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The mosaic films made of TiO2 and hexagonal MoO3 nanoparticles not only 

demonstrate high activity in the reactions of photooxidation of the adsorbed organics 

in air conditions but also store the photoinduced charge as the result of MoO3 

reduction by photoelectrons injected from titania which behaves as a photogenerating 

component. The charge accumulated via this light-driven reduction is spent under 

dark conditions in the reaction of molecular oxygen reduction yielding peroxide 

species. As the result, TiO2/h-MoO3 nanocomposite films retain oxidation ability for 

ca. 4 hours after UV illumination. This photocatalytic material opens fresh avenues in 

fabrication of self-sterilizing coatings capable to generate reactive oxygen species not 

only under actinic illumination but also under dark conditions. 
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1. Introduction 

The oxidation and reduction driven by photoholes and excited electrons 

generated at the UV-irradiated TiO2  surface make it an effective photocatalytic 

material for realization of various useful functions, such as removal of toxic 

compounds and self-sterilization [1-4]. These functions are based on oxidation 

abilities of reactive oxygen species (ROS) produced via photocatalytic reactions 

(hydroxyl radicals generated by photoholes from TiO2 valence band reacting with 

surface adsorbed water and superoxide ions formed due to interaction of 

photoelectrons from conduction band with molecular oxygen [5,6]). Being strong 

oxidants, ROS can participate in the series of oxidation reactions [3,7] leading in the 

destruction of organic contaminants [2,3,8] and are able to cause various damages to 

microorganisms ensuring their rapid inactivation [9-11].  

 The intrinsic limitation that comes from basic mechanisms of TiO2 

photocatalysis consists in the fact that oxidation activity of TiO2 does not retain after 

illumination is terminated. To overcome this fundamental limitation, several TiO2-

based photocatalytic systems with reductive an oxidative energy storage abilities 

have been proposed [12-18]. In these hybrid photocatalysts for storage the reductive 

energy the combinations of titania with tungsten [12-15] and molybdenum [16] 

oxides as well as with polyoxometallates [17] were used, while for storage the 

oxidative energy TiO2 was successfully combined with Ni(OH)2[18]. 

Despite many studies investigating the charge storage photocatalytic systems, 

many problems concerning their behavior still remain to be solved and the most 

important one among them is a lack of effective control over the discharge behavior 

to ensure the long-term oxidation and pathophysiological activity of pre-illuminated 

photocatalytic coatings. Here we demonstrate that the careful engineering of hybrid 

photocatalysts comprising nanocrystalline TiO2 and fine crystals of hexagonal MoO3 

(h-MoO3) ensures the retaining of oxidation activity of the photocatalyst surface for a 
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long time after illumination and the radical enhancement of photocatalytic activity 

under actinic illumination.  

2. Experimental 

All materials used in the work were purchased from Sigma–Aldrich Chemical Co. 

and used as supplied. For preparation of solutions the Milli-Q water was used. 

The thin-film photocatalysts were prepared using aqueous dispersions of TiO2 and 

MoO3. The aqueous sol of titania was prepared by adding 12.5% NH4OH dropwise to 

2.5 M TiCl4 + 0.65 M HCl aqueous solution cooled to 0 °C under vigorous stirring 

until pH 5 was reached. The obtained precipitate was then washed with distilled 

water and dispersed by ultrasonic treatment. The resultant transparent sol was stable 

for several days even in the absence of stabilizing agents. The size of thus obtained 

TiO2 particles (anatase) was of ca. 4 nm.  

The MoO3 particles of different morphology were synthesized via thermally-

induced polycondensation of molybdic acid in aqueous medium. The detailed 

mechanism behind polycondensation synthesis employing oxoacids is discussed 

elsewhere [19]. 

The molybdic acid solution used as a starting material was prepared by 

acidification of sodium molybdate on a resin. Four synthetic protocols were used to 

obtain different MoO3 nano- and microcrystals:  

(i) treatment of 0.5 M molybdic acid solution at 100 °C for 4 h (the reaction 

volume was maintained constant) that yields regular prism-like MoO3 microcrystals 

with the average size of 3 µm × 10 µm; 

(ii)   hydrothermal treatment of 0.2 M molybdic acid in the 75-ml reactor at 200 °C 

for 4 h yielding needle-like microcrystals with the average length of 15 µm; 

(iii)  treatment of 0.5 M molybdic acid at 100 °C for 4 min followed by dilution 

1:5 to stop nucleation in the solution and incubation of the resultant oxide particles at 

100 °C for 4 h to ensure their recrystallization yielding spherical nanoparticles 100-

200 nm in size; 
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(iv) treatment of 0.5 M molybdic acid at 100 °C for 10 min followed by dilution 

1:5 and incubation of the resultant particles at 100 °C for 4 h under conditions far 

from supersaturation to ensure the dispersing of MoO3 prisms that yields regular 

nanocrystals also with a prismatic shape (nanoprisms) with the average size of 80 nm 

× 300 nm. 

 Thin-film photocatalysts were prepared by spraying mixtures of TiO2 sol and 

MoO3 suspension onto the glazed ceramic tiles heated to 200 °C. The resultant 

coatings were then annealed at 450 °C for 1.5 h in air. The MoO3 loading in the 

composite was evaluated from Ti:Mo atomic ratio obtained from Rutherford 

backscattering spectra.  Before the photocatalyst deposition, the surface of the 

substrate was coated with a silicon dioxide intermediate layer by spraying the SiO2 

sol to prevent migration of sodium ions from a glaze during annealing (the latter 

factor could adversary affect the photoactivity of titania [20] ). According to the 

AFM measurements thus obtained photocatalytic coatings have a thickness of ca. 

0.4 µm. 

 To probe the photocatalytic activity of TiO2 and TiO2:MoO3 composite films 

the reaction of the photodegradation of Rhodamine 6G (o-[6-(ethylamino)-3-

(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl] benzoic acid ethyl ester 

monohydrochloride) was used. For each measurement a drop (0.1 ml) of 4×10−4 M 

aqueous solution of Rhodamine 6G was applied onto the photocatalyst surface, then 

spread over the area of 2 cm2 and left for drying; the resultant surface concentration 

of the probing dye was of ca. 2×10−8 mol/cm2. The photodegradation of probing dye 

was followed by measuring a diffuse reflectance, R, at 530 nm that corresponds to the 

absorption of the dye in the adsorbed state. Using the Kubelka–Munk function [21], 

the value proportional to the surface dye concentration, Γ , was calculated as follows:  

Γ~ (1-R)2/2R.  

The ROS production at air-photocatalyst interface was studied by measuring 

chemiluminescence according to the procedure described in detail elsewhere [6,8]. 
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The glass plates coated with TiO2 and TiO2:MoO3 films were illuminated in empty 

quartz cell with UV light for 30 min. Immediately after illumination the cell was 

placed into homemade setup permitting the measurement of the chemiluminescence 

as a function of time. During the course of chemiluminescence measurements the cell 

was filled with aqueous solution (pH 9) containing 0.4 g/l of luminol and 10-4 M 

FeSO4. The same solution but without FeSO4 additive was used to distinguish peroxo 

and superoxide species. 

Ultraviolet illumination was carried out using high-pressure hydrogen lamp 

Philips HPK 125 W. The intensity of the incident light was ~ 10 mW/cm2. The ESR 

investigations of Mo(V)  photoproduction were carried out with the use of powdered 

samples of TiO2:MoO3 composite and SiO2:MoO3 composite (i.e., MoO3 

microcrystals dispersed in the inert silica matrix). The ESR spectra were recorded 

with a Bruker EMX-8 (X-band) spectrometer at room temperature. The 

electrochemical measurements were performed with the use of Autolab PGSTAT 

204. All the potentials are given against Ag/AgCl, Cl-(sat.) reference electrode. The 

electrochemical properties of MoO3 dispersions were investigated by cyclic 

voltammetry with the use of the carbon paste electrode prepared by mixing 60 mg of 

carbon powder, 100 mg of molybdenum oxide, and 0.05 ml of dibutylphtalate. For 

the photoelectrochemical experiments TiO2 and TiO2:MoO3 films were deposited 

onto ITO conducting glass. 

3. Results and Discussion 

The MoO3 particles used for TiO2:MoO3 composite preparation possesses 

principally different morphology as evidenced by SEM images given in Fig. 1. 

However, the polycondensation synthetic technique in all cases yields oxide phases 

of very similar composition: the XRD analysis (presented in the Supplementary 

Material) evidences that the resultant oxide particles consist of h-MoO3 with the 

admixture of monoclinic MoO3•2H2O (the concentration of dihydrate does not exceed 
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3% in the case of nanoprisms and reaches the maximum value of ca. 27% in the case 

of needle-like crystallites − see the Supplementary Material). 

The photodegradation curves for Rhodamine 6G deposited onto the surface of 

TiO2 and TiO2:MoO3 coatings shown in Fig. 2 evidence that photocatalytic 

degradation of probing dye occurs much more efficiently as compared to the direct 

photolysis on the surface of a glazed tile free of the photocatalyst. The photocatalytic 

behavior of TiO2:MoO3 composite coating appears to be dependent on the type of 

MoO3 particles used for composite preparation: while the composite films prepared 

with the use of nano- and microprisms exhibit the enhanced activity towards probing 

dye photooxidation under UV irradiation (the rate constant of this process in the case 

of composite film derived with the use of microprisms is 1.3 times larger than the rate 

constant of dye photooxidation at bare titania), the composite prepared with the use 

of spherical MoO3 nanoparticles and needle-like crystals are less active in 

comparison with TiO2. The rate of dye photodegradation is also dependent on the 

photocatalyst composition; thus, in the case of TiO2:MoO3 film prepared with the use 

of MoO3 microcroprisms, dye photodegradation rate reaches its maximum at MoO3 

loading of ca. 15 mol.% and appears to be about 2 times greater than that attained at 

TiO2, while at the MoO3 content larger than 20 mol.% the photooxidation efficiency 

appears to be lower than that demonstrated by bare titania.  

The photoelectrochemical measurements (Fig. 3) evidence that TiO2:MoO3 

coatings containing 15 mol.% of MoO3 generate photocurrent with the efficiency 

which is ca. 50% greater than that provided by bare TiO2 pointing to higher yield of 

photoholes and lower level of recombination losses in the case of composite coating. 

The latter fact can be attributed to the efficient separation of photoproduced charge 

carriers at TiO2/MoO3 inner heterojunctions that is facilitated by considerable 

difference in the flat-band potentials of TiO2 and MoO3 (this difference estimated 

from the photocurrent onset potentials for TiO2 and MoO3 films used in this work 

amounts 0.55 V). This improvement in the charge separation ability can be 
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considered as the key factor responsible for the enhanced photocatalytic activity 

demonstrated by TiO2:MoO3 composite films. However, since the bare MoO3 

demonstrates much lower intrinsic photoactivity as compared to TiO2, the 

enhancement of dye photooxidation ability is observed at relatively low MoO3 

loading when one goes from TiO2 to TiO2:MoO3 (Fig. 2b). The trapping of non-

equilibrium electrons in the MoO3 phase results in its reduction as evidenced by ESR 

measurements (Fig. 4), the latter process being accompanied with formation of 

hydrogen molybdenum bronzes HxMoO3 of variable composition [22]; the MoO3 

reduction leads to the accumulation of the photoinduced negative charge. Although 

the contribution of superoxide ions into the oxidation activity of TiO2:MoO3 

composite is marginal (the photoelectrons are mostly involved in the reduction of 

MoO3), the low level of recombination losses exhibited by composite photocatalyst 

results in high yield of hydroxyl radicals that enhances the overall photooxidation 

activity of the composite films. The photoinduced reduction of MoO3 in TiO2:MoO3 

composite occurs much more efficiently than in the case of direct photoreduction of 

MoO3 in SiO2:MoO3 composite as evident by rapid growing of concentration of 

paramagnetic Mo(V) centers as shown by ESR measurements (Fig.4a). Under dark 

conditions the photoinduced Mo(V) centers exhibit slow degradation (Fig. 4b) due to 

gradual oxidation with air oxygen. 

 The water contact measurements demonstrate that the composite film exhibits 

lower intrinsic hydrophylicity as compared to TiO2 film (Table 1): thus, the contact 

angle amounts 50º, while in the case of bare TiO2 it does not exceed 14°. Due to the 

small fractional area of MoO3 at the heterogeneous binary surface of composite film 

the observed decrease in the hydrophylicity in the case of TiO2:MoO3 composite can 

be attributed to the changes in the geometric structure of the photocatalyst surface 

[8]. It is seen from AFM images given in Fig. 5 that the size of building blocks 

forming the surface of TiO2 film exhibits a considerable decrease when going to the 

surface of TiO2:MoO3 composite film; correspondingly, the root mean square 
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roughness evaluated from AFM 5 µm × 5 µm plots decreases by 43% (from 158 nm 

to 110 nm) as one goes from TiO2 to TiO2:MoO3. Note that in the case of 

photocatalytic coatings under consideration the geometrical factor should determine 

to large extend the specific contact angle values for their intrinsically hydrophilic 

surfaces since the size of morphological elements at these surfaces far exceeds lower 

size limit of chemically distinct patches capable to affect the contact angle which was 

roughly estimated to be lower than 0.1 µm [23]. The observed decrease of the 

roughness in the case of composite films can be attributed to the well-known fact of a 

mutual protective action of composite-forming oxide components against their 

crystallization that hampers rearrangements in the composite film during an 

annealing [8,24].  

Under actinic illumination, the water contact angle exhibits a decrease in the 

case of TiO2 and TiO2:MoO3 films, reaching ~ 2° for TiO2 and 31° for TiO2:MoO3 

composite. Although the surface of composite film does not exhibit superhydrophylic 

properties, relatively low contact angle value inherent in it should facilitate water 

adsorption from humid air that creates favorable conditions both for generation of 

hydroxyl radicals and for stabilization of photoproduced Mo(V) states in the 

molybdenum oxide via formation of hydrogen molybdenum bronzes. 

Notwithstanding to the fact that illumination results in the accumulation of 

reductive energy, the surface of pre-exposed TiO2:MoO3composite film demonstrates 

high oxidation activity. It is seen from Fig. 6a that degradation of probing dye occurs 

over prolonged period after termination of illumination in contrast to bare TiO2 film 

showing very rapid decay of its oxidation activity in the dark since the lifetime of 

superoxide ions (the most long-lived ROS) photoproduced at the titania surface does 

not exceed 50 s [6]. High oxidation activity inherent in TiO2:MoO3 composite films 

retaining a long time after exposure can be attributed to the fact that one-electron 

oxidation of photogenerated hydrogen molybdenum bronzes is accompanied with 

generation of highly reactive species capable to oxidize the probing dye. In principle, 
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both superoxide and peroxo species are expected to be produced in this reaction. 

However, it is seen from Fig.7 that the chemiluminescent signal resulting from 

interaction of luminol with these species is detected only in the presence of Fe2+ 

evidencing that the oxidation of HxMoO3 by molecular oxygen leads to the formation 

of just the peroxo species. In the presence of Fe(II) these species yield hydroxyl 

radicals via Fenton reaction and these radicals interact with luminol emitting 

chemiluminescence. On the other hand, the absence of chemiluminescent signal in 

contact with the Fe2+-free solution of luminol allows conclusion that superoxide 

production at the surface of TiO2:MoO3 composite photocatalyst is suppressed and 

photoelectrons generated in TiO2 and MoO3 are predominantly trapped in the MoO3 

particles. From this point of view the TiO2:MoO3 composite differ radically from 

bare TiO2 capable to generate considerable amounts of O2
-
 species responsible to the 

large extent for its oxidation ability [6,8]. The chemiluminescence measurements also 

provide evidence that peroxo species are detectible at the TiO2:MoO3 composite 

surface for a long time after UV exposure (Fig. 7). 

It is seen from Fig. 6a that the oxidation activity of the pre-exposed TiO2:MoO3 

composite photocatalyst is dependent on the morphology of the MoO3 phase used for 

composite synthesis: thus, the composite photocatalyst obtained with the use of MoO3 

spherical nanoparticles looses the ability to oxidize probing dye in an hour, while 

composite obtained with the use of MoO3 prismatic crystals of submicron size 

(nanoprisms) retains the pronounced oxidation ability for a long time.  On the other 

hand, these fine MoO3 crystals resulting from the splitting of large MoO3 

microprisms [19] show the most pronounced ability to accumulate negative charge as 

evidenced by cyclic voltammograms given in Fig. 8. The highly effective reduction 

behavior demonstrated by these nanocrystals [25] can be attributed to high surface-to-

volume ratio inherent to them and their perfect structure that creates favorable 

conditions for proton transport along the lamellae. By contrast, the MoO3 

microprisms and needle-like microcrystals with a large admixture of MoO3•2H2O 
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seem to be highly defective and, as the result, show much lower activity in 

electrochemical experiments as compared to MoO3 nanoprisms (Fig. 8) 

notwithstanding to the fact that dihydrate phase also possesses a layered structure. 

Nanoparticles of spherical shape exhibit much worse access for protons to the 

interlaminar space and much less ability to the reduction (Fig. 8).  

The progressive oxidation of the hydrogen molybdenum bronzes by 

atmospheric oxygen occurs slowly being controlled by proton transport in the solid 

phase and the oxidation activity of TiO2:MoO3 composite retains for the long time: it 

is seen from Fig. 6b that for composite films prepared with the use of MoO3 

microprisms the rate of probing dye oxidation drops to zero in an hour, while for 

composite prepared with the use of MoO3 prismatic crystals of submicron size the 

zero oxidation rate is attained in 4 hours.  

4. Conclusions 

The present study shows that nanocomposite photocatalyst in which TiO2 is 

combined with h-MoO3 exhibits excellent photoenergy storage abilities resulted from 

the accumulation of the photoinduced charge in the form of hydrogen molybdenum 

bronzes. Due to layered structure inherent in h-MoO3, the process of its reduction 

controlled by proton transport extends over the bulk MoO3 crystals of sub-micron 

size. Generation of peroxide species during the course of oxidation of hydrogen 

molybdenum bronzes with molecular oxygen imparts high oxidation activity to the 

pre-exposed TiO2:MoO3 composite coatings, this activity retaining for a long time 

(up to 4 h after the moment when the illumination was stopped). The efficient 

trapping of photoelectrons in MoO3 also enhances the oxidation activity of 

TiO2:MoO3 composite films under actinic illumination. This makes nanoengineered 

TiO2:MoO3composite a candidate for self-sterilizing coatings exhibiting oxidation 

activity both under illumination and under dark conditions. 
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Figures 

 

 

Figure 1. A typical SEM image showing the general morphology of MoO3 particles 

used for TiO2:MoO3 composite synthesis: (a) microprisms, (b) needle-like 

microcrystals, (c) spherical nanoparticles, (d) nanoprisms. 

 

 

Figure 2. (a) Photodegragation kinetics of Rhodamine 6G on TiO2 and TiO2:MoO3 

thin-film photocatalysts as well as on the glazed tile used as the substrate. 

Composites were prepared using different MoO3 phases: (1) microprisms, (2) needle-

like microcrystals, (3) spherical nanoparticles, (4) nanoprisms. MoO3 loading was of 

15 mol.%. Γ0 and Γ are the initial concentration of a probing dye and after irradiation. 
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Ambient humidity: 45%. (b) Dependence of the relative drop of dye concentration 

after 15 min irradiation on the MoO3 loading for TiO2:MoO3 (1) composite. The 

dashed line shows a drop of dye concentration fat bare TiO2.  

 

 

Figure 3. Photocurrent versus potential curves for TiO2 and TiO2:MoO3 films. For 

composite preparation MoO3 nanoprisms were used, the MoO3 loading was of 15 

mol.% Electrolyte:  0.25 M Na2SO4 + 0.1M CH3COONa. 



16 

 

 

Figure 4.  (a) The ESR signal intensity as a function of UV irradiation time for 

SiO2:MoO3 and TiO2:MoO3. For composite preparation MoO3 nanoprisms were used. 

The MoO3 loading in composites was of 15 mol.%. (b) The ESR signal intensity 

decay  for pre-exposed TiO2:MoO3 composite. 
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Figure  5. AFM surface plots for (a) TiO2 and (b) TiO2:MoO3 films. For composite 

preparation MoO3 nanoprisms were used. MoO3 loading was of 15 mol.%.  
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Figure 6. (a) Degradation kinetics of Rhodamine 6G on the pre-exposed TiO2 and 

TiO2:MoO3 photocatalysts under dark conditions. Composites were prepared with the 

use of: (1) microprisms, (2) needle-like microcrystals, (3) spherical nanoparticles, (4) 

nanoprisms. MoO3 loading was of 15 mol.%. Before measurements, samples were 

exposed to UV light for 30 min. (b) Time dependence of the dye degradation rate.  

 

 

Figure 7. Time profiles of the chemiluminescence intensity for TiO2:MoO3 

composite film exposed to UV light for 30 min. The arrow indicates the moment 

corresponding to the insertion of: (curves a, b) luminol + Fe2+ solution; (curve c) 
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luminol solution. Curve b recorded for pre-exposed TiO2:MoO3 composite film left in 

dark for 40 min. The TiO2:MoO3 composite was synthesized using MoO3 

nanoprisms, MoO3 loading was of 15 mol. %.  

 

 

 

Figure 8 Cyclic voltamperogramms for MoO3-loaded carbon paste electrode. MoO3 

phase: (a) microprisms, (b) needle-like microcrystals, (c) spherical nanoparticles, (d) 

nanoprisms. Electrolyte: deaerated 0.25 M Na2SO4, pH 4.5. The potential scan rate is 

0.1 V/s. 
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Table 1 

The water contact angle for bare TiO2 and TiO2:MoO3 composites* 

Photocatalytic coating TiO2 TiO2:MoO3(1) TiO2:MoO3(2) TiO2:MoO3(3) TiO2:MoO3(4) 

In the dark conditions 14 50 53 51 43 

After UV illumination 
 for 30 min 

2 31 40 33 25 

 

*) the notation of composites prepared with the use of different MoO3 particles is similar to 
that in Fig.2 
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Supplementary Material  

to the paper Nanoengineered Thin-film TiO2/h-MoO3 Photocatalysts Capable to 
Accumulate Photoinduced Charge 
 

The X-ray diffraction analysis of MoO3 particles of different morphology 
(microprisms, needle-like microcrystals, nanospherulites, nanoprisms) prepared via 
polycondensation of molybdic acid in aqueous medium has evidenced that the 
resultant oxide products consist of hexagonal molybdenum oxide and monoclinic 
molybdenum oxide dihydrate MoO3 (Tables S1-S4). The МоО3⋅2Н2О content was 
estimated from the thermogravimetric measurements (Table S5).    

Table S1 
Powder X-ray diffraction data for MoO3 microprisms 

 

Experimental data Data from Refs. 1,2 

d, Å I/I100,% Compound d, Å I/I100. % hkl 

9.10 80 МоО3 9.120 80 100 

6.850 100 МоО3⋅⋅⋅⋅2Н2О 6.900 100 020 

5.285 15 МоО3 5.290 10 110 

4.558 70 МоО3 4.560 20 200 

3.767 25 МоО3⋅⋅⋅⋅2Н2О 3.770 30 400 

3.450 100 МоО3 3.450 100 210 

3.038 10 МоО3 3.040 40 300 

2.881 1 МоО3 2.880 5 204 

2.629 20 МоО3 2.630 10 220 

2.529 27 МоО3 2.530 30 310 

2.301 95 МоО3⋅⋅⋅⋅2Н2О 2.305 12 -514 

2.145 2 МоО3 2.147 5 224 

2.093 25 МоО3 2.097 10 320 

1.990 45 МоО3 1.993 20 410 

1.945 5 МоО3 1.947 15 404 

1.855 1 МоО3 1.860 15 008 

1.821 10 МоО3 1.824 10 500 
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Table S2 

Powder X-ray diffraction data for MoO3 needle-like microcrystals 
 

 

Experimental data Data from Refs. 1,2 

d, Å I/I100,% Compound d, Å I/I100. % hkl 

9.61 48 МоО3 9.690 80 100 

6.850 100 МоО3⋅⋅⋅⋅2Н2О 6.900 100 020 

5.288 9 МоО3 5.290 10 110 

4.554 33 МоО3 4.560 20 200 

3.763 12 МоО3⋅⋅⋅⋅2Н2О 3.770 30 400 

3.447 100 МоО3 3.450 100 210 

3.236 75 МоО3⋅⋅⋅⋅2Н2О 3.240 45 024 

3.036 3 МоО3 3.040 40 300 

2.639 6 МоО3 2.630 10 220 

2.530 10 МоО3 2.530 30 310 

2.297 75 МоО3⋅⋅⋅⋅2Н2О 2.305 12 -514 

2.101 9 МоО3 2.097 10 320 

1.997 15 МоО3 1.997 20 410 

1.946 4 МоО3 1.947 15 404 

1.822 6 МоО3⋅⋅⋅⋅2Н2О 1.823 6 -108 
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Table S3 
Powder X-ray diffraction data for MoO3 nanospherulites 

 

Experimental data Data from Refs. 1,2 

d, Å I/I100,% Compound d, Å I/I100. % hkl 

9.11 50 МоО3 9.120 80 100 

6.870 100 МоО3⋅⋅⋅⋅2Н2О 6.900 100 020 

5.305 7 МоО3 5.290 10 110 

4.550 30 МоО3 4.560 20 200 

3.605 1 МоО3⋅⋅⋅⋅2Н2О 3.770 30 400 

3.448 100 МоО3 3.450 100 210 

3.035 20 МоО3 3.040 40 300 

2.876 2 МоО3 2.880 5 204 

2.630 8 МоО3 2.630 10 220 

2.526 20 МоО3 2.530 30 310 

2.310 95 МоО3⋅⋅⋅⋅2Н2О 2.305 12 -514 

2.145 2 МоО3 2.147 5 224 

2.088 10 МоО3 2.097 10 320 

1.990 20 МоО3 1.993 20 410 

1.945 7 МоО3 1.947 15 404 

1.864 5 МоО3 1.860 15 008 

1.820 3 МоО3 1.824 10 500 
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Table S4 

Powder X-ray diffraction data for MoO3 nanoprisms 
 
 

Experimental data Data from Refs. 1,2 

d, Å I/I100,% Compound d, Å I/I100. % hkl 

9.10 40 МоО3 9.120 80 100 

6.950 100 МоО3⋅⋅⋅⋅2Н2О 6.900 100 020 

5.285 7 МоО3 5.290 10 110 

4.620 33 МоО3 4.560 20 200 

3.425 100 МоО3 3.450 100 210 

3.035 34 МоО3 3.040 40 300 

2.878 15 МоО3 2.880 5 204 

2.625 10 МоО3 2.630 10 220 

2.531 15 МоО3 2.530 30 310 

2.145 2 МоО3 2.147 5 224 

2.098 13 МоО3 2.097 10 320 

1.995 22 МоО3 1.993 20 410 

1.940 5 МоО3 1.947 15 404 

1.862 3 МоО3 1.860 15 008 

1.826 4 МоО3 1.824 10 500 
 

 
 

Table S5 
Content of МоО3⋅⋅⋅⋅2Н2О in the oxide particles of different morphology used for 
composite preparation 
 
Oxide particles Content, % 
Microprisms 10 
Needle-like microcrystals 27 
Nanospherulites 15 
Nanoprisms 5 
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