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2 
 
ABSTRACT 27 

In June 2017, The National Institute of Allergy and Infectious Diseases, part of the 28 

National Institutes of Health, organized a workshop entitled “Pharmacokinetics-29 

Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial 30 

Pathogens”. The aims were to discuss details of various PK/PD models and identify 31 

sound practices for deriving and utilizing PK/PD relationships to design optimal dosage 32 

regimens for patients. Workshop participants encompassed individuals from academia, 33 

industry and government, including the United States Food and Drug Administration. 34 

This and the accompanying review on clinical PK/PD summarize the workshop 35 

discussions and recommendations. Nonclinical PK/PD models play a critical role in 36 

designing human dosage regimens and are essential tools for drug development. These 37 

include in vitro and in vivo efficacy models that provide valuable and complementary 38 

information for dose selection and translation from the laboratory to human. It is crucial 39 

that studies be designed, conducted and interpreted appropriately. For antibacterial 40 

PK/PD, extensive published data and expertise are available. These have been 41 

leveraged to develop recommendations, identify common pitfalls and describe the 42 

applications, strengths and limitations of various nonclinical infection models and 43 

translational approaches. Despite these robust tools and published guidance, 44 

characterizing nonclinical PK/PD relationships may not be straightforward, especially for 45 

a new drug or new class. Antimicrobial PK/PD is an evolving discipline that needs to 46 

adapt to future research and development needs. Open communication between 47 

academia, pharmaceutical industry, government, and regulatory bodies is essential to 48 

share perspectives and collectively solve future challenges.  49 
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INTRODUCTION 50 

Nonclinical infection models are commonly used to characterize 51 

pharmacokinetic/pharmacodynamic (PK/PD) relationships for antibacterials and provide 52 

critical information for designing human dosage regimens (1). The discipline of PK/PD 53 

has been developing for several decades, and there is extensive evidence 54 

demonstrating that nonclinical infection models can predict clinical outcomes (1, 2). 55 

Since typical antibacterial drugs target the pathogen and not the host, the basic 56 

antimicrobial pharmacology and microbiology of the drug-pathogen interaction can be 57 

studied outside of the clinical setting. These insights can be assumed to hold true, in 58 

general, for drug-pathogen interactions that occur during infection of a human host (3). 59 

While there are many elements that cannot easily be studied outside the setting of a 60 

human infection, the insights gained from nonclinical infection models strongly support 61 

the rational design of optimal antibacterial dosage regimens for evaluation in future 62 

clinical trials. 63 

The goal of conducting nonclinical PK/PD infection models is, first and foremost, 64 

to elucidate exposure-response relationships, and to subsequently design and optimize 65 

dosage regimens. It is crucial to understand how drug concentration profiles at the 66 

primary infection site can maximize bacterial killing and minimize the emergence of 67 

bacterial resistance. Armed with this knowledge, dosage regimens can be designed to 68 

balance these goals while maintaining an acceptable level of safety in humans. 69 

Establishing exposure-toxicity relationships and identifying optimal regimens which 70 

account for between patient variability can greatly support achieving this balance (4, 5). 71 

 The existing armamentarium of PK/PD models is commonly employed to support 72 

these goals throughout the phases of drug development. Data from nonclinical PK/PD 73 
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models are indispensable for selecting the doses and regimens for patients, 74 

establishing susceptibility breakpoints, and ultimately refining clinical dosage regimens. 75 

The latter should reliably achieve PK/PD targets to maximize the probability that all 76 

patients will achieve efficacious drug exposures while limiting resistance development. 77 

In the current environment, it can be challenging or virtually impossible to find 78 

and recruit a sufficient number of patients (e.g. those with infections caused by 79 

multidrug-resistant pathogens) for multiple, large-scale clinical trials designed for 80 

inferential testing.  Consequently, there may be a heavy reliance on nonclinical PK/PD 81 

data to support and enhance the insights gained from human studies. These data also 82 

comprise an important element of regulatory submissions, as evidenced by guidelines 83 

published by the European Medicines Agency (6, 7).  For submissions to the Center for 84 

Drug Evaluation and Research that rely on limited clinical data, the importance of 85 

nonclinical PK/PD information is magnified, and nonclinical data packages need to be 86 

thorough to strongly support safety and efficacy in patients (8). 87 

Generating robust nonclinical PK/PD data was a key topic in the workshop 88 

sponsored by the National Institute of Allergy and Infectious Diseases (NIAID) in June 89 

2017 entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of 90 

Therapeutics against Bacterial Pathogens”. This review aims to summarize the 91 

information presented and discussed regarding nonclinical PK/PD models. Workshop 92 

participants came from across academia, industry and government, including the United 93 

States Food and Drug Administration (FDA) to provide a wide range of perspectives. 94 

Characterizing PK/PD for new drugs can be complex, and there is no single roadmap 95 

that can be applied for all drugs. In this review, we sought to provide guidance and 96 

considerations for designing, performing and interpreting studies to develop a robust 97 
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and informative nonclinical PK/PD package. Moreover, we aimed to put the roles of 98 

these models into perspective to design safe and effective dosage regimens for future 99 

clinical studies. 100 

 101 

IN VITRO PK/PD MODELS 102 

Static concentration time-kill (SCTK) assays are suitable screening tools for 103 

assessing drug structure activity and exposure-response relationships and for choosing 104 

informative drug exposures for subsequent dynamic infection model studies over longer 105 

treatment durations. SCTK studies are used to assess antibacterial activity and are 106 

typically performed over 24 (to 48) h. They use constant antibiotic concentrations and 107 

assume no or limited drug degradation; however, this should be experimentally 108 

confirmed, especially in studies with resistant strains. This experimental model can 109 

efficiently assess exposure-response relationships against the predominant bacterial 110 

population for antibiotic monotherapy and evaluate PD drug interactions for 111 

combinations. Further, SCTK studies can identify the rate of bacterial killing, help to 112 

define whether microbial killing is concentration- or time-dependent, identify antibiotic 113 

exposures that maximize bacterial killing and minimize regrowth, as well as evaluate the 114 

effect of the initial bacterial inoculum on antibiotic activity (9-11). Depending on the 115 

study objectives, viable counts on agar plates with and without the antibiotic can be 116 

utilized to determine the impact of drug exposure on both total and less-susceptible 117 

bacterial population(s) and identify whether regrowth is caused by less-susceptible 118 

bacteria (12-14). Results from 24 or 48 h SCTK studies may predict outcomes in the 119 

dynamic one-compartment (chemostat) or hollow fiber infection model (HFIM) for the 120 

first 24 to 48 h, but not at later time points.  121 
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The SCTK can efficiently assess a large number of treatment and control arms. 122 

Other advantages include its low cost and minimal equipment requirements; limitations 123 

include the use of constant drug concentrations and typically short treatment duration 124 

(24 to 48 h). The study duration can be extended to over one week, if needed, by 125 

replacing the medium with fresh (antibiotic-containing) broth every 24 h. For less stable 126 

drugs, small antibiotic doses can additionally be supplemented to offset degradation 127 

(15). Dynamic in vitro PK/PD models offer the additional capability of evaluating the 128 

effect of drug concentrations that change over time and can thereby mimic drug 129 

concentration profiles in humans. Dynamic systems include the one-compartment 130 

model (also called chemostat) and the two-compartment HFIM (16-20). To more 131 

precisely achieve PK/PD targets in these more labor-intensive dynamic infection 132 

models, it is often beneficial to perform arithmetic MICs using finer than 2-fold dilutions, 133 

particularly for higher MIC values (e.g. >0.5 mg/L) where the large incremental 134 

increases in test concentrations reduce the precision of the measurement (e.g. lower 135 

test concentrations have 2 to 3 significant figures while higher test concentrations only 136 

have 1). 137 

Dynamic one-compartment models. Chemostats are one-compartment, 138 

bacterial culture bioreactors with a typical culture volume of 100 to 250 mL. Fresh media 139 

is added continuously while culture contents are removed at the same rate to maintain a 140 

constant volume (16). Drugs are either administered directly as a bolus or infused (via a 141 

pump) into the bioreactor or as continuous infusion with the inflowing medium (Figure 142 

1). The chemostat can simulate drug concentrations changing over time following a 143 

single half-life to evaluate efficacy. This model can also assess dose fractionation by 144 

splitting the same daily dose into various dosing intervals. Moreover, chemostats can 145 
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simulate different durations of infusion and front-loaded regimens, for example (Table 1) 146 

(21-24). With the continuous replenishment of growth medium and nutrients, the one-147 

compartment system supports testing longer treatment durations for dose-range and 148 

dose-fractionation studies. This system can simulate the time-course of antibiotic 149 

concentrations for monotherapies and combinations to study bacterial killing and 150 

regrowth. 151 

Limitations of the chemostat include the potential for washout of bacteria and 152 

contamination of the media, particularly for studies with longer treatment duration. Most 153 

published studies have been conducted over 96 h or shorter (and often only over 24 h). 154 

Simulating concentration-time profiles for drugs with a short half-life in the chemostat 155 

results in washout of a considerable number of bacteria. The latter will cause the drug 156 

exposure needed for bacterial killing and resistance prevention to be underestimated, 157 

especially for slowly replicating bacteria or subpopulations. Filters can be used to help 158 

mitigate this issue but are not ideal due to clogging by bacteria (20, 25). Both washout 159 

of bacteria and incomplete oxygenation can lead to substantially lower maximum 160 

bacterial densities in the chemostat compared to those in SCTK and HFIM. Depending 161 

on the simulated half-life, bacterial waste products may accumulate over time in the 162 

chemostat. These features limit the ability of the chemostat to evaluate bacterial killing 163 

and resistance prevention at high bacterial densities and over long study durations. 164 

 Dynamic two-compartment models. In our opinion, the HFIM is the preferred 165 

and most capable in vitro model for evaluating PK/PD indices (26) and concentrations 166 

that best predict bacterial killing and resistance prevention (Table 1). The HFIM is a 167 

two-compartment system where bacteria are entrapped in the extra-capillary space of a 168 

hollow fiber cartridge that serves as a peripheral infection site (Figure 2). This system 169 
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can simulate virtually any time-course of drug concentrations for one or multiple drugs 170 

with the same or different half-lives (27-30). Multi-exponential profiles can be simulated 171 

by switching the pump rates at appropriate times (31). Bacteria are contained within the 172 

peripheral compartment of the hollow fiber cartridge, which completely prevents 173 

washout of bacteria. The cartridge has a large surface-to-volume ratio (32), providing 174 

optimized growth conditions for aerobic bacteria since bacteria are constantly exposed 175 

to fresh broth and oxygen, and waste products are continually removed (Figure 2). 176 

Thus, the maximum achievable bacterial density in the HFIM is usually over one order 177 

of magnitude higher compared with that in the SCTK assay. Due to these differences in 178 

growth conditions, the SCTK model tends to show an extensively attenuated bacterial 179 

killing at high compared to low initial inocula for some drug classes (9, 10, 33). This 180 

attenuation (i.e. an inoculum effect) tends to be less pronounced in the HFIM (34, 35), 181 

since bacterial replication is faster in the HFIM compared to SCTK at the same bacterial 182 

density (e.g. 108 CFU/mL). The clinical relevance of experimental inoculum effects is not 183 

fully understood; however, it has been shown in a mouse model that higher drug 184 

exposures are required to achieve stasis or 1-log10 killing against a higher (107 CFU/mL) 185 

compared to a lower (105 CFU/mL) inoculum of multiple Staphylococcus aureus strains 186 

for four classes of antibiotics (36).  187 

The HFIM offers the advantage that it can assess resistance prevention over 188 

typical antibiotic treatment durations for serious bacterial infections in patients (i.e. 189 

approximately 5 to 14 days). For slowly replicating bacteria such as Mycobacterium 190 

tuberculosis, studies can be extended to 28 days (37, 38) and longer, if needed. 191 

Moreover, the HFIM is the most capable and informative in vitro model for evaluating 192 

the efficacy of drug combination regimens, front-loaded dosage regimens and for 193 
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antibiotics with a short half-life, since there is no washout of the microbe (39, 40). The 194 

HFIM is further suitable for studies with highly communicable or virulent BSL-3 195 

pathogens (such as Mycobacterium tuberculosis, Bacillus anthracis, Burkholderia 196 

mallei, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis), since the 197 

bacteria are contained in the HFIM cartridge (27, 41).  198 

Limitations of the HFIM include its relatively high cost, which is compounded by 199 

the single use of cartridges, and the more extensive effort required to plan, set-up, and 200 

execute studies. Some (lipophilic) drugs bind to HFIM components, which hinders their 201 

testing. Different hollow fiber materials (including cellulosic, polysulfone and 202 

polyvinylidendifluoride [PVDF]) are available to minimize binding, if needed (32). Given 203 

the molecular weight cutoff of HFIM cartridges, β-lactamase enzymes are entrapped in 204 

the extracellular space. For sub-therapeutic regimens which provide limited or no 205 

bacterial killing, β-lactamase enzymes may accumulate over time in the cartridge and 206 

degrade β-lactams (35). This is likely moderated by bacterial proteases that break down 207 

β-lactamase enzymes and can be mitigated by washing of the bacterial suspension 208 

before it is inoculated into the HFIM cartridge. Therefore, quantifying β-lactam 209 

concentrations in the extra-capillary space of the HFIM cartridge (Figure 2) is warranted 210 

for β-lactamase (over)-producing strains. This is also essential for high inoculum studies 211 

of resistant strains for highly permeable pathogens such as Escherichia coli and 212 

Klebsiella pneumoniae. These β-lactamase-producing strains can cause a rapid decline 213 

of the extracellular β-lactam concentration due to β-lactamase activity in the periplasmic 214 

space of bacteria, an issue which also applies to SCTK and chemostat studies.  215 

 216 

CONSIDERATIONS FOR DESIGN AND CONDUCT OF IN VITRO PK/PD MODELS 217 
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Strain selection. Robust PK/PD analyses require examination of multiple strains 218 

that should include one reference strain (e.g. a widely available ATCC strain), one 219 

susceptible and two less-susceptible clinical isolates; the latter may include one strain 220 

from an intensive care unit (ICU) patient and one strain from a non-ICU patient. Strains 221 

should be relevant for the clinical indication and study purpose; they should include 222 

different resistance mechanisms and a relevant (i.e. wide) range of susceptibility to the 223 

studied drug(s). Studies evaluating isogenic sets of strains can provide valuable 224 

information about the impact of a specific resistance mechanism. 225 

Furthermore, the chosen strains should represent the most common mutation 226 

frequency (MF), and strains with the lowest MF (i.e. strains with a small number of pre-227 

existing resistant mutants) should be avoided. This necessitates determining the MF for 228 

a range of strains; it is recommended to test at least 3 strains of a given bacterial 229 

species for this purpose. For strains with multiple bacterial populations of different 230 

susceptibility towards an antibiotic, the impact of these less susceptible populations on 231 

PK/PD relationships and targets may need to be evaluated (34, 42). Appropriate 232 

reference strains (such as ATCC strains) should be used throughout the research 233 

program to demonstrate reproducibility. Finally, if possible, the chosen strains should be 234 

virulent in animal models to support efficient translation to animal studies, and virulence 235 

should be confirmed before conducting HFIM studies. 236 

 Inoculum and mutation frequency. The initial bacterial inoculum needs to be 237 

relevant for the clinical indication and study purpose. A high inoculum with a total 238 

bacterial burden of approximately 108.5 CFU or greater (equivalent to 15 mL of a 239 

bacterial suspension at 107.3 CFU/mL in the HFIM) is typically used in studies that target 240 

ventilator-associated and hospital-acquired bacterial pneumonia (VABP/HABP) and in 241 
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resistance prevention studies (43). Experiments with a total bacterial inoculum lower 242 

than approximately 106 CFU (equivalent to 15 mL of a bacterial suspension at 104.8 243 

CFU/mL or lower) are usually not relevant for clinical indications. However, such low 244 

inoculum studies may be highly suitable to address mechanistic research questions on 245 

the rate of de novo formation of resistant mutants or on phenotypic tolerance of the 246 

predominant population (in absence of pre-existing mutants at initiation of therapy), for 247 

example. Knowing the MF for the tested antibiotic(s) is essential (14). By considering 248 

the expected number of resistant mutants in the initial inoculum, one can increase or 249 

decrease the probability of a resistant mutant being present or absent, depending on 250 

the study objectives. To assess suppression of amplification of pre-existing less-251 

susceptible mutants, the number of bacteria in the total system volume should be at 252 

least 1 log10 CFU higher than the inverse of the MF. This ensures that all treatment and 253 

control arms contain at least one pre-existing less susceptible mutant (with a probability 254 

of 99.9% for a 16-arm study, see useful formulas in the Supplementary Materials).  255 

Duration of therapy and resistance prevention. The study duration depends 256 

on the study objective. To determine the PK/PD index (e.g. AUC/MIC, Peak/MIC or 257 

T>MIC) that best predicts bacterial killing, short-term studies over approximately 1 to 3 258 

days may be sufficient; longer studies are required for slowly replicating bacteria and 259 

should consider the cell division time. These data can be used to determine the drug 260 

exposure required to achieve 1-log10 or 2-log10 reduction in bacterial burden, or 261 

bacteriostasis at 24 h and end-of-study. To assess the drug exposure and dosage 262 

regimens that suppress resistance amplification, the treatment duration should mimic 263 

the therapy duration for the intended clinical indication (usually at least 5 to 8 days). 264 

Some antibiotic classes show emergence of resistance more rapidly (21, 34), but 265 
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absence of resistance emergence over the first two days often does not correlate with 266 

resistance prevention over 10 days. Therefore, HFIM studies to evaluate resistance 267 

prevention often use 7, 10 or 14 days of treatment (28, 44). 268 

Drug stability. It is critical to evaluate drug solubility and stability under relevant 269 

conditions (e.g. solvents, media, storage and experiment temperatures, as well as 270 

durations consistent with those of the planned experiments) (45, 46). Many antibiotics 271 

are hydrophilic and soluble in water (47), but some have limited solubility and their 272 

concentrations may decrease over time due to (slow) precipitation. In addition, drugs 273 

may bind non-specifically to flasks, tubing, filters, and fibers; thus, it is important to 274 

assess whether these issues exist. 275 

Drug concentration profiles.  When available, protein binding and 276 

pharmacokinetic data from patients with an infection should be used to simulate the 277 

non-protein bound (or “free”) concentration-time course of drugs in plasma or, ideally, 278 

tissue exposures at the primary infection site for the intended clinical indication (e.g. 279 

lung epithelial lining fluid [ELF] for pneumonia). This is important because exposure 280 

profiles in patients may differ from those in healthy volunteers, and between patient 281 

variability in PK can be substantial in the critically ill. Of note, infection and the 282 

associated inflammation can alter drug exposure in ELF or cerebrospinal fluid (CSF) 283 

(48, 49) and some antibiotics have heterogeneous distribution across major tissues and 284 

organs. For example, polymyxin B accumulates in kidney (50) but less in lung (51). It is 285 

further important to understand and simulate non-protein bound (i.e. free) drug 286 

exposures that are relevant to the infection site. 287 

If an active metabolite contributes to the overall bacterial killing, both the parent 288 

and metabolite should be evaluated separately and the concentration-time profiles of 289 
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both compounds should be generated in vitro at the values found at the intended 290 

infection site in patients. This provides the most accurate characterization of bacterial 291 

killing and resistance prevention for antibiotics with an active metabolite. For prodrugs 292 

that are inactive and/or rapidly converted to the parent, such as tedizolid, ceftaroline or 293 

colistin methanesulfonate, the drug exposure and PK profile of the biologically active 294 

compound should be dosed in in vitro PD systems (52, 53) due to different formation 295 

rates in vitro and in vivo. 296 

Quantifying drug concentrations. Determining the time-course of achieved 297 

drug concentrations in dynamic PK/PD models is a best practice, both to validate the 298 

simulated PK profiles and provide observed data for analysis. This is an essential step, 299 

rather than relying solely on mathematically predicting the expected drug exposures. 300 

This is particularly important for intermittent dosing and complex dosage regimens (e.g. 301 

front-loading (40, 54)). Collecting these data allows correlation of actual drug exposures 302 

with the extent of bacterial killing and resistance suppression and may explain 303 

unexpected results.  304 

Drug concentrations should be quantified at multiple times per dosing interval, 305 

e.g. at approximately 30 min after the end of infusion (to allow for proper equilibration of 306 

the system), one to three intermediate samples, and a sample towards the end of the 307 

dosing interval. This sampling scheme should be adjusted for more complex regimens 308 

and repeated during multiple dosing intervals to confirm reliability of the dosing 309 

(including the syringe pump), performance of the peristaltic pump, and characterize 310 

attainment of steady-state (35). 311 

Quantifying bacterial populations. The impact of drug exposure on the total 312 

and less-susceptible bacterial population(s) should be assessed (12, 13, 27-31, 34) 313 
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when the study objective includes assessing resistance prevention. The importance of 314 

conducting these types of studies is described in the Supplemental Materials. Killing of 315 

the predominant bacterial population is usually determined by quantitative viable counts 316 

on antibiotic-free agar. In contrast, killing and amplification of less-susceptible bacterial 317 

population(s) is assessed by viable counting onto antibiotic-containing agar. Sub-318 

culturing should be done on agar containing the same antibiotic(s) used in a respective 319 

treatment arm; and for all antibiotics for the growth control. Agar containing 3x and 5x 320 

the MIC is commonly used; however, this choice depends on the initial (i.e. pre-321 

treatment) MIC and the step size of the MIC change (e.g. due to loss of an outer 322 

membrane porin [OprD] or up-regulation of an efflux pump) associated with relevant 323 

resistance mechanism(s). The MF can also guide selection of appropriate antibiotic 324 

concentration(s) in agar that should be between the MIC of the parent strain and that of 325 

the first-step mutant. To identify potential second- and third-step mutants with further 326 

decreased susceptibility, higher multiples of the MIC in agar can be used. For drugs 327 

with a large increase in the MIC of first-step mutants, higher multiples of the MIC or a 328 

fixed concentration in agar (e.g. 300 mg/L rifampicin for Pseudomonas aeruginosa) can 329 

be employed (55). Strains with high baseline MICs and combination therapy studies 330 

require special attention for selecting the most suitable antibiotic concentrations in agar 331 

to quantify less susceptible population(s) (56). 332 

For most antibiotics, enumerating colonies of sub-cultured bacteria after 24 h of 333 

incubation on antibiotic-containing agar is not sufficient and may greatly underestimate 334 

the less-susceptible population. Additional colonies may become visible after 48 to 72 h 335 

of incubation. Loss of moisture in agar can be minimized via a humidified incubator, 336 

increased agar volume per plate, or by incubating a tray of agar plates in a partially 337 
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opened plastic bag. Drug stability in the agar during incubation should be experimentally 338 

tested, especially for bacteriostatic antibiotics that inhibit growth but cause only slow 339 

bacterial killing. Moreover, the MICs should be determined for a subset of colonies 340 

growing on antibiotic-containing agar to validate their decreased susceptibility to the 341 

antibiotic. 342 

Data analysis approaches. Empirical and mechanism-based mathematical 343 

models both have their roles for analyzing in vitro PK/PD data. Empirical models (23, 344 

57-72) are efficient and typically analyze viable counts at the end of therapy, or the area 345 

under the viable count curve (on linear or log scale) during different time intervals (e.g. 346 

from 0 to 5 h, 0 to 24 h, and 0 h to end-of-study). Time-independent exposure-response 347 

relationships can identify exposure targets for efficacy and empirically describe the 348 

observed synergy of drug combinations; however, time-independent exposure-response 349 

analyses are not suitable to rationally optimize combinations or monotherapy regimens 350 

with changing dose intensity over time (e.g. front-loading), and do not describe the time-351 

course of drug concentrations. Empirical time-course models can describe drug-352 

concentration and viable count profiles, but lack mechanistic insights (e.g. receptors) 353 

and do not account for multiple resistance mechanisms. Particularly for combination 354 

therapy, empirical models cannot rationally optimize the effects elicited by antibiotics 355 

with multiple target sites or multiple mechanisms of action (10, 73, 74), or for 356 

combinations with several synergy mechanisms (14, 35, 75). 357 

Mechanism-based (MB) as well as Quantitative and Systems Pharmacology 358 

(QSP) models have been developed to overcome many of these limitations. While MB 359 

and QSP models both implement mechanism(s) of drug action, resistance or both, QSP 360 

models usually describe multiple different types of experimental observations to 361 
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characterize the mechanisms in more depth. Both of these models can simultaneously 362 

describe and predict the time course of bacterial killing and resistance emergence, and 363 

have been developed for antibiotic monotherapy and combinations (9, 10, 14, 15, 30, 364 

31, 33, 34, 40, 41, 55, 58, 71, 72, 76-84)(56). These models incorporate genotypic 365 

resistance development by multiple bacterial populations with different susceptibilities 366 

and phenotypic tolerance of slowly replicating bacteria. They offer the advantage of 367 

integrating molecular experimental data and allow rational optimization of innovative 368 

monotherapy and combination dosage regimens (including front-loading) for more than 369 

two drugs, if needed. Further, translational MB and QSP models can incorporate toxico-370 

dynamics (4, 5, 39, 85, 86) and account for the impact of the immune system (87-90). 371 

Independent of the approach employed, prospective experimental validation is essential 372 

(31, 72). 373 

Interpretation of results:  When interpreting in vitro PK/PD results, it is 374 

important to consider the mode of drug action; i.e. is the antibiotic rapidly or slowly 375 

killing, and which endpoint (e.g. stasis, 1-log10 or 2-log10 killing) is most clinically 376 

relevant. A stasis endpoint may be sufficient for less acute clinical indications such as 377 

uncomplicated skin and skin structure infections and complicated urinary tract 378 

infections. However, 1- or 2-log10 killing may be more desirable for severe infections 379 

(such as VABP). In addition, while the primary PK/PD index is often consistent between 380 

different pathogens and strains, the drug exposures required to achieve a target 381 

endpoint may vary greatly (91). This may have implications for translation to broad 382 

coverage and clinical utility of antibiotics (53, 92-94). Moreover, this reinforces the need 383 

to include a sufficiently diverse spectrum of bacterial strains in nonclinical PK/PD 384 
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models and to consider the potentially substantial between patient variability in PK, 385 

especially in unstable patients with sepsis or septic shock (see companion review). 386 

Potential extreme observations that fall outside of a predetermined threshold for 387 

an “outlier” (e.g. >2 SD from mean) should not be automatically discarded. Such data 388 

point(s) may represent an unexpected but important behavior (e.g. a mutation, with low 389 

frequency, leading to emergence of resistance; or development of tolerance to the 390 

drug). While mathematical approaches are available to handle potential “outliers”, 391 

experimental replicates and further laboratory investigation (such as characterization of 392 

resistant mutants and/or evaluation of potential drug tolerance) are strongly preferred. 393 

 394 

CHALLENGES OF INTERPRETING IN VITRO RESULTS 395 

The data generated using in vitro systems provide valuable insights into the 396 

direct interaction between the pathogen and the drug, and it is recommended that drug 397 

developers incorporate these types of models into their development programs. 398 

However, in some cases, the results may not directly translate to the clinic because in 399 

vitro systems do not fully mimic the in vivo environment. The PK/PD targets required in 400 

patients may be lower or higher than those in vitro if host factors affect bacterial killing 401 

or if the fitness of resistant mutants is reduced in vivo (95). An in vivo PK/PD target may 402 

be lower if the immune response contributes significantly to bacterial killing (3, 88); 403 

conversely, the in vivo target may be higher if host factors reduce the susceptibility of 404 

the bacteria (e.g. due to binding to lung surfactant, or persistence in deep seated or 405 

sequestered infection sites). Moreover, drug binding in plasma needs to be considered, 406 

since generally only free (i.e. unbound) drug is available to interact with bacterial 407 

receptors. Therefore, translation of PK/PD targets should be based on free drug 408 
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concentrations unless another rationale (e.g. for very highly bound drugs) is provided. It 409 

should be noted that in vitro studies generally do not incorporate plasma proteins (by 410 

design). Binding of many antibiotics to the in vitro pharmacodynamic systems is 411 

negligible (91), and the experiments inherently characterize free drug. This is in contrast 412 

to in vivo studies, in which results should be adjusted for protein binding in the test 413 

species. 414 

For emergence of resistance studies, it may be prudent to interpret results as an 415 

assessment of risk in the absence of host factors (e.g. the immune system), rather than 416 

as a direct prediction of clinical outcome. For example, while in vitro models are 417 

excellent for studying aminoglycosides as part of combination regimens (15, 31, 35, 55, 418 

56, 81, 96), they are not suitable for testing aminoglycoside monotherapy because this 419 

drug class readily generates small colony variants that are less common in vivo (10, 12, 420 

83, 95, 97). For these bacterial populations that cause failure of therapy in vitro, 421 

assessing the resistance mechanism(s), ability of high drug concentrations to kill these 422 

mutants, and the MIC-shifts towards potential partner antibiotics may be valuable. 423 

Further, evaluating synergistic drug combinations, as well as the in vivo fitness and 424 

virulence (98) may guide translation to animal models and ultimately to patients.   425 
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IN VIVO PK/PD MODELS 426 

Laboratory animal models have been used for decades to identify effective 427 

dosing regimens for clinical trials. Although dosages, drug clearance (including 428 

metabolism), and other factors often differ considerably between animals and humans, 429 

in vivo models play a critical role in characterizing the PK/PD for antibacterial agents 430 

(Figure 3). Animal models provide an in vivo infection environment and anatomical 431 

barriers that are difficult to reproduce in vitro. Animal infection models can forecast drug 432 

efficacy in patients, and the probability of regulatory approval increases with the 433 

probability of PK/PD target attainment (1, 2, 72, 99).   434 

The most widely used in vivo models for antibacterial PK/PD are the murine thigh 435 

and lung infection models (99). The thigh model is performed by injecting a bacterial 436 

suspension directly into the musculature of one or both thighs. The most commonly 437 

used lung infection model is performed by pipetting droplets of a bacterial suspension 438 

onto the nares and allowing the mice to inhale the inoculum. Both models often use 439 

cyclophosphamide-induced neutropenic mice to allow growth of a range of bacterial 440 

pathogens. Some bacterial strains can also produce robust infections in normal (i.e. 441 

non-neutropenic) mice, which provide information about the contribution of the immune 442 

response to the drug efficacy and may be better suited for studying resistance (which 443 

necessitates use of higher inocula). The primary endpoint is reduction of the bacterial 444 

burden in the infected tissue, which is typically assessed at 24 or 48 h after initiation of 445 

antibiotic therapy. Bacteriostasis, 1- or 2-log10 bacterial killing at 24 h (compared to the 446 

burden at the time therapy is initiated) is often used as an endpoint and has been 447 

shown to correlate with clinical outcome, including patients with infections such as 448 

hospital-acquired pneumonia, community-acquired respiratory tract infections, 449 
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bacteremia, and complicated skin and skin structure infections (1, 2, 99). Of note, 2-450 

log10 bacterial killing in mice at 24 h may not be achievable by slowly killing 451 

(‘bacteriostatic’) antibiotics. Considerable amounts of published data are available for 452 

many antibacterial agents in mice that can be used as positive controls; this presents a 453 

particular advantage of the murine neutropenic thigh and lung models compared to 454 

larger animal models. 455 

 456 
CONSIDERATIONS FOR DESIGN AND CONDUCT OF IN VIVO PK/PD MODELS 457 

Pharmacodynamic studies. Although the basic approach to conducting in vivo 458 

PK/PD studies is fairly standard, there is considerable variation among laboratories in 459 

the details of study design and conduct. These details can have a large impact on the 460 

results and should be carefully considered (101). Recommendations (Table 2) have 461 

been developed based on experiments that predicted clinical success (1, 2, 99), and 462 

this topic has been reviewed previously (100). Some recommendations may need to be 463 

adapted for specific drug-pathogen combinations or for other animal models. 464 

Benchmarking studies and the inclusion of comparator active control therapies to 465 

establish appropriate experimental conditions can enhance the utility of animal infection 466 

models and the robustness of predictions for translation to patients. 467 

Considering the number of mice per group is an important design choice for PD 468 

studies. It is difficult to provide explicit guidance on the number of animals required to 469 

appropriately power a study since it depends on a variety of factors (such as variability 470 

associated with a model, strain or drug; the number of groups within an experiment; and 471 

the type of analysis to be conducted). Sample sizes can be calculated for statistical 472 

comparisons of viable counts at the end-of-therapy via t-test or ANOVA statistics (see 473 
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Supplemental Materials). As these analyses only consider a single time-point, the 474 

resulting samples sizes are conservative (i.e. higher) compared to the sample size 475 

required for time-course analyses via population PK/PD modeling. The latter approach 476 

estimates treatment differences based on the time-course of viable counts at multiple 477 

sampling times. 478 

In practice, there are typically 4 observations collected for each group using the 479 

standard neutropenic thigh or lung infection models, and consideration should be given 480 

to studying both sexes. Of interest, when using the thigh model, many investigators 481 

utilize both thighs as independent samples (thus including only 2 mice per group). 482 

Although this reduces the overall number of animals required, it may not be a best 483 

practice since two samples from the same animal are not independent. We recommend 484 

that the design and conduct of studies be supported by prospective statistical or 485 

modeling analyses to ensure an adequate number of truly independent observations are 486 

obtained to appropriately power the experiment for the intended purpose. 487 

Plasma protein binding. In order to interact with its molecular target, a drug 488 

must be freely available (e.g. not bound to host proteins), and only unbound drug 489 

molecules can penetrate through the outer membrane porins of Gram-negative 490 

pathogens. Therefore, results from in vivo studies should be adjusted for protein binding 491 

and expressed in terms of free (f), i.e. non-protein bound, drug. It is recommended to 492 

conduct protein binding studies across a relevant concentration range with an 493 

appropriate in vitro assay. Whenever possible, at least 3 concentrations covering the 494 

anticipated in vivo plasma and tissue concentrations should be studied. A number of 495 

different in vitro assays are available. Currently, equilibrium dialysis is considered the 496 

reference method and is preferred over ultracentrifugation (101). The most accurate 497 
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measurements can be made using radiolabeled drug; however, this may not be possible 498 

in the early stages of development. Typically, a single protein binding value is 499 

determined (for example, an average across the concentrations tested) and all in vivo 500 

PK measurements are adjusted by multiplying the measured concentration by the 501 

assumed free percentage. If significant concentration-dependent binding exists, this 502 

nonlinear binding should be incorporated into the data analysis using mathematical 503 

modeling.  504 

Pharmacokinetic studies. Generating high quality PK data is critical for PK/PD 505 

analyses. The goal of PK experiments is to define the time course of drug 506 

concentrations in plasma, serum or blood, and potentially at the primary infection site. 507 

Several factors need to be considered for study design. As a best practice, exposure 508 

data should be collected from animals under the same conditions as the PD studies 509 

since infection may alter the PK (e.g. clearance and volume of distribution). If different 510 

matrices are collected across species (e.g. if drug concentrations are measured in 511 

whole blood for animal studies but in plasma for human studies), then red blood cell 512 

(RBC) partitioning needs to be determined and used to adjust for blood:plasma 513 

differences. Characterizing the PK at the infection site becomes comparatively more 514 

important for deep infection sites that equilibrate slowly or poorly with plasma and may 515 

be sequestered due to the infection (24, 48, 49, 102, 103).  516 

If a drug is being developed for treatment of bacterial pneumonia, it is 517 

recommended to utilize lung infection models for both PK and PD, and to determine 518 

lung epithelial lining fluid (ELF) concentration data. The latter is critical since the drug 519 

exposure profile at the infection site may substantially differ from that in plasma. The 520 

‘gold standard’ approach in both clinical and nonclinical studies is to characterize drug 521 
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concentrations in ELF, which is believed to represent the key compartment for infections 522 

by extracellular pathogens. Briefly, a bronchoalveolar lavage (BAL) is performed, and 523 

the BAL fluid is gently centrifuged to remove alveolar macrophages and other cells; this 524 

prevents bias in the ELF concentration, since some drugs accumulate extensively in 525 

these cells. Drug concentrations in the supernatant (i.e. diluted ELF) are measured and 526 

adjusted for the lavage dilution factor using the urea correction method (48, 104-107). 527 

This yields the drug concentration in the ELF. The cell pellet may also be utilized to 528 

determine concentrations within alveolar macrophages (104); these intracellular drug 529 

concentrations can be particularly important for some drugs (such as macrolides) and 530 

infections. 531 

For logistical reasons, systemic and/or tissue PK data are usually obtained 532 

separately in satellite PK experiments. A sufficient number of dose levels (usually 3 to 533 

4) are needed to identify and characterize non-linear PK, if present, and these should 534 

include the smallest and largest doses used in the PD studies to minimize extrapolation 535 

outside that range. The PK samples are typically collected via terminal procedures; 536 

thus, each animal usually contributes one concentration measurement at a single time 537 

point (especially in mice). Collecting serial blood samples from the same animal (e.g. 538 

multiple retro-orbital, facial vein or tail vein bleeds) at different time points better informs 539 

the PK parameters and allows one to separate between animal variability from residual 540 

error noise (e.g. bioanalytical noise). Serial blood sampling may not be possible in all 541 

infection models; however, methods have been developed and employed by some 542 

investigators (108-115).  Destructive sampling with one PK sample per mouse remains 543 

the most common approach.  544 
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Measuring drug concentrations in blood, plasma, and BAL (for ELF) can usually 545 

be accomplished via sensitive and specific LC-MS/MS assays. These are preferred over 546 

older bioanalytical methods (such as bioassays) because of their superior specificity, 547 

sensitivity and precision. Bio-active metabolites should also be measured and 548 

accounted for, if they are present at relevant concentrations. 549 

PK sampling times. Due to technical limitations and animal welfare 550 

considerations, there is a practical limit of approximately 6 to 8 sampling time points 551 

during any given experiment. Sampling times should be carefully chosen (and informed 552 

by any available PK data) to provide robust information within these experimental 553 

constraints. Studies should be designed and repeated, if necessary, to adequately 554 

capture information related to the absorption phase, peak concentration, drug 555 

distribution and elimination. Ideally, the chosen sampling times should reasonably 556 

characterize the overall drug exposure (i.e. the area under the curve, AUC), terminal 557 

half-life and the time when drug concentrations decline below the lowest MIC of interest.  558 

Mathematical modeling and simulation approaches (including optimal design 559 

methods) can be prospectively applied to select the most informative sampling time 560 

points  prior to conducting the PK experiment (116-120). If the design is suboptimal, the 561 

study may not provide adequate data to fully characterize the drug exposure profile. 562 

This is important because even the most sophisticated retrospective PK modeling and 563 

simulation approach will not compensate for poorly informative data; accuracy of PK 564 

predictions will suffer and ultimately, the calculated PK/PD targets may be biased. If no 565 

or insufficient prior PK data is available to aid in study design, a small pilot experiment 566 

may be warranted. Collection of high-quality PK data may require multiple, sequential 567 

experiments. This iterative process is considered best practice if a single experiment 568 
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does not adequately capture the PK profile. Although this approach may be complicated 569 

by factors such as limited time, resources and drug supply, it is imperative to collect 570 

suitably informative PK data.  571 

Studying drug combinations is more complex than evaluating monotherapies and 572 

requires additional consideration, such as potential drug-drug or drug-vehicle (e.g. for 573 

dimethyl sulfoxide, DMSO) interactions. Furthermore, it is important to assure that both 574 

drugs combined are present at the primary infection site at the same time. The design 575 

and interpretation of combination PK (and PD) studies benefits greatly from prospective 576 

application of mathematical modeling and optimal design approaches that are beyond 577 

the scope of this review (116-124). 578 

 Testing human-like exposures. The PK/PD index (e.g. fPeak/MIC, fAUC/MIC 579 

or fT>MIC) and its magnitude required for a chosen efficacy endpoint are typically 580 

determined using murine infection models. However, drug half-lives are usually much 581 

shorter in mice compared to those in humans (125), which results in concentration-time 582 

profiles with different shapes, even if both profiles are matched in the AUC. The 583 

importance of this aspect for bridging from animals to humans has been shown by 584 

Deziel et al. (126), where different dosage regimens were designed to achieve human-585 

like levofloxacin concentration-time profiles, but did not result in equivalent efficacy. 586 

Evaluating humanized PK profiles in animals can provide complementary information to 587 

traditional PK/PD indices and should be considered during drug development. 588 

Additional guidance on humanization (87) is provided in the Supplementary Materials. 589 

Analysis of PD data. To analyze viable bacteria count data (e.g. CFU at 24 h) at 590 

a single time point, a Hill model is commonly employed. Characterizing exposure-591 

response relationships (e.g. fAUC/MIC vs. effect) is strongly preferred over dose-592 
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response relationships (72), since the former account for PK and are thus much more 593 

informative. This basic PD approach is often useful for optimizing antibacterial 594 

monotherapy based on single time-point data. If multiple time points are evaluated (from 595 

different mice), population PK/PD modeling can characterize the time-course of 596 

bacterial killing and regrowth. Empirical, MB and QSP mathematical PK/PD models can 597 

be used to describe and predict the drug effect over time to rationally optimize dosage 598 

regimens as descried above for in vitro models. 599 

PK modeling approaches. Drug concentration profiles can be modeled by 600 

various approaches (127, 128), depending on the type of experimental data collected, 601 

the complexity of the results (e.g. linear vs. nonlinear PK), and the skillset of the 602 

modeler. For a typical dataset that contains one measurement per animal (e.g. terminal 603 

sampling at a single time-point), naïve pooling is often used. For this approach, all 604 

observations at a given dose are assumed to come from one animal. Alternatively, 605 

naïve averaging can be employed by calculating the average concentration at each time 606 

point. Both naïve approaches ignore between subject variability and only estimate one 607 

clearance and one volume of distribution for the pooled data. Estimates tend to be 608 

biased unless variability is small (e.g. coefficients of variation [CV] are less than 609 

approximately 15%) (127-129). To obtain standard errors for these datasets, the Bailer 610 

method (130, 131) and bootstrap re-sampling techniques have been developed (132-611 

134). The Bailer method uses linear combinations of mean concentrations at different 612 

time points to statistically compare the drug exposures between treatment groups. The 613 

bootstrap resampling approach randomly creates a number of pseudo-profiles to allow 614 

for statistical comparisons and estimate the between animal variability; this method is 615 
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very flexible and uses non-compartmental techniques for analysis of the pseudo-616 

profiles.  617 

If serial samples are obtained from the same animal, the standard two-stage 618 

method can be used where the data from each animal is fit separately. If each profile 619 

characterizes all PK phases (i.e. absorption, distribution and elimination), this method 620 

provides reasonable estimates of the mean PK parameters, but it may substantially 621 

over-estimate the variability between subjects (127, 128). Fitting the average plasma 622 

concentration profile via naïve pooling or the standard two-stage approach may be 623 

adequate to predict the mean concentration profile for datasets with small between 624 

subject variability.  This allows a broader range of scientists to perform PK modeling 625 

and to progress a drug development program efficiently. However, for datasets with 626 

large between subject variability, nonlinear PK, or multiple different types of 627 

observations (e.g. plasma, ELF, urine or efficacy data), population modeling offers 628 

substantial benefits. 629 

Population PK modeling. Population modeling borrows information across all 630 

subjects by fitting one subject in the context of all other subjects. This approach can 631 

simultaneously describe and predict exposure in multiple compartments, such as 632 

plasma and ELF (107, 135-138), and enables Monte Carlo simulations to predict the 633 

range of expected exposure profiles in patients (1, 14, 139). Population estimation 634 

algorithms have proven robust to estimate PK parameters both for frequently sampled 635 

and sparse datasets (129, 136) and are the method of choice for drugs with non-linear 636 

PK and for datasets with sparse sampling. This includes datasets with one plasma and 637 

ELF concentration per mouse. Population modeling is particularly powerful if advanced 638 

estimation algorithms based on the exact log-likelihood are employed. This approach 639 
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provides unbiased and precise estimates and predictions in a reasonable time frame 640 

considering the time for performing the experiments (Table 3) (129, 136, 140, 141). 641 

While full Bayesian approaches are appealing and powerful, they require more time 642 

(e.g. for sensitivity analyses) and advanced modeling skills (129, 142).  643 

 644 

CHALLENGES OF IN VIVO STUDY CONDUCT AND INTERPRETATION  645 

The success of characterizing PK/PD in animal models depends largely on sound 646 

experimental design, suitable data analysis, and the ability to control variance. This 647 

involves learning and refining in an iterative fashion to understand the sources of 648 

variability and then to minimize variance until the results converge around a final PK/PD 649 

target. This process benefits greatly from being executed by a close knit, highly 650 

functional team that regularly discusses experimental designs, results and 651 

interpretation. Several scenarios warrant special attention. 652 

Pharmacokinetic considerations: 653 

• Drugs with short half-lives in rodents can complicate study design (e.g. when the 654 

goal is to achieve a wide range of exposures in dose fractionation studies). 655 

• Species specific toxicities or PK profiles may hinder the ability to understand the full 656 

exposure-response (e.g. when sufficiently high doses to observe near-maximal 657 

effect cannot be tested). 658 

• Incorporating tissue concentration data may be complicated, yet it should not be 659 

assumed that the extent and rate of penetration is the same across animal species 660 

and humans. For pneumonia, approaches have been established and applied to 661 

design optimal dosage regimens based on ELF penetration data (48, 87, 104, 143, 662 

144). 663 
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• The time-course of penetration at the target site may not mirror circulating drug 664 

concentrations and may differ across species (e.g. for oritavancin; (103)). This may 665 

be particularly critical when maximizing synergy of drug combinations. 666 

• Plasma protein binding of drugs may differ between animals and humans and 667 

between ‘normal’ and critically-ill patients (145, 146). 668 

Pharmacodynamic considerations: 669 

• PD models are acute. Severe (often rapidly lethal) infections are usually required for 670 

model stability and minimizing variability, but this may not mimic the course of 671 

infections in humans. 672 

• Different PK/PD target values can be obtained from different models, studies and 673 

bacterial strains, as well as from various infection sites and/or test conditions. 674 

• Some studies and bacterial strains may not perform the same as others, even in 675 

well- characterized animal models; between strain variability is expected, and can 676 

complicate the establishment of PK/PD targets and subsequently human dose 677 

predictions. 678 

• Opinions vary on which endpoints should be used to establish PD targets (i.e. stasis 679 

vs. 1- or 2-log10 reduction in CFU; or alternatively using the doses associated with 680 

50% [ED50] or 90% [ED90] of maximal effect).  681 

• Different endpoints may be required for various types of infections and patient 682 

groups (e.g. for immuno-compromised patients or those with more serious infections 683 

such as VABP/HABP). 684 

• A more stringent endpoint such as 2-log10 reduction in CFU at 24 h in a mouse 685 

infection model may not be achievable for slowly killing antibiotics. Studies with 686 

longer treatment durations may be warranted to explore this situation. 687 
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Variability within and between studies. Variability associated with the conduct 688 

of animal infection models can be largely minimized via careful planning and execution. 689 

However, uncontrollable sources of variability associated with the PK, PD, infection site 690 

and immune response will remain and are difficult to control (Figure 4). This variability 691 

may lead to one or more extreme observations, and it can be tempting to remove such 692 

presumed “outlier(s)”. However, with the exception of a priori documented experimental 693 

reasons (such as those due to a missed dose), removal of outliers is not appropriate 694 

and will likely yield biased conclusions. Performing and presenting a data analysis with 695 

and without a ‘suspected’ outlier is good practice, as is the use of a suitable number of 696 

experimental replicates. If a whole experimental group (or entire study) appears to be 697 

an “outlier”, then a repeat evaluation is warranted. It is important to understand if such 698 

results are reproducible and to investigate why the results differ between replicated 699 

groups. 700 

It is common for results from studies conducted in different models or by different 701 

labs to vary to some degree and sometimes widely. In extreme cases, one set of results 702 

may support termination of a new drug candidate while another dataset for the same 703 

compound supports progression. It is likely that differences in the design, conduct and 704 

analysis of studies, even for the ‘workhorse’ murine PK/PD models, contribute to this 705 

situation. Careful experiment conduct is critical, and it may be helpful when using the 706 

‘workhorse’ models to standardize certain components such as inoculum size and 707 

preparation, strain fitness, timing of infection, infection site, inoculation method, and 708 

immune status. These variables can have a large impact on the results and conclusions 709 

(100). It is further helpful to benchmark PK/PD models and methods using relevant 710 

positive controls (i.e. effective reference treatments; Table 2 and Figure 5) for which 711 
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both animal and human PK/PD data are available for the target indication. By use of 712 

such active controls, a collection of data under standardized test methodology can be 713 

developed to support drug development and regulatory review. This will allow the 714 

performance of a new drug to be assessed in the context of benchmarked controls and 715 

endpoints.  716 

 Clinical dose selection. Guidelines have been published (e.g. by EMA) that 717 

recommend calculating PK/PD targets based on specific efficacy endpoints in the 718 

‘workhorse’ models for different clinical indications (6-8). In general, more antibacterial 719 

effect is required for more serious infections. Thus, targets based on no change in 720 

viable counts (stasis) or a 1-log10 reduction in CFU compared to pre-treatment baseline 721 

have been recommended for less severe infections such as skin and soft tissue as well 722 

as complicated urinary tract infections (cUTI); in contrast, 2-log10 reductions in CFU 723 

have been suggested for more severe infections such as pneumonia (43). Importantly, 724 

these endpoints are calculated relative to the bacterial density at initiation of antibiotic 725 

treatment, and not relative to the viable counts of the growth control group at end of 726 

therapy. The rationale for a higher 2-log10 hurdle is to rapidly reduce the bacterial 727 

burden to a density that can be controlled by the immune system; in the latter case, the 728 

surviving bacterial population is so small that the risk for emergence of resistance 729 

during therapy due to de novo formation of resistant mutants is low (1, 14). Although 730 

these are laudable goals, focusing on specified endpoints requires standardized model 731 

systems with benchmarking based on positive controls. Such highly-controlled animal 732 

infection models currently do not exist. 733 

Aiming for a stringent target endpoint (e.g. ≥ 2-log10 reduction in CFU) or the 734 

maximum tolerated dose is common in the early stages of clinical drug development. 735 
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High doses may help mitigate potential PK concerns, such as low drug exposure at the 736 

primary infection site, altered PK in special populations, and substantial variability in 737 

patients. However, almost invariably, the amount of drug that can be dosed in patients 738 

is limited by nonclinical safety coverage, clinical adverse events, lack of therapeutic 739 

index, cost-of-goods, and other factors. This typically leaves two options. First, drug 740 

developers can keep the same target endpoint and risk not covering the encountered 741 

MIC range; or second, a less stringent endpoint (e.g. stasis or 1-log10 reduction instead 742 

of 2-log10) could be used to set the target. The latter choice is the more common path, 743 

as not being able to cover the full MIC range is a poor starting point for a new drug and 744 

creates problems for establishing susceptibility breakpoints. However, use of less 745 

stringent endpoints may reduce the probability of achieving an adequate therapeutic 746 

response for more severe infections, can accelerate the development of resistance, and 747 

may result in breakpoints that are higher than appropriate. In this scenario, 748 

characterizing the impact of the immune system and, if mutants with reduced 749 

susceptibility are found, assessing their fitness in animals, as well as evaluating 750 

combination therapies for severe infections may be a path forward. 751 

Despite these complexities, the guiding principle should always be the scientific 752 

method, and there are steps that can provide additional confidence in the chosen 753 

nonclinical PK/PD targets and endpoints. It is best practice to generate data in more 754 

than one model system (i.e. another animal model and/or dynamic in vitro models). To 755 

enhance the information gained from the primary endpoint (e.g. reduction in CFU), 756 

secondary endpoints such as viable counts of resistant bacteria, biomarkers, survival, 757 

histopathology, inflammatory markers, radiology, bioluminescence, and others can 758 

provide valuable insights. Concerns may arise if discordant results are obtained from 759 
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different model systems and bacterial strains. However, this should not dissuade drug 760 

developers from conducting different types of experiments. Discordant results can be 761 

actively managed, explanations for the differences sought, and the insights gained can 762 

be highly valuable. 763 

 764 

Future perspectives on in vivo models.  765 

The field of antibacterial pharmacology is fortunate to have a considerable 766 

armamentarium of PK/PD tools and expertise. Commonly used models (such as murine 767 

neutropenic thigh and lung models) have provided a sound basis to-date. However, 768 

PK/PD is an evolving discipline, and challenges as well as open questions remain. 769 

Optimizing, standardizing and benchmarking the ‘workhorse’ models likely ensures 770 

better reproducibility from study-to-study and lab-to-lab, and enhances our ability to 771 

interpret the results for different types of infections and various antibacterial classes 772 

(Figure 5). Leveraging suitable modeling, simulation and optimal design approaches 773 

and engaging team members across disciplines to discuss feasible study designs, 774 

results and clinical goals is undoubtedly highly mutually fruitful.  775 

Establishing additional animal models for PK/PD characterization would expand 776 

translational tools available to the community. The murine thigh infection model 777 

reasonably mimics soft tissue infections, and the mouse lung infection model mirrors 778 

pneumonia. However, neither may be ideal for characterization of PK/PD at other 779 

infection sites. For lower urinary tract infections (e.g. cystitis), urine and/or bladder wall 780 

concentrations are likely important for efficacy. However, the mouse thigh model may 781 

not be adequate to determine reliable PK/PD targets for these infections, and other 782 

validated models do not (yet) exist. Similarly, there is a need for better models to 783 
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characterize PK/PD for complicated intra-abdominal infections (cIAI) and cUTI, 784 

especially since these are common target indications for Phase II studies. A rat model 785 

for cIAI is available (147, 148); however, some laboratories may not be able to conduct 786 

this model due to the increased complexity and animal species.  As a surrogate, the 787 

neutropenic murine thigh infection model can be a reasonable alternative for infections 788 

involving a rapidly equilibrating PK compartment such as pyelonephritis, where intra-789 

kidney concentrations are important; however, more data are required to fully assess 790 

nonclinical-to-clinical translation in these instances. Consideration should also be given 791 

to develop models that better mimic human disease (e.g. more natural disease 792 

progression), although such models are likely to be low throughput and less practical for 793 

routine PK/PD characterization. As one example, rabbit infection models have been 794 

developed and can provide serial blood samples for assessing PK and biomarkers of 795 

efficacy and safety over time (149-151). When combined with results from murine 796 

infection models, these more complex models could provide supporting information for 797 

new drugs and play an increasingly important role during drug development. 798 

A final point for consideration is publication of PK/PD data. It is important to 799 

provide sufficiently detailed information to allow readers to assess the validity of the 800 

work and resulting PK/PD targets, and to reproduce the methods employed. All 801 

pertinent details of the experiments (including detailed experimental protocols) and 802 

associated data analyses (including units, modeling choices and the enabling equations 803 

of the final model) should be published, at least in the supplementary materials. For 804 

common models and analyses, workshops with hands-on example datasets and (video) 805 

tutorials can provide effective training tools. Variability in PD response should be 806 

reported and details on the performance of individual bacterial strains (e.g. growth in 807 
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untreated control animals and variability of drug effect) and their individual PD targets 808 

provided. The PK data should be adequately described, and a thorough assessment of 809 

the quality of modeling and simulation methods provided (including an evaluation of bias 810 

and precision). It is suggested that editors consider both the ARRIVE guidelines (152) to 811 

ensure adequate reporting of in vivo data, as well as a set of extended criteria 812 

specifically for PK/PD studies to improve the quality of publications. Collections of 813 

resistant bacterial strains (e.g. from CDC and ATCC) are available, and future research 814 

and joint discussions are needed to select suitable reference strains. 815 

 816 

CONCLUSIONS 817 

Both in vitro and in vivo infection models provide powerful PK/PD information and 818 

have been shown to predict clinical outcomes. This review provides perspectives on 819 

current models, applications, challenges, potential issues and paths forward. This is a 820 

healthy and required evolutionary process to define and critique available methods. The 821 

goal is to improve approaches, models, study designs, study performance, analyses, 822 

interpretation and communication. Optimizing the available translational PK/PD tools 823 

has become increasingly important as we rely more and more on nonclinical data to 824 

predict successful clinical treatment regimens, often to combat serious infections by 825 

multidrug-resistant bacterial ‘superbugs’.  826 

Guidelines for conducting and interpreting nonclinical models are meant to 827 

improve the process, not to stifle innovation or eliminate the need for rational thought. 828 

Regular discussions among multi-disciplinary project teams are essential to optimally 829 

leverage these translational tools and early/frequent discussions with regulatory 830 

agencies are critical to maximize utility of the data. Future studies will likely identify 831 
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scenarios where the recommendations in this review will need to be modified for special 832 

infection models, bacterial strains, innovative combination regimens, and novel-acting 833 

therapies. Some therapies may require special considerations, and PK/PD approaches 834 

should be tailored to the specific needs of the individual compound or drug class and 835 

ultimately to the target patient population. 836 
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Figure 1: Dynamic one-compartment in vitro infection model (‘chemostat’). Fresh 1351 

media is added continuously while culture contents are removed at the same rate to 1352 

maintain a constant volume. A: Chemostat model for simulating a mono-exponential 1353 

decline of drug concentrations after intravenous dosing; antibiotic(s) are dosed into the 1354 

central reservoir as bolus doses or zero-order infusions. B: Chemostat for oral dosing 1355 

which can simulate drug concentration-time profiles with first-order absorption and 1356 

elimination; antibiotic(s) are dosed into the antibiotic reservoir as bolus doses or zero-1357 

order infusions. 1358 

 1359 

 1360 
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Figure 2: Dynamic two-compartment hollow fiber in vitro infection model. A: Cross 1362 

section of a hollow fiber cartridge. Many hollow fibers provide a large surface area 1363 

(typically 0.2 to 0.3 m2, depending on the cartridge). According to the molecular weight 1364 

cutoff of the hollow fiber membrane, medium, drugs, oxygen, nutrients, bacterial 1365 

metabolites (‘waste products’) and other small molecules can exchange between the 1366 

central circulation (which includes the inside of the hollow fibers) and the extra-capillary 1367 

space of the cartridge. In contrast, bacteria, other cells (if present), and large molecules 1368 

are entrapped in the extra-capillary space of the hollow fiber cartridge. B: Flow of broth 1369 

medium from the fresh broth to the central reservoir. From the latter, broth is circulated 1370 

to the peripheral compartment (i.e. the extra-capillary space of the hollow fiber 1371 

cartridge) or is eliminated. Elimination occurs from the central into the waste broth 1372 

reservoir. A high precision dosing pump is used to dose drugs into the central 1373 

circulation. 1374 
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Figure 3:  Overview of important variables which contribute to the outcome of animal 1377 

infection models. These factors may need to be considered for study design and 1378 

execution as well as for the data analysis and ultimate translation of rationally optimized 1379 

regimens to patients. 1380 
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Figure 4:   Different sources of variability that may affect the results of animal 1386 

infection models. The between system variability can be handled by appropriate choices 1387 

for and the selection of experiments to be performed. The within- system variability can 1388 

be split into a controllable portion and a random (i.e. usually not-controllable) part. 1389 

Experimental design choices and careful execution of animal infection model studies 1390 

can minimize the controllable variability. The random, unexplained variability will 1391 

necessarily include components such as between subject variability (BSV) in 1392 

pharmacokinetics, pharmacodynamics, the infection site, and the immune system. 1393 
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Figure 5  Considerations and perspectives to enhance the robustness of animal 1397 

infection models and ultimately better translate efficacious and reliable dosage 1398 

regimens to patients 1399 
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Table 1.  Types of experiments that can be performed with widely used non-clinical 1404 
pharmacodynamic (PD) infection models. 1405 

 1406 
Study objective Static 

time-kill 
model 

One-compart-
ment system 
(‘chemostat’) 

Two-compart-
ment hollow 
fiber system 

Mouse 
infection 
model 

1.  Dose-range study: 
Killing of parent strain Yes a Yes a Yes a Yes a 

2.  Dose-range study: 
Suppression of resistance  +/- b +/- b Yes b +/- b 

3.  Dose-fractionation study:  
Killing of parent strain No Yes Yes Yes 

4.  Dose-fractionation study:  
Suppression of resistance +/- +/- Yes +/- 

5.  Combination therapy:  
Killing of parent strain Yes Yes (short 

term) Yes Yes 

6.  Combination therapy:  
Suppression of resistance No +/- Yes +/- 

7.  Toxin suppression by drugs Yes +/- Yes Yes 

8.  Dissecting the interaction of 
the parent drug and 
metabolites on antimicrobial 
effect 

+/- c +/- c Yes c No 

9.  Bacterial physiologic state & 
drug activity +/- +/- Yes +/- 

10. PD index for drug toxicity No 
No (unless 
toxicity is 

acute) 
Yes +/- d 

 1407 
+/-: Study objective can potentially be addressed in this system. 1408 

a: Bacterial strains which display the lowest mutation frequency of resistance should 1409 
be avoided in dose-range studies; instead strains which best represent the most 1410 
commonly observed resistance rates are preferred. 1411 

b: Strains with relevant resistance mechanism(s) should be chosen for in vitro studies. 1412 
The MIC50 and MIC90 for the pathogen of interest may be used to guide strain 1413 
selection. 1414 
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 1415 

c: Biologically active metabolite (s) need to be available, since they are most likely not 1416 
formed in the in vitro system. 1417 

d: Some dosage regimens (e.g. to assess time over a toxicity threshold) may also lead 1418 
to high peak concentrations, especially for short half-life drugs, which complicates 1419 
the interpretation of these studies. 1420 

 1421 

  1422 
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Table 2. Recommendations for murine neutropenic thigh and lung infection models to 1423 
determine nonclinical in vivo PK/PD targets (data from Andes and Lepak 1424 
[100]) 1425 

 1426 

Study component Recommendationa Comments 
Mouse strain Outbred  

(e.g. CD-1, ICR or Swiss Webster) 
Historically female; studies in both 
sexes have been strongly 
encouraged recently and, if 
feasible, should be considered  

Induction of 
neutropenia 

Cyclophosphamide IP or SC at 150 
mg/kg at 4 days prior to infection 
and 100 mg/kg at 1 day prior to 
infection 

Results in neutrophils < 100 / mm3 
for at least 2 days. 
 

Inoculum 
preparation 

Culture should be in log growth 
phase 

Subculture aliquot from an 
overnight broth culture in fresh 
media for several hours prior to 
study start 

Mouse inoculation Infect thigh via IM injection of  
100 µL and lung via intranasal 
inhalation of 50 µL (i.e. 25 µL per 
nare) b 

Culture for inoculation should be 
106 to 107 CFU/mL 

Baseline bacterial 
burden 

106 to 107 CFU/tissue  
(may differ by pathogen and strain) 

Note that this represents the 
burden at the time therapy begins 

Start of therapy 2 h post infection Delay may be necessary for 
baseline tissue burden to reach 106 
to 107 

Study duration 24 h (sometimes 48 h) Post inoculation 
Bacterial growth 

over study period 
Tissue burden should increase by 
2-3 log10 CFU in untreated mice 
compared to baseline at initiation 
of therapy 

Note that this assumes the initial 
inoculum is sufficiently below the 
plateau for a given strain; less 
virulent strains may underestimate 
the PK/PD target  

Number of strains At least 4 strains of each target 
pathogen (including a reference 
strain), if possible, with relevant 
resistance profiles and 
mechanisms 

Include enough strains to assess 
strain-to-strain variability; mean 
and median PK/PD target values 
should converge 

Bacterial 
phenotypes 

Cover MIC range of compound, 
include clinically relevant resistant 
phenotypes 

Consider in vivo virulence when 
choosing strains 

Control therapies Inclusion of active comparator 
control (e.g. standard of care) may 
be beneficial. Dosage regimen 
(with/without humanizing) should 
be considered.  

Especially important for evaluation 
of combination therapies against 
multidrug-resistant strains. Dosing 
algorithm should be supported by 
PK/PD considerations. 

 1427 
CD-1: Outbred strain of albino mice  ICR: Outbred strain of albino mice. 1428 
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IP: Intraperitoneal     SC: Subcutaneous 1429 
IM: Intramuscular    CFU: Colony Forming Units 1430 
 1431 
a: These specific recommendations are for ‘routine’ establishment of PK/PD targets. 1432 

Study design elements may need to be modified to achieve different experimental 1433 
goals. Examples include the use of other bacterial phenotypes (including growth 1434 
stages), use of immune-competent mice (which can inform how targets may differ in 1435 
the presence of white blood cells and/or support longer treatment durations), and a 1436 
different bacterial burden (such as using a higher burden to study resistance). 1437 

b: The maximum volume of the bacterial suspension which can be given per nare will 1438 
depend on the mouse weight. This volume may affect the regional deposition of 1439 
bacteria in the lung. 1440 

  1441 
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Table 3.   Comparison of PK modeling and simulation approaches in increasing order 1442 
of complexity from top to bottom. 1443 

 1444 
 1445 

Approach Between Subject 
Variability 

Accuracy of 
Predictions 

Comments 

Naïve 
pooling 

Ignored  
(i.e. assumed to 
be zero or very 
small) 

Only mean profiles  
can be predicted 

Can be adequate to simulate mean 
concentration profiles, if variability 
is small. 
Yields biased predictions if 
variability is moderate or large. 
Cannot simulate between subject 
variability. 

Standard  
two-stage 

Often 
overestimated 

Predicted 
concentration 
range may be too 
broad. 

Can be adequate to simulate mean 
concentration profiles, if variability 
is small. 
Requires serial sampling which 
may be problematic for mouse PK 
studies. 

Population 
modeling 

(approximate 
log-likelihood) 

Bias can be large 
for sparse data 

Can simulate 
variability, but may 
be considerably 
biased 

Can simulate mean concentration 
profiles and between subject 
variability, but may yield biased 
results for sparse data. 

Population 
modeling 
(exact log-
likelihood) 

Often most 
suitable choice 

Often most 
reasonable choice 

Can simulate mean concentration 
profiles and between subject 
variability with no (or less) bias. 
Can handle complex PK models 
with multiple dependent variables 
(e.g. PK, PD and resistance). 

Population 
modeling 
(advanced 

three-stage 
methods) 

Very powerful, 
can leverage prior 
information via a 
Bayesian 
approach 

Can account for 
uncertainty as well  
as between 
subject variability 

Powerful, but more complex; 
requires more expertise and 
modeling time (e.g. for sensitivity 
analyses). 

 1446 
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