Nanoengineered Thin-film TiO₂/h-MoO₃ Photocatalysts Capable to Accumulate **Photoinduced Charge** T.V. Sviridova^a, L. Yu. Sadovskaya^a, E.M. Shchukina^b, A.S. Logvinovich^a, D.G. Shchukin^{b1}, D. V. Sviridov^a ^a Department of Chemistry, Belarusian State University, Minsk, Belarus ^b Stephenson Institute for Renewable Energy, University of Liverpool, UK The mosaic films made of TiO₂ and hexagonal MoO₃ nanoparticles not only demonstrate high activity in the reactions of photooxidation of the adsorbed organics in air conditions but also store the photoinduced charge as the result of MoO₃ reduction by photoelectrons injected from titania which behaves as a photogenerating component. The charge accumulated via this light-driven reduction is spent under dark conditions in the reaction of molecular oxygen reduction yielding peroxide species. As the result, TiO₂/h-MoO₃ nanocomposite films retain oxidation ability for ca. 4 hours after UV illumination. This photocatalytic material opens fresh avenues in fabrication of self-sterilizing coatings capable to generate reactive oxygen species not only under actinic illumination but also under dark conditions. Key words: photocatalyst, energy storage, hexagonal MoO₃ 1 ¹ Corresponding author (E-mail: D.Shchukin@liverpool.ac.uk) #### 1. Introduction The oxidation and reduction driven by photoholes and excited electrons generated at the UV-irradiated TiO₂ surface make it an effective photocatalytic material for realization of various useful functions, such as removal of toxic compounds and self-sterilization [1-4]. These functions are based on oxidation abilities of reactive oxygen species (ROS) produced *via* photocatalytic reactions (hydroxyl radicals generated by photoholes from TiO₂ valence band reacting with surface adsorbed water and superoxide ions formed due to interaction of photoelectrons from conduction band with molecular oxygen [5,6]). Being strong oxidants, ROS can participate in the series of oxidation reactions [3,7] leading in the destruction of organic contaminants [2,3,8] and are able to cause various damages to microorganisms ensuring their rapid inactivation [9-11]. The intrinsic limitation that comes from basic mechanisms of TiO₂ photocatalysis consists in the fact that oxidation activity of TiO₂ does not retain after illumination is terminated. To overcome this fundamental limitation, several TiO₂-based photocatalytic systems with reductive an oxidative energy storage abilities have been proposed [12-18]. In these hybrid photocatalysts for storage the reductive energy the combinations of titania with tungsten [12-15] and molybdenum [16] oxides as well as with polyoxometallates [17] were used, while for storage the oxidative energy TiO₂ was successfully combined with Ni(OH)₂[18]. Despite many studies investigating the charge storage photocatalytic systems, many problems concerning their behavior still remain to be solved and the most important one among them is a lack of effective control over the discharge behavior to ensure the long-term oxidation and pathophysiological activity of pre-illuminated photocatalytic coatings. Here we demonstrate that the careful engineering of hybrid photocatalysts comprising nanocrystalline TiO₂ and fine crystals of hexagonal MoO₃ (*h*-MoO₃) ensures the retaining of oxidation activity of the photocatalyst surface for a long time after illumination and the radical enhancement of photocatalytic activity under actinic illumination. ## 2. Experimental All materials used in the work were purchased from Sigma–Aldrich Chemical Co. and used as supplied. For preparation of solutions the Milli-Q water was used. The thin-film photocatalysts were prepared using aqueous dispersions of TiO_2 and MoO_3 . The aqueous sol of titania was prepared by adding 12.5% NH₄OH dropwise to 2.5 M $TiCl_4 + 0.65$ M HCl aqueous solution cooled to 0 °C under vigorous stirring until pH 5 was reached. The obtained precipitate was then washed with distilled water and dispersed by ultrasonic treatment. The resultant transparent sol was stable for several days even in the absence of stabilizing agents. The size of thus obtained TiO_2 particles (anatase) was of ca. 4 nm. The MoO₃ particles of different morphology were synthesized *via* thermally-induced polycondensation of molybdic acid in aqueous medium. The detailed mechanism behind polycondensation synthesis employing oxoacids is discussed elsewhere [19]. The molybdic acid solution used as a starting material was prepared by acidification of sodium molybdate on a resin. Four synthetic protocols were used to obtain different MoO₃ nano- and microcrystals: - (i) treatment of 0.5 M molybdic acid solution at 100 °C for 4 h (the reaction volume was maintained constant) that yields regular prism-like MoO₃ microcrystals with the average size of 3 μ m × 10 μ m; - (ii) hydrothermal treatment of 0.2 M molybdic acid in the 75-ml reactor at 200 $^{\circ}$ C for 4 h yielding needle-like microcrystals with the average length of 15 μ m; - (iii) treatment of 0.5 M molybdic acid at 100 °C for 4 min followed by dilution 1:5 to stop nucleation in the solution and incubation of the resultant oxide particles at 100 °C for 4 h to ensure their recrystallization yielding spherical nanoparticles 100-200 nm in size; (iv) treatment of 0.5 M molybdic acid at 100 °C for 10 min followed by dilution 1:5 and incubation of the resultant particles at 100 °C for 4 h under conditions far from supersaturation to ensure the dispersing of MoO_3 prisms that yields regular nanocrystals also with a prismatic shape (nanoprisms) with the average size of 80 nm \times 300 nm. Thin-film photocatalysts were prepared by spraying mixtures of TiO₂ sol and MoO₃ suspension onto the glazed ceramic tiles heated to 200 °C. The resultant coatings were then annealed at 450 °C for 1.5 h in air. The MoO₃ loading in the composite was evaluated from Ti:Mo atomic ratio obtained from Rutherford backscattering spectra. Before the photocatalyst deposition, the surface of the substrate was coated with a silicon dioxide intermediate layer by spraying the SiO₂ sol to prevent migration of sodium ions from a glaze during annealing (the latter factor could adversary affect the photoactivity of titania [20]). According to the AFM measurements thus obtained photocatalytic coatings have a thickness of *ca*. 0.4 µm. To probe the photocatalytic activity of TiO_2 and TiO_2 :MoO₃ composite films the reaction of the photodegradation of Rhodamine 6G (o-[6-(ethylamino)-3-(ethylimino)-2,7-dimethyl-3H-xanthen-9-yl] benzoic acid ethyl ester monohydrochloride) was used. For each measurement a drop (0.1 ml) of 4×10^{-4} M aqueous solution of Rhodamine 6G was applied onto the photocatalyst surface, then spread over the area of 2 cm² and left for drying; the resultant surface concentration of the probing dye was of ca. 2×10^{-8} mol/cm². The photodegradation of probing dye was followed by measuring a diffuse reflectance, R, at 530 nm that corresponds to the absorption of the dye in the adsorbed state. Using the Kubelka–Munk function [21], the value proportional to the surface dye concentration, Γ , was calculated as follows: $\Gamma \sim (1-R)^2/2R$. The ROS production at air-photocatalyst interface was studied by measuring chemiluminescence according to the procedure described in detail elsewhere [6,8]. The glass plates coated with TiO₂ and TiO₂:MoO₃ films were illuminated in empty quartz cell with UV light for 30 min. Immediately after illumination the cell was placed into homemade setup permitting the measurement of the chemiluminescence as a function of time. During the course of chemiluminescence measurements the cell was filled with aqueous solution (pH 9) containing 0.4 g/l of luminol and 10⁻⁴ M FeSO₄. The same solution but without FeSO₄ additive was used to distinguish peroxo and superoxide species. Ultraviolet illumination was carried out using high-pressure hydrogen lamp Philips HPK 125 W. The intensity of the incident light was ~ 10 mW/cm². The ESR investigations of Mo(V) photoproduction were carried out with the use of powdered samples of TiO₂:MoO₃ composite and SiO₂:MoO₃ composite (*i.e.*, MoO₃ microcrystals dispersed in the inert silica matrix). The ESR spectra were recorded with a Bruker EMX-8 (X-band) spectrometer at room temperature. The electrochemical measurements were performed with the use of Autolab PGSTAT 204. All the potentials are given against Ag/AgCl, Cl⁻(sat.) reference electrode. The electrochemical properties of MoO₃ dispersions were investigated by cyclic voltammetry with the use of the carbon paste electrode prepared by mixing 60 mg of carbon powder, 100 mg of molybdenum oxide, and 0.05 ml of dibutylphtalate. For the photoelectrochemical experiments TiO₂ and TiO₂:MoO₃ films were deposited onto ITO conducting glass. #### 3. Results and Discussion The MoO₃ particles used for TiO₂:MoO₃ composite preparation possesses principally different morphology as evidenced by SEM images given in Fig. 1. However, the polycondensation synthetic technique in all cases yields oxide phases of very similar composition: the XRD analysis (presented in the Supplementary Material) evidences that the resultant oxide particles consist of *h*-MoO₃ with the admixture of monoclinic MoO₃•2H₂O (the concentration of dihydrate does not exceed 3% in the case of nanoprisms and reaches the maximum value of *ca*. 27% in the case of needle-like crystallites – see the Supplementary Material). The photodegradation curves for Rhodamine 6G deposited onto the surface of TiO₂ and TiO₂:MoO₃ coatings shown in Fig. 2 evidence that photocatalytic degradation of probing dye occurs much more efficiently as compared to the direct photolysis on the surface of a glazed tile free of the photocatalyst. The photocatalytic behavior of TiO₂:MoO₃ composite coating appears to be dependent on the type of MoO₃ particles used for composite preparation: while the composite films prepared with the use of nano- and microprisms exhibit the enhanced activity towards probing dye photooxidation under UV irradiation (the rate constant of this process in the case of composite film derived with the use of microprisms is 1.3 times larger than the rate constant of dye photooxidation at bare titania), the composite prepared with the use of spherical MoO₃ nanoparticles and needle-like crystals are less active in comparison with TiO₂. The rate of dye photodegradation is also dependent on the photocatalyst composition; thus, in the case of TiO₂:MoO₃ film prepared with the use of MoO₃ microcroprisms, dye photodegradation rate reaches its maximum at MoO₃ loading of ca. 15 mol.% and appears to be about 2 times greater than that attained at TiO₂, while at the MoO₃ content larger than 20 mol.% the photooxidation efficiency appears to be lower than that demonstrated by bare titania. The photoelectrochemical measurements (Fig. 3) evidence that TiO₂:MoO₃ coatings containing 15 mol.% of MoO₃ generate photocurrent with the efficiency which is *ca*. 50% greater than that provided by bare TiO₂ pointing to higher yield of photoholes and lower level of recombination losses in the case of composite coating. The latter fact can be attributed to the efficient separation of photoproduced charge carriers at TiO₂/MoO₃ inner heterojunctions that is facilitated by considerable difference in the flat-band potentials of TiO₂ and MoO₃ (this difference estimated from the photocurrent onset potentials for TiO₂ and MoO₃ films used in this work amounts 0.55 V). This improvement in the charge separation ability can be considered as the key factor responsible for the enhanced photocatalytic activity demonstrated by TiO₂:MoO₃ composite films. However, since the bare MoO₃ demonstrates much lower intrinsic photoactivity as compared to TiO₂, the enhancement of dye photooxidation ability is observed at relatively low MoO₃ loading when one goes from TiO₂ to TiO₂:MoO₃ (Fig. 2b). The trapping of nonequilibrium electrons in the MoO₃ phase results in its reduction as evidenced by ESR measurements (Fig. 4), the latter process being accompanied with formation of hydrogen molybdenum bronzes H_xMoO₃ of variable composition [22]; the MoO₃ reduction leads to the accumulation of the photoinduced negative charge. Although the contribution of superoxide ions into the oxidation activity of TiO₂:MoO₃ composite is marginal (the photoelectrons are mostly involved in the reduction of MoO₃), the low level of recombination losses exhibited by composite photocatalyst results in high yield of hydroxyl radicals that enhances the overall photooxidation activity of the composite films. The photoinduced reduction of MoO₃ in TiO₂:MoO₃ composite occurs much more efficiently than in the case of direct photoreduction of MoO₃ in SiO₂:MoO₃ composite as evident by rapid growing of concentration of paramagnetic Mo(V) centers as shown by ESR measurements (Fig.4a). Under dark conditions the photoinduced Mo(V) centers exhibit slow degradation (Fig. 4b) due to gradual oxidation with air oxygen. The water contact measurements demonstrate that the composite film exhibits lower intrinsic hydrophylicity as compared to TiO₂ film (Table 1): thus, the contact angle amounts 50°, while in the case of bare TiO₂ it does not exceed 14°. Due to the small fractional area of MoO₃ at the heterogeneous binary surface of composite film the observed decrease in the hydrophylicity in the case of TiO₂:MoO₃ composite can be attributed to the changes in the geometric structure of the photocatalyst surface [8]. It is seen from AFM images given in Fig. 5 that the size of building blocks forming the surface of TiO₂:MoO₃ composite film; correspondingly, the root mean square roughness evaluated from AFM 5 μ m \times 5 μ m plots decreases by 43% (from 158 nm to 110 nm) as one goes from TiO₂ to TiO₂:MoO₃. Note that in the case of photocatalytic coatings under consideration the geometrical factor should determine to large extend the specific contact angle values for their intrinsically hydrophilic surfaces since the size of morphological elements at these surfaces far exceeds lower size limit of chemically distinct patches capable to affect the contact angle which was roughly estimated to be lower than 0.1 μ m [23]. The observed decrease of the roughness in the case of composite films can be attributed to the well-known fact of a mutual protective action of composite-forming oxide components against their crystallization that hampers rearrangements in the composite film during an annealing [8,24]. Under actinic illumination, the water contact angle exhibits a decrease in the case of TiO_2 and TiO_2 :MoO₃ films, reaching ~ 2° for TiO_2 and 31° for TiO_2 :MoO₃ composite. Although the surface of composite film does not exhibit superhydrophylic properties, relatively low contact angle value inherent in it should facilitate water adsorption from humid air that creates favorable conditions both for generation of hydroxyl radicals and for stabilization of photoproduced Mo(V) states in the molybdenum oxide *via* formation of hydrogen molybdenum bronzes. Notwithstanding to the fact that illumination results in the accumulation of reductive energy, the surface of pre-exposed TiO₂:MoO₃composite film demonstrates high oxidation activity. It is seen from Fig. 6a that degradation of probing dye occurs over prolonged period after termination of illumination in contrast to bare TiO₂ film showing very rapid decay of its oxidation activity in the dark since the lifetime of superoxide ions (the most long-lived ROS) photoproduced at the titania surface does not exceed 50 s [6]. High oxidation activity inherent in TiO₂:MoO₃ composite films retaining a long time after exposure can be attributed to the fact that one-electron oxidation of photogenerated hydrogen molybdenum bronzes is accompanied with generation of highly reactive species capable to oxidize the probing dye. In principle, both superoxide and peroxo species are expected to be produced in this reaction. However, it is seen from Fig.7 that the chemiluminescent signal resulting from interaction of luminol with these species is detected only in the presence of Fe²⁺ evidencing that the oxidation of H_xMoO₃ by molecular oxygen leads to the formation of just the peroxo species. In the presence of Fe(II) these species yield hydroxyl radicals *via* Fenton reaction and these radicals interact with luminol emitting chemiluminescence. On the other hand, the absence of chemiluminescent signal in contact with the Fe²⁺-free solution of luminol allows conclusion that superoxide production at the surface of TiO₂:MoO₃ composite photocatalyst is suppressed and photoelectrons generated in TiO₂ and MoO₃ are predominantly trapped in the MoO₃ particles. From this point of view the TiO₂:MoO₃ composite differ radically from bare TiO₂ capable to generate considerable amounts of O₂ species responsible to the large extent for its oxidation ability [6,8]. The chemiluminescence measurements also provide evidence that peroxo species are detectible at the TiO₂:MoO₃ composite surface for a long time after UV exposure (Fig. 7). It is seen from Fig. 6a that the oxidation activity of the pre-exposed TiO₂:MoO₃ composite photocatalyst is dependent on the morphology of the MoO₃ phase used for composite synthesis: thus, the composite photocatalyst obtained with the use of MoO₃ spherical nanoparticles looses the ability to oxidize probing dye in an hour, while composite obtained with the use of MoO₃ prismatic crystals of submicron size (nanoprisms) retains the pronounced oxidation ability for a long time. On the other hand, these fine MoO₃ crystals resulting from the splitting of large MoO₃ microprisms [19] show the most pronounced ability to accumulate negative charge as evidenced by cyclic voltammograms given in Fig. 8. The highly effective reduction behavior demonstrated by these nanocrystals [25] can be attributed to high surface-to-volume ratio inherent to them and their perfect structure that creates favorable conditions for proton transport along the lamellae. By contrast, the MoO₃ microprisms and needle-like microcrystals with a large admixture of MoO₃•2H₂O seem to be highly defective and, as the result, show much lower activity in electrochemical experiments as compared to MoO₃ nanoprisms (Fig. 8) notwithstanding to the fact that dihydrate phase also possesses a layered structure. Nanoparticles of spherical shape exhibit much worse access for protons to the interlaminar space and much less ability to the reduction (Fig. 8). The progressive oxidation of the hydrogen molybdenum bronzes by atmospheric oxygen occurs slowly being controlled by proton transport in the solid phase and the oxidation activity of TiO₂:MoO₃ composite retains for the long time: it is seen from Fig. 6b that for composite films prepared with the use of MoO₃ microprisms the rate of probing dye oxidation drops to zero in an hour, while for composite prepared with the use of MoO₃ prismatic crystals of submicron size the zero oxidation rate is attained in 4 hours. #### 4. Conclusions The present study shows that nanocomposite photocatalyst in which TiO₂ is combined with *h*-MoO₃ exhibits excellent photoenergy storage abilities resulted from the accumulation of the photoinduced charge in the form of hydrogen molybdenum bronzes. Due to layered structure inherent in *h*-MoO₃, the process of its reduction controlled by proton transport extends over the bulk MoO₃ crystals of sub-micron size. Generation of peroxide species during the course of oxidation of hydrogen molybdenum bronzes with molecular oxygen imparts high oxidation activity to the pre-exposed TiO₂:MoO₃ composite coatings, this activity retaining for a long time (up to 4 h after the moment when the illumination was stopped). The efficient trapping of photoelectrons in MoO₃ also enhances the oxidation activity of TiO₂:MoO₃ composite films under actinic illumination. This makes nanoengineered TiO₂:MoO₃ composite a candidate for self-sterilizing coatings exhibiting oxidation activity both under illumination and under dark conditions. **Acknowledgement.** T.V.S and D.V.S acknowledge the support from Basic Research Foundation of Belarus (Grant X16P-074). #### References - [1] D. Bahnemann, Photocatalytic water treatment: solar energy applications, Solar Energy 77 (2004) 445–459. - [2] A. Fujishima, T.N. Rao, D.A. Truk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1–21. - [3] A.G. Agrios, P. Pichat, State of the art and perspectives on materials and applications of photocatalysis over TiO₂, J. Appl. Electrochem. 35 (2005) 655–663. - [4] D.G. Shchukin, D.V. Sviridov, Photocatalytic processes in spatially confined micro- and nanoreactors, J. Photochem. Photobiol. C: Photochem. Rev. 7 (2006) 23–26. - [5] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO₂ photocatalyst, J. Photochem. Photobiol. A: Chemistry 134 (2000) 139–142. - [6] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Generation and deactivation processes of superoxide formed on TiO₂ film illuminated byvery weak UV light in air or water, J. Phys. Chem. B 104 (2000) 4934-4938. - [7] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96. - [8] E.V. Skorb, Elena A. Ustinovich, A. I. Kulak, D. V. Sviridov, Photocatalytic activity of TiO₂:In₂O₃ nanocomposite films towards the degradation of arylmethane and azo dyes, J. Photochem. Photobiol. A: Chemistry. 193 (2008) 97–102. - [9] Z. Huang, P.-C. Maness, D.M. Blake, E.J. Wolfrum, S.L. Smolinski, W.A. Jacoby, Bactericidal mode of titanium dioxide photocatalysis, J. Photochem. Photobiol. A: Chem. 130 (2000) 163–170. - [10] K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film, J. Photochem. Photobiol. A: Chem. 156 (2003) 227–233. - [11] E.V. Skorb, L.I. Antonouskaya, N.A. Belyasova, D.G. Shchukin, H. Möhwald, D.V. Sviridov, Antibacterial activity of thin-film photocatalysts based on metal- - modified TiO₂ and TiO₂:In₂O₃ nanocomposite, Appl. Catal. B: Environmental 84 (2008) 94–99. - [12] T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Energy storage of TiO₂-WO₃ photocatalysis systems in the gas phase, Langmuir 18 (2002) 7777-7779. - [13] T.Tatsuma, S. Takeda, S. Saitoh, Y. Ohko, A. Fujishima, Bactericidal effect of an energy storage TiO₂–WO₃ photocatalyst in dark, Electrochem. Comm. 5 (2003) 793–796. - [14] Y. Takahashi, T. Tatsuma, Visible light-induced photocatalysts with reductive energy storage abilities, Electrochem. Comm. 10 (2008) 1404–1407. - [15] D. Liu, W. Zi, S. D. Sajjad, C. Hsu, Y. Shen, M. Wei, F. Liu, Reversible electron storage in an all-vanadium photoelectrochemical storage cell: Synergy between vanadium redox and hybrid photocatalyst, ACS Catal. 5(2015) 2632–2639. - [16] Y. Takahashi, P. Ngaotrakanwiwat, T. Tatsuma, Energy storage TiO₂–MoO₃ photocatalysts, Electrochim. Acta 49 (2004) 2025–2029. - [17] P. Ngaotrakanwiwat, S. Saitoh, Y. Ohko, T. Tatsuma A. Fujishima, TiO_2 -phosphotungstic acid photocatalysis systems with an energy storage ability, J. Electrochem. Soc. 150 (2003) A1405-A1407. - [18] F. Yang, Y. Takahashi, N. Sakai, T. Tatsuma, Visible light driven photocatalysts with oxidative energy storage abilities, J. Mater. Chem. 21(2011) 2288-2293. - [19] T.V. Sviridova, L.I. Stepanova, D.V Sviridov, Nano- and microcrystals of molybdenum trioxide and metal-matrix composites on their basis, in: M. Ortiz, - T. Herrera (Eds.), Molybdenum: Characteristics, Production and Applications, Nova Sci. Publishers, New York, 2012, pp. 147-179. - [20] H. Tada, M. Tanaka, Dependence of TiO₂ photocatalytic activity upon its film thickness, Langmuir 13 (1997) 360-364. - [21] W. Wedland, H. Hecht, Reflectance Spectroscopy, Intersci. Publ., New York, 1966. - [22] O. Zelaya-Angel, C. Menezes, F. Sánchez-Sinencio, G.F.L. Ferreira, Electron diffusion and electrochromism in MoO₃ amorphous films, J. Appl. Phys. 51(1980) 6022-6026. - [23] A.W. Neumann, Contact angles and their temperature dependence: thermodynamic status, measurement, interpretation and application, Adv. Colloid Interf. Sci. 4 (1974) 105. - [24] S. K. Poznyak, D. V. Talapin, A. I. Kulak, Structural, optical, and photoelectrochemical properties of nanocrystalline TiO₂-In₂O₃_composite solids and films prepared by sol-gel method, J. Phys. Chem. B 105 (2001) 4816-4823. - [25] T.V. Sviridova, L.I. Stepanova, D.V Sviridov, Electrochemical synthesis of Ni-MoO₃ composite films: redox-mediated mechanism of electrochemical growth of metal-matrix composite, J. Solid-State Electrochem. 16 (2012) 3799-3803. ## **Figures** **Figure 1.** A typical SEM image showing the general morphology of MoO₃ particles used for TiO₂:MoO₃ composite synthesis: (a) microprisms, (b) needle-like microcrystals, (c) spherical nanoparticles, (d) nanoprisms. **Figure 2.** (a) Photodegragation kinetics of Rhodamine 6G on TiO_2 and TiO_2 :MoO₃ thin-film photocatalysts as well as on the glazed tile used as the substrate. Composites were prepared using different MoO₃ phases: (1) microprisms, (2) needle-like microcrystals, (3) spherical nanoparticles, (4) nanoprisms. MoO₃ loading was of 15 mol.%. Γ_0 and Γ are the initial concentration of a probing dye and after irradiation. Ambient humidity: 45%. (b) Dependence of the relative drop of dye concentration after 15 min irradiation on the MoO₃ loading for TiO₂:MoO₃ (1) composite. The dashed line shows a drop of dye concentration fat bare TiO₂. **Figure 3**. Photocurrent versus potential curves for TiO_2 and TiO_2 :MoO₃ films. For composite preparation MoO₃ nanoprisms were used, the MoO₃ loading was of 15 mol.% Electrolyte: $0.25 \text{ M Na}_2SO_4 + 0.1M \text{ CH}_3COONa$. **Figure 4.** (a) The ESR signal intensity as a function of UV irradiation time for SiO₂:MoO₃ and TiO₂:MoO₃. For composite preparation MoO₃ nanoprisms were used. The MoO₃ loading in composites was of 15 mol.%. (b) The ESR signal intensity decay for pre-exposed TiO₂:MoO₃ composite. **Figure 5.** AFM surface plots for (a) TiO₂ and (b) TiO₂:MoO₃ films. For composite preparation MoO₃ nanoprisms were used. MoO₃ loading was of 15 mol.%. **Figure 6.** (a) Degradation kinetics of Rhodamine 6G on the pre-exposed TiO₂ and TiO₂:MoO₃ photocatalysts under dark conditions. Composites were prepared with the use of: (1) microprisms, (2) needle-like microcrystals, (3) spherical nanoparticles, (4) nanoprisms. MoO₃ loading was of 15 mol.%. Before measurements, samples were exposed to UV light for 30 min. (b) Time dependence of the dye degradation rate. **Figure 7.** Time profiles of the chemiluminescence intensity for $TiO_2:MoO_3$ composite film exposed to UV light for 30 min. The arrow indicates the moment corresponding to the insertion of: (curves a, b) luminol + Fe^{2+} solution; (curve c) luminol solution. Curve *b* recorded for pre-exposed TiO₂:MoO₃ composite film left in dark for 40 min. The TiO₂:MoO₃ composite was synthesized using MoO₃ nanoprisms, MoO₃ loading was of 15 mol. %. **Figure 8** Cyclic voltamperogramms for MoO_3 -loaded carbon paste electrode. MoO_3 phase: (a) microprisms, (b) needle-like microcrystals, (c) spherical nanoparticles, (d) nanoprisms. Electrolyte: deaerated 0.25 M Na_2SO_4 , pH 4.5. The potential scan rate is 0.1 V/s. Table 1 The water contact angle for bare TiO_2 and TiO_2 : MoO_3 composites* | Photocatalytic coating | TiO ₂ | TiO ₂ :MoO ₃ (1) | TiO ₂ :MoO ₃ (2) | $TiO_2:MoO_3(3)$ | TiO ₂ :MoO ₃ (4) | |----------------------------------|------------------|----------------------------------------|----------------------------------------|------------------|----------------------------------------| | In the dark conditions | 14 | 50 | 53 | 51 | 43 | | After UV illumination for 30 min | 2 | 31 | 40 | 33 | 25 | ^{*)} the notation of composites prepared with the use of different MoO_3 particles is similar to that in Fig.2 ## **Supplementary Material** ## to the paper Nanoengineered Thin-film TiO_2/h -Mo O_3 Photocatalysts Capable to Accumulate Photoinduced Charge The X-ray diffraction analysis of MoO₃ particles of different morphology (microprisms, needle-like microcrystals, nanospherulites, nanoprisms) prepared *via* polycondensation of molybdic acid in aqueous medium has evidenced that the resultant oxide products consist of hexagonal molybdenum oxide and monoclinic molybdenum oxide dihydrate MoO₃ (Tables S1-S4). The MoO₃·2H₂O content was estimated from the thermogravimetric measurements (Table S5). Table S1 Powder X-ray diffraction data for MoO₃ microprisms | Experimental data | | Data from Refs. 1,2 | | | | |-------------------|------------------------------|-------------------------------------|-------|-------------------------------|------| | d, Å | <i>I/I</i> ₁₀₀ ,% | Compound | d, Å | <i>I/I</i> ₁₀₀ . % | hkl | | 9.10 | 80 | MoO ₃ | 9.120 | 80 | 100 | | 6.850 | 100 | MoO ₃ ·2H ₂ O | 6.900 | 100 | 020 | | 5.285 | 15 | MoO_3 | 5.290 | 10 | 110 | | 4.558 | 70 | MoO_3 | 4.560 | 20 | 200 | | 3.767 | 25 | MoO ₃ ·2H ₂ O | 3.770 | 30 | 400 | | 3.450 | 100 | MoO_3 | 3.450 | 100 | 210 | | 3.038 | 10 | MoO_3 | 3.040 | 40 | 300 | | 2.881 | 1 | MoO ₃ | 2.880 | 5 | 204 | | 2.629 | 20 | MoO_3 | 2.630 | 10 | 220 | | 2.529 | 27 | MoO_3 | 2.530 | 30 | 310 | | 2.301 | 95 | MoO ₃ ·2H ₂ O | 2.305 | 12 | -514 | | 2.145 | 2 | MoO_3 | 2.147 | 5 | 224 | | 2.093 | 25 | MoO ₃ | 2.097 | 10 | 320 | | 1.990 | 45 | MoO ₃ | 1.993 | 20 | 410 | | 1.945 | 5 | MoO ₃ | 1.947 | 15 | 404 | | 1.855 | 1 | MoO ₃ | 1.860 | 15 | 008 | | 1.821 | 10 | MoO ₃ | 1.824 | 10 | 500 | $\label{eq:solution} Table~S2$ Powder X-ray diffraction data for MoO $_{\! 3}$ needle-like microcrystals | Experimental data | | Data from Refs. 1,2 | | | | |-------------------|----------------|-------------------------------------|-------|-----------------|------| | d, Å | I/I_{100} ,% | Compound | d, Å | I/I_{100} . % | hkl | | 9.61 | 48 | MoO_3 | 9.690 | 80 | 100 | | 6.850 | 100 | MoO ₃ ·2H ₂ O | 6.900 | 100 | 020 | | 5.288 | 9 | MoO ₃ | 5.290 | 10 | 110 | | 4.554 | 33 | MoO ₃ | 4.560 | 20 | 200 | | 3.763 | 12 | MoO ₃ ·2H ₂ O | 3.770 | 30 | 400 | | 3.447 | 100 | MoO ₃ | 3.450 | 100 | 210 | | 3.236 | 75 | MoO ₃ ·2H ₂ O | 3.240 | 45 | 024 | | 3.036 | 3 | MoO ₃ | 3.040 | 40 | 300 | | 2.639 | 6 | MoO_3 | 2.630 | 10 | 220 | | 2.530 | 10 | MoO ₃ | 2.530 | 30 | 310 | | 2.297 | 75 | MoO ₃ ·2H ₂ O | 2.305 | 12 | -514 | | 2.101 | 9 | MoO ₃ | 2.097 | 10 | 320 | | 1.997 | 15 | MoO ₃ | 1.997 | 20 | 410 | | 1.946 | 4 | MoO ₃ | 1.947 | 15 | 404 | | 1.822 | 6 | MoO ₃ ·2H ₂ O | 1.823 | 6 | -108 | $\label{eq:solution} Table~S3$ Powder X-ray diffraction data for MoO $_{\! 3}$ nanospherulites | Experimental data | | Data from Refs. 1,2 | | | | |-------------------|----------------|-------------------------------------|-------|-------------------------------|------| | d, Å | I/I_{100} ,% | Compound | d, Å | <i>I/I</i> ₁₀₀ . % | hkl | | 9.11 | 50 | MoO_3 | 9.120 | 80 | 100 | | 6.870 | 100 | MoO ₃ ·2H ₂ O | 6.900 | 100 | 020 | | 5.305 | 7 | MoO_3 | 5.290 | 10 | 110 | | 4.550 | 30 | MoO_3 | 4.560 | 20 | 200 | | 3.605 | 1 | MoO ₃ ·2H ₂ O | 3.770 | 30 | 400 | | 3.448 | 100 | MoO_3 | 3.450 | 100 | 210 | | 3.035 | 20 | MoO_3 | 3.040 | 40 | 300 | | 2.876 | 2 | MoO_3 | 2.880 | 5 | 204 | | 2.630 | 8 | MoO_3 | 2.630 | 10 | 220 | | 2.526 | 20 | MoO_3 | 2.530 | 30 | 310 | | 2.310 | 95 | MoO ₃ ·2H ₂ O | 2.305 | 12 | -514 | | 2.145 | 2 | MoO_3 | 2.147 | 5 | 224 | | 2.088 | 10 | MoO_3 | 2.097 | 10 | 320 | | 1.990 | 20 | MoO ₃ | 1.993 | 20 | 410 | | 1.945 | 7 | MoO ₃ | 1.947 | 15 | 404 | | 1.864 | 5 | MoO_3 | 1.860 | 15 | 008 | | 1.820 | 3 | MoO_3 | 1.824 | 10 | 500 | | Experimental data | | Data from Refs. 1,2 | | | | |-------------------|----------------|-------------------------------------|-------|-----------------|-----| | d, Å | I/I_{100} ,% | Compound | d, Å | I/I_{100} . % | hkl | | 9.10 | 40 | MoO_3 | 9.120 | 80 | 100 | | 6.950 | 100 | MoO ₃ ·2H ₂ O | 6.900 | 100 | 020 | | 5.285 | 7 | MoO_3 | 5.290 | 10 | 110 | | 4.620 | 33 | MoO_3 | 4.560 | 20 | 200 | | 3.425 | 100 | MoO_3 | 3.450 | 100 | 210 | | 3.035 | 34 | MoO_3 | 3.040 | 40 | 300 | | 2.878 | 15 | MoO_3 | 2.880 | 5 | 204 | | 2.625 | 10 | MoO_3 | 2.630 | 10 | 220 | | 2.531 | 15 | MoO_3 | 2.530 | 30 | 310 | | 2.145 | 2 | MoO ₃ | 2.147 | 5 | 224 | | 2.098 | 13 | MoO_3 | 2.097 | 10 | 320 | | 1.995 | 22 | MoO ₃ | 1.993 | 20 | 410 | | 1.940 | 5 | MoO ₃ | 1.947 | 15 | 404 | | 1.862 | 3 | MoO ₃ | 1.860 | 15 | 008 | | 1.826 | 4 | MoO ₃ | 1.824 | 10 | 500 | $Table\ S5$ Content of $MoO_3\cdot 2H_2O$ in the oxide particles of different morphology used for composite preparation | Oxide particles | Content, % | |---------------------------|------------| | Microprisms | 10 | | Needle-like microcrystals | 27 | | Nanospherulites | 15 | | Nanoprisms | 5 | ### References - 1. Powder Diffraction File. Card No 21-569. JCPDS International Centre for Diffraction Data. Swarthmore, 1989. - 2. Powder Diffraction File. Card No 16-497. JCPDS International Centre for Diffraction Data. Swarthmore, 1989.