (week commencing 15/01/2018), the lids of the sample bottles perished exposing 173 

six of the samples to laboratory contamination. These six samples were therefore 174 

discarded. It is thought that the volume of H2O2 used and the unusually high organic 175 

matter content of these samples, collected during a period of heavy rain, contributed to 176 
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this. As a result, after sample occasion three the volume of H2O2 added to each sample 177 

was reduced to 50 ml, and the lids of the glass jars were lined with two layers of aluminium 178 

foil. Moreover, just 15 L was collected during the fifth sampling occasion (week 179 

commencing 12/03/2018), falling during another period of heavy rain, to minimise the 180 

likelihood of sample bottles perishing. 181 

Following H2O2 digestion samples were, where necessary, once again passed through a 63 182 

µm sieve in order to remove any particles of silt and clay derived from the disaggregation 183 

of sedimentary agglomerations during the H2O2 digestion. The retained residue was 184 

washed back into its respective sample bottle in the same manner as in the field. Millipore 185 

filtration apparatus was then used to vacuum filter samples through 0.45 µm mixed 186 

cellulose ester gridded filter papers (Whatman ME 25/41) following the standard vacuum 187 

filtration procedures for H2O2 of three distilled water washes. The sample bottle and the 188 

sides of the vacuum filtration glassware were then rinsed using a distilled water wash 189 

bottle to ensure no particles remained adhered to the glassware, and the filter paper was 190 

immediately sealed in a plastic Petri dish. 191 

In order to reduce the volume of collected rainfall, samples of atmospheric deposition were 192 

first shaken vigorously to ensure all particles were in suspension before being passed 193 

through a 38 µm sieve (step one). 300 ml of distilled water was then added to the empty 194 

amber glass bottle, which was shaken vigorously to entrain any remaining particles, after 195 

which I was passed through the same 38 µm sieve. This was done three times in 196 

succession (step two). The residue retained on the sieve from steps one and two was then 197 

washed into a 50 ml glass beaker using distilled water. Each sample was then vacuum 198 

filtered through the same mixed cellulose filter papers used for the freshwater samples, 199 

with the 50 ml beaker and sides of the vacuum filtration apparatus being rinsed using a 200 

distilled water wash bottle before the filter paper was sealed in a plastic petri dish.  201 

The significance of the relative proportions of natural and synthetic textile fibres was 202 

assessed using a Wilcoxon test. 203 
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2.4.  Contamination control 204 

At each freshwater site, prior to freshwater sample collection, the paint kettle was 205 

submerged and emptied three times. It was then used to reverse wash the 63 µm sieve 206 

three times. The inside of the sieve was then rinsed with distilled water from a wash bottle 207 

ensuring the entire mesh and sides had been rinsed. On two occasions procedural blanks 208 

were collected for which this wash bottle rinse was collected and treated in the same 209 

manner as the environmental samples to assess the efficacy of these three steps. 210 

A total of 8 amber glass bottles were used in the collection of atmospheric deposition, four 211 

of the bottles being rotated each fortnight. In addition to the three 300 ml distilled water 212 

washes that each sample received during sample processing, a further three distilled water 213 

washes were performed before a bottle was placed on the roof. To assess the efficacy of 214 

these steps, procedural blanks were collected for which the surfaces of the 38 µm sieve 215 

were washed into a glass beaker and processed in the same manner as the environmental 216 

samples. This was done in triplicate. 217 

Unlike in the study of microplastics, wearing only natural textile fibred clothing was not a 218 

sufficient measure to limit contamination during sample collection. Instead, the type of 219 

fibre and colour of the garments worn during sample collection was recorded so that it 220 

could be considered during sample analysis. During sample collection tightly woven 221 

synthetic waterproof garments were worn. During sample processing a PVC apron was 222 

worn over a polyester / cotton blend laboratory coat to minimise the contamination of 223 

samples by fibres that had settled on the laboratory coat, and white / translucent fibres 224 

were excluded from analysis as these were assumed to have been sourced from the 225 

laboratory coat during sample processing. 226 

Prior to sample processing, all laboratory surfaces were wiped down with dampened paper 227 

towels to remove surface dust. All glassware, including the freshwater sample bottles, and 228 

the sieves, were rinsed with distilled water prior to coming into contact with the samples. 229 

Sample bottles and beakers were triple washed with distilled water before being rinsed 230 
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with distilled water using a wash bottle. All glassware components of the vacuum filtration 231 

apparatus, except for the conical flask into which the liquid fraction of the sample is 232 

sucked, were thoroughly rinsed with distilled water using a wash bottle, ensuring the entire 233 

surface was disturbed by the distilled water. The sieves were reverse rinsed with distilled 234 

water and the mesh and sides were then rinsed with distilled water using a wash bottle as 235 

done in the field. The filter papers were also rinsed with distilled water prior to being used. 236 

During sample processing, the glassware and sieves were all covered with aluminium foil 237 

except for when the samples were being sieved, transferred between receptacles, or when 238 

the freshwater sample bottles, glass beakers containing atmospheric samples, or vacuum 239 

filtration apparatus were being rinsed. When the samples were not covered with aluminium 240 

foil, a dampened filter paper, placed in a petri dish, was exposed to the laboratory air to 241 

monitor the deposition of fibres over the same period of time that the samples were 242 

exposed. One dampened filter paper was used for each batch of samples processed (1 243 

batch = ten freshwater samples or four atmospheric samples) to measure the total 244 

deposition of airborne fibres within the laboratory during the processing of each batch. 245 

Furthermore, with only the sample processor was permitted within the laboratory 246 

whenever samples were being processed. 247 

2.5.  Textile fibre characterisation 248 

2.5.1. FTIR spectroscopy of textiles 249 

In order to assess the suitability of FTIR spectroscopy in the analysis of environmental 250 

textile fibre populations, an FTIR library of seven common textile fibres was produced 251 

using a combination of Attenuated Total Reflectance (ATR) FTIR and reflectance FTIR 252 

spectroscopy. This library consisted of FTIR spectra for: acrylic, cotton, polyamide, 253 

polyester, polypropylene, silk and wool textiles.  254 

In the production of this library, garment patches were first analysed by ATR-FTIR 255 

spectroscopy using a Bruker Tensor 27 FTIR spectrometer (Bruker Optics, Coventry, UK, 256 

equipped with a Graseby-Specac Golden Gate ATR accessory (Orpington, UK). For each 257 
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spectrum, 16 scans with a 4 cm-1 resolution were co-added, providing FTIR spectra of the 258 

high fibre density samples. A pill of fibres was then pulled from each garment and analysed 259 

using the same technique, producing an ATR spectrum for a sample of lower fibre density. 260 

Reflectance FTIR spectroscopy was then used to produce spectra of an individual fibre 261 

from each garment type using a Bruker Hyperion 2000 FTIR microscope (Bruker Optics, 262 

Coventry, UK). For each spectrum, 128 scans with a 4 cm-1 resolution were co-added. 263 

These fibres were too small for analysis by ATR-FTIR spectroscopy. 264 

2.5.2. Visual analysis of textile fibres 265 

Samples were observed under a stereomicroscope (Medline Scientific CETI Varizoom-10, 266 

Chalgrove, UK) with a magnification range of 16-160 x and, where greater optical clarity 267 

was required, an optical microscope at 100 x magnification (Euromex Bioblue, Arnhem, 268 

The Netherlands). Every textile fibre was categorised as either extruded or natural on the 269 

understanding that only synthetic textile fibres (e.g. polyester) and regenerated fibres 270 

(e.g. rayon) are manufactured by extrusion, whereby a molten polymer is forced through 271 

an aperture of fixed – and not necessarily circular – cross-section. The resultant individual 272 

fibres therefore have uniform diameter. Prior to sample analysis, the proficiency of the 273 

textile fibre analyst was developed through the extensive observation of textile fibres of 274 

known origin, aided by a literature-informed expansion of the criteria for visual textile fibre 275 

characterisation of the Royal Microscopical Society’s Microscopy of Textile Fibres Handbook 276 

(Greaves and Saville, 1995) (Figure 2). These criteria were applied to the analysis of all 277 

environmental samples. Four textile fibres identified using the visual methodology outlined 278 

above were analysed by reflectance FTIR spectroscopy and compared to the FTIR library 279 

generated from known textile fibres.  280 
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 281 

 282 

Figure 2: Flowchart used to characterise textile fibres as natural or extruded, with 283 

photographs highlighting the subtle differences between an animal (wool) and an 284 

extruded (polyester) fibre. Except where stated, these criteria have been adapted from 285 

the Royal Microscopical Society’s Microscopy of Textile Fibres handbook (Greaves and 286 

Saville, 1995). 287 

[1] Norén (2007), [2] MERI (n.d.), [3] Wąs-Gubała and Krauß (2006), [4] Palenik et al. 288 

(2013). 289 

 290 
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3. Results 291 

3.1.  FTIR spectroscopy of textile patches, fibre pills and individual fibres 292 

FTIR spectroscopy of textile patches and fibre pills produced clear spectra (Figure 3) that, 293 

for the synthetic textile fibres analysed, could be identified by the available Bruker spectral 294 

library. However, the library available to this study was limited, being only a demonstration 295 

library, and was not able to identify the ATR-FTIR spectra generated from natural textile 296 

fibres. In contrast to the ATR-FTIR spectra, the spectra produced by reflectance FTIR 297 

spectroscopy were noisy (Figure 3). The identity of the four environmental fibres that were 298 

analysed by reflectance-FTIR spectra could not be ascertained from the spectra in Figure 299 

3 due to this noise (Figure 4). 300 
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Fibre Patch spectrum Pill spectrum Fibre spectrum 

Acrylic 

   
Poly-
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Silk 
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 302 

Figure 3: Library produced from the ATR-FTIR spectra of textile patches and pills and reflectance FTIR 303 

spectra of individual fibres from garments of known fibre composition. 304 

 305 
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Fibre ID Visual categorisation Reflectance spectrum 

A Natural 

 
B Natural 

 
C Extruded 

 
D Extruded 

 
 307 

Figure 4: Reflectance FTIR spectra of four fibres quantified from the 12 month sampling campaign  308 
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3.2.  Freshwater and atmospheric textile fibre populations 309 

A total of 130 freshwater and 93 atmospheric samples were collected for microplastic and 310 

textile fibre analysis between 09/11/2017 and 31/07/2018. 720 fibres were categorised in 311 

the freshwater environment, 639 (87.3%) of which were identified as natural (Table S1). 312 

In atmospheric fallout, 1100 fibres were categorised of which 1075 (97.7%) were 313 

identified as natural (Table S2). 314 

In the context of microplastic pollution, even if all of the extruded textile fibres were 315 

petrochemical-based, they made up just 6.2% of the total textile fibre population across 316 

all of the atmospheric and freshwater samples. The majority of textile fibres observed were 317 

either black/grey (47.09%, n=857) or blue (24.40%, n=444) in colour, as reported in 318 

multiple forensic textile fibre population surveys (e.g. Kelly and Griffin, 1998; Cook et al. 319 

1997; Cantrell et al. 2001; Palmer and Oliver 2004; Watt et al. 2005). The absence of 320 

extruded textile fibres showing signs of degradation or bleaching support the findings of 321 

Nuelle et al. (2014), who demonstrate only limited effects of H2O2 on plastic polymers 322 

including polyamide, from which nylon is derived, and Polyethylene Terephthalate, a 323 

common form of polyester. The effect of H2O2 on natural textile fibres is expected to be 324 

limited. H2O2 is a common bleaching agent used in the textile industry (Carmen and 325 

Daniela, 2012), and so the presence of natural textile fibres in such high abundance, of 326 

multiple types and in a variety of colours indicates that the H2O2 concentrations used were 327 

too low to cause even the discolouration of textile fibres. 328 

Textile fibre abundance varied through space and time in both freshwater (Figure 5) and 329 

atmospheric samples (Figure 6). Throughout the freshwater sampling campaign, site RL3 330 

had the highest mean freshwater concentration of natural fibres (x ̅ = 0.29 fibres L-1) 331 

(Figure 7), whilst the highest mean extruded fibre concentration was observed at site RT3 332 

(x̅ = 0.04 fibres L-1) (Figure 8). Neither of these sites is in receipt of wastewater treatment 333 

plant effluent, but they are downstream of the cities of Nottingham and Stoke-on-Trent 334 

respectively. In atmospheric fallout, the highest mean natural textile fibre deposition was 335 

observed at Site A (x ̅ = 128.42 fibres m-2day-1), with the highest extruded textile fibre 336 
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deposition observed at Site B (x̅ = 2.90 fibres m-2day-1) (Figure 9). In contrast to previous 337 

surveys of the atmospheric deposition of microplastics, the present study did not observe 338 

a correlation between fibre deposition and precipitation (Figure 10). In each of the rivers 339 

and across the sites of atmospheric deposition there were significantly more natural textile 340 

fibres than extruded fibres. Monte Carlo significance values for the Wilcoxon tests 341 

conducted in each of these datasets were all <0.001. 342 

A total of 9 atmospheric and 15 freshwater samples contained no textile fibres at all. These 343 

samples in particular are testament to the efficacy of the contamination controls followed 344 

(Woodall et al. 2015; Taylor et al. 2016). The abundance of textile fibres from laboratory 345 

deposition is detailed in Tables S3 and S4, and across the procedural blanks in Table S5.   346 
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 347 

Figure 5: Total fibre concentrations at each freshwater site over the 13 sampling 348 

occasions. 349 
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 350 

Figure 6: Atmospheric deposition of natural and extruded textile fibres on each 351 

sampling occasion for each site. Daily precipitation data was collated from the Met 352 

Office’s HadUKP dataset for the Central England region (Alexander and Jones, 2001).  353 
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 354 

Figure 7: Boxplots illustrating the median and range of natural textile fibre 355 

concentrations at each freshwater sampling site. 356 

357 
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 358 

Figure 8: Boxplots illustrating the median and range of extruded textile fibre 359 

concentrations at each freshwater sampling site. 360 
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 361 

Figure 9: Boxplots illustrating the median and range of natural and extruded textile 362 

fibre concentrations at each atmospheric sampling site.  363 
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Figure 10: Correlation of number of fibres deposited and precipitation over each 364 

fortnightly sampling period. 365 

3.3.  Freshwater fluxes of textile fibres 366 

The abundance of freshwater textile fibres at each site are presented here as particles per 367 

litre. Using UK National River Flow Archive (NRFA) gauging stations it is, however, possible 368 

to consider textile fibre fluxes at various points within the sampled reaches. NRFA gauging 369 

stations are located short distances downstream of site RT2, and upstream of sites RL3 370 

and RS4 (Table S6). Flux calculations based on the mean discharges at each of these 371 

stations and the mean textile fibre concentrations quantified over this twelve month 372 

sampling campaign are detailed in Table 2.  373 
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Table 2 Textile fibre flux estimates at sites in close proximity to UK NRFA gauging stations 374 

presented to three significant figures. Mean flow data acquired 07/01/2019. 375 

Site 
Mean flow 

(m3s-1) 

Mean textile 

fibre flux 

(fibres/day) 

Minimum textile 

fibre flux 

(fibres/day) 

Maximum textile 

fibre flux 

(fibres/day) 

RT2 0.626 7 810 000 0 28 800 000 

RL3 0.685 19 500 000 1 970 000 82 900 000 

RS4 11.727 197 000 000 0 608 000 000 

 376 

4. Discussion 377 

4.1.  FTIR characterisation of known and environmental textile fibres 378 

Whilst the use of ATR-FTIR is shown here to be an effective method of fibre identification 379 

for high fibre density samples such as garment patches and fibre pills, it is not one that 380 

can be easily applied to the analysis of individual textile fibres such as those from 381 

environmental samples, the majority of which are too small to be handled for ATR-FTIR 382 

analysis. Moreover, though the efficacy of reflectance FTIR spectroscopy has been 383 

demonstrated for larger (150 µm) microplastic particles (Harrison et al. 2012), its 384 

suitability in the analysis of textile fibres has not been assessed. 385 

Of the four fibres from environmental samples analysed by reflectance FTIR spectroscopy 386 

(Figure 4), the two natural textile fibres were visually identified as unmercerised cotton. 387 

Cotton is the most common natural textile fibre (Ladewig et al. 2015), and in its 388 

unmercerised form is easily identifiable as a flat, twisted fibre of uneven diameter (Figure 389 

2). As the identity of these environmental fibres was known, it was possible to make a 390 

direct comparison between the reflectance FTIR spectra of the two environmental cotton 391 

fibres (Figure 4) and that produced for the FTIR library (Figure 3). The variation between 392 

these three spectra not only provides further evidence of the limited value of reflectance 393 

FTIR spectroscopy in the analysis of textile fibres, but also highlights the degree of 394 

variation in reflectance spectra that can be produced from the analysis of fibres of the 395 
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same type. It is, however, possible that this variation was influenced by the heterogeneous 396 

shape of unmercerised cotton, which will likely lead to a degree of variation in different 397 

reflectance FTIR spectra generated from multiple points of the same cotton fibre. 398 

4.2.  Visual categorisation of known and environmental textile fibres 399 

The approach applied in the present study cannot conclusively identify the origin of the 400 

unknown textile fibres. However, it successfully placed the abundance of extruded textile 401 

fibres in the context of environmental textile fibre populations. Categorising textile fibres 402 

as natural or extruded affords researchers greater consideration of textile fibres within the 403 

study of microplastic pollution in the absence of suitable analytical techniques. 404 

Furthermore, where suitable analytical techniques are available, this approach reduces the 405 

sample size of textile fibres in need of chemical analysis from the total fibre population to 406 

extruded fibres only. Where available, a greater proportion, and therefore more 407 

representative subsample, of potentially synthetic textile fibres can then be chemically 408 

analysed by means such as FTIR spectroscopy. 409 

4.3. Textile fibre populations in freshwater environments and the 410 

atmosphere 411 

The visual characterisation of textile fibres proved to be an effective technique in the 412 

analysis of environmental textile populations. Whilst the process outlined in Figure 2 413 

clearly details the steps taken to analyse environmental textile fibres, the authors must 414 

stress the importance of fibre analysts developing their proficiency using known textile 415 

fibres prior to applying this technique to environmental samples. 416 

The mean total textile fibre concentration observed across the freshwater sites sampled 417 

consistently exceeded that reported by Dris et al. (2018) in the Marne River, Paris, who 418 

recorded a maximum mean fibre concentration of 0.1 fibres L-1. A number of factors can 419 

explain this finding, including the finer mesh size and higher microscope magnification 420 

used in the present study and the dilution effect of the much greater volume of water 421 

flowing through the Marne River compared to the rivers sampled here.  422 
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The entrainment and transport of textile fibres in aquatic environments and the 423 

atmosphere might be expected to be influenced by their physical properties – including 424 

fibre morphology and density – as well as environmental conditions including rate of flow 425 

in rivers, precipitation and wind speed. Determining the extent to which this is the case is 426 

beyond the scope of the present study, and so it is not possible to comment on whether 427 

or not these factors will influence the environmental prevalence of fibres of different types 428 

in highly mobile fluid matrices. However, in relatively motionless fluid environments such 429 

as the settling tanks of WWTPs, common natural and extruded textile fibres, that are all 430 

denser than water (Table 3), might be expected to settle. However, the emission of 431 

microplastic particles, and in particular synthetic textile fibres, from WWTPs has been 432 

quantified and is known to vary; across seven WWTPs, Leslie et al. (2017) report 433 

microplastic concentrations in WWTP effluent to range from 9-91 particles L-1. 434 

Table 3: Density of common textile fibres, as reported by Morton and Hearle (2008) 435 

Fibre Density (g/cm3) 

Cotton 1.55 

Wool 1.30 

Silk 1.34 

Viscose Rayon 1.52 

Polyester 1.39 

Nylon 66, nylon 6 1.14 

Acrylic 1.19 

 436 

The sampling of freshwater environments was conducted at three sites that were in receipt 437 

of the effluent of wastewater treatment plants (WWTPs) (sites RS2-4) and seven that were 438 

not.  There was no appreciable increase in textile fibre concentration at sites in receipt of 439 

WWTP effluent. This was true even of River Soar site 3, located approximately just 1.7 km 440 

downstream of the outflow of a WWTP serving a population equivalent of 72,500. However, 441 

whilst the concentration did not increase, the greater flow rates of sites RS2-RS4 will have 442 
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increased textile fibre abundance.  Instead, the highest cumulative abundance of natural 443 

and extruded textile fibres on each of the rivers sampled was recorded at sites immediately 444 

downstream of urban population centres (Sites RT3 and RL3). 445 

Textile fibres were even observed at the most upstream sites on each of the rivers 446 

sampled. Though close to the sources of these rivers, sites RT1 and RL1 are popular 447 

recreational sites, whilst site RS1 neighbours a busy haulage yard. The observation of 448 

textile fibres at these sites demonstrates the role of localised anthropogenic activity on 449 

textile fibre abundance in the freshwater system. The prevalence of textile fibres in 450 

atmospheric fallout in both urban and rural sites highlights the role of atmospheric 451 

deposition in the transport of textile fibres throughout the environment, including to 452 

relatively remote locations. It also raises questions regarding the role of wastewater 453 

treatment plants as sources of synthetic textile fibres in aquatic environments. 454 

Wastewater treatment plants are partially open systems, with various stages of the 455 

wastewater treatment process exposed to the atmospheric deposition that has been 456 

recorded here and elsewhere (Cai et al. 2017; Dris et al. 2016; 2017). The extent to which 457 

this deposition contributes to the textile fibre concentrations of final effluent is yet to be 458 

quantified. 459 

Though atmospheric deposition of fibres was comparable at sites B-D, the abundance of 460 

fibres observed at site A was noted to be much more variable (Figures 6 and 9) (Levene’s 461 

test p-value <0.001), despite its close proximity to sites B and C (Figure 1).  Where 462 

previous records of atmospheric textile fibre deposition have extrapolated over large 463 

geographical areas from as few as two sample locations (e.g. Dris et al. 2016), the localised 464 

variation quantified here between sites that are fewer than 800 m apart, indicates that 465 

such extrapolations are likely to be inappropriate. 466 

The recurrent observation of textile fibres at freshwater sites irrespective of rainfall prior 467 

to, or during, sample collection also suggests an atmospheric contribution of textile fibres 468 

to the freshwater system independent of precipitation and surface run off. Moreover, 469 
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previous studies have assumed all, or at least the majority, of the fibres present in 470 

atmospheric samples were deposited during the rainfall event that prompted the sample 471 

collection (e.g. Dris et al. 2016). Here, the identification of textile fibres in atmospheric 472 

fallout during periods of no to low precipitation, where shows that such an assumption 473 

cannot be relied upon. 474 

Though extruded textile fibres, a proportion of which may be microplastic, were present 475 

in both freshwater and atmospheric samples throughout this sampling campaign, the 476 

consistent dominance of natural textile fibres over extruded textile fibres provides strong 477 

support for the concerns raised by Ladewig et al (2015) and Zhao et al (2016). 478 

4.4.  Freshwater fluxes of textile fibres and difficulties in extrapolating fluxes 479 

The data presented in Table 2 goes some way to highlighting the potential fibre flux of 480 

even these smaller freshwater systems. However, the temporal nature of this study has 481 

also enabled consideration of the extent to which such extrapolations can vary. The range 482 

of fibre fluxes presented in Table 2 illustrates the importance of sample replication in order 483 

to account for seasonal variation and the influence of abnormal weather conditions. These 484 

extrapolations suggest approximate daily textile fibre fluxes of 19 500 000 and 197 000 485 

000 from the Rivers Leen and Soar respectively, as well as an approximate daily textile 486 

fibre flux of 7 810 000 into the Stoke-on-Trent urban area. Despite flux extrapolations 487 

being frequently presented in microplastic literature, the large range in values recorded 488 

both between sites in a similar geographical area, and at individual sites through time, 489 

suggests that little confidence can be given to these values. 490 

5. Conclusion 491 

The findings of the present study show that natural textile fibres constitute a significantly 492 

greater proportion of environmental textile fibre populations than extruded textile fibres 493 

in all three of the sampled rivers, as well as at all 4 sites of atmospheric deposition. It 494 

demonstrates a considerable limitation of the use of FTIR spectroscopy for the analysis of 495 

textile fibres in the study of microplastic pollution, and details the subtle differences 496 



30 

 

between natural and extruded textile fibres, advancing the visual characterisation of 497 

particles that is still applied to the majority of microplastic pollution studies. Finally, textile 498 

fibre concentrations were found to vary greatly through both space and time. This has 499 

important implications for the legitimacy of previously extrapolated particle fluxes within 500 

the broader study of microplastic pollution, which do not sufficiently account for temporal 501 

and spatial variability.  502 
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Supplementary Material 611 

Table S1: Natural and extruded textile fibre concentrations at each freshwater sampling 612 

site for each of the 13 sample occasions 613 

Sample 

occasion
Site

Natural textile 

fibres / litre

Extruded textile 

fibres / litre

RT1 0.53 0.03

RT2 0.43 0.10

RT3 0.20 0.00

RL1 0.20 0.00

RL2 0.37 0.03

RL3 0.17 0.00

RS1 0.10 0.00

RS2 0.17 0.00

RS3 0.00 0.00

RS4 0.20 0.00

RT1 0.37 0.00

RT2 0.53 0.00

RT3 0.57 0.03

RL1 0.03 0.00

RL2 0.40 0.00

RL3 0.17 0.03

RS1 0.30 0.00

RS2 0.30 0.03

RS3 0.30 0.03

RS4 0.30 0.00

RT1

RT2

RT3

RL1

RL2 0.67 0.03

RL3

RS1 0.07 0.00

RS2 0.47 0.00

RS3

RS4 0.23 0.00

RT1 0.17 0.00

RT2 0.13 0.00

RT3 0.57 0.07

RL1 0.00 0.03

RL2 0.33 0.03

RL3 0.73 0.07

RS1 0.27 0.00

RS2 0.20 0.00

RS3 0.40 0.00

RS4 0.30 0.00

RT1 0.33 0.00

RT2 0.13 0.00

RT3 1.07 0.00

RL1 0.13 0.00

RL2 0.33 0.00

RL3 1.40 0.00

RS1 0.27 0.00

RS2 0.93 0.00

RS3 0.33 0.00

RS4 0.60 0.00

RT1 0.10 0.00

RT2 0.03 0.00

RT3 0.17 0.03

RL1 0.13 0.03

RL2 0.27 0.07

RL3 0.33 0.03

RS1 0.50 0.00

RS2 0.13 0.00

RS3 0.40 0.00

RS4 0.23 0.00

RT1 0.10 0.00

RT2 0.00 0.00

RT3 0.10 0.00

RL1 0.20 0.00

RL2 0.03 0.03

RL3 0.10 0.00

RS1 0.00 0.00

RS2 0.10 0.00

RS3 0.10 0.03

RS4 0.13 0.00

1

2

3

4

5

Sample lost

Sample lost

Sample lost

Sample lost

Sample lost

Sample lost

7

6

Sample 

occasion
Site

Natural textile 

fibres / litre

Extruded textile 

fibres / litre

RT1 0.00 0.03

RT2 0.00 0.00

RT3 0.00 0.07

RL1 0.03 0.03

RL2 0.03 0.03

RL3 0.13 0.13

RS1 0.07 0.03

RS2 0.03 0.03

RS3 0.00 0.00

RS4 0.00 0.00

RT1 0.00 0.00

RT2 0.10 0.00

RT3 0.03 0.00

RL1 0.00 0.03

RL2 0.00 0.00

RL3 0.03 0.00

RS1 0.03 0.00

RS2 0.00 0.10

RS3 0.03 0.00

RS4 0.00 0.00

RT1 0.00 0.00

RT2 0.00 0.03

RT3 0.00 0.00

RL1 0.00 0.03

RL2 0.03 0.03

RL3 0.07 0.03

RS1 0.03 0.00

RS2 0.00 0.00

RS3 0.00 0.03

RS4 0.07 0.03

RT1 0.00 0.00

RT2 0.00 0.00

RT3 0.10 0.00

RL1 0.10 0.00

RL2 0.07 0.00

RL3 0.07 0.03

RS1 0.10 0.03

RS2 0.07 0.03

RS3 0.03 0.03

RS4 0.03 0.03

RT1 0.00 0.00

RT2 0.10 0.00

RT3 0.03 0.17

RL1 0.03 0.03

RL2 0.00 0.07

RL3

RS1 0.03 0.00

RS2 0.30 0.07

RS3 0.03 0.03

RS4 0.07 0.17

RT1 0.03 0.00

RT2 0.03 0.10

RT3 0.03 0.07

RL1 0.00 0.03

RL2 0.20 0.07

RL3 0.07 0.03

RS1 0.10 0.03

RS2 0.00 0.07

RS3 0.03 0.03

RS4 0.03 0.10

Sample lost
12

13

11

8

9

10
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Table S2: Natural and extruded textile fibre deposition at each atmospheric sampling 614 

site for each of the 26 sample occasions 615 

Sample 

occas ion
Site

Natura l  texti le fibres  

(fibres  m2day-1)

Extruded texti le fibres  

(fibres  m2day-1)

A 75.79 6.32

B 82.1 0

C 151.58 12.63

D 56.84 0

A 170.52 0

B 56.84 0

C 101.05 0

D 132.63 0

A 284.21 0

B 56.84 6.32

C 75.79 0

D 56.84 0

A 353.68 0

B 120 6.32

C 170.52 12.63

D 107.37 0

A 227.36 0

B 126.31 0

C 157.89 0

D 82.1 0

A

B

C 151.58 0

D 44.21 0

A

B 208.42 6.32

C 56.84 0

D 151.58 0

A 334.73 0

B 132.63 0

C 151.58 0

D 88.42 0

A 258.94 0

B 69.47 0

C 56.84 0

D 25.26 0

A 214.73 6.32

B 101.05 0

C

D 44.21 0

A 164.21 0

B 56.84 0

C 75.79 0

D 44.21 0

A 82.1 0

B 25.26 0

C 101.05 0

D 18.95 0

A

B 44.21 0

C 18.95 0

D 31.58 0

10
Sample los t

11

12

13

Sample los t

Sample los t

Sample los t

7

Sample los t

8

9

1

2

3

4

5

6

Sample 

occas ion
Site

Natura l  texti le fibres  

(fibres  m2day-1)

Extruded texti le fibres  

(fibres  m2day-1)

A 88.42 0

B 0 0

C 25.26 6.32

D 0 0

A 44.21 0

B 12.63 0

C 18.95 0

D 12.63 0

A 25.26 0

B 18.95 0

C 6.32 0

D 0 0

A 0 0

B 25.26 0

C 0 0

D 0 0

A 12.63 0

B 6.32 0

C 0 0

D 0 0

A 25.26 0

B 18.95 6.32

C 12.63 0

D 0 0

A

B

C

D

A

B 164.21 31.58

C

D 31.58 6.32

A 88.42 0

B 31.58 0

C 25.26 0

D 6.32 6.32

A 44.21 18.95

B 37.89 0

C 37.89 0

D 25.26 0

A 63.16 0

B 56.84 0

C 31.58 0

D 37.89 0

A 69.47 6.32

B 82.1 0

C 18.95 0

D 12.63 0

A 69.47 0

B 25.26 12.63

C 44.21 6.32

D 31.58 0

Sample los t

23

24

25

26

20

Sample los t

21

22

Sample los t

Sample los t

Sample los t

Sample los t

14

15

16

17

18

19
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Table S3: Textile fibres deposited during the processing of Freshwater samples 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

Table S4: Textile fibres deposited during the processing of Atmospheric samples 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

Sample occasion Natural fibres Extruded fibres

1 0 0

2 0 0

3 0 0

4 0 0

5 1 0

6 3 0

7 0 0

8 1 0

9 1 0

10 0 0

11 1 0

12 0 0

13 0 0

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples

Sample occasion Natural fibres Extruded fibres

1 5 0

2 3 0

3 0 0

4 0 0

5 1 0

6 0 0

7 2 0

8 1 0

9 1 0

10 0 0

11 0 0

12 2 0

13 0 0

14 0 0

15 0 0

16 0 0

17 0 0

18 0 0

19 0 0

20

21 0 0

22 0 0

23 1 0

24 1 0

25 0 0

26 0 0

No samples
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Table S5: Abundance of textile fibres across the 5 procedural blanks 638 

 639 

 640 

Table S6: Details of each of the UK National River Flow Archive gauging stations used to 641 

estimate microplastic fluxes. 642 

Gauged River 
Nearest 

Sampling site 

NRFA Gauging 

station name 

Length of 

operation 

River Trent RT2 
Trent at Stoke-

On-Trent 

01/1968-

present 

River Leen RL3 

Leen at Triumph 

Road 

Nottingham 

01/1968-

present 

River Soar RS4 
Soar at 

Kegworth 

12/1978-

present 

 643 

Natural fibres Extruded fibres

Freshwater 1 1 0

Freshwater 2 0 0

Atmospheric 1 2 0

Atmospheric 2 0 0

Atmospheric 3 0 0


