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Abstract

Dengue is a widespread vector-borne disease believed to affect between 100 and 390 million
people every year. The interaction between vector, host and pathogen is influenced by various
climatic factors and the relationship between dengue and climatic conditions has been poorly
explored in India. This study explores the relationship between El Niño Southern Oscillation
(ENSO), the Indian Ocean Dipole (IOD) and dengue cases in India. Additionally, distributed
lag non-linear model was used to assess the delayed effects of climatic factors on dengue cases.
The weekly dengue cases reported by the Integrated Disease Surveillance Program (IDSP) over
India during the period 2010–2017 were analysed. The study shows that dengue cases usually
follow a seasonal pattern, with most cases reported in August and September. Both tempera-
ture and rainfall were positively associated with the number of dengue cases. The precipitation
shows the higher transmission risk of dengue was observed between 8 and 15 weeks of lag.
The highest relative risk (RR) of dengue was observed at 60 mm rainfall with a 12-week lag
period when compared with 40 and 80 mm rainfall. The RR of dengue tends to increase
with increasing mean temperature above 24 °C. The largest transmission risk of dengue was
observed at 30 °C with a 0–3 weeks of lag. Similarly, the transmission risk increases more
than twofold when the minimum temperature reaches 26 °C with a 2-week lag period. The
dengue cases and El Niño were positively correlated with a 3–6 months lag period. The sig-
nificant correlation observed between the IOD and dengue cases was shown for a 0–2 months
lag period.

Introduction

Dengue is one of the most important mosquito-borne viral diseases in tropical and sub-
tropical countries. It is transmitted through the bite of Aedes mosquitoes infected with dengue
virus (DENV 1–4 serotypes). Aedes aegypti and Aedes albopictus are believed to be the main
vectors of dengue virus in India [1, 2]. Dengue causes a wide range of clinical symptoms
including asymptomatic cases, acute febrile syndrome, severe and fatal cases of haemorrhagic
manifestation that result in a significant fluid loss, which ultimately leads to shock. During the
past five decades, the incidence of dengue has increased 30-fold and it has become a major
public health problem globally [3]. In 2012, WHO estimated that 50–100 million new dengue
infections were occurring annually. Before 1970, only nine countries had experienced severe
dengue epidemics. The disease is now endemic in more than hundred countries across the
world. Over 50% of the world’s population, mostly in the tropics, is identified at risk of dengue
infection [4].

Dengue is highly endemic in Southeast Asia and the Western Pacific regions [5]. In recent
years, the number of dengue cases also sharply increased in Southern, Northern and Central
Americas [6]. Cases across the Americas, Southeast Asia and the Western Pacific have
exceeded 1.2 million in 2008, 2.2 million in 2010 and over 3.2 million in 2015 [7]. In
Southeast Asia, the disease has been one of the major causes of hospitalisation amongst chil-
dren since the 1990s [8]. Asian countries contribute around 70% of global dengue burden.
India alone contributes about 34% global dengue burden and two-thirds of India’s population
are estimated to be at risk of dengue infection [5].

Since the mid-1990s, dengue epidemics in India have become more frequent in urban
zones and they also spread to new geographic regions [9]. This geographic expansion of den-
gue might be related to changes in eco-climatic factors, climate change, rapid urbanisation,
rapid population growth, population movement and ineffective vector control operations
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[10]. The epidemiology of dengue in India was first described in
1780 and the first large-scale outbreak occurred in 1963 [11].
Later, subsequent outbreaks have been reported from different
parts of India [2, 11]. India has reported all four serotypes
(DENV 1, 2, 3 and 4) of dengue virus since 1956 for various
parts of the country [12]. Since 2001, the total number of dengue
cases has steadily increased in India. In the early 2000s, dengue
was endemic in a few southern (Maharashtra, Karnataka, Tamil
Nadu and Pondicherry), northern and northwestern states
(Delhi, Rajasthan, Haryana, Punjab and Chandigarh). Recently,
dengue expanded to many states including the Union
Territories [9]. Not only has the number of cases and severity
of disease also increased, dengue used to be restricted to urban
areas, but it has now spread to rural areas [1].

Like most vector-borne diseases (VBD), the epidemiology of
dengue consists of host (humans), vectors (Aedes mosquitoes)
and pathogen (dengue virus). The VBD system is strongly influ-
enced by climatic factors including temperature and rainfall. The
global temperature has increased significantly over the 20th cen-
tury. By the end of the 21st century, it has been predicted that
the global mean temperature will rise between 1.1 and 6.4 °C
with respect to pre-industrial values [13]. Overall, these rising tem-
peratures will enhance the transmission rate of mosquito-borne
diseases and will allow the expansion of the vector into new geo-
graphic regions [14]. According to the Intergovernmental Panel on
Climate Change (IPCC), approximately 1.5–3.5 billion people
worldwide will be at risk of dengue infection by 2080 due to cli-
mate change [13]. Temperature affects the life cycle of Aedes vec-
tors including development and survival of the immature and
mature stages, development and length of the gonotrophic cycle.
Additionally, temperature also influences virus replication rates
within the mosquitoes, their gonotrophic cycle and the adult
size of mosquitoes [15]. High-temperature conditions tend to
shorten the extrinsic incubation period within the mosquito vector
and thus increase the odds of more mosquitoes becoming infec-
tious during their life span. Rainfall provides vector breeding habi-
tats, although the relationship between rainfall and dengue is
non-linear; heavy rainfall can flush out breeding sites as well
[16]. Relative humidity also favours the survival rate and biting
activity of adult mosquito. This allows the infected female mosqui-
toes to complete more than one replication cycle of the virus [17].

The El Niño Southern Oscillation (ENSO) is a naturally occur-
ring mode of tropical Pacific climate variability and it has a large
impact on global and regional temperature and rainfall in the
Tropics [18]. El Niño events are characterised by an increase in
sea surface temperatures (SST) in the tropical eastern Pacific
Ocean, while La Niña events are characterised by cooler than average
SST in the same region. These events typically occur every 2–7 years
and develop in association with large-scale oscillations in atmos-
pheric pressure over the tropical Indian and Pacific oceans [19].
Studies have shown that there is an association between ENSO
and the burden of mosquito-borne diseases in tropical and subtrop-
ical regions [20–22]. ENSO has a significant impact on the Indian
monsoon and influences weather patterns worldwide [23]. El Niño
events are associated with drier than average conditions in the
Indian region [24]. Conversely, La Niña events are associated with
increased rainfall in India. El Niño events have been positively asso-
ciated with an increase in the number of malaria cases in Venezuela
and India [25, 26]. However, a weak association was observed
between ENSO events and dengue incidence in Bangladesh [27].

The Indian Ocean Dipole (IOD), also called the Indian Ocean
Zonal Mode, was discovered in the late 1990s. The IOD is a

natural climate mode of variability; it arises from ocean–atmos-
phere interaction, and is the largest mode of interannual climate
variability in the tropical Indian Ocean [28, 29]. The IOD
mode is characterised by the anomalous west–east SST gradient
accompanying zonal wind anomalies over the equatorial Indian
Ocean [28]. The positive phase of the IOD is associated with
warmer than average SST in the western Indian Ocean; colder
than average SST conditions in the southeast Indian Ocean, off
of Sumatra; and anomalous easterlies appear around the central
equatorial Indian Ocean [28]. During a positive IOD event, the
East African region receives above normal rainfall, while rainfall
is reduced in Indonesia and in Australia causing significant
drought [30]. The IOD also plays an important role as a modula-
tor of the Indian summer monsoon rainfall (ISMR) and influ-
ences the correlation between the ISMR and ENSO [31].

There are only a few studies that investigate the epidemiology of
dengue virus and the impact of climate on dengue transmission
across India [16, 32]. Researchers have provided various predictions
at global scale based on climate models. Hence, the current study
aimed to estimate the effect of climate on dengue transmission in
overdispersed datasets. A distributed lag non-linear model
(DLNM) was used to examine the delayed lag effect of different cli-
matic variables on dengue cases using data from 2010 to 2017 [33].
DLNM is a flexible model which simultaneously describes a non-
linear and delayed effect of different factors on disease burden of cli-
mate change on dengue incidence [34]. We utilised the DLNM
method to investigate the lag effects of climate variables on dengue
cases in India. This technique is based on the cross-basis function
that examines a two-dimensional relationship along the dimensions
of climate change (rainfall or temperature) and time lag, in weeks
[33]. In addition, the best-fitting model with climate parameters
will be used to develop a dengue forecast model for India. The results
of the study may also provide useful information to allocate public
health resources and mitigate the burden of dengue disease in India.

Methods

Epidemiological data

Weekly reports of dengue cases for India from 2010 to 2017 were
collected and compiled by the Integrated Disease Surveillance
Program (IDSP), Ministry of Health and Family Welfare,
Government of India (http:\\www.idsp.nic.in). Dengue cases are
confirmed in the laboratory by the MAC ELISA method on the
basis of the detection of IgM antibodies [32]. The institutional
committee (CSIR – Indian Institute of Chemical Technology)
approved the study and no patient samples were handled during
the study. Hence, the consent from patients was waived as we
dealt with the recorded data.

Climate data

The temperature data were derived using the NCEP-DOE 2 reanaly-
sis dataset [35]. This reanalysis dataset is produced using a
state-of-the-art analysis/forecast system to perform data assimilation
using past observed climate data. The NCEP reanalysis data are a
mix of climate model data, corrected by a large amount of climate
observations (using assimilation techniques to produce a continuous
gridded product in space and time as climate observations can be
patchy). The model component of the reanalysis is consequently
based on a climate model – some physical processes are resolved
in the spectral grid space. This dataset is available on a T62 (spectral

2 Satya Ganesh Kakarla et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0950268819000608
Downloaded from https://www.cambridge.org/core. University of Liverpool Library, on 03 Apr 2019 at 09:03:57, subject to the Cambridge Core terms of use, available at

http:\\www.idsp.nic.in
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0950268819000608
https://www.cambridge.org/core


model grid truncation, it has pros and cons for solving physical pro-
cesses in the earth system) global Gaussian grid (about 1.8° × 1.8°)
from 1979 to present at daily time step. Rainfall was derived from
the Tropical Rainfall Measuring Mission (TRMM) dataset.
TRMM is available on a 0.25° × 0.25° spatial grid covering the
Tropics and sub-Tropics (60°N-60°S) from 2010 to 2017 [36].
Time series of weekly rainfall, maximum, minimum and mean tem-
peratures for India from 2010 to 2017 are shown in Fig. 1. Statistics
summarizing the average weekly temperatures (maximum, min-
imum and mean temperatures) and rainfall are shown in Table 1.

The monthly El Niño-Southern Oscillation (ENSO) index used
in this study is the Nino3.4 SST index (calculated for the region
170°E-120°W and 5°N-5°S) available from the Climate
Prediction Centre of the US National Weather Service (http://
www.cpc.ncep.noaa.gov/data/indices/sstoi.indices) [37]. Similarly,
the IOD is represented by the SST difference between the western
equatorial Indian Ocean (50°E-70°E and 10°S-10°N) and the
southeastern equatorial Indian Ocean (90°E-110°E and 10°S-0°
N). This SST gradient is also known as the Dipole Mode Index
(DMI). When the DMI is positive, the phenomenon is referred
to as the positive phase of the IOD, and when it is negative, it is
referred to as the negative phase of the IOD. The monthly DMI
values were obtained from the Japan Agency for Marine Earth
Science and Technology (http://www.jamstec.go.jp/frcgc/research/
d1/iod/DATA/dmi.monthly.txt) [28].

Lag effects

DLNM were separately fitted to investigate if there was a delayed
impact of climatic factors on weekly dengue cases at country scale.
The relationship between climatic factors and dengue cases was
investigated by employing two distinct approaches. First, the associ-
ation between dengue and climatic factors at different time lags (lag
0–25 weeks) was assessed using Pearson correlation analysis. We
correlated the value of a particular climatic variable at week i with
the number of dengue cases by date of symptoms expressed at
week i + τ where τ is the time lag (in weeks). The second part of
the analysis was carried out using the DLNM package available in
R software. We used DLNM combined with quasi Poisson regres-
sion analysis. The observed data of weekly dengue cases show over-
dispersion (e.g. the variance of dengue cases largely exceeds the
mean), consequently quasi-Poisson regression was used to estimate
the effects of independent variables (observed rainfall and tempera-
ture) on dependent variable (observed dengue cases). The median
value of climatic parameters (Table 1) was defined as the baseline
centring value for calculating relative risk (RR). The RR was based
on the Poisson regression model adjusting for various confounders.
RR is defined as ‘the ratio of the probability of dengue occurring at a
certain value of a climate variable to the probability of the event
occurring at a reference value of the same climate variable’.

The DLNM framework has enough flexibility to represent the
non-linear and delayed associations on lag scale between climatic
factors and dengue cases based on cross basis function. Lag repre-
sents the time interval between exposure event and clinical outcome.

Yt = quasiPoisson(mt), t = 1, 2, 3, . . . . . . . . . , n

Log(mt) = a+
∑L

l=1

b1(Tt, l)+
∑L

l=1

b2 (Rt, l)+ s(week + l)

+ Year+ 1t

where t is the week of observation, Yt denotes the observed dengue
counts in week t, log(μt) represents the logarithm of expected den-
gue cases in week t, α is the model intercept; Tt,l and Rt,l are the
matrices obtained by applying the DLNM to temperature and rain-
fall; β1 and β2 are the coefficients of temperature and rainfall matri-
ces, l is the lag in months; L is the maximum lag; s(week, λ) is the
natural cubic spline smoothing function of the calendar week. The
model was adjusted by using a natural cubic spline for temperature
with a maximum lag of 4–30 weeks, whereas base B-spline function
was used for rainfall with a maximum lag of 25 weeks. We used the
R software (version 3.3.3) with the ‘dlnm’ package to carry out our
analysis [38].

Pearson cross-correlation coefficient test was used to investi-
gate the lagged relationship between monthly dengue cases,
ENSO and IOD data. The level of statistical significance was con-
sidered to be 0.05. The correlation analysis was calculated by
using the SYSTAT statistical software (version 13).

Results

The weekly dengue cases, temperature and rainfall from 2010 to
2017 are shown in Fig. 1. Between January 2010 and December
2017, a total of 174 912 dengue cases were reported by IDSP in
India. There was an average of about 420 weekly dengue cases
and 21 864 annual dengue cases. The highest number of cases
(15 619) was reported during the 45th week of 2015 (e.g. first
week of November). The weekly mean temperature and average
rainfall were 23 °C and 23 mm, respectively. Descriptive statistics
of all dependent and independent variables are shown in Table 1.
The majority of dengue cases (72.47%) occurred from July to
October during the monsoon period (Fig. 1). During this period,
the median maximum and minimum temperatures were 28 and
21 °C, respectively. It reveals that the weekly time-series dengue
cases and climatic factors indicate a strong seasonal pattern.
The seasonal peak of dengue cases varies from year to year,
although most of the cases tend to occur during the Indian mon-
soon (Fig. 1). Dengue cases increased tremendously from 2012 to
2016; 2015 and 2016 were considered as major dengue epidemics
in India. There is no synchronous relationship between weekly
dengue cases and climatic factors but a delayed lag effect was
detected.

The lagged relationship between weekly cumulative rainfall
and dengue cases in three-dimensional pattern is shown in
Fig. S1. It reveals a non-linear relationship between rainfall and
dengue cases with delayed lag effect. The RR is minimal for low
rainfall period and it gradually increases along with increases in
rainfall. The peak risk (RR > 2.5) was observed between 100 and
120 mm rainfall with 9–20 weeks lag, which decreased slowly dur-
ing the following week. Figure 2 shows cross-sections of the two-
dimensional surface shown in Fig. S1 for fixed time lags at 3, 5,
10, 15 and 20 weeks lag periods and for specific rainfall values,
e.g. for 20, 40, 60, 80, 100 and 120 mm. The exposure–response
analyses indicate that moderate dengue risk is observed between
40 and 60 mm rainfall with a 5-week lag period (Fig. 3).
Rainfall ranging between 80 and 120 mm was associated with a
higher RR and longer lag periods were observed (Fig. 3).

The association between mean temperature and dengue cases
with a 30-week lag is shown in Fig. S2. The three-dimensional
relationship between mean temperature and dengue cases shows
a non-linear relationship and the RR increases with increasing
temperature (Fig. S2). The largest RR (1.8) is shown between 28
and 30 °C with a 3–8 weeks lag. Thereafter the risk gradually
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decreases with increasing temperature (>30 °C). A reversed
U-shaped lag responsive curve relationship was observed between
dengue and mean temperature at different lag periods (Fig. 4).

The exposure–response analyses (Fig. 4) highlight that the RR
by temperature at specific lags (3, 5, 10, 15 and 20 weeks) and
by lag at specific temperature (24, 26, 28, 30 and 32 °C) was

Fig. 1. Time-series plots of (a) weekly dengue cases, precipitation, maximum, minimum and mean temperature, (b) Nino3.4 and DMI indices during the period
2010–2017.
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observed. It was found that, the risk of disease transmission
increases with increasing mean temperatures (T) but high risk
of disease transmission was further observed at optimum mean
temperature range (28–30 °C) and the risk of disease transmission
decreases for T < 24 °C and T > 32 °C (Fig. 5). The associations
between minimum and maximum temperature and dengue RR
are presented as three-dimensional graphs in Fig. 6. The dengue
RR is higher (>1.2) when temperature leads RR by 1 week and
when minimum temperature ranges between 22 and 25 °C. RR >
1.4 is shown with 1 week lag when maximum temperature lies
between 32 and 35 °C.

Cross-correlation

Temperature and rainfall exhibited significant correlations with
dengue cases at different time lags (Table S1). The largest

correlation (r = 0.32) is shown between rainfall and dengue at
12-week lag (Fig. 7). The positive correlation coefficient is
observed between maximum temperature and dengue cases.
Mean temperature also shows positive correlation with dengue
cases at a 19-week lag period. The correlation between minimum
temperature and dengue is significant but the correlation values
are quite small.

Effect of ENSO and IOD on dengue

A weak synchronous correlation was observed between Nino3.4
(r = 0.3), DMI (r = 0.2) and dengue cases from 2010 to 2017.
However, the largest El Niño events and the largest positive
phases of the IOD coincide with the largest number of dengue
cases reported in India in 2015 and 2016 (Fig. 1). Good
correlation coefficients are shown between Nino3.4 (r = 0.5),

Table 1. Descriptive statistics of weekly information on weather and dengue cases from 2010 to 2017

Descriptive statistics of weekly data

Variable Mean Minimum Maximum SD

Percentile

25% 50% 75%

Cases 419.5 0 15 619 1475.54 10 56 211

Mean temperature(°C) 23.04 13.15 31.24 4.48 18.91 24.48 26.19

Maximum temperature (°C) 28.02 17.07 36.69 4.15 25.03 28.32 30.71

Minimum temperature (°C) 18.18 6.25 28.11 5.49 13.15 19.41 22.80

Rainfall (in mm) 23.22 0.11 119.09 25.01 3.65 12.98 38.82

Fig. 2. The estimation of relative risk posed by rainfall at different time lags (in weeks). The solid blue line is the estimated non-linear curve; the shaded region
indicates its 95% confidence interval.
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DMI (r = 0.6) and dengue cases during strong El Niño period (in
2015), whereas negative correlation (r =−0.6) between dengue
cases and Nino3.4 and DMI indices are shown for 2016.
Figure 8 depicts cross-correlations between Nino3.4 and DMI
indices with dengue cases. Monthly Nino3.4 and DMI indices
were significantly associated with the number of dengue cases at
different time lags. Nino3.4 shows the largest significant correl-
ation coefficient when the Nino3.4 index lead dengue cases by
3–6 months. Similarly, the highest significant correlation between
the DMI index and dengue cases was found for a time lag ranging
between 0 and 2 months (Table S2).

Discussion

Many studies have shown that temperature and rainfall are
important drivers associated with the emergence of dengue. In
the present study, a DLNM was utilised to understand the short-
term association between climate variables and dengue cases for
different time lags. The results show that minimum temperature
(26 °C), maximum temperature (32 °C) with 0–5 weeks lag and
rainfall (60 mm) with a lag of 8–12 weeks are the most significant
variables associated with an increase in the RR of dengue.

The non-linear relationship between rainfall and dengue is
related to rainfall effects on the adult female mosquito lifecycle.
Rainfall provides breeding habitats and opportunities for the pro-
liferation of vectors in the environment. An increase in the
amount of rainfall leads to more potential breeding sites, which,
in turn, lead to an increase in the number of mosquitoes hatching.
However, high rainfall may washout mosquito breeding sites thus
having a negative effect on mosquito density [15]. This is consist-
ent with our findings, the RR of dengue gradually increases as
cumulative weekly rainfall increases from 40 to 60 mm, then it

decreases when rainfall exceeds 80 mm. Similar results were
observed in Brazil, namely that the risk of dengue infection
increases during the rainy season when vector infestation reaches
its peak [39]. Excepting rainfall intensity and magnitude, other
man-made factors such as human activities, usage of water, stor-
age patterns and drainage systems can create artificial breeding
habitats for dengue vectors. In Southeast Asian countries, resi-
dents generally grow potted plants/flowers indoors and they
tend to decorate roofs with hanging gardens. These man-made
containers, if not emptied or cleaned frequently, can act as a
breeding source for vectors well adapted to the urban environ-
ment. This can potentially further increase the risk of dengue
transmission [40, 41]. In India, residents generally store water
in different containers inside the house (especially in urban set-
tings) and this water acts as a breeding source for Aedes vectors,
thus further increasing the risk of dengue transmission [9]. In
India, the south-west monsoon brings enough rainfall to sustain
vector breeding sites [42, 43]. Our findings show that the season-
ality of the mosquito population is mainly driven by rainfall and
ambient temperature conditions.

Temperature is one of the most important climatic factors,
which influences the life cycle of the mosquito and pathogen
development inside the vector. Temperature influences the length
of gonotrophic cycle, larval development and growth rate of Aedes
mosquitoes [44]. High temperatures are also associated with an
increase in dengue incidence due to faster viral replication rates,
shortened extrinsic incubation periods, increased blood-feeding
behaviour, low mortality rates and high mosquito biting rates,
leading to increased vectorial capacity. All these factors play a
key role in disease transmission [15, 45]. Previous studies have
investigated the effect of temperature on the burden of dengue
fever [46]; weekly minimum temperature was also strongly

Fig. 3. The relative risk of dengue at different rainfall ranges. The solid blue line is the estimated non-linear curve; the shaded region indicates its 95% confidence
interval.
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Fig. 4. Relative risk by mean temperature at specific lags. The solid red line is the estimated linear curve, with shaded region indicating its 95% confidence interval.

Fig. 5. Relative risk by lag at different mean tempera-
tures. The solid red line is the estimated linear curve,
with shaded region indicating its 95% confidence
interval.
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associated with vector development [47, 48]. In this study, a posi-
tive association was observed between temperature and dengue
cases for temperatures ranging between 24 and 30 °C at a lag of
0–4 weeks. Similar temperature ranges were also observed in
China and Mexico [49, 50].

Studies found that water-borne disease and VBD outbreaks
coincide with ENSO and IOD events [51, 52]. The present study
found a weak synchronous correlation between ENSO (r = 0.3),
IOD (r = 0.21) and dengue cases. In 2015–2016, a large number
of dengue cases were observed during one of the largest El Niño
events, a large positive phase of the IOD along with high rainfall.
El Niño events are associated with a warming signal over the whole
Tropics, warming temperature brought changes in the atmospheric

circulation over the Indian Ocean which favours large rainfall dur-
ing the monsoon period [31]. A significant positive relationship
was observed between ENSO and monthly dengue incidence in
Pacific Island nations [53]. Similarly, countries like Thailand,
Mexico and Bangladesh have shown a positive association between
ENSO, IOD and dengue cases [27, 54, 55].

The lagged effect of ENSO and IOD on the risk of dengue fever
transmission is very important. The observed lag effects are biologic-
ally plausible, and they are consistent with former findings [52, 56,
57]. A study compiling all historical dengue outbreaks in India
showed that most outbreaks in India are highly seasonal (occurring
during the monsoon period) [9]. This study suggests that rainfall
occurring at the end of the dry season enhances the risk of epidemics
during the following monsoon season. Conversely, during pro-
nounced drought conditions, water containers help to maintain
the Aedes vector population around man-made water reservoirs in
households. As a consequence, the pathogen remains during the
dry season, and this can lead to an epidemic when the wet season
returns. Non-climatic factors such as socio-ecological changes,
viral serotypes, immunological factors, mosquito control approaches
and population movement are important drivers for the spatial and
temporal dynamics of dengue fever transmission [58, 59].

Earlier researchers found that dengue and its vectors are
adapted to an urban setting, but in India, it has also spread to
rural regions [1, 60, 61]. In recent years, the number of dengue
cases has increased dramatically in India; hence it is crucial to
develop a seasonal forecasting model to predict dengue prevalence
for the next season. Our study has provided some basic informa-
tion on temperature and rainfall threshold levels which might
help to build a dengue early warning system to inform decision-
making activities such as when to initiate preventive measures to
reduce dengue mortality and morbidity.

This study has some limitations. First, the study duration
(2010–2017) and sample size is relatively small. Our study high-
lights the granular association between climate and dengue at

Fig. 6. The three-dimensional plot shows the association between weekly. (a) Minimum temperature. (b) Maximum temperature and relative risk of dengue at
different lags.

Fig. 7. Cross-correlation of dengue cases and climatic variable at 0–25 weeks time
lag. The dotted line stands for the significant correlation coefficients with P < 0.05.
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country scale. Similar modelling exercise should be carried out at
city or state level for effective management and control of the dis-
ease. As India has different climatic zones, future studies should
focus on the development of forecasting models by climatic
zone. Other important parameters, including socioeconomic
and demographic factors such as population density, migration,
vector density, virus serotype and immunity of the population
should be included in future risk assessment studies to further
understand this complex and fast-growing disease.

Conclusion

In conclusion, our findings revealed a non-linear relationship
between climatic factors and dengue burden in India. The study
shows that dengue is temperature-dependent and with increasing
temperature the dengue cases increase above 24 °C. The estimated
lagged effects are in accordance with the time required for the
development of the Aedes vectors, for the extrinsic and intrinsic
incubation periods of virus as well as the onset of clinical symp-
toms of dengue. The study also provides information for better
understanding the effect of climate variables on dengue and can
adapt a policy for control and preventive measures well in
advance.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268819000608
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