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Abstract

Background

The cestode Taenia solium causes the neglected (zoonotic) tropical disease cysticercosis,

a leading cause of preventable epilepsy in endemic low and middle-income countries.

Transmission models can inform current scaling-up of control efforts by helping to identify,

validate and optimise control and elimination strategies as proposed by the World Health

Organization (WHO).

Methodology/Principal findings

A systematic literature search was conducted using the PRISMA approach to identify and

compare existing T. solium transmission models, and related Taeniidae infection transmis-

sion models. In total, 28 modelling papers were identified, of which four modelled T. solium

exclusively. Different modelling approaches for T. solium included deterministic, Reed-

Frost, individual-based, decision-tree, and conceptual frameworks. Simulated interventions

across models agreed on the importance of coverage for impactful effectiveness to be

achieved.

Other Taeniidae infection transmission models comprised force-of-infection (FoI), popu-

lation-based (mainly Echinococcus granulosus) and individual-based (mainly E. multilocu-

laris) modelling approaches. Spatial structure has also been incorporated (E. multilocularis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007301 April 10, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dixon MA, Braae UC, Winskill P, Walker

M, Devleesschauwer B, Gabriël S, et al. (2019)
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and Taenia ovis) in recognition of spatial aggregation of parasite eggs in the environment

and movement of wild animal host populations.

Conclusions/Significance

Gaps identified from examining the wider Taeniidae family models highlighted the potential

role of FoI modelling to inform model parameterisation, as well as the need for spatial model-

ling and suitable structuring of interventions as key areas for future T. solium model develop-

ment. We conclude that working with field partners to address data gaps and conducting

cross-model validation with baseline and longitudinal data will be critical to building consen-

sus-led and epidemiological setting-appropriate intervention strategies to help fulfil the

WHO targets.

Author summary

Taenia solium infection in humans (taeniosis and neurocysticercosis) and pigs (cysticerco-

sis) presents a significant global public health and economic challenge. The World Health

Organization has called for validated strategies and wider consensus on which strategies

are suitable for different epidemiological settings to support successful T. solium control

and elimination efforts. Transmission models can be used to inform these strategies. There-

fore, a modelling review was undertaken to assess the current state and gaps relating to T.

solium epidemiological modelling. The literature surrounding models for other Taeniidae

family infections was also considered, identifying approaches to aid further development of

existing T. solium models. A variety of different modelling approaches have been used for

T. solium including differences in structural and parametric assumptions associated with T.

solium transmission biology. Despite these differences, all models agreed on the importance

of coverage on intervention effectiveness. Other Taeniidae family models highlighted the

need for incorporating spatial structure when necessary to capture aggregation of transmis-

sion stages in the environment and movement of animal hosts.

Introduction

Infection by the cestode Taenia solium contributes to a significant and underreported public

health and economic burden in low and middle-income countries [1, 2]. A transmission cycle

including humans and pigs is facilitated by the free-roaming behaviour of pigs in subsistence

and minimal biosecurity farming environments [3, 4]. Humans become definitive hosts when

consumption of raw or undercooked cyst-infected pork leads to the tapeworm infection taeni-

asis (henceforth referred as taeniosis as per Kassai et al. [5]). Humans can also act as accidental

intermediate hosts when T. solium eggs are ingested. In this instance, migration of the larval

stage of T. solium to the central nervous system can result in neurocysticercosis (NCC) [6].

Human cysticercosis especially occurs in high-risk settings where poor hygiene and sanitation

standards prevail [7, 8].

NCC is associated with epilepsy and a recent review found that 31.5% of epilepsy cases

could be due to NCC in endemic settings [9]. The Foodborne Disease Burden Epidemiology

Reference Group (FERG) under the World Health Organization (WHO) estimated that NCC-

associated epilepsy accounted for approximately 2.8 million disability-adjusted life years

(DALYs) globally in 2010, concluding that NCC contributed the largest number of DALYs in

Epidemiological models of Taenia solium transmission and control
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a list of priority foodborne parasites [10]. In addition to its impact on public health, T. solium
infection in pigs is associated with a substantial economic burden due to the decreased market

value of infected pigs [11, 12] and market distortion resulting from farmers adopting informal

avenues for selling infected meat and animals [13, 14].

Combatting the burden associated with T. solium infection was initially recognised in the

WHO “Global Plan to Combat Neglected Tropical Diseases (2008–2015)” [15] and by WHO

Member States at the World Health Assembly [16]. More specifically, the 2012 WHO roadmap

on neglected tropical diseases (NTDs) [17] set out the goal of scaling up interventions for T.

solium in selected countries by 2020. This target was predicated on having achieved, by 2015,

the establishment of a validated strategy to meet such a goal. Despite the declaration by the

WHO of being ‘tool ready’ for pig-, human-, and environment-orientated interventions [18],

the effective implementation of such intervention tools in endemic settings will present con-

siderable challenges. It is likely that interventions will need to be tailored to local epidemiologi-

cal circumstances, local pig husbandry practices and socio-cultural behaviours [19]. Even with

epidemiological setting-appropriate strategies identified, a framework for supporting and

implementing needs to be present within a control strategy. Braae et al. have proposed such a

framework towards the control and elimination of T. solium [20].

Infectious disease modelling can support T. solium control and elimination strategies by

improving understanding of the key transmission dynamics processes that shape epidemiolog-

ical patterns and by comparing, optimising, and estimating the cost-effectiveness of tailored

strategies applicable for control in local settings [21,22]. Following the 2012 London Declara-

tion on NTDs [23], an international collaboration of infectious disease modellers emerged

under the umbrella of the NTD Modelling Consortium (https://www.ntdmodelling.org/) to

provide modelling and quantitative support to address questions surrounding the feasibility of

achieving the WHO 2020 call targets with current or alternative/complementary strategies.

For example, outputs using multi-model comparisons and field data have improved knowl-

edge of epidemiological processes, such as examining the feasibility of Onchocerca volvulus
elimination in Western Africa [24], or cross-validation with epidemiological data has enabled

consensus-based evidence to emerge, as seen with the development of alternative mass drug

administration guidelines to target lymphatic filariasis elimination [25].

In order to develop a comprehensive research agenda towards formulation of cost-effective

strategies for the control and elimination of T. solium taeniosis/cysticercosis in the context of

the WHO NTD 2015/2020 call for T. solium, this article seeks to compare and identify gaps in

existing T. solium transmission dynamics models. We follow the approach of Nouvellet et al.

[26] and Pinsent et al. [27] who have synthesized and compared a wide range of models for

Chagas disease and trachoma, respectively. By assessing the current state of the field, we high-

light differences in structure of published models, sources of uncertainty and the data used to

motivate, inform and parameterise such models. We compare the main conclusions drawn

from each model and uncover knowledge gaps related to model complexities and data needs.

In addition to a comparison of T. solium transmission models, we review models representing

the other members of the Taeniidae family to consider where future development of existing

T. solium models may be focussed. We hope this work will therefore form the basis for

improved dialogue between field epidemiologists, programme managers, and modellers.

Methods

Search strategy

We conducted a systematic review of modelling studies to understand population dynamics or

effects of interventions caused by members of the Cestoda: Taeniidae family (i.e. Echinococcus,

Epidemiological models of Taenia solium transmission and control
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Taenia). A systematic review, conducted by Atkinson et al. [28], had focussed on assessing

Echinococcus models only and has been consulted to corroborate our findings in this review.

We performed a search for eligible studies in PubMed, without date or language restrictions,

in January 2018, using the search terms: (Taeni� OR Echino� OR Cesto� OR cysticerc� OR

hydatid�) AND (model OR models OR modelling OR modeling OR simulat�) AND (dynamics

OR transmission OR control).

Selection criteria and assessment

The PubMed search output was reviewed by the following method: 1) title and abstracts were

reviewed and articles were excluded if they were related to parasites or diseases different from

those relating to the Taeniidae family; 2) all full texts were retrieved from those abstracts that

met the inclusion criteria; 3) each article was reviewed for descriptions of mechanistic trans-

mission models with specifications that addressed parasite prevalence, incidence, or intensity.

Models addressing only spatial distribution or parasite abundance within a single host (i.e. not

considering transmission between host species), or risk assessment models that did not con-

sider explicitly transmission processes, were excluded. Literature found through the systematic

search was supplemented by specific searches of references and papers known to the authors

or cited in the papers obtained (Supplementary S1 Flow Diagram). Papers based on re-applica-

tion or minimal modifications to the original models were excluded. Identified models were

divided into groups based on model type and characteristics (Table 1). Geographic distribu-

tion of locations where models have been developed and applied are presented in Fig 1. This

review is compliant with the PRISMA checklist for systematic reviews [29] and available in

Supplementary S1 Table.

Identified studies were then analysed and data extracted based on the following headings:

Reference, Year, Title, Journal, Parasite genus, Parasite species, Motivation, Type of model
(including further specificities of model type), Nature of model (including whether the model rep-
resents or not the totality of the transmission cycle, i.e. Full transmission vs. partial model), Role
of stochasticity, Representation of population dynamics, Explicit representation of spatial trans-
mission, Spatial design, Parameterisation/calibration for specific setting(s), Hosts (states) repre-
sented, Explicit representation of Environment, Source of parameters, Major assumptions and
model simplification(s), Assessment of parametric uncertainty, Interventions modelled, Model
validation (informal/formal), and Main findings. The full data extraction tool is available in

Supplementary S1 File.

Results & discussion

A systematic search of the literature yielded 23 papers plus two papers known to authors, and

three identified through additional searches, for inclusion in the analysis. Of these, four studies

modelled T. solium exclusively; 20 modelled infection by Echinococcus spp., one focussed solely

on Taenia ovis, one on T. ovis and Taenia hydatigena, and the remaining two addressed Echi-
nococcus spp. and Taenia spp. (other than T. solium) infections (T. ovis and T. hydatigena).

Results are first presented with an in-depth analysis of T. solium dynamic transmission

models, followed by an assessment of the other Taeniidae family transmission models to iden-

tify possible modelling gaps and areas for future development of T. solium dynamic transmis-

sion models.

Taenia solium transmission models

Analysis of the T. solium papers revealed four models that could be classified as dynamic trans-

mission models (Table 2). Different modelling approaches are used to simulate T. solium

Epidemiological models of Taenia solium transmission and control
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Table 1. Summary (in chronological order of publication) of the 28 models identified from the systematic search and included for analysis.

Model [Ref.] Parasite species Setting(s) Type of model Role of stochasticity

1) Harris et al. 1980

[30]

Echinococcus granulosus,
Taenia ovis, Taenia
hydatigena

New Zealand Markov chain decision process Deterministic

2) Roberts et al. 1986

[31]

E. granulosus Australia / New Zealand Force-of-infection (FoI) model (fitted to age-prevalence /

age-abundance data) & integrodifferential equation model to

determine equilibrium prevalence

Deterministic with

stochastic elements

3) Roberts et al. 1987

[32]

T. ovis, T. hydatigena Australia / New Zealand As in Roberts et al. [30] Deterministic with

stochastic elements

4) Lawson et al. 1988

[33]

E. granulosus, T. ovis,
T. hydatigena

New Zealand Extending the integrodifferential equation model of Roberts

et al. [30] to include infection control and economic

assessment

Deterministic with

stochastic elements

5) Roberts & Aubert,

1995 [34]

Echinococcus multilocularis France Compartmental, prevalence, population based Deterministic

6) Gonzalez et al.

2002 [35]

Taenia solium Peru Decision tree Stochastic

7) Torgerson, 2003

[36]

E. granulosus China FoI modela with delay representing cyst maturation in

intermediate host and simulating interventions

Deterministic

8) Hansen et al. 2003

[37]

E. multilocularis Germany Compartmental (“grid-based”) & individual based (spatially

explicit)

Deterministic with

stochastic elements

9) Ishikawa et al.

2003 [38]

E. multilocularis Japan Compartmental, population based Deterministic

10) Milner-Gulland

et al. 2004 [39]

E. multilocularis Kazakhstan (arid/ semi-

arid areas)

Spatially-explicit, coupled habitat-demographic model Stochastic

11) Takumi & Van

der Giessen, 2005

[40]

E. multilocularis Netherlands / wider

Europe

Compartmental, mean number, population based Deterministic

12) Danson et al.

2006 [41]

E. granulosus,
E. multilocularis

Non-specified Conceptual model N/A

13) Kyvsgaard et al.

2007 [42]

T. solium Latin America (Bolivia,

Peru, Mexico,

Guatemala)

Reed-Frost (chain binomial model) Deterministic with a

stochastic version

14) Heinzmann &

Torgerson, 2008 [43]

E. granulosus Kazakhstan FoI modelsa extended to include age-truncated and age-

dependent infection processes

Deterministic

15) Nishina &

Ishikawa, 2008 [44]

E. multilocularis Japan Compartmental (population) and individual based Deterministic with

stochastic elements

16) Takumi et al.

2008 [45]

E. multilocularis Netherlands Compartmental, mean number of parasite stages, population

based, spatially explicit

Deterministic

17) Torgerson et al.

2009 [46]

E. granulosus Kyrgyzstan FoI modela extended to model variation in number of

protoscolices per sheep

Deterministic

18) Kato et al. 2010

[47]

E. multilocularis Japan Compartmental, population based Deterministic

19) Huang et al. 2011

[48]

E. granulosus China Individual based Stochastic

20) Wang et al. 2013

[49]

E. granulosus China Compartmental, population based Deterministic

21) Wu et al. 2013

[50]

E. granulosus China Compartmental, population based Deterministic

22) DeWolf et al.

2013 [51]

T. ovis Canada Compartmental, spatially explicit Deterministic

23) Lewis et al. 2014

[52]

E. multilocularis Switzerland FoI modela exploring different functional forms for FoI and

immunity

Deterministic

24) Braae et al. 2016

(cystiSim) [53]

T. solium Tanzania Individual based Stochastic

(Continued)
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transmission, including a decision tree/stochastic simulation approach in Gonzalez et al. [35];

deterministic and stochastic versions of a Reed-Frost model in Kyvsgaard et al. [42]–a chain

binomial model whereby chains of infection are generated by the assumption that infection

spreads between individuals in discrete units of time under the binomial probability distribu-

tion [58]; an individual-based, stochastic model, cystiSim [53]; and a population-based, deter-

ministic model, EPICYST [56]. Representation of the T. solium life cycle is captured with

varying degrees of complexity within each model. Similarities and differences between the

four dynamic transmission models are subsequently compared based on T. solium life-cycle

and transmission features.

Heterogeneity in transmission

Kyvsgaard et al. [42] incorporates compartments for human taeniosis and porcine cysticercosis

but does not consider heterogeneity in host infection states, such as age dependency or infec-

tion burden. Equally Kyvsgaard et al. [42] assume a human to pig transmission probability of

0.01, without providing evidence to support this. While Gonzalez et al. [35] also omits any

infection heterogeneity, more complexity is introduced as human states include those infected

with maturating stages of the adult tapeworm, and infection and antibody presence in pig

compartments. In addition, a pig-population stochastic sub-model is implemented to simulate

population dynamics in the absence of infection [35]. The cystiSim model [53] features hetero-

geneity in both exposure and infection by modelling high (resulting from direct coprophagia)

and low (resulting from indirect environmental exposure) burden infections in pigs, along

with age-dependent human infection. The EPICYST model [56] assigns a proportion of the

infected pig population into high or low burden states and incorporates different transmission

mechanisms in the life cycle; a density-dependent process for pig and human exposure to eggs

and a frequency-dependent process [59] for human exposure to cysts in pork.

Environmental transmission

Both the Kyvsgaard et al. [42] and Gonzalez et al. [35] models do not explicitly model infection

in the environment, although an ‘infection potential’, analogous to environmental contamina-

tion, is generated in Gonzalez et al. [35]. This is based on the number of adult tapeworms and

humans in the ‘post-infection contamination’ stage, with the latter produced by a fixed-delay

in transmission reduction, which can be varied depending on different climatic and hygienic

conditions as specified by parameter inputs. The number of eggs in the environment is

Table 1. (Continued)

Model [Ref.] Parasite species Setting(s) Type of model Role of stochasticity

25) Wang et al. 2017

[54]

E. granulosus China Compartmental, population basedb Deterministic

26) Otero-Abad et al.

2017 [55]

E. multilocularis Switzerland FoI modela extended to include time-dependent and age-

dependent infection pressure & spatial variability

Deterministic

27) Winskill et al.

2017 (EPICYST) [56]

T. solium Sub-Saharan Africa Compartmental, population based Deterministic

28) Budgey et al.

2017 [57]

E. multilocularis United Kingdom Compartmental & individual based, spatially explicit Deterministic with

stochastic elements

FoI: Force of Infection
a indicates modified modelling based on original Roberts et al. [31, 32]

frameworks
b indicates model extension based on original modelling work by Wang et al. [49].

https://doi.org/10.1371/journal.pntd.0007301.t001
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explicitly modelled in EPICYST [56], while cystiSim [53] defines environmental contamina-

tion as an attribute of previous tapeworm carriers with removal of eggs implemented using an

exponential decay function based on environmental studies of Taenia saginata egg survival on

pastures and expert opinion [60]. Considerable uncertainty surrounds the rate at which T.

solium eggs decay in the environment, reflected in the use of egg survival studies from other

Taeniidae species to inform parameterisation (Table 3). The sensitivity analysis conducted in

EPICYST [56] of the model output (cumulative number of human cysticercosis cases) to

model parameters, indicated egg death rate as a highly influential and uncertain parameter,

highlighting the need for more research into T. solium egg environmental viability and

whether heterogeneity exists between settings.

Host recovery and immunity

Several consistencies and differences emerge across the T. solium models in relation to

assumptions on host immunity (Table 3). For example, there is no inclusion of human immu-

nity for taeniosis across the models, although Kyvsgaard [42] indicate that “spontaneous elimi-

nation of the parasite” occurs without providing details. Natural recovery (in the absence of

interventions) from porcine cysticercosis is only modelled in Kyvsgaard et al. [42], with pigs

transferred to a recovered compartment given a certain probability, and subsequently develop

assumed “life-long” immunity given short life-expectancies. A breeding sow would likely live

much longer and outlive this period, although determining the contribution of these animals

Fig 1. Geographical distribution of locations for which models have been developed or applied. Datapoints represent locations for model development,

parameterisation and application, with colour related to species modelled and shape related to distinction between models developed for a specific setting compared to

models applied to a setting (e.g. parameterisation, calibration). In most situations, models were applied to a country or local level (then approximate co-ordinates for

centre of country or locale, e.g. district or city were applied for mapping). Those models not applied to specific country settings were therefore omitted (n = 4). The map

has been created in the R package ‘maps’ using the base map.

https://doi.org/10.1371/journal.pntd.0007301.g001
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Table 2. Summary of the structure and key features of Taenia solium transmission dynamics models identified from the systematic literature search.

Variables Gonzalez et al. (2002) [35] Kyvsgaard et al.

(2007) [42]

Braae et al. 2016 (cystiSim) [53] Winskill et al. 2017

(EPICYST) [56]

Basic model structure & purpose

Representation of

population

dynamics

Decision tree/ stochastic Reed-Frost Individual-based Population-based

Role of chance Stochastic Deterministic and

stochastic

Stochastic Deterministic

Motivation Assess the effectiveness and cost-

effectiveness of interventions

Assess intervention

scenarios and estimate

the basic reproduction

number (R0)

Assess the effectiveness of interventions,

including the probability of elimination

Assess the effectiveness of

interventions and estimate

the basic reproduction

number (R0)

Features included in the model and availability

Infection stages

featured

HT, PCC, HCC HT, PCC HT, PCC HT, HCC, PCC

Way of

representing

infection in hosts

States for HT include immature, mature,

and post-infection contamination; PCC

states progress from immature to mature

cysts, and (EITB) positivity. New cases of

HCC are a function of a pre-set exposure

level

States for HT and

infected and recovered

(+immune) pigs

change over time

through a binomial

chain

HT individuals progress through

maturation of immature tapeworms to

harbouring infectious, mature tapeworms

considering death of tapeworms. Individual

pigs, once infected, progress to infectious

pigs through cyst maturation

States for HT, HCC and

humans infected with both

taeniosis and cysticercosis

are represented; the

prevalence of PCC changes

over each time-step

Host population

demographics

Pig population sub-model (birth, litter size,

age/sex, mortality). Human host modelled

as function of adult tapeworm status

Temporally stable (pig

population)

Temporally stable (pig population

demography based on data from Mbeya/

Mbozi districts, Tanzania)

Temporally stable

Heterogeneity in

host infection

Not included Not included Human (age-dependent infection), pig

(high/low burden)

Pig (high/low burden)

Host immunity

assumptions

Infected pigs develop life-long immunity

after treatment. Antibody (EITB) positive

modelled in pig states (maternal antibodies

or following infection), but not indicative

of protective immunity

Humans not

susceptible to new

infections while

infected with a

tapeworm. Infected

pigs can recover and

develop life-long

immunity over 3

months.

Pigs not susceptible to infection for 3

months after treatment (default assumption

but changeable if necessary)

Pigs not susceptible to

infection for 3 months after

treatment (default

assumption but changeable

if necessary)

Representation of

eggs in

environment

Not explicit. Environmental contamination

determined as a fixed delay in transmission

reduction once a HT carrier is cleared of

infection (dependent on climate/hygiene

parameter).

Not modelled Environmental contamination is a function

of individuals with HT. Decay in egg

viability in the environment is included

Compartment tracking

number of eggs; egg

production rate (input) &

egg death rate (output)

Exposure to eggs in

environment

Not modelled explicitly (simulation assigns

PCC disease status based on PCC

prevalence)

Not directly modelled.

PCC is modelled as a

function of infected

humans at a given

time (‘probability of

infection at contact’

parameter)

Heterogeneous exposure among pigs (direct

transmission via coprophagia leads to high

burden or indirect (environmental

contamination) transmission leads to low

burden infection). Contact is assumed to be

random.

Density-dependent

exposure (product of

contact rate & probability of

infection upon contact) for

both pigs and humans. Set

proportion of pigs develop

high or low burden

infections.

Exposure to cysts in

pork

Not modelled explicitly (simulation assigns

HT disease status based on HT prevalence)

HT is modelled as

function of infected

pigs slaughtered at a

given time

(‘probability of

infection at contact’

parameter

Pigs transmit infection to humans based on

either high or low infection burden at

different probabilities

Frequency-dependent

exposure (product of

contact rate & probability of

infection upon contact with

high- or low-cyst burden

pigs)

(Continued)
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to transmission is unclear given this sub-population does not generally represent slaughtering

stock. Equally, the presence of natural recovery from porcine cysticercosis is unclear, given

that average pig life expectancy is low in many settings and needs further clarification from

field data. Protective immunity is only included following treatment and recovery of infected

pigs [61,62] in both cystiSim [53] and EPICYST [56] for a period of 3 months.

The pig host immune response is more directly modelled by Gonzalez et al. [35]. Firstly, if

born to a serologically positive sow, pigs produce antibodies (modelled as being enzyme-linked

immunoelectrotransfer blot [EITB] positive); it is assumed that these antibodies persist for a

period of 8 months, although the pig may still acquire infection during this time (therefore

being already EITB positive when infected). Secondly, pigs born to serologically negative sows

become EITB positive with a delay of 15 days following larval infection with immature cysts.

These infected pigs progress to infection with mature cysts after a delay of 75 days and remain

EITB positive. Only (simulated) treatment clears infection as pigs move to and remain in the

treated state, indicating that they are resistant to re-infection following treatment [63]. The

modelling approach taken by Gonzalez et al. [35] also calls into question the need to include a

“diagnostic layer” in the other T. solium transmission models to represent outcomes from

serological data (both antibody and antigen in human and pig hosts) which may not directly

equate to underlying true infection status in the hosts as performed in onchocerciasis [24] and

Chagas disease modelling [64].

Adult tapeworm biology and the basic reproduction number (R0)

Gonzalez [35] and cystiSim [53] model the maturation of the adult tapeworm, from infected

humans (with taeniosis) harbouring immature and mature adult tapeworms, while EPICYST

[56] considers only mature tapeworms (for the human taeniosis infected compartment) and

ommiting the pre-patent period as this is assumed to be 5–10 weeks compared to a signifi-

cantly longer human life expectancy duration. Kyvsgaard et al. [42] uses the prepatent period

to set the time-step for the chains of infection. Across the Gonzalez [35], Kyvsgaard et al. [42]

and cystiSim [53] models, the pre-patent period is defined as 3 months although this is based

on data from other Taeniidae species including T. saginata and Echinococcus multilocularis
(Table 3).

Table 2. (Continued)

Variables Gonzalez et al. (2002) [35] Kyvsgaard et al.

(2007) [42]

Braae et al. 2016 (cystiSim) [53] Winskill et al. 2017

(EPICYST) [56]

Other major

assumptions

Infection rates same for all pigs (all pigs

become infected in first 6 months of life).

Random contact

between hosts, all pigs

slaughtered and

consumed in

simulation; constant

egg shedding rate

from tapeworm

Humans can only harbour one tapeworm at

a time, rate of decay in egg viability (onset

from tapeworm death)

No excess mortality in

HCC, negligible impact of

egg consumption on egg

numbers in environment.

No prepatent period of

adult worms

Spatially explicit/

migration included

No: single location and no migration No: single location

and no migration

No: single location and no migration No: single location and no

migration

Diagnostic

uncertainty

modelled?

No No No No

Model availability Book chapter, code unavailable Publication, code

unavailable

Publication and code available (GitHub:

https://github.com/brechtdv/cystiSim)

Publication and code

available (GitHub: https://

pwinskill.github.io/

EPICYST/index.html)

R0: Basic reproduction number, HCC: human cysticercosis, HT: human taeniosis, PCC: porcine cysticercosis, EITB: enzyme-linked immunoelectrotransfer blotting.

https://doi.org/10.1371/journal.pntd.0007301.t002
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Further parameters related to the adult tapeworm life history also vary between the models

including the egg production rate, which is identified as an influential and uncertain parame-

ter in the EPICYST sensitivity analysis [56], and the assumed average life span of the adult

Table 3. Represented parameters, derived and nominal values for Taenia solium transmission dynamics models, outlining how parameters are represented, derived

and their nominal values.

Parameter Gonzalez et al.

(2002) [35]

Kyvsgaard et al. (2007) [42] Braae et al. 2016 (cystiSim) [53] Winskill et al. 2017 (EPICYST) [56]

Host demographic parameters

Pig birth rate Poisson

process

0.25 per 3 months (pig death rate
ensuring a stable population size)

Function of number of pigs

slaughtered (to ensure stable
population size)

Set to net rate—0.083 per month

Pig death rate/ average age

at slaughter

Daily

mortality

probability

0.25 per 3 months (rate of pig

slaughter)

Average age at slaughter of 1 year

and always before 36 months

0.083 per month

(derived from average slaughter age: 1 year)

Human birth rate Not modelled Not modelled Not modelled Set to net rate—0.0015 per month

Human death rate Not modelled Not modelled Not modelled 0.0015 per month (derived from average life

expectancy of 54 years)

Egg-specific parameters

Egg decay Not modelled Not modelled Exponential decay with rate

parameter of 0.268 per month

based on Taenia saginata data [60]

2 per month (derived from average life

expectancy of eggs in environment of 2

weeks) based on T. saginata [60] and

Echinococcus multilocularis data [65]

Egg production rate Not modelled Not modelled 1,500,000 per month 960,000 per month (range of 640,000 to

1,800,000)

Transmission parameters

Proportion of pigs with

low/high burden

Not modelled Not modelled Function of direct (coprophagia) or

indirect (environmental

contamination) transmission

probabilities

0.8 (therefore proportion with high burden is

0.2)

Average cyst maturation

duration (PCC)

75 days Not modelled 90 days Not modelled

Average duration of larval

infection (PCC) &

subsequent protective

immunity

Not modelled 1-year duration of larval stage

(derives pigs’ recovery rate and
rate of becoming immune) with

lifelong immunity

0 (No natural recovery assumed,

based on relatively short lifespan of

pigs)

0 (No natural recovery assumed)

Treatment-induced

immunity duration

(infected pigs)

Not modelled Assumed to be lifelong 3 months 3 months

Duration cysts remain

viable after treatment

28 days 0 (No delay) 0 (No delay) 0 (No delay)

Rate of human pork meal

procurement

Not modelled Not modelled Not modelled 0.5 per month (assumes average of 6 pork

meals per year)

Average duration of larval

infection (HCC)

Not modelled Not modelled Not modelled 3 years (derives the HCC recovery rate).

Average pre-patent period

(adult T. solium tapeworm)

~ 3 months

(90 days)

3 months 3 months 0 (no pre-patent period modelled)

Adult T. solium tapeworm

lifespan

3 years 1 year (derives human recovery
rate)

1 year 2 years (derives human recovery rate)

Minimum age of pork

consumption

Not modelled Not modelled 24 months Not modelled

Probability of transmission

from pig to human

Not modelled 0.0005 (any pig) 0.00011 (pigs with low burden);

0.00015 (pigs with high burden)

0.0084 (pigs with low cyst burden); 0.0147

(pigs with high cyst burden)

HCC: human cysticercosis, HT: human taeniosis, PCC: porcine cysticercosis.

https://doi.org/10.1371/journal.pntd.0007301.t003
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tapeworm reflecting the limited data associated with the adult tapeworm dynamics (Table 3).

This has a direct bearing on the estimated basic reproduction number (R0) of T. solium and

accounts for some of the variability in the estimates of R0 between EPICYST [56] (R0 of 1.4,

95% credible Interval: 0.5–3.6) and the Kyvsgaard et al. [42] (R0 of 1.75) models. The R0 esti-

mated in Kyvsgaard et al. [42] does not consider pig infections, with the calculation based on

the summation of new infected humans over time, although there is no distinction between

new human cases and those continually re-infected, and this definition erroneously produces

units of time for R0. By contrast, R0 calculated from EPICYST [56] reflects the whole system of

transmission among pigs, humans and the environment. Further noting that T. solium is not

dioecious but it is hermaphrodite species, the classical R0 for helminths is strictly only compati-

ble with an intensity-based modelling framework. The R0 however as estimated in EPICYST

[56] still provides a useful and valid threshold quantity for comparison, given that R0 for T.

solium has been estimated exclusively to date using so-called microparasitic prevalence model-

ling frameworks.

Intervention modelling

Human-directed interventions are simulated in all four dynamic transmission models

(Table 4). Mass drug treatment irrespective of infection status are simulated in Gonzalez et al.

[34], Kyvsgaard et al. [42] and cystiSim [53], while EPICYST [56] currently models a hypothet-

ical test-and-treat (T&T) intervention based on the possible future availability of a specific and

sensitive point-of-care test for taeniosis, although current diagnostics lack either or both sensi-

tivity and specificity [66, 67], or in the case of a highly specific coproantigen test [68], are not

commercially available yet. For example, the human-directed intervention modelled in EPI-

CYST [56] is a hypothetical approach based on the rES33 EITB for antibody detection [69,70],

which has substantially lower specificity than that currently modelled and most intervention

studies measuring human taeniosis use the coproantigen ELISA test [71,72]. Another potential

limitation across models is that human treatment efficacy may be lower in field settings com-

pared to currently assumed estimates. However, efficacy can be adjusted by the user in cysti-

Sim [53] and EPICYST [56] with the available code, allowing adaptation of the model to a

given treatment efficacy.

In the pig host, mass treatment (using oxfendazole) and/or vaccination (e.g., the TSOL18

vaccine [73]) are simulated in all models except Gonzalez et al. [35], where only pig mass treat-

ment is simulated. Pig-directed interventions achieve high efficacy from field studies [74,75]

and this is reflected in the models. For example, the treatment efficacy of oxfendazole is

assumed to range from 90% in cystiSim [53] to 99% in EPICYST [56] to 100% in both Gonza-

lez et al. [35] and Kyvsgaard et al. [42]. Pig vaccination efficacy has also been assumed to be

high, having been set to 100% in Kyvsgaard et al. [42], 99% with an adjustment to account for

the fact that some piglets may become infectious before a full course of vaccine can be adminis-

tered in EPICYST [56], and 90% in cystiSim [53], where vaccination was combined with treat-

ment in all modelled scenarios. While cystiSim [53] and EPICYST [56] permit user-specified

efficacy changes, cystiSim [53] has the added benefit of allowing for age-targeted interventions

in both pigs and humans.

Coverage of human- and pig-targetted interventions is included as a parameter in all mod-

els, with coverage levels fixed at 90% Kyvsgaard et al. [42], but varied in the EPICYST [56] sen-

sitivity analysis and across intervention scenarios for cystiSim [53] and Gonzalez et al. [35].

Behavioural and environmental focussed interventions have also been simulated using EPI-

CYST [56] and Kyvsgaard et al. [42], including improved sanitation, husbandry, meat inspec-

tion and cooking practices, by modifying nominal values of certain transmission parameters.
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A key finding across the models is that human- and pig- targeted interventions are generally

sensitive to coverage levels (Table 4), although these interventions are more robust to changes

in coverage compared to behavioural and environmentally focussed interventions in the EPI-

CYST sensitivity analysis [56]. One important quantity that could therefore be estimated is the

minimum fraction of pigs to be vaccinated to achieve transmission interruption and infection

elimination. Limitations with current modelling of interventions, especially on the effective-

ness of human-directed intervention approaches and on the realistic, achievable coverage lev-

els, emphasise the need to design intervention simulations in conjunction with research

groups involved field intervention trials. Equally, simulations need to be compared with data

collected during interventions implemented in the field. For example, it is planned that cysti-

Sim [53] predictions will be compared with data collected in Zambia as part of the CYSTI-

STOP programme and used to update model inputs from longitudinal infection data and to

inform parameters of interest including pig population turnover and actual coverage [76].

Table 4. Input variables, interventions and principal outcomes for Taenia solium transmission dynamics models: Intervention included and main model outcomes.

Variables Gonzalez et al. (2002) [35] Kyvsgaard et al. (2007) [42] Braae et al. 2016 (cystiSim) [53] Winskill et al. 2017 (EPICYST)

[56]

Interventions modelled & baseline calibration (in publications)

Baseline calibration /

model initialisation

2,000 humans (exposed),

prevalence of 3% (HT), 45% PCC

1,000 humans, 200 pigs;

prevalence of 2% (HT), 20%

(PCC)

Model calibrated and initialised

to data from Mbeya/Mbozi in

Tanzania

10,000 humans, 2,000 pigs;

prevalence of (HT) = 2%, (PCC)

= 20%, (HCC) = 7%

Pig-directed

interventions

Mass drug administration (MDA) MDA, vaccination MDA, vaccination MDA, vaccination

Human-directed

interventions

MDA of HT Test-and-treat (T&T) of HT

(hypothetical), MDA of HT

MDA of HT T&T of HT (hypothetical)

Behaviour change/

environment-

directed

interventions

Not modelled Improved sanitation, husbandry,

meat inspection and cooking

practices

Not modelled Improved sanitation, meat

inspection and husbandry

Intervention

heterogeneity

Coverage, treatment efficacy,

intervals between rounds

Coverage, treatment efficacy Targeting specific age groups,

coverage, treatment efficacy,

intervals between rounds

Coverage, treatment efficacy

Main outcomes

Primary outcome No. of interventions (rounds)

until local parasite elimination,

discounted benefit

Basic reproduction number (R0),

post-intervention prevalence

reduction, proportion of runs

achieving elimination

Predicted probability of

elimination & duration to

elimination

HCC cases averted, Basic

reproduction number (R0)

Impact of

interventions

Success of interventions highly

sensitive to coverage. Intervening

in both humans and pigs reduce

the number of intervention

rounds required to achieve local

elimination. Only one

intervention (3x human MDA

with 2x pig MDA rounds with

100% coverage/90- day intervals)

resulted in discounted benefit

greater than no intervention

scenario

R0 for T. solium reduced to <1

following behavioural change/

environmental interventions but

variable for pig-/human-directed

interventions. Human T&T leads

to most runs achieving

elimination, followed by pig

vaccination (single strategy)

Pig-directed interventions result

in highest probability of and

shortest time to elimination but

dependent on high coverage and

efficacy. Lower coverage of pig-

focussed interventions

compensated by combining with

other interventions

Biomedical (pig-/human-

directed) interventions highly

effective (applied singularly) &

more effective than behavioural/

environmental interventions.

Sensitivity analysis shows that

human- and pig-focussed

interventions are more robust to

coverage/efficacy changes

compared to other interventions

Other

epidemiological

findings

Seasonality (factors not detailed)

had a limited impact on infection

dynamics over time

R0 for T. solium was estimated at

1.75 (no 95% confidence interval)

at baseline

Stable dynamics achieved

(validated against no-

intervention dataset from Mbeya/

Mbozi in Tanzania)

R0 for T. solium was estimated at

1.4 (95% credible Interval: 0.5–

3.6) at baseline

HCC: human cysticercosis, HT: human taeniosis, PCC: porcine cysticercosis; R0: Basic reproduction number, T&T: Test & Treat—this is based on testing for taeniosis

and only treating suspected taeniosis cases, MDA: Mass drug administration.

https://doi.org/10.1371/journal.pntd.0007301.t004
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The existing models need to be tested to determine their ability to accurately model field-

specific targeted interventions. For example, cystiSim was used to test targeted anthelmintic

treatment in school-age children given the age-structure of the host human, replicating the

approach taken in Braae et al [77]. Requirements to model other targeted interventions, such

as the inclusion of spatially explicit structure to capture ring screening/treatment strategies, as

applied in northern Peru [71], will need further consideration.

Assessing the broader Taeniid transmission models towards identifying advances for T.

solium transmission modelling. The majority of modelling studies captured in the system-

atic search focussed on the Echinococcus genus (n = 20), other Taenia species (n = 20) and a

mixture of these two (n = 2), providing a number of approaches that could be adopted to sup-

port further development of T. solium dynamic transmission models. Roberts et al. [31, 32]

devised simple models to estimate infection pressure (force-of-infection, FoI) when fitted to

Echinococcus granulosus, T. ovis, and T. hydatigena age-prevalence and age-abundance data in

intermediate and definitive hosts. A key driver of this work was to understand the density-

dependent constraints induced by acquired immunity, identified in the intermediate host in T.

ovis and T. hydatigena, and inferred in the definitive host of E. granulosus (canids and other

carnivores) from saturation of age-prevalence and age-abundance profiles. This model of

acquired immunity enabled estimation of the FoI, and rates of acquisition and loss of immu-

nity in the host to inform E. granulosus full dynamic transmission models of Torgerson [36]

and Huang et al. [48].

Age-infection heterogeneities and force-of-infection modelling

The FoI models of Roberts et al. [31,32] were also used to estimate the R0 of E. granulosus,
T. ovis, and T. hydatigena and to determine the equilibrium steady-state. Similar FoI models

could be fitted to T. solium age-prevalence data and, if available, age-abundance data from

pigs and humans, as already performed in Ecuador and Zambia [78,79], but applied to a wide

variety of epidemiological settings to support setting-specific model parameterisation. The

egg to human and egg to pig transmission coefficients were identified in the EPICYST sensi-

tivity analysis [56] and could therefore be informed through FoI estimation. This approach

could also be used to investigate different assumptions on age-exposure patterns, for example

by implementing age-dependent, age-truncated or dynamic FoI modifications to the FoI

models [43, 52] and acquisition of immunity. Age-dependent infection is incorporated into

human dynamics in cystiSim [53], however FoI modelling could help to inform further age-

dependent infection processes in pig and human populations in cystiSim [53] and EPICYST

[56]. For example, there is some evidence for specific age trends in taeniosis infection, with

the highest prevalence’s found in younger age groups as identified in the Democratic Repub-

lic of Congo [80], Peru [81], and Guatemala [82], which could be a result of protective immu-

nity in older individuals or age-specific meat consumption trends. Age-stratified taeniosis

prevalence data could support FoI modelling to better understand the rate of recovery from

taeniosis, identified as an influential and uncertain parameter in the EPICYST sensitivity

analysis [56]. The rate of human pork meal procurement was also considered a significant

parameter in the EPICYST sensitivity analysis [56], so risk-factor analyses, such as those con-

ducted in Western Kenya [83], could refine the uncertainty around this nominal parameter

value in different settings. Fitting appropriate distributions such as the negative binomial dis-

tribution to T. solium cyst abundance data from pigs, could help to better determine the

degree of infection aggregation, possibly indicative of heterogeneous exposure and support

modelling overdispersion explicitly as performed for E. multilocularis worm burden in foxes

[45].
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Population-based versus Individual-based modelling approaches

Transmission dynamics models of Echinococcus spp. reveal an interesting split between

modelling approaches. Deterministic, population-based transmission models have been

used primarily for E. granulosus incorporating dogs as the definitive host, sheep or other live-

stock as the intermediate host and humans acting as accidental intermediate hosts [49, 50,

54]. The exception is Huang et al. [48] where an individual-based model of E. granulosus was

developed to study dynamics in a small community, an approach also applicable to the simu-

lation of T. solium in small communities. Wang et al. [54] extends the models previously

developed [49,50] by devising an approach to tackle parameter estimation issues concerning

egg dynamics in the environment. The model incorporates infection delays as distributed

time delays of infection between hosts, with different distribution functions chosen to reflect

differences in the range of host movement (e.g., livestock, humans), and may provide an

alternative approach for modelling transition between infection stages in the T. solium trans-

mission models.

E. multilocularis transmission models were initially structured within deterministic, popu-

lation-based frameworks [34, 38], also extending these approaches to consider optimal control

through an economic lens [47]. Takumi & Van der Giessen, 2005 [40] also present an E. multi-
locularis deterministic model which tracks the mean number of transmission stages in hosts

rather than measuring prevalence to replicate more accurately the rebound to pre-control of

adult worm prevalence seen after cessation of a deworming campaign, even when substantial

reductions are initially achieved. The impact on the rate at which average worm burdens

return to pre-control levels, following cessation of community chemotherapy interventions

has been further demonstrated for other helminths [84]. Modelling of E. multilocularis trans-

mission dynamics diverges significantly from E. granulosus modelling through the develop-

ment of individual-based stochastic dynamics [37, 44, 57] in the definitive host (e.g., foxes) to

capture stochasticity in the demographic and infection processes in the wild animal popula-

tions that drive transmission. Heterogeneities in local pig populations and differential pig for-

aging behaviours [85] may be better captured by similar individual-based techniques, although

these behaviours may be difficult to parameterise reliably and will likely be seasonally- and

husbandry/management system-specific.

Spatial and seasonal transmission modelling

Recognising that environmental contamination is spatially aggregated [40], E. multilocularis
transmission models [37, 38, 45, 57] and a specific T. ovis deterministic transmission model

[51] have introduced spatial dynamics by a variety of approaches (Table 5). Spatial heterogene-

ity in T. solium transmission is undoubtable and has been identified in a number of settings,

with the detection of local clusters of pig cysticercosis prevalence and incidence [86,87], and

clustering of pig cysticercosis infection (or seropositivity) near to human taeniosis carriers

[88–90]. This may indicate the presence of spatially-aggregated environmental contamination

of T. solium eggs and suggests spatially heterogeneous transmission. There is some evidence to

suggest that other mechanisms are involved in the spatial distribution of T. solium eggs in the

environment, such as the possible role of dung beetles acting as mechanical vectors for egg dis-

persal [91] and could be involved in a complex interplay with pig behaviour and seasonal fac-

tors [4]. Movement of individuals (humans and/or pigs) between communities may also play

an important role in T. solium transmission and will influence the likelihood of sustaining

elimination or experiencing resurgence [35]. Inclusion of spatial dynamics, however, should

not detract from resolving the structural and parametric uncertainties that affect the current

non-spatial models.
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Another feature explored in the E. multilocularis modelling papers is the impact of seasonal

variation, by seasonal forcing of transmission models to account for differences in egg viability

and movement of wild animal populations between seasons, for example by describing egg

decay as a function of temperature [57]. The Gonzalez et al. [35] T. solium transmission model

begins to consider the possibility that T. solium dynamics may be influenced by climate; how-

ever, there is little information available to estimate the effect of temperature (and other envi-

ronmental variables) on T. solium egg viability in natural conditions. These factors might also

affect transmission differently depending on the endemicity level, e.g. the proportions of infec-

tions in pigs resulting from indirect transmission. The role of peak pork consumption periods

[92] could provide a more realistic way of implementing T. solium seasonal dynamics and

would be interesting to explore with relevant longitudinal data. Advanced statistical modelling

approaches have also been adopted in the wider Echinococcus modelling literature to improve

predictive ability where periodicity in human echinococcosis prevalence data is observed [93];

Table 5. Spatial modelling approaches (defined as incorporation of explicit spatial structure linked to transmis-

sion processes) used in in transmission models for wider Taeniidae family models.

Model & species Approaches to spatial modelling

Hansen et al. 2003 [37]

Echinococcus multilocularis
Grid-based: foxes are modelled as individual animals and voles as population

units (in grids) in foxes’ territory (with foxes randomly distributed). Fox

interaction (capture prey, defecate) is based on random draws per ‘territory’.

Eggs shed in faeces are represented by position on grid–subpopulation of

voles become infected if in infected grid during a time-step.

Milner-Gulland et al. 2004 [39]

E. multilocularis
E. multilocularis cysts modelled as individuals in sedentary rodent population

(hosts not modelled). Rodent population density and vegetation type (using

GIS data) determines carrying capacity /habitat suitability of a patch. Density-

dependence in intermediate host modelled as non-linear relationship between

habitat suitability and carrying capacity & ‘scramble-type’ density-

dependence. Dispersal of parasite through rodent consumption by foxes/

movement of foxes and rate of release of eggs into a patch by adult worms

(fecundity rate)–dependent on carrying capacity (or rodent availability–

reflected by cyst population in a patch). A metapopulation is constructed of 9

patches representing the transitional area or marginal semi-arid area between

wet steppe (high prevalence) and desert area (no infection). Annual time-step

modelled.

Takumi et al. 2008 [45]

E. multilocularis
The mean worm burden is modelled at a given time and location,

incorporating parameters for exponential growth of the worm population and

a diffusion coefficient (Km2 per year) to take into account the rate of spread

of the parasite from an initial localised infection focus. The spatial model was

fitted to spatial and longitudinal worm burden data in the border area of the

Netherlands (with Germany and Belgium).

De Wolf et al. 2013 [51] Taenia ovis Total pasture area is divided into equally-sized zones. Dog defecation at

random in a zone becomes "hot" (equates to heavily contaminated). A model

parameter is included to estimate rate of contact of susceptible lambs with

"hot zones", defined as an area where susceptible sheep would be exposed to

sufficient numbers of eggs (~ 100 eggs) to produce sufficient cysticerci to

permit condemnation of carcasses and subsequent dog infection. Over time

eggs disperse and decay (fixed- set to 12 weeks per zone).

Budgey et al., 2017 [57]

E. multilocularis
Habitat is modelled as a ’mesh’, with each cell representing 0.25 km2 & fox

dens distributed randomly to match local densities from data, with foxes

spending 90% of time in home territory (grid). Foxes exposed to a proportion

of vole population that is infected in territory (vole dynamics modelled at

population level). Defecation with infective material is distributed

homogenously throughout territory. Egg survival times are dependent on

temperature; viable egg numbers fall asymptotically in each territory. The

total number of eggs in the environment dictates the infected proportion of

susceptible voles.

GIS: Geographical information system.

https://doi.org/10.1371/journal.pntd.0007301.t005

Epidemiological models of Taenia solium transmission and control

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007301 April 10, 2019 15 / 24

https://doi.org/10.1371/journal.pntd.0007301.t005
https://doi.org/10.1371/journal.pntd.0007301


however, fairly detailed time-series data are required for model fitting. Further seasonal het-

erogeneities may exist including seasonal slaughter patterns in areas where more pigs are

slaughtered due to specific holidays [92], to obtain capital ahead of planting season, or the free

capital for school fees. Likewise, seasonal variation in local crop production systems have a

potential impact on transmission dynamics [3]. Less predictable events such as funerals can

additionally lead to increased slaughter activity and movement of pigs.

Data needs and future collaborations

A number of data gaps are evident to inform modelling efforts and develop a comprehensive

research agenda for T. solium control and elimination efforts, with Fig 2 summarising data

needs described across this paper. It is clear that one of the limitations of existing T. solium
transmission models is uncertainty surrounding biological parameter estimates, for example,

for those associated with egg dynamics and the adult tapeworm lifespan, identified as influen-

tial parameters (egg production rate/ death rates) in the EPICYST sensitivity analysis [56].

Direct measurement is often difficult through experimental design, for example for egg pro-

duction rates; therefore, it could be possible to use the existing or improved T. solium models

to infer these values from observable data, such as fitting to baseline prevalence data. Trans-

mission rate (FoI) parameterisation with FoI model fitting for different settings as applied for

E. granulosus [36, 48] and Trypanosoma cruzi [94] could be facilitated with collection of

detailed age-stratified prevalence and incidence data, using diagnostics with field-validated

sensitivity and specificity estimates to perform suitable adjustments. Necropsy of pigs, which is

the assumed gold standard diagnostic methodology, would provide the most robust and reli-

able data for model fitting; however, issues associated with cost and feasibility of obtaining rea-

sonable sample sizes, longitudinal measurements, and utility in the control phase of a

programme with low infection prevalence levels pose barriers to the use of these data. Deter-

mining serological diagnostic markers which represent true infection status will be important,

as performed for validation of B158/B60 Ag-ELISA with necropsied animals in Zambia [95],

to establish effectiveness of interventions where necropsy is unavailable.

Development of spatial transmission models, when the current uncertainty is addressed in

existing models, will require spatially-resolved infection datasets, including variables on pig

movement between communities and/or households, household georeferenced data, and data

on human movement, as demonstrated for developing a spatially-explicit network model of

endemic schistosomiasis in Senegal using mobile phone data [96].

Although not necessary for accurate transmission modelling, dynamic modelling of neuro-

cysticercosis (NCC) to understand how interventions influence longer term burden of disease

estimates would be useful for economic assessments. The main challenges associated with

NCC modelling include simulating the proportions of individuals with cysticercosis that have

neurocysticercosis, and the proportion subsequently developing morbidity and when this

occurs (rather than those that are asymptomatic or presenting with mild symptoms), which

would require temporal data [97]. Burden of disease modelling would also require data to cap-

ture the variation of infection-related morbidity. Clinical neurocysticercosis, for example, is

highly pleomorphic, with a range of factors influencing clinical outcomes including the loca-

tion of lesions within the central nervous system (e.g. extra- compared to intra- parenchymal),

the cyst stage and the intensity of the immune response to cysts [98]. Bhattarai et al. [99] have

included the DALYs for NCC associated headache in their burden of disease estimation, but

more generally modelling efforts have focussed on morbidity associated with epilepsy and sei-

zures. Relevant to transmission, the EPICYST model [56] also contains a compartment for

humans infected with both cysticercosis and taeniosis, for which there are very limited data.
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Finally, it is clear that simulated interventions need improved parameterisation in terms of

efficacy and coverage and require longitudinal intervention datasets for validation. Reliable

intervention modelling will require data on age-structured interventions, especially for pig-

directed strategies such as vaccination and oxfendazole treatment (to model that animals close

to slaughtering age should not be treated), but also for human-directed strategies such as

school-based treatment programmes [77]. This type of intervention modelling is already

implementable in cystiSim [53] and there are plans to integrate these interventions using an
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Fig 2. Identifying key research gaps and data needs towards a comprehensive research agenda for Taenia solium epidemiology, control and elimination. NCC-

neurocysticercosis; MDA- Mass drug administration.

https://doi.org/10.1371/journal.pntd.0007301.g002
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age-structured version of EPICYST [56]. A ‘logical model’ of pig cysticercosis infection risk in

different age cohorts by Lightowlers & Donadeu [92] clearly outlines some of the consider-

ations for an age-structured model. For example, the authors suggest restricting oxfendazole

use in animals approaching the average age of slaughter, as oxfendazole treatment mandates a

21-day withholding period before human consumption. Equally, testing how the average age

at which pigs are slaughtered impacts onward transmission risk and, therefore, intervention

efficacy would be important to consider.

Working closely with field partners, stakeholders and strengthening collaboration between

T. solium modelling groups will facilitate opportunities to harmonise models and compare

projections through cross-validation based on longitudinal field data from intervention trials

[100]. This approach will improve confidence in the predictive abilities and utility of T. solium
transmission models for evaluating whether the WHO NTD roadmap targets, especially relat-

ing to the development of a validated strategy for control and elimination, will be achievable in

the near future.
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64. Cucunubá ZM, Nouvellet P, Conteh L, Vera MJ, Angulo VM, Dib JC, et al. Modelling historical changes

in the force-of-infection of Chagas disease to inform control and elimination programmes: application

in Colombia. BMJ Glob Health 2017; 2(3):e000345. https://doi.org/10.1136/bmjgh-2017-000345

PMID: 29147578
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