
On Checking Skeptical and Ideal Admissibility in
Abstract Argumentation Frameworks

Samer Nofala, Katie Atkinsonb, and Paul E. Dunneb

aDepartment of Computer Science, German Jordanian University, Jordan
bDepartment of Computer Science, University of Liverpool, United Kingdom

Abstract

Abstract argumentation frameworks (afs) are directed graphs with vertices be-
ing abstract arguments and edges denoting the attacks between them. Within
the context of afs, we implement and evaluate an algorithm for two essential
computational problems: checking skeptical and ideal admissibility. We eval-
uate the implemented algorithms using a widely-known benchmark. In terms
of the number of solved problem instances and the average running time, our
implementation outperforms two prominent systems.

Keywords: directed graph, graph algorithm, argumentation graph,
argumentation semantics, computational argumentation

1. Introduction

The notion of admissibility (defined shortly) plays a central role in the theory
and application of abstract argumentation frameworks (afs) introduced in [11].
For excellent reviews on abstract argumentation research see for example the
articles of [3, 16, 4, 5, 9, 24].

An af is basically a directed graph G = (V,E) such that the vertices of V
denote abstract arguments and the edges of E represent the attacks between
them. We say x is a predecessor of y (or y is a successor of x) if and only
if (x, y) ∈ E. For a given set T ⊆ V , we denote the set of all predecessors
(respectively successors) of the vertices of T by T− (respectively T+). A set of
vertices Q ⊆ V is admissible if and only if Q− ⊆ Q+ and Q+ ∩Q = ∅. A vertex
x ∈ V is admissible if and only if x is in an admissible set. A vertex x ∈ V
is skeptically admissible if and only if x is contained in every subset-maximal
admissible set. A set of vertices I ⊆ V is the ideal extension of G if and only if I
is the subset-maximal admissible set such that for all y ∈ I− y is not admissible.
Moreover, a vertex v ∈ V is ideally admissible if and only if v is contained in
the ideal extension of G.

In this paper we implement and practically evaluate an ad hoc algorithm
for checking skeptical and ideal admissibility. The two decision problems are
computationally hard in the general case [12, 13]. Take the graph G1 in figure 1.
We note that there are two subset-maximal admissible sets: {k, f, b, e} and

Preprint submitted to Information Processing Letters February 19, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/196222322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: G1, an example directed graph.

Algorithm 1: checking skeptical admissibility as in [18].

requires: a directed graph G = (V,E) and a query vertex x ∈ V .
ensures : returns true if x is skeptically admissible; else returns false.

1 if x is not admissible then return false;
2 if there is an admissible y ∈ {x}− then return false;
3 if there is a subset-maximal admissible set S 6⊇ {x} then return false;
4 return true;

{k, g, b, e}. Thus, the vertices k, b, and e are skeptically admissible; f and g are
admissible vertices; b and e are ideally admissible due to the ideal extension
{b, e}.

In section 2 we implement a well-known ad hoc algorithm for deciding skepti-
cal admissibility. Then, in section 3 we implement a prevalent ad hoc algorithm
for checking ideal admissibility. To the best of our knowledge, both algorithms
have never yet been fully implemented and empirically evaluated. In section 4
we measure the efficiency of our implementation and observe encouraging in-
dications for its practical use in deciding skeptical and ideal admissibility. We
discuss related work in section 5 and lastly conclude the paper in section 6.

2. Checking Skeptical Admissibility

Before introducing the new implementation for checking skeptical admis-
sibility, we recall algorithm 1, which is the ad hoc algorithm of the existing
implementation considered in [18].

Let us explain the steps of algorithm 1 by checking the admissibility of k
in G1 (figure 1). Initially, we check if there is an admissible set containing k,
see line 1 of the algorithm. Subsequently, we find the set of {k, f} admissible.
Now, we apply line 2 to check if there is an admissible vertex in {k}−. Thus,
the only vertex in {k}−, which is h, is not admissible. Executing line 3, we test
every subset-maximal admissible set, which are {k, g, b, e} and {k, f, b, e}. As k
is in both sets, we conclude that k is skeptically admissible (line 4).

Referring to algorithm 1, we note that the lines 1 & 2 are computationally
easier than line 3 that possibly requires checking a very large number of sets [12].

2

Algorithm 2: checking skeptical admissibility (Doutre & Mengin [10]).

requires: a directed graph G = (V,E) and a query vertex x ∈ V .
ensures : returns true if x is skeptically admissible; else returns false.

1 if x is not admissible then return false;
2 if there is an admissible y ∈ {x}− then return false;
3 if G contains no odd cycle then return true;
4 if there is a subset-maximal admissible set S 6⊇ {x} then return false;
5 return true;

Hence, one might wonder if there is a way to avoid, at least occasionally, the
computational burden of line 3. The answer can be found in the ad hoc algorithm
of Doutre and Mengin [10]. They suggested to check the input graph for odd
cycles before executing the non-trivial computations of line 3 of algorithm 1.
Let G = (V,E) be a directed graph, G′ = (V ′ ⊆ V,E′ ⊆ E) be a sub-graph
of G with V ′ = {v0, v1, v2, v3, ..., vn}, then G′ is an odd cycle if and only if
|V ′| is odd, |V ′| = |E′|, and E′ = {(v0, v1), (v1, v2), (v2, v3), ..., (vn−2, vn−1),
(vn−1, vn), (vn, v0)}. It is known that for directed graphs with no odd cycles
the lines 1 & 2 of algorithm 1 are sufficient for deciding skeptical admissibility
[6, 14]. However, in the general case, line 3 of algorithm 1 is inevitable. Take the
graph G2 depicted in figure 2. We note that G2 has two admissible sets: {a} and
{b, d}. Although the vertex d is admissible and has no admissible predecessor,
d is not skeptically admissible because the admissible set {a} 6⊇ {b}.

W present algorithm 2, which is the algorithm of Doutre and Mengin intro-
duced in [10]. Algorithm 2 differs from algorithm 1 in checking odd cycles in
the input graph, see line 3 of algorithm 2.

For implementing lines 1 and 2 of algorithm 2, we employ the solver of [21].
For performing line 4 of algorithm 2, we run the solver of [20]. Both solvers
(i.e. [21] & [20]) are based on the ad hoc backtracking algorithms of [19]. For
detecting odd cycles (line 3 of algorithm 2), we create algorithm 3. Algorithm
3 is based on the notion of vertex coloring where every vertex in a given graph
is assigned a color such that no two adjacent vertices have the same color. By
allowing only two colors (say green and blue) for the vertex coloring, an odd
cycle is detected whenever we fail in assigning adjacent vertices different colors.
To realize this notion of vertex coloring for odd-cycle detection, we use white as
the initial color for all vertices in the input graph. Additionally, once we have
finished exploring all successors of a given vertex we color it black.

To see algorithm 3 in action, let us apply it to G2. Initially, apply lines 3
& 4 of algorithm 3 to color every vertex white. Then, apply line 6 to color the
vertex a green, assuming in the first round of the loop at line 5 a is scanned.
Then, execute check(a) at line 7. Since color(b) = white, at line 14 change
the color of b to blue. Now, invoke check(b), see line 15. At this point, assume
we scan a in the first round of the loop at line 10. Thus, no more actions are
taken since color(a) = green. In the second round of the loop at line 10, note
color(c) = white. Subsequently, change the color of c to green (line 14) and

3

Figure 2: G2, an example directed graph.

Algorithm 3: detecting odd cycles.

requires: a directed graph G = (V,E).
ensures : decides whether G contains an odd cycle or not.

1 color : V → {white, green, blue, black};
2 Function detecting-odd-cycles()

3 color ← ∅;
4 foreach x ∈ V do color ← color ∪ {(x,white)};
5 foreach x with color(x) = white do
6 color(x)← green;
7 check(x);

8 no odd cycle in G; terminate the program;

9 Function check(x)
10 foreach y ∈ {x}+ with color(y) 6= black do
11 if color(y) = color(x) then
12 an odd cycle is found; terminate the program;
13 if color(y) = white then
14 for c ∈ {green, blue} \ {color(x)} do color(y)← c;
15 check(y);

16 color(x)← black;

afterwards invoke check(c) (line 15). Therefore, in the only round of the loop
at line 10, change the color of d from white to blue (line 14) and then invoke
check(d) (line 15). Since color(e) = white, change the color of e to green (line
14) and immediately execute check(e) (line 15). As color(e) = color(c) (line
11), an odd cycle is detected.

3. Checking Ideal Admissibility

We recall algorithm 4, which is the core of the existing ad hoc implementa-
tion of [17, 19] for checking ideal admissibility. The underlying actions of the
algorithm are straightforwardly extracted from the definition of the ideal exten-
sion. The issue with algorithm 4 is the huge space possibly required to hold all
admissible sets.

Avoiding the intractable space of algorithm 4, Dunne [13] introduced an ad
hoc algorithm for computing the ideal extension, and subsequently answering
the ideal admissibility query on a given vertex. Initially, the algorithm of Dunne

4

Algorithm 4: checking ideal admissibility as in [17, 19].

requires: a directed graph G = (V,E) and a query vertex x ∈ V .
ensures : returns true if x is ideally admissible; returns false otherwise.

1 Let S = {S1, S2, S3, ..., Sn} be the set of all admissible sets of G such
that |Si| ≥ |Sj | whenever i < j;

2 foreach i ∈ {1, 2, 3, ..., n} do
3 if for all T ∈ S T+ ∩ Si = ∅ then
4 Si is the ideal extension of G;
5 if x ∈ Si then return true; else return false;

Algorithm 5: constructing the ideal extension (Dunne [13]).

requires: a directed graph G = (V,E).
ensures : computes I, the ideal extension of G.

1 S ← {x | x is admissible};
2 S ← S \ S+;
3 the ideal extension is the subset-maximal I ⊆ S satisfying I− ⊆ I+;

starts with S being the set of all admissible vertices in the input graph. Then,
the algorithm expels from S those vertices that have an admissible predecessor.
Lastly, the algorithm finds the ideal extension by computing the subset-maximal
admissible set contained in S. Dunne’s algorithm is listed in algorithm 5. Now,
apply algorithm 5 to G1 (figure 1). Perform line 1 to get S = {k, f, g, b, e}.
Then, execute line 2 to obtain S = {k, b, e}. Thus, the ideal extension is {b, e}
as {b, e}− ⊆ {b, e}+.

A possible bottleneck of Dunne’s algorithm is computing all admissible ver-
tices (line 1). Hence, one might wonder if it is possible to check ideal admissibil-
ity without requiring to find all admissible vertices. We note that if the query
vertex is not admissible or it has an admissible predecessor, then the query ver-
tex is not ideally admissible and so there is no need to pursue computing the
admissibility of other vertices. Recall, the basic objective of Dunne’s algorithm
is to compute the ideal extension. For this objective, it is likely necessary to
compute admissibility for every vertex in the input graph. But here we are con-
cerned answering an ideal admissibility query on a specific vertex. Therefore,
taking into consideration the above note on Dunne’s algorithm, we optimize
algorithm 5 to algorithm 6 that tests ideal admissibility for a vertex in a given
graph. Thus, algorithm 6 checks first the admissibility of the query vertex, say
x, and the admissibility of all y ∈ {x}−, see lines 1 & 2. At line 3 the algo-
rithm finds a subset-maximal admissible set S. Then, at line 5 the algorithm
removes from S those vertices that have an admissible predecessor. Lastly, the
algorithm finds the ideal extension by computing the subset-maximal admissi-
ble set contained in S, see line 6. For example, assume we desire to check the
ideal admissibility of f in G1. Then, we apply algorithm 6. Initially, we check
the admissibility of f to find that f is admissible. Afterwards, we check the

5

Algorithm 6: checking ideal admissibility (optimizing algorithm 5).

requires: a directed graph G = (V,E) and a query vertex x ∈ V .
ensures : returns true if x is ideally admissible; else returns false.

1 if x is not admissible then return false;
2 if there is an admissible y ∈ {x}− then return false;
3 find a subset-maximal admissible set S ⊆ V ;
4 if x /∈ S then return false;
5 S ← {y ∈ S | for all z ∈ {y}− z is not admissible};
6 the ideal extension is the subset-maximal I ⊆ S satisfying I− ⊆ I+;
7 if x ∈ I then return true else return false;

admissibility of g, which is the only predecessor of f . As g is admissible, we
conclude that f is not ideally admissible.

As to the implementation of lines 1 & 2 & 5 of algorithm 6, again we run
the backtracking-based solver of [21]. Concerning the implementation of line 3,
we execute the backtracking-based solver of [20]. With respect to the imple-
mentation of line 6, we create algorithm 7.

We describe the notion of algorithm 7. Let G = (V,E) be a directed graph
and S ⊆ V be the set containing all admissible vertices that have no admissible
predecessor, then algorithm 7 finds the ideal extension of G by removing from
S every x ∈ S with some y ∈ {x}− such that {y}− ∩S = ∅. To perform this re-
moval efficiently we employ a counter for each vertex in the graph. The purpose
of the counter is to keep track for each vertex the number of its predecessors that
are currently in S. If the counter value of some y ∈ {x}− for a given x ∈ S is
equal to zero, then we remove x from S. Every time a vertex x is removed from
S we decrease by one the counter value of every z ∈ {x}+, and then we repeat
the same procedure again and again until for all w ∈ S, every predecessor of w
has some predecessor in S, which means this condition of admissibility S− ⊆ S+

is satisfied. Observe that the property of subset maximality is guaranteed be-
cause we start with a subset-maximal set S, see line 3 of algorithm 6, and later
S might be reduced as described at line 5 of algorithm 6. Then, algorithm 7
computes the ideal extension by removing gradually from S exclusively those
vertices that violate the admissibility condition (i.e. S− ⊆ S+).

Let us now apply algorithm 6 to G1 to check the ideal admissibility of b.
As b is admissible and its only predecessor c is not admissible, we go to line 3
to compute a subset-maximal admissible set. Assume we find S = {k, f, b, e}.
Then, by performing line 5 we obtain S = {k, b, e}. Therefore, at line 6 we
apply algorithm 7 to S. Thus, by the lines 3 & 4 & 5 of algorithm 7 we find π =
{(b, 0), (c, 1), (d, 1), (e, 0), (f, 0), (g, 0), (h, 0), (k, 0)}. Applying line 7, we move
k from S to S̃. Hence, S = {b, e} and S̃ = {k}. Then, in the first round of the
loop at line 8 we remove k from S̃, see line 9. As by now S̃ = ∅, we conclude
(line 13) that S = {b, e} is the ideal extension. Note, {b, e}− ⊆ {b, e}+.

6

Algorithm 7: implementing line 6 of algorithm 6

requires: a directed graph G = (V,E) with S ⊆ V being the set
computed at line 5 of algorithm 6.

ensures : computes the ideal extension of G.
1 S̃ ← ∅;
2 π : V → {0, 1, 2, ..., |V |};
3 foreach x ∈ V do π(x)← 0;
4 foreach x ∈ S do
5 foreach y ∈ {x}+ do π(y)← π(y) + 1;
6 foreach x ∈ S do

7 if there is y ∈ {x}− with π(y) = 0 then S ← S \ {x}; S̃ ← S̃ ∪ {x};
8 while S̃ 6= ∅ do
9 remove a vertex x from S̃;

10 foreach y ∈ {x}+ do
11 π(y)← π(y)− 1;

12 if π(y) = 0 then S̃ ← S̃ ∪ ({y}+ ∩ S); S ← S \ {y}+;

13 S is the ideal extension of G;

4. Evaluation

The objective of the evaluation is to measure the average running-time ef-
ficiency of the new implementation of algorithms 2 & 6. The c++ code of our
implementation can be found at https://sourceforge.net/projects/argtools.

In our evaluation we adopt the settings taken by the second international
competition of computational models of argumentation 2017 (ICCMA17) [1].
Thus, we executed our implementation on a machine with an intel-core-i7 pro-
cessor and four gigabytes of system memory. In contrast, the environment of
ICCMA17 is a machine with intel-xeon processor and sixteen gigabyte of sys-
tem memory such that four gigabytes were allocated for each problem instance.
Following ICCMA17, we set a timeout of ten minutes for each problem instance.

As to the benchmark, we considered benchmarks A & D of ICCMA17 for the
skeptical and ideal admissibility respectively. Benchmark D is different from A
only in the query vertices, but they both consist of the same 350 directed graphs
that are distributed into five groups according to computational hardness:

• group 1 includes 50 very easy problem instances.

• group 2 includes 50 easy problem instances.

• group 3 includes 100 medium problem instances.

• group 4 includes 100 hard problem instances.

• group 5 includes 100 very hard problem instances: using 50 directed graphs
with two vertices being queried in each one.

7

Following ICCMA17, we excluded group 1 from evaluation because it in-
cludes extremely easy directed graphs, and so we consider 350 problem instances,
but using only 300 directed graphs. To evaluate the efficiency of our implemen-
tation we compare with two well-known solvers: ArgSemSAT [7] and pyglaf
[2]. These solvers are reduction-based where ready-made, back-end systems
are executed for solving a reduced form of the problem instance at hand, see
the survey of [9] for an overview of reduction-based methods and systems. We
selected ArgSemSAT (respectively pyglaf) because it was the best solver in IC-
CMA17 under the task “check skeptical admissibility” (respectively “check ideal
admissibility”).

For the ideal admissibility problem, we report our results in tables 1-5,
whereas the tables 6-10 summarize our findings for the skeptical admissibility
problem. Note that we report the running times in seconds for only the indi-
cated number of solved instances, which means timeouts are not included within
the reported total running times. In the context of experimental algorithms, it
is widely accepted to evaluate performance based on the average running time
or equivalently based on the number of problem instances solved by a given algo-
rithm (solver) within a predefined timeout for each problem instance. These two
measures are indeed considered in ICCMA17. Thus, according to ICCMA17,
systems are compared against each other by counting the number of problem
instances that are solved by the respective systems. If two or more systems
solve the same number of problem instances, then ICCMA17 consider the total
running time to decide on solver performance. Referring to table 1, we see that
the pyglaf solver is more efficient than the new implementation in terms of the
number of solved problem instances of group 2 of benchmark D. Nonetheless,
depending on the same measure, i.e. the number of solved problem instances,
we note that the new implementation overall is more efficient than pyglaf, see
table 5. Further, the total running time of the new implementation is much less
than pyglaf’s total, again see table 5. We stress, the performance of the new
implementation is on average better than pyglaf although pyglaf outperformed
the new implementation in solving some problem instances. Equally important
is noting that the number of solved problem instances is a strong indicator for
running time efficiency, which is consistent with the measures considered in
ICCMA17. Take table 10 for example, if we add the running time of the time-
outs (that were solved by the new implementation) to the total running time
of ArgSemSAT, then 5092 + ((319 - 309) × 600) = 11092 seconds. Obviously,
11092 is much larger than 6405, which is the total running time taken by the
new implementation in solving 319 problem instances, again see table 10.

Table 1: checking ideal admissibility for all problem instances in group 2 of benchmark D.

solver total running time number of solved problem instances
algorithm 6 563 46
pyglaf 597 50

8

Table 2: checking ideal admissibility for all problem instances in group 3 of benchmark D.

solver total running time number of solved problem instances
algorithm 6 1687 90
pyglaf 2748 94

Table 3: checking ideal admissibility for all problem instances in group 4 of benchmark D.

solver total running time number of solved problem instances
algorithm 6 1581 91
pyglaf 6196 76

Table 4: checking ideal admissibility for all problem instances in group 5 of benchmark D.

solver total running time number of solved problem instances
algorithm 6 2029 83
pyglaf 1479 64

Table 5: checking ideal admissibility for all problem instances in benchmark D.

solver total running time number of solved problem instances
algorithm 6 5860 310
pyglaf 11020 284

Table 6: checking skeptical admissibility for all problem instances in group 2 of benchmark A.

solver total running time number of solved problem instances
algorithm 2 1190 50
ArgSemSAT 682 50

Table 7: checking skeptical admissibility for all problem instances in group 3 of benchmark A.

solver total running time number of solved problem instances
algorithm 2 2264 98
ArgSemSAT 1239 96

9

Table 8: checking skeptical admissibility for all problem instances in group 4 of benchmark A.

solver total running time number of solved problem instances
algorithm 2 903 87
ArgSemSAT 1367 87

Table 9: checking skeptical admissibility for all problem instances in group 5 of benchmark A.

solver total running time number of solved problem instances
algorithm 2 2048 84
ArgSemSAT 1805 76

Table 10: checking skeptical admissibility for all problem instances in benchmark A.

solver total running time number of solved problem instances
algorithm 2 6405 319
ArgSemSAT 5093 309

5. Related Work

For the skeptical admissibility problem, we note the previous works that
addressed the issue of building ad hoc algorithms:

1. the work of Doutre and Mengin [10], which is algorithm 2 that we imple-
mented and empirically evaluated in this paper.

2. the work of Nofal et al [17] that actually follows the high-level structure
of the algorithm of Doutre and Mengin [10]. Nevertheless, Nofal et al [17]
failed to include in their implementation the proposal of Doutre-Mengin
for odd-cycle detection. As discussed earlier odd-cycle detection enhances
the efficiency of checking skeptical admissibility.

3. the work of Thang et al [23] is focused on unifying the way of constructing
“proofs” for skeptical admissibility among other problems related to the
directed graphs of abstract argumentation. We refer the reader to [18] for
in-depth comparisons between the work of Thang et al and the work of
Doutre and Mengin.

4. the ArgTools system implements the algorithms of [19] that decide skepti-
cal (and ideal) admissibility by basically listing admissible sets. The work
of Nofal et al [19] mainly aimed at evaluating a proposed “look-ahead”
pruning mechanism.

10

5. lastly, it is worth noting that heureka [15] and EqArgSolver [22] are ad hoc
systems implementing the skeptical admissibility problem in addition to
other computational problems related to abstract argumentation. In fact,
the two systems did not implement the task of checking ideal admissibility.
Nonetheless, we are not aware of any published work that elaborates on
the specific implementations of heureka and EqArgSolver for solving the
skeptical admissibility problem.

As to ad hoc algorithms for the ideal admissibility problem, the algorithm
of Dunne [13] is optimized and implemented earlier in algorithm 6. We believe
that Dunne’s algorithm has never been implemented and empirically evaluated
until we did in this work. In fact, the implementation of Nofal et al [17, 19]
decides an ideal admissibility by constructing the ideal extension of the input
graph entirely through generating a huge list of admissible sets, see algorithm 4.

6. Conclusion

We implemented an ad hoc algorithm for deciding skeptical and ideal admis-
sibility within the context of abstract argumentation frameworks. We evaluated
our implementation and observed that its performance is superior to two widely-
known solvers. A natural direction of this work is to consider parallelizing the
algorithms presented in this paper. On the role of parallelism in abstract ar-
gumentation, see for example the study of [8]. In general, our findings would
motivate further research that focus on developing ad hoc algorithms for funda-
mental computational problems in abstract argumentation. Ad hoc algorithms
are quite flexible to likely allow for performing efficient computations that fine-
tune the use of space and time.

Acknowledgment

We thank the anonymous referees for the comments that improved the pre-
sentation of this article.

References

[1] International competition of computational models of argumentation 2017.
http://argumentationcompetition.org/2017. Organized by: Sarah A. Gaggl,
Thomas Linsbichler, Marco Maratea, and Stefan Woltran.

[2] Mario Alviano. Ingredients of the argumentation reasoner pyglaf: Python,
circumscription, and glucose to taste. In Proceedings of the 24th RCRA In-
ternational Workshop on Experimental Evaluation of Algorithms for Solv-
ing Problems with Combinatorial Explosion 2017, pages 1–16, 2017.

11

[3] Katie Atkinson, Pietro Baroni, Massimiliano Giacomin, Anthony Hunter,
Henry Prakken, Chris Reed, Guillermo Ricardo Simari, Matthias Thimm,
and Serena Villata. Towards artificial argumentation. AI Magazine,
38(3):25–36, 2017.

[4] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An intro-
duction to argumentation semantics. Knowledge Eng. Review, 26(4):365–
410, 2011.

[5] T.J.M. Bench-Capon and Paul E. Dunne. Argumentation in artificial in-
telligence. Artificial Intelligence, 171(10):619 – 641, 2007. Argumentation
in Artificial Intelligence.

[6] Claudette Cayrol, Sylvie Doutre, and Jérôme Mengin. On decision prob-
lems related to the preferred semantics for argumentation frameworks. J.
Log. Comput., 13(3):377–403, 2003.

[7] Federico Cerutti, Massimiliano Giacomin, and Mauro Vallati. Argsemsat:
Solving argumentation problems using SAT. In Computational Models of
Argument - Proceedings of COMMA 2014, Atholl Palace Hotel, Scottish
Highlands, UK, September 9-12, 2014, pages 455–456, 2014.

[8] Federico Cerutti, Ilias Tachmazidis, Mauro Vallati, Sotirios Batsakis, Mas-
similiano Giacomin, and Grigoris Antoniou. Exploiting parallelism for hard
problems in abstract argumentation. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, AAAI’15, pages 1475–1481.
AAAI Press, 2015.

[9] Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter
Wallner, and Stefan Woltran. Methods for solving reasoning problems in
abstract argumentation - A survey. Artif. Intell., 220:28–63, 2015.

[10] Sylvie Doutre and Jérôme Mengin. Preferred extensions of argumentation
frameworks: Query answering and computation. In Automated Reasoning,
First International Joint Conference, IJCAR 2001, Siena, Italy, June 18-
23, 2001, Proceedings, pages 272–288, 2001.

[11] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artif. Intell., 77(2):321–358, 1995.

[12] Paul E. Dunne. Computational properties of argument systems satisfying
graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007.

[13] Paul E. Dunne. The computational complexity of ideal semantics. Artificial
Intelligence, 173(18):1559 – 1591, 2009.

[14] Paul E. Dunne and T.J.M. Bench-Capon. Coherence in finite argument
systems. Artificial Intelligence, 141(1):187 – 203, 2002.

12

[15] Nils Geilen and Matthias Thimm. Heureka: A general heuristic backtrack-
ing solver for abstract argumentation. In second international competition
on computational argumentation models, 2017.

[16] S. Modgil, F. Toni, F. Bex, I. Bratko, C.I. Chesñevar, W. Dvořák, M.A.
Falappa, X. Fan, S.A. Gaggl, A.J. Garćıa, M.P. González, T.F. Gordon,
J. Leite, M. Možina, C. Reed, G.R. Simari, S. Szeider, P. Torroni, and
S. Woltran. The added value of argumentation. In Sascha Ossowski, edi-
tor, Agreement Technologies, volume 8 of Law, Governance and Technology
Series, pages 357–403. Springer Netherlands, 2013.

[17] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for ar-
gumentation semantics: Labeling attacks as a generalization of labeling
arguments. J. Artif. Intell. Res. (JAIR), 49:635–668, 2014.

[18] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Algorithms for decision
problems in argument systems under preferred semantics. Artif. Intell.,
207:23–51, 2014.

[19] Samer Nofal, Katie Atkinson, and Paul E. Dunne. Looking-ahead in back-
tracking algorithms for abstract argumentation. Int. J. Approx. Reasoning,
78:265–282, 2016.

[20] Samer Nofal, Katie Atkinson, and Paul E. Dunne. A system for gener-
ating subset-maximal admissible sets of abstract argumentation frame-
works. https://sourceforge.net/projects/argtools/files/Generate all pre-
ferred extensions/, June 2018.

[21] Samer Nofal, Katie Atkinson, and Paul E. Dunne. A sys-
tem for deciding admissibility in abstract argumentation frame-
works. https://sourceforge.net/projects/argtools/files/Decide Credulous
Acceptance (admissible)/, May 2018.

[22] Odinaldo Rodrigues. A forward propagation algorithm for the computation
of the semantics of argumentation frameworks. In Theory and Applications
of Formal Argumentation - 4th International Workshop, TAFA 2017, Mel-
bourne, VIC, Australia, August 19-20, 2017, Revised Selected Papers, pages
120–136, 2017.

[23] Phan Minh Thang, Phan Minh Dung, and Nguyen Duy Hung. Towards a
common framework for dialectical proof procedures in abstract argumen-
tation. J. Log. Comput., 19(6):1071–1109, 2009.

[24] Matthias Thimm and Serena Villata. The first international competition
on computational models of argumentation: Results and analysis. Artif.
Intell., 252:267–294, 2017.

13

	Introduction
	Checking Skeptical Admissibility
	Checking Ideal Admissibility
	Evaluation
	Related Work
	Conclusion

