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“Commercial airline travel and the international spread of emerging
infectious diseases” by Margaux Meslé

Abstract

A total of 1.186 billion international airline arrivals were recorded globally in 2015 alone, a
4.6% increase from 2014 (Glaesser et al., 2017). As airplanes now fly very long distances at
greater speeds, a passenger is likely to travel while incubating a pathogen and may only
become ill once at their destination. In the 21 century alone, a number of pathogens have
been transported in this way, causing epidemics (Cholera in Haiti, 2010) and pandemics
(Influenza A HIN1, 2009). The aims of this thesis were to understand what previously
purchased airline data represents in terms of passenger movement and whether this is a
useful and/or accurate tool to use to predict the international spread of human infectious
diseases.

A systematic literature review first analysed what airline data was most often used by
mathematical modellers to determine the international spread of human infectious diseases
and how well the data sources were reported. From there, the OAG airline data was
extensively described and validated against independent and open access data sets. With a
better understanding of the airline data, the author modelled which regions posed varied
risks of chikungunya and dengue infection for UK passengers compared to the local
populations, by combining endemic and imported number of cases to the airline data. Finally,
the author conducted an analysis regarding which countries posed a higher risk for the initial
spread of a pandemic by deriving their global connectivity from the airline data and using the
level of healthcare provided from two indices. Both parameters were given equal importance
by providing equal weightings before ranking each country by proximity to a fictitious ‘Worst
Case Scenario’.

It was determined that commercial (closed access) airline data was most often used by the
modelling community and that the reporting of sources used did not often allow for
independent validation of a group’s work. As a result, a framework was developed for
researchers to report specific aspects of the data set, such as date range included, any
manipulation and date of collection. When describing the airline data, clear seasonal trends
were apparent, and countries such as the United States and China contribute large numbers
of passengers to the network. Additionally, the data are sold as highly accurate airline only
data, but was identified as also containing land and sea transportation. When validated, the
OAG data showed good agreement with the other data sets used such as from the United
Kingdom’s Office for National Statistics and the United States’ Department of Transport.
From the modelling chapters, some regions, such as the Caribbean, proved less dangerous
for UK airline passengers in terms in chikungunya and dengue infection compared to the local
populations whereas regions such as Lower South America were more dangerous for dengue
specifically, for UK passengers. Using two independent indices and the same connectivity
data, the author showed that certain countries exhibited the potential greatest risk of
international pandemic spread, whereas countries with recent pandemic emergence, such
as Brazil and Mexico, showed lower potential risk.

Future perspectives of this work include taking the global connectivity and healthcare
chapter further by including within-country data. Additionally, the creation of an open-access
data set combining detailed airline travel and passenger epidemiology that all research
groups could use is an important continuation of this work.
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Chapter 1 — Introduction

Preamble

This introductory chapter offers a brief overview of infectious disease events of note since
the start of the 21 century, and the role played by airline travel in their international
propagation. Additionally, a brief introduction to mathematical models is provided, with a
short outline of what information models can provide policy makers and how to represent
the airline network are also presented. Finally, the cost of pandemics is described before the

aims of the thesis are listed.
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Abstract

Within the 21 century alone, a number of infectious diseases outbreaks have spread rapidly
across international boundaries, developing into pandemics, as a direct result of human
airline travel. Outbreaks such as the 2009 HIN1 Influenza A pandemic or the Zika pandemic
were the result of novel pathogens quickly spreading globally via human international
movements. In contrast, the ongoing antibiotic resistance pandemic has resulted from
decades of (usually inappropriate) antibiotic use allowing pathogens to evolve relatively
unnoticed, but making their detection by the health authorities very slow. The high level of
connectivity between countries means that no country is isolated and a pathogen can be
transported into an epidemiologically suitable setting within a few hours, sparking a localised

outbreak, as was the case in Haiti (2010) with cholera.

To gain a clearer understanding of the human airline travel patterns, mathematical models
may provide crucial insights. Mathematical models are defined as a set of mathematical rules
designed to represent a biological system, in a more or less complex manner, based on a set
of parameters. Models not only help understand the epidemiology of a pathogen, but also
provide an understanding of the consequences of implementing a given policy. When based
on the airline network, mathematical models help understand the possible development of
an outbreak into a pandemic and geographical spread. The network that is made up of airline
movements is known to be a ‘small-world’ network, in which any two nodes (here airports)
can be reached in a given small number of steps (here routes), compared to that expected in

an equivalent random network.

The origin of a pandemic is known to be unpredictable (both in time and geography) and the
resulting outbreak may be very costly (in fatalities and economic burden) for the affected
countries and the global community. However, by using mathematical models, these costs

can be reduced, through a better understanding of a pathogen’s potential spread.

Therefore, through a thorough analysis of the global airline network, this thesis aims to
determine whether the use of airline data were appropriate to understand the international

spread of human infectious diseases, through four main objectives.

11 | Chapter 1



Introduction

In March 2018 the first direct flight between London (United Kingdom) and Perth (Australia)
successfully landed after 17 hours flying time (BBC, 2018). In the last century, this trip would
have taken at least 24 hours, and one month the century before that (Cliff and Haggett,
2004). Important advances in transport technology over recent centuries have improved how
distant cities and populations are connected to each other, with the largest cities becoming
increasingly connected, and previous refuelling points (for airplanes and ships) becoming less
required as airplanes now need fewer stops for equal distance travelled (Cliff and Haggett,

2004).

An increasing number of passengers travel annually, with 1.186 billion international arrivals
recorded globally in 2015, a 4.6% increase from the previous year (Glaesser et al., 2017). This
increasing number of airline passengers is posing an increased burden on international public
health organisations. Indeed one of the biggest threats faced by modern populations globally
is the speed, distance and number of airline passengers travelling today, the likes of which
have never previously been seen (Lopez et al., 2016). Healthcare practitioners need to
correctly diagnose and treat for pathogens they may be unfamiliar with, all while trying to
avoid an outbreak (Fricker and Steffen, 2008). Passengers are faced with varying levels of risk
when travelling, with a small proportion of them making more frequent trips and mixing with
similar people (so called assortative, or like-with-like, mixing). These frequent flyers are more
likely to board an international flight while in the incubation or asymptomatic phases of an
illness (Hollingsworth et al., 2007), increasing the potential of introducing a pathogen into a

susceptible population, potentially resulting in an outbreak (Tian et al., 2017).

International travel has been determined to be an important driver of novel or Emerging
Infectious Diseases (EID) (Arcilla et al., 2017; Fricker and Steffen, 2008; Semenza et al.,
2016a). According to Jones et al. (2008), EIDs can be defined in a number of ways, such as 1)
novel pathogens or mutated strains of known pathogens (Multi-Drug Resistant Tuberculosis,
for example); 2) pathogens entering naive populations or ones with reduced immunity, such
as Ebola; or 3) those showing a recent increase in incidence in a given population (measles in
Europe (World Health Organization, 2017c)). Pathogens such as the Human
Immunodeficiency Virus (HIV) affect the host’s immune system leading to an increased
susceptibility to other pathogens, as was seen at the start of the pandemic in the 1980s and

1990s (Jones et al., 2008). If the necessary protective precautions are not adhered to

12 | Chapter 1



correctly, travellers visiting tropical and subtropical countries pose a health risk to
themselves as well as to local populations, and populations from their home country, as they
can transmit a pathogen to local vectors in the visited country (Semenza et al., 2016a) or in
their home country (Angelini R et al., 2007; Mier et al., 2017). An example of passengers
introducing vector-borne pathogens to local vectors upon their return from international
travel was the 2007 chikungunya outbreak in the Ravenna region of Italy (Angelini R et al.,

2007).

Monitoring the levels of disease importation resulting from travel may help determine
epidemiological changes in visited countries (Fricker and Steffen, 2008; Lopez et al., 2016),
which along with monitoring underlying drivers of emerging pathogens may help identify
early cases, which may accelerate and improve outbreak detection and control (Semenza et

al., 2016a).

Human pathogens follow human travel patterns and are therefore more likely to start
spreading within the same region as the majority of passengers (four out of five) travel within
their own region (Glaesser et al., 2017). In an effort to control outbreaks early, the World
Health Organization (WHO) coordinates the international response to reported outbreaks
from its 194 member states adhering to the International Health Regulations (IHR). This set
of guidelines updated in 2005 after the Severe Acute Respiratory Syndrome (SARS) outbreak,
legally requires countries to report cases or outbreaks that may require international
coordination especially in the event of an international spread. Additionally, sentinel
organisations such as GeoSentinel and Trop Net Europe collect disease importation
information from general practitioners to help understand the international importation

risks (Fricker and Steffen, 2008).
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Human infectious diseases events of importance in the 21°% century

Since the start of the 21° century, a number of infectious disease events have taken place
globally, with at least four causing international concern: SARS (2003), HIN1 Influenza A 2009
pandemic strain, Ebola virus (2014) and Zika virus (2016). This situation is at odds with what
some in the medical community believed about infectious diseases in the 1970s, when it was
thought the war on micro-organisms was all but over. However, important factors such as
pathogen evolution, ecology and human travel were not considered at the time as posing
significant threats (Arnal et al., 2011). The next section will describe outbreaks of importance
from the 21 century alone and how unique influential factors shaped each outbreak’s

severity, ranging from pandemics to significant localised outbreaks with pandemic potential.

Pandemics
Infectious disease pandemics refer to outbreaks that have affected populations over a large
geographic area, countries or continent (Porta, 2008). These outbreaks may cause fear in
populations leading to behaviour changes and population movements that in turn cause
important economic loss and/or increased mortality rates (International Working Group on

Financing Preparedness, 2017).

An unusual rise in infectious disease cases of any kind needs to be detected and controlled
very early on to allow an appropriate response and resource allocation. Early detection and
control depends significantly on good communication within governmental branches and
with the private sector (International Working Group on Financing Preparedness, 2017). This
absence of communication within governmental authorities led to an important time lag
allowing the SARS virus to spread widely within Southern China (Bowen Jr and Laroe, 2006;
World Health Organization, 2003). The pandemic started in a live market in Guangdong
province, Southern China, probably in November 2002. A then novel coronavirus that
emerged to cause the 2003 pandemic is now known to have a reservoir in three animal
species (civet cats, badgers and dogs) (Brower, 2003). Even though a number of super-
spreading events (one infection event creating a much larger than average number of next
generation events) occurred during the outbreak and no cure was available, the disease was
controlled more easily than others as patients were only infectious when symptomatic
(Heymann et al., 2013). For example, in February 2003, a health care professional travelled
to Hong Kong and was taken ill when staying at an international hotel, leading to a number

of infections (Bowen Jr and Laroe, 2006; World Health Organization, 2003) as susceptible
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clients came into contact with virus shed in the hotel corridor and lift by the health care
worker (Bowen Jr and Laroe, 2006). Within ten days of the virus being introduced in Hong
Kong, cases were reported across the world, in Canada, Vietnam, and the United Kingdom
(UK), among others, as the direct result of airline passengers travelling internationally
(Bowen Jr and Laroe, 2006). After this international spread, the WHO advised airport staff to
guestion passengers about symptoms when leaving the airport from March 2003, and the
following month advised against all non-emergency flights to affected areas. By May, air
travel to and from China fell drastically. The outbreak was declared over in July 2003, after a
total of 8,096 cases, including 774 recorded deaths (Bowen Jr and Laroe, 2006). Although air
travel restrictions played a role in stopping the international spread of the virus through
airline passengers, the economic impact on the airline and tourism industries was significant.
According to the International Working Group on Financing Preparedness (2017) China alone
is thought to have lost 0.5% of its Gross Domestic Product (GDP) as a consequence of the
travel advisory. Great international collaboration and cooperation allowed the outbreak to
be brought under control and person-to-person transmission stopped within eight months

(Heymann et al., 2013).

In response to the significant economic losses from the airline travel advisory and initial slow
case reporting to and by the Chinese health authorities, WHO revised its IHR policies to
encourage faster detection and reporting by countries. The new guidelines came into effect
in 2007 (Heymann et al., 2013), four years before the next pandemic occurred, the 2009
H1IN1 Influenza A pandemic. The novel strain had been shown to infect healthy Mexican
populations, causing severe disease outside of influenza season (European Centre for Disease
Prevention and Control, 2010). As a result, case reporting for the novel Influenza A virus
strain in two Californian children was reported to the Centre for Disease Prevention and
Control (CDC) early after detection. Four days later, on the 25™ of April, WHO declared the
outbreak a “public health emergency of international concern” (European Centre for Disease
Prevention and Control, 2010). However, even with early detecting and reporting of the novel
strain, WHO thought that the virus had already spread too far internationally and therefore
advised against airline restrictions. Indeed given the virus natural history (being infectious
before being symptomatic) makes its control more difficult, and the virus was reported on
four continents within three weeks of Mexican authorities reporting the outbreak, most likely
as a result of international air travel and trade. It was therefore too late for an airline ban to
have any significant impact on the development of the pandemic (Hosseini et al., 2010).

Despite its close genetic proximity to the virulent 1918 strain (European Centre for Disease
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Prevention and Control, 2010), the 2009 pandemic strain was much less virulent than feared
due to previous immunity in older generations (leading to fewer mortalities) but a high
mortality among children and young adults was recorded (Fineberg, 2014). The outbreak was
officially declared over on the 10" of August 2010 after 68 weeks, 925,861 cases (European
Centre for Disease Prevention and Control, 2010) and 18,449 deaths reported (World Health
Organization, 2010), although some researchers argue this may be a severe underestimation

of the true number of cases and deaths (Dawood et al., 2012).

Although the implementation of the revised IHR guidelines showed a positive impact on the
H1N1 pandemic, such as improved communication between WHO and member states, it
became apparent that many countries were unprepared to handle a future pandemic

(Fineberg, 2014).

Contrary to the previous two pandemics for which the spread was well reported and
described in the media, Zika virus spread slowly from Africa through South Asia and into the
Americas without causing international concern until it was detected in Brazil in late 2015
(Basundra et al., 2016). During its eastward spread from Africa, the virus caused small,
localised outbreaks with symptoms similar to those of dengue virus infections (Jamil et al.,
2016). Although the virus mutated over time, it still caused low mortality, but an increasing
trend in new-born microcephaly and adults presenting with Guillain-Barré syndromes
became more prominent (Chang et al., 2016; Mlacker et al., 2016). The introduction of the
virus to the American continent a few months prior to the 2016 Rio de Janeiro Olympic games
may have provided a pathway for the virus to be transmitted further on the continent via
airline travel (Chang et al., 2016). Overall, the outbreak is estimated to have cost between
USS$2.3-6 billion per year, or 0.05-0.12% of the global GDP. Such costs, partly due to the
surprise and timing of the outbreak, could have been mitigated by more sensitive and
stronger healthcare systems. These could have been in a position to disseminate accurate
information about co-factors for microcephaly, transmission patterns and disease
understanding (United Nations Development Programme, 2017). It is likely that once again
airline travel bans for passengers travelling to and from the American continent would not
have been beneficial (and would have resulted in bigger economic losses) as these would

have been implemented too late to have proved any benefit for the spread of the virus.

16| Chapter 1



Antibiotic resistance importation
The pandemics described so far have had significant costs associated to them, both
economical and in terms of mortality or morbidity. However, viruses are not the only
pathogens being transported by human travel (Amesh et al., 2018). In fact, an emerging and
important public health problem therefore is the international movement of antibiotic

resistant bacteria.

The emergence of a drug resistant bacterial strain in a given location should not be
considered an isolated event, but rather a global threat, given the global airline passenger
volume and level of connectivity (Choudhury et al., 2012) and posing a significant threat to
the entire modern medicine (Amesh et al., 2018). Several examples of imported drug
resistant bacteria have been reported in Spain and Sweden after travellers and diaspora
returned to their country of residence (Choudhury et al., 2012). They may acquire the
pathogen and be asymptomatic in these communities for an extended period of time after
their return. As Arcilla et al. (2017) show, 11.3% of passengers returning from international
travel were still colonised with Extended Spectrum B-Lactamase-producing Enterobacteracae
(ESBL-E) one year after their return. This result was accompanied by a 12% risk of onward

transmission within the household (Arcilla et al., 2017).

Several antibiotic resistant strains have been identified as imported from several global
regions, with varying levels of associated risks. However, India has been noted to cause the
largest risk to international travellers regarding antibiotic resistant bacterial strains
(Choudhury et al., 2012). Two resistant Escherichia coli (E. coli) strains (enterotoxigenic and
enteroaggregative) have been identified in returning travellers from India, as was also the
case for the New Delhi Metallo-betalactamase 1 resistance gene discovered in Swedish
diaspora in 2007 (Choudhury et al., 2012). Asia was reported as the most likely region to
acquire ESBL-E resistance gene (Arcilla et al., 2017; Choudhury et al., 2012), followed by
Central and Eastern Asia (Choudhury et al., 2012). Pre-travel advice on reducing the use of
antibiotics could play an important role in reducing the importation of ESBL-E genes by
travellers (Choudhury et al., 2012), as well as other resistance genes or pathogens. The
antibiotic resistance pandemic is estimated to cost the global economy up to 3.8% of the
global GDP by 2050 and to impact low-income countries most. This cost is higher than the
predicted cost of a pandemic, estimated at up to 1% of the global GDP (International Working
Group on Financing Preparedness, 2017). As well as this significant financial cost, the
morbidity and mortality rates are going to rise (World Bank, 2017a). These costs will increase

rapidly if the spread of resistant strains is undetected as a result of weak surveillance, delayed
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appropriate treatments to be provided to human as well as animal cases. This in turn puts
additional strain on control measures as they will be confronted with a higher number of

cases (World Bank, 2017a).

Recent localised outbreaks
Within the past decade, airline passengers travelling between distant countries have
imported pathogens, resulting in country-level outbreaks of importance within the
international destination. Examples include the importation of Vibrio cholerae to Haiti (2010)
and the Middle East Respiratory Syndrome Corona virus (MERS-CoV) to South Korea (2015).
Two additional outbreaks of note that developed although without airline importation but
saw a number of air-travel associated exports were the West African Ebola (2014-2015)
(classified as a “public health emergency of international concern” by WHO) and the

Madagascar plague outbreak (2017) (World Health Organization, 2016b).

On the 21° of October 2010, the Haitian Ministry of Public Health declared a cholera outbreak
of particular virulence. This was the first reported cholera outbreak on the island for over a
century. The resulting fear in the local population led to populations moving from Meille, (the
epicentre) which allowed the bacteria to be carried to distant locations across the country
(Piarroux et al., 2011). The introduction of a hyper-virulent strain with high infectiousness in
a naive population made this outbreak particularly virulent (Piarroux et al., 2011).
Additionally, the outbreak occurred a few months after the devastating earthquake had left
the capital, Port-au-Prince, in a fragile state with 1.3 million people homeless and in
makeshift camps throughout the capital as well as thousands of deaths and injuries. Within
these precarious living conditions, with little sanitation and access to water, an infectious
disease outbreak was reported as highly likely to develop (Walton and Ivers, 2011). The
introduction of the bacterium (Vibrio cholerae 01, serotype Ogawa, biotype El Tor) was linked
to an outbreak in Kathmandu (Nepal) that occurred just one month prior to the one in Haiti.
The link between the two outbreaks was quickly established and the pathogen’s entry into
Haiti was linked to a Nepal-based battalion suffering from cholera, who arrived a few days
prior to the first cases being reported locally (Chin CS, 2011). As of the 30" of November
2011, a total of 515,699 cases were reported of which 54% were hospitalised and 1% died,
according to Pan American Health Organisation (2011). This outbreak was still ongoing at
time of writing, with cases reported on a regular basis (United Nations News Centre, 2017).

This unusual outbreak resulting from a single importation event but contained to one country
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is a reminder that a disease outbreak in one country can very quickly affect populations much

further away, and highlights the importance of the IHR and rapid reporting of cases.

Although first identified in the Middle East in 2012 as a human respiratory virus, the MERS
Corona virus is now known to have circulated in dromedary camels for decades prior to
causing human disease (Gardner et al., 2016). Human-to-human transmission is uncommon
except in close contact and hospital settings, with sporadic cases linked to close proximity
with dromedary camels. The majority of cases (80%) have been concentrated in the Middle
East, with airline passengers exporting the virus to 27 countries, but rarely causing an
outbreak (World Health Organization, 2017d). As of March 2018, there have been a total of
2,144 laboratory confirmed cases of MERS, of which 750 were fatal (World Health
Organization, 2018c). Few exported cases have led to an outbreak, of which the most notable
was in South Korea during the summer of 2015, when a patient became ill with the virus upon
his return from a business trip in Saudi Arabia (Su et al., 2015). After visiting three hospitals,
the patient (who was later determined to be a super-spreader) caused an outbreak of 186
cases, due to slow identification of the virus by healthcare professionals (Gardner et al., 2016;
Ki, 2015). Because the Middle East is very well connected to the rest of the world, millions of
airline passengers travel through airports such as Dubai and Doha annually. Along with mass
gathering events, such as the Hajj, taking place every year there is a clear risk of further
international dissemination of the virus from this region by international airline travel
(Gardner et al., 2016; Al-Tawfiq et al., 2014). Even though the risk of onward international
transmission is high for this ongoing outbreak, no flight or travel restrictions have been put

in place by WHO at time of writing (World Health Organization, 2017d).

These two examples (cholera and MERS-CoV) illustrate the potentially dramatic effects of a
small number of airline passengers may have on local populations, the next examples

highlight the potential risk of international dissemination from an outbreak.

The largest Ebola virus outbreak ever recorded occurred between 2014 and 2016 in West
Africa, specifically Liberia, Guinea and Sierra Leone (Dhama et al., 2015) with few exported
cases, causing a total of 28,616 confirmed cases and 11,310 deaths (World Health
Organization, 2016b). Although the outbreak principally affected the three previously named
countries, onward transmission from exported cases was also recorded, although to a smaller
extent and mostly in Nigeria (20 cases), Mali (8 cases) and United States (4 cases) (ElImahdawy
et al., 2017). It was determined that the burial practices of the local populations facilitated

transmission between family members and close contacts as the virus is transmitted by
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bodily fluids (Dhama et al., 2015). An important challenge faced during the outbreak was
keeping track of cases and their numbers, as many could not attend a hospital because of
distance, overcrowding and/or stigmatisation (Elmahdawy et al., 2017). Prior to the
outbreak, the healthcare facilities in these countries were far from end-users, closed (due to
lack of staff or equipment) or overcrowded. Additionally, the population had a strong belief
that hospitals did not heal patients (but rather killed them) causing many families to hide
cases, allowing the virus to spread further (Omoleke et al., 2016). The three West African
countries had seen a recent and important post-conflict economic growth, leading to
improvements in transportation (including international airline travel). Indeed, some 39
weekly inter-continental flights from the three capitals with major international airlines were
available prior to the outbreak, but the healthcare system still remained vulnerable. These
flights were suspended during the outbreak due to the perceived high risk of international
dissemination of the virus (Omoleke et al., 2016) against the advice of the WHO (Nutall,
2014). Quick international transport links made the potential for the international
dissemination of cases at the start of the outbreak a high risk (Dhama et al., 2015). The WHO
lifted the state of “public health emergency of international concern” on the 29" of March

2016 (World Health Organization, 2016b).

Another example of the importance of global connectivity was seen in Madagascar. In 2017,
the island saw an unusually large outbreak of plague recording 2,417 cases including 209
deaths recorded by the 26" of November 2017. The peculiarity of this outbreak was that 77%
of cases were clinically pneumonic rather than bubonic (World Health Organization Africa,
2017) and affected urban rather than rural areas (Burki, 2017). The risk of international
dissemination through airlines has been assessed as low by WHO, but a number of closely
connected countries (Seychelles) put a temporary flight ban in place (World Health
Organization, 2017f) or set up preparedness actions (South Africa, Tanzania, among others)
(World Health Organization, 2017f). Bogoch et al. (2018) analysed which countries were most
at risk of an importation event, potentially resulting into an outbreak, using each nation’s
airline connectivity with Madagascar and their health care system capacity to cope in the
event of an outbreak. Although no international exportation events have taken place from
this outbreak, this is one of the latest outbreaks with the potential to cause international
concern at time of writing (the Nipah virus outbreak in India and the Ebola outbreak in the
Democratic Republic of the Congo should also be considered). Madagascar’s healthcare
system had deteriorated since the 2009 coup and is now one of the most underfunded

systems globally, as well as being ineligible for international aid. This outbreak highlighted
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the need for quick and accurate detection of pathogens by the local healthcare systems
(Bonds et al., 2018). Given the situation with a possible risk of international dissemination,
WHO helped the nation by providing personal and financial support (Bogoch et al., 2018).
Although treatable with antibiotics, the disease is still feared (World Health Organization,
2017e).

The examples highlighted above show the potential impact of rapid airline travel on global
health, whether these importation events occurred rapidly and were easily noticed, such as
the HIN1 outbreak, or slower and more difficult to identify, such as antibiotic resistant
bacteria. Pandemics are also known to be very costly to the global economy, as well as that
of the affected countries. For example, the 2003 SARS outbreak cost an estimated USS$52.2
billion to the global economy (International Working Group on Financing Preparedness,
2017). This significant economic impact is the result of poor pandemic preparedness within
countries as well as changes in population behaviour. In fact, it was noted that the important
cost of MERS-CoV on the South Korean economy (USS 10 billion) was in part a result of flight
cancellations by travellers from fear of becoming infected when visiting the country
(International Working Group on Financing Preparedness, 2017). As well as having a
significant impact on local and global economies, pandemics can also cause a large number
of deaths in the affected countries (International Working Group on Financing Preparedness,
2017), even if the case fatality rates vary according to the pathogen, as shown in Figure 1.1.
Both of these costs can be significantly reduced by improving country level preparedness,
which must be taken both nationally with appropriate reference to healthcare systems
(including trained staff, appropriate facilities and trust from the population) and globally with
international surveillance systems that report outbreaks accurately and in a timely manner
(Omoleke et al., 2016). Therefore, understanding the dynamics and spread of future
outbreaks and predicting origins, destinations and speed of dissemination is a research field
of its own that, through mathematical modelling can help public health organisations make
better and more informed decisions concerning the development of an outbreak into a

pandemic and containment measures.
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(Figure 1.1 continued)
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Figure 1.1: A) Total number of deaths and B) total economic cost (in US$ billion), resulting from the four pandemics of the 218t century by region or country affected.

Data from: International Working Group on Financial Preparedness (2017); Hine, H. (2010) The 2009 Infuenza Pandemic - an independent review of the UK response to the 2009
influenza pandemic; Pan American Health Organization (2018).

Note: the H1N1 Influenza A pandemic affected more than just the UK, however, this country was used as an example.
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Introduction to mathematical models

When studying the transmission cycle of malaria in the early 20" century, Ronald Ross
derived a series of equations relating to the parasite’s transmission cycle and potential
effects of vector control on malaria incidence in the local population. Still relevant today, his
work is one of the earliest examples of models using mathematical equations to understand
the spread of human infectious diseases (Anderson and May, 1992; Lessler and Cummings,
2016). Contemporary with Ronald Ross was William Hamer who, while studying measles
epidemics, understood that epidemics depend on the contact between infectious and
susceptible parts of the affected population (Anderson and May, 1992). As well as being
among the first to use mathematical equations to represent infectious disease spread, Ross
and Hamer also worked on understanding the parameters used within those equations
(Anderson and May, 1992). Later on, in the 1930 and 40s, Reed and Frost taught
epidemiological theory at John’s Hopkins University using mathematical models and
mechanical epidemiology simulators. These are some of the earliest examples of the use of
mathematical equations to understand the spread and control of infectious diseases (Lessler
and Cummings, 2016). Later, in the 1980s, Rvachev and Longini developed the first model to
explore the international spread of influenza using airline data from 52 airports located on

all continents (Rvachev and Longini Jr, 1985).

Mathematical models are useful tools to understand the spread of infectious diseases within
and between populations and the potential impact of policies on their spread and control
(Lessler and Cummings, 2016), as well as understanding a pathogen’s mechanical (within a
host) and epidemiological (between hosts) spread. In today’s increasingly connected world,
and given the unpredictability of outbreaks, understanding and knowing how to control an
outbreak from an unknown imported case is crucial to avoid the further spread of an

infection (Hollingsworth et al., 2007).

The next section will introduce the concept of mathematical models, why these are

important and what previous models of international infectious diseases spread have shown.

What are mathematical models
Mathematical models are conceptual tools used to explain the behaviour of objects (in this
context, objects being humans and pathogens) (Arnal et al., 2011) in a set of precise
mathematical rules, thus providing a clear and concise language (Huppert and Katriel, 2013).

In public health, their use ranges from understanding the epidemiology of an infection within
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a host, to understanding of the impact of vaccination on infectious disease spread within
populations. Models are more or less complex (Lessler and Cummings, 2016), but are all
wrong on some level, as simplifications and assumptions must be taken at some stage of
developing the model (Keeling and Rohani, 2008). These simplifications may affect any part
of the model, such as using a unique level of infectiousness between members of a
population (ignoring super-spreaders), or assuming that the population as a whole is at equal
risk of infection (ignoring previous immunity) (Ferguson et al., 2003). Models help predict the
course of an outbreak and guide policy makers in making difficult decisions, but also help
understand how a pathogen spreads within a population and any influencing dynamics (Basu
and Andrews, 2013; Keeling and Rohani, 2008; Lessler and Cummings, 2016). Each factor can
be examined independently, creating an ideal world for disease study. However, models can
never be fully accurate as some unknown behaviours will always be present in populations
and disease transmission, this uncertainty in turn provides the confidence intervals for the
model and the levels of risks among different groups (Keeling and Rohani, 2008). The
development and availability of tools to predict and evaluate the impact of varying policies
affecting the spread of infectious diseases is important. However, these tools must also be

flexible enough to represent different populations and pathogens (Arnal et al., 2011).

An ideal model should be based on essential features, and must balance a number of
essential elements, namely 1) accuracy (data availability, computer power and
understanding of the disease will determine a model’s complexity); 2) transparency (using
different elements in turn to understand their role, but considering that more parameters
make for more complicated models) and 3) flexibility (how adaptable the model is to another
pathogen) (Basu and Andrews, 2013; Keeling and Rohani, 2008). An oversimplified model will
lead to the wrong conclusions whereas an overcomplicated model will obscure clear
understanding of the results (Basu and Andrews, 2013; Ferguson et al., 2003; Grassly and
Fraser, 2008). Researchers must also be able to parameterise the model with the data
available to them, which may create a difficult research situation when considering an
emerging pathogen with little data available (Ferguson et al., 2003; Keeling and Rohani,
2008). Models should be validated to ensure they correctly represent the disease dynamics
where possible, and this should ideally be done using independent data or by using good
statistical methods. Models used to inform policy must capture the underlying mechanisms

of the policy being considered (Ferguson et al., 2003).

Different model types have been developed over time to understand the spread of infectious

diseases, with Kermack and McKendrick (1927) being among the earliest to describe an
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epidemic through a contact network, by developing the Susceptible-Infected-Recovered (SIR)
model for a given pathogen in a population of size N (Figure 1.2). SIR models represent the
pathway of how individuals start as susceptible (no previous infection), become infected
(have acquired the infection), and recover (either acquire immunity or become susceptible
again) (Arnal et al., 2011; Keeling and Eames, 2005). A number of variations of this simple
model exist, taking into consideration, for example, the population as a whole (including
number of births and deaths, previous immunity), as well as whether the patient is infectious
before becoming symptomatic (latency period) (Keeling and Rohani, 2008). These models
and variations there-of have provided important knowledge on the epidemiology of a
number of human pathogens, even with a number of significant assumptions having to be
made. Some of the most important assumption for these models are that all members of the
population mix homogeneously, and therefore are at equal risk of infection from each other
and that once infected, the level of individual infectiousness remains constant over time and
is the same for all infected individuals (Ferguson et al., 2003). These, of course, cannot be
true in a real-world population, as previous infections and/or vaccinations will alter the
number of truly susceptible individuals in a population and different individuals will interact
with other members of the population in different ways. Therefore, including these
assumptions in a model will significantly impact the results, especially if those assumptions
are invalid in the context of the specific use of the model (Ferguson et al., 2003; Grassly and

Fraser, 2008).

Births
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Figure 1.2: Example of an SIR model, with possible variations in the dashed boxes and lines.
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When considering the spread of infectious disease between multiple international
populations, assuming homogenous population mixing may not be correct. Therefore, it may
be more appropriate to use an alternative approach such as a network representation of
connectivity between individuals (Keeling and Eames, 2005), as the contact patterns within
a population network are heterogeneous and each individual will only come into contact with
a small fraction of the total population (Keeling and Rohani, 2008). Although they may be
more difficult to interpret, network models are very important when contacts occur within a

heterogeneous population (Arnal et al., 2011).

A network represents a set of nodes (airports or countries for example) joined by links, also
called contacts (direct flight routes for example), as a function of time. In the case of the
airline network, two airports are linked if there is a direct flight between them (Arnal et al.,
2011). A network can also be directed (also called weighted or asymmetric, if for example
more passengers travel towards one airport and then from it) or otherwise be undirected
(also called unweighted or symmetric, if passengers travel in both directions between both
airports in roughly equal numbers). Additionally, a network’s links may be weighted, by using
for example, a proportion of the number of airline passengers travelling between airports
(Barrat et al., 2014). Other ways of describing a network include the ‘geodesic path’, defined
as the shortest path between node pairs across the network, with the ‘diameter’ being the
longest shortest path between any two nodes across the network (Newman, 2003). Some

additional characteristics will be described in Chapter 3.

The global airline network is an example of a small-world network (Barrat et al., 2014;
Guimera et al., 2005; Wandelt and Sun, 2015), where each airport is connected to many
neighbouring airports, with a few being additionally connected to distantly located airports
(Figure 1.3) (Newman, 2003). This provides high levels of clustering in terms of number of
neighbours (average probability that two nodes are in neighbouring networks are also
geographic neighbours (Newman, 2003)) and little heterogeneity, allowing an infection to
spread quickly within a cluster, with the long-range connections providing an outlet for the
infection to reach other parts of the network quickly (Watts and Strogatz, 1998). There are
two main characteristics of small-world networks, namely that there are neighbourhoods
within the nodes, and the network diameter increases logarithmically with the number of
nodes. The second characteristic allows all nodes within the network to be connected to each
other in a small number of steps, meaning that the network has a finite dimension (Amaral

et al., 2000).
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Understanding a network’s topology is important, however, so is understanding its
vulnerabilities. In general, the removal of at least one node from a network is enough to
cause its breakdown. Therefore, the elimination of a central airport will result in more
important consequences to the network than by eliminating a single random airport. This is
a direct result of the overload generated on the rest of the network by altering traffic flows

(Tran and Namatame, 2016).

Figure 1.3: Example of a small world network representing the global airline network.
Circles represent airports (nodes), with hubs represented as full cirles and the links
represent the flow of passengers in both directions.

28| Chapter 1



What are models used for and why are they important?
If developed correctly, with the appropriate data and methodology, mathematical models
are powerful tools that help understand a pathogen’s mechanics, potential spread and
effective control measures (Alshammari and Mikler, 2016; Arnal et al., 2011; Lessler and
Cummings, 2016). Models help inform public health policy in various ways, ranging from
broad information on feasibility to detailed recommendations, allowing policy makers to
choose between interventions and compare investments (Lessler and Cummings, 2016). The
aim of such models was to determine which individuals will be most infectious in order to
reduce transmission (vaccination, isolation, treatment) and control the outbreak more

efficiently (Grassly and Fraser, 2008).

Models can help understand the basic epidemiology of a pathogen and its control (Keeling
and Rohani, 2008; Lessler and Cummings, 2016). This may be of particular relevance for a
novel or re-emerging pathogen, especially in a naive population, to limit the size of the
outbreak early on, thereby reducing economic costs, and health impact. Building on a better
understanding of basic epidemiological principles, models can also help understand
surveillance (Lessler and Cummings, 2016). For example, by using surveillance data (known
number of cases) and the known incubation period, Ron Brookmeyer was able to understand
the true number of cases infected by Human Immunodeficiency Virus (HIV) (Brookmeyer, R.
2016). In other words, he calculated the number of unreported cases. From this, he was then
able to predict how many HIV infections would then develop to Acquired Immune Deficiency

Syndrome (AIDS) (Lessler and Cummings, 2016).

Models allow researchers to understand the potential role of interventions without the use
of experimental epidemiological studies as these may not be feasible in the population (for
cost, ethical or other reasons). Although challenging, forecasting and preparing for
catastrophic events (even if unlikely to occur) are crucial for population health and security.
For example, when the next influenza pandemic emerges, understanding the timing of
antiviral drug distribution and the potential impact of social-distancing measures (such as
school closures) and whether this would suffice to mitigate the outbreak may prove crucial
in reducing the number of cases (Lessler and Cummings, 2016). Indeed, once a model has
been formulated and calibrated; it can be used to understand a potential future outbreak.
For example, a model can help determine the number of potential cases, how these numbers
may vary with vaccination rates, estimate the epidemic curve, among other useful pieces of

information (Huppert and Katriel, 2013). Such a model was implemented by Klepac et al.
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(2018), modelling an influenza pandemic in the United Kingdom using mobile phone data.
The model considered the introduction of targeted vaccination and hand hygiene as control
measures and their impact on the spread of the outbreak. The results showed the significant
impact these control measures had on the spread of the outbreak, both in terms of lives
saved and significant reduction in speed of spread. Such models are likely to influence policy
makers as to which control measures to prioritize when the next pandemic is detected in the
country (Klepac et al., 2018). Finally models can help understand the potential consequences
of policy changes on one or more pathogen (Lessler and Cummings, 2016). It is important to
not only report the worst and most likely scenarios to policy makers, but also to allow for an
understanding of the model sensitivities and best ways to apply the policy (Ferguson et al.,

2003).

As well as providing insights into national epidemics, models can also be used to estimate
the reach and speed of a pandemic, by using network models based on international airline
data. The movement of pathogens is helped by the development of transport, allowing for
their rapid and effective global spread. Factors such as the increasing susceptible population
and the ability of pathogens to cross the species barrier increase the risk of pathogens
emerging (Arnal et al., 2011). As will be shown in Chapter 3, the global airline network
(sometimes referred to as the World Airport Network, or WAN) is growing annually,
connecting geographically distant locations. These circumstances allow pathogens to be
transmitted across increasingly large geographical ranges through human travel (Tatem and
Hay, 2007). Chapter 6 of this thesis aims to provide an understanding of how the potential

origin from which a pandemic may start might affect its international spread.

Although very powerful tools, it must be remembered that mathematical models are never
fully accurate. Additional challenges modellers may not be able to take into consideration
include anything that cannot be observed or hasn’t been measured, such as pathogen
evolution (in response to selection pressure and control measures); reporting accuracy
(under-reporting may significantly impact the data available for the model and thereby
influence the model results); non-homogeneous contact patterns (parts of the population
come into more or less contact with other parts of the population); and pathogen ecology

(understanding dynamics between multiple hosts and pathogens) (Grassly and Fraser, 2008).
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What previous models have shown
Airline passenger travel patterns are known to be good indicators of human international
movements and their pathogens (Hosseini et al., 2010). Global events, such as international
sporting events and pilgrimages, cause important health threats for the population of the
host country by gathering large numbers of travellers from around the world. Consequently,
participant population demographics (age, gender, country of origin) are also important to

include in any modelling study (Alshammari and Mikler, 2016).

Adequate data relating to instances of the international movements of human infectious
disease via airline travel is scarce; making a detailed understanding based solely on
notifications of cases related to those instances is difficult, given that in such instances case
numbers are likely to be underestimated. Therefore, mathematical models may provide
useful tools in better understanding risks posed by international airline travel (Lopez et al.,

2016).

The airline network is influenced by the global economy, politics and geography (Guimera et
al., 2005), and most seasonal changes in passenger movements occur in the Northern
hemisphere, as the largest population resides there (Mao et al., 2015). However, less
economically advanced countries are increasingly contributing to the number of outbound
tourists as their income and leisure time increase. These countries are also becoming
attractive tourist destinations, as tourists now want to visit new and unusual destinations
(Wandelt and Sun, 2015). Central cities to the network are not always the most connected to
other cities (defined here as a node through which most geodesic paths go to connect to
other nodes (Newman, 2003)) in the continent. For example, Atlanta (USA) and Istanbul
(Turkey) are very well connected cities, but are not central to the network (not many
geodesic paths, or shortest paths, in the network go through them), whereas Anchorage
(USA) and Singapore are central to the network but do not feature among the 25 most

connected cities (Guimera et al., 2005).

Lopez et al. (2016) calculated the risk of travellers importing or exporting diseases by using
the force of infection faced by travellers and residents in an endemic country, whereas
previous papers have not always considered this risk of infection in the visited country
together with airline data to estimate the risk of importation from an endemic to non-
endemic country. Lopez et al. (2016) use the force of infection but with arbitrary values of
airline passengers (of 1,000 passengers), which may be grossly underestimated depending

on the country, and thereby give misleading imported infection risks. Therefore, an ideal
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scenario would be to combine both accurate passenger numbers and the endemic force of

infection in the visited country (personal observation).

Aims and objectives of the thesis

Mathematical models can play an important role in providing insights into the predicted

spread of an outbreak and may be insightful regarding the most effective control measures

to be used to halt the development of a pandemic (Klepac et al., 2018).

The aims of this thesis were to understand what the airline data represents and determine

whether the use of airline data were appropriate to understand the international spread of

human infectious diseases. Four main objectives were developed to meet these aims,

namely:

1)

2)

3)

4)

To investigate the data sets and types used by previous mathematical models
investigating the international spread of human infectious diseases by airline travel.
A checklist to improve the reporting of second-hand data, to be made publicly
available, was a sub-objective.

To fully understand and compare a detailed airline data set against four independent
yet comparable data sets to determine any trends and biases as well as gaining an
understanding of the airline network.

To model the risk of contracting chikungunya or dengue virus infections faced by
travellers from the UK when abroad, compared to the local populations, using a
subset of the airline data.

Finally, to use a previously generated connectivity matrix derived from the airline
data alongside a measure of national health indicators to understand which

countries may tend to pose a higher risk for the spread of the next pandemic.
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Chapter 2 — The use and reporting of airline passenger data
for infectious disease modelling: a systematic review.

Preamble

To understand what data mathematical modellers use to model the international spread of
human infectious diseases through airlines, a systematic review was undertaken. As well as
looking at the data sources and data types used (bookings or passenger numbers, direct or
indirect flights for example), the level of source reporting (allowing independent replication

of work) and whether the data were validated were also assessed.

To the best of the author’s knowledge, such a review had not been undertaken before, but
addressed clear issues in the field. Furthermore, this review allowed for a deeper
understanding of the variety of data sources currently available to model human airline
movements and their drawbacks. From the results of this review, undertaking a full data
description and validation was deemed necessary, and are presented in chapters three and

four.
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Abstract

Avariety of airline passenger data sources are used for modelling the international spread of
infectious diseases, with questions existing regarding the suitability and validity of sources
used. A systematic review was conducted to identify the sources of airline passenger data
used for these purposes, and to assess validation of the data and reproducibility of

methodology.

Articles matching the search and inclusion criteria were identified from three databases.
From the final 136 articles selected, information regarding the type and source of airline

passenger data used was collated, before assessing the studies’ reproducibility.

The majority of studies (n=96) used data sources primarily used by the airline industry.
Government published data sources were used in 30 studies, and data published by
individual airports were used in four studies. Validation of passenger data was conducted in
only seven studies. No study was found to be fully reproducible, though eight were partially

reproducible.

The author recommends that more effort be made to assess the validity and biases of airline
passenger data used for modelling studies, particularly when model outputs are to inform
national and international public health policies. Improving reporting standards and more
detailed studies to better understand the different biases in different commercial and open

access data to permit greater understanding around reproducibility, is also recommended.
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Introduction

The international movement of individuals through commercial airline travel has been
implicated in the transnational dissemination of many infectious diseases and is thought to
be the principle mode of human pathogen transfer between continents. Examples include
the global dissemination of the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003,
which quickly spread to North America from Hong Kong (Wilder-Smith, 2006). The 2009
influenza pandemic (Fraser et al., 2009), which emerged in Mexico and affected over 208
countries, also saw a similar international dissemination (Al Hajjar and Mcintosh, 2010).
There is, year-on-year, an increasing number of airline travellers, with a total of 1,186 million
international tourist arrivals globally in 2015, a 4.6% increase from 2014 and an additional
510 million arrivals compared to 2000 (Glaesser et al., 2017). Additionally, tourism arrivals
from emerging economies are now comparable to those of advanced economy countries,
with nations like Mexico and Thailand entering the top 15 of the most visited destinations.
This trend in international arrivals is expected to keep rising and reach 1.8 billion arrivals in
2030 (Glaesser et al., 2017). Lower fares and greater availability mean that geographically
distant countries and cities are becoming easier and quicker to reach for a greater number
of individuals (Saker et al., 2004). Such rapid population movements pose an increasing

threat to global populations (Johansson et al., 2011).

The increasing volume of airline passengers seen each year (World Tourism Organisation,
2016) highlights the importance of gaining a better understanding of the dynamics of the
airline network and its role in disease spread and control (Mao et al., 2015). There is also a
need for accurate prediction of international transmission through passenger flow.
Mathematical models are useful tools that can provide an estimated risk of infectious disease
importation and exportation by international airline passengers (Lopez et al., 2016),
especially in the early stages of an outbreak when accurate reporting may be difficult (Quam
and Wilder-Smith, 2016). Models such as the one developed by Lopez et al. (2016) use the
force of infection in the visited country to determine the risk posed to international
passengers, taking an arbitrary number of airline passengers. However, this risk can also
extend to new areas when returning passengers carry pathogens back to their residing
country, as was the case in Italy in 2007, when a chikungunya outbreak was identified (Quam
et al., 2015). Mathematical models of pathogen importation/exportation risks usually entail
a function of the infection level in the visited country and the airline passenger volume

between the two desired geographical locations, as described in Quam and Wilder-Smith
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(2015). Access to accurate and appropriate data sets describing passenger flow between
locations is crucial in developing transmission models of global spread (Huang et al., 2013),
with which to understand the potential role the airline network may play in the spread of
disease, but also to predict future spread, particularly when new threats emerge. However,
a variety of data sources have been used (Mao et al., 2015) leading to inconsistency and
incomparability between modelling studies. The sources themselves are generally not
designed for epidemic modelling purposes. They include data for use within the aviation
industry, which may be expensive to access, impose user restrictions, including prohibition
from sharing with a third party (Mao et al., 2015; Huang et al., 2013). Open access data
sources do exist, but may be geographically restricted, provide information in forms not
easily convertible into passenger numbers, or limited in temporal resolution (Mao et al.,
2015). Although different sources of passenger data are available, many have drawbacks and
inconveniences. Data to model airline passenger movements is, therefore, not necessarily
easy to access or appropriate for epidemic modelling purposes. As Balcan et al. (2009) state:
“The main difficulty in defining a commuting network worldwide is the lack of a global

database as opposed to the case of the air-traffic flow”.

To gain an overview of the range of airline passenger data sources used by modelling studies,
a systematic literature review was designed and conducted. The principal aim of the review
was to determine the data types (e.g. passenger numbers, seat capacity) and sources used
for the purposes of modelling international infectious disease importation. A secondary aim
of the review was to assess the reproducibility of those studies regarding sourcing and use

of airline passenger data.

36| Chapter 2



Methods

Search strategy
The search of the literature was conducted on the 2" of October 2017 using PubMed, Web
of Science and Scopus with no restriction on the earliest date of the articles returned. A
combination of three sets of search terms was used in this review (#1 AND #2 AND #3). The
first set (#1) was: “air” OR “airline” OR “aviation” OR “flight” OR “airport” OR “passenger” OR
“transport*” OR “travel*” AND NOT “pollution”. The second set (#2) was: “epidemic” OR
“pandemic”. The final set (#3) was: “global” OR “international”. The term ‘Pollution’ was
classed as an exclusionary term as initial scoping suggested a large proportion of results

included pollution studies, which were deemed irrelevant to this review.

Articles were included if they matched the following inclusion criteria: (1) they were primary
and peer-reviewed research; (2) they modelled the international spread of human infectious
diseases between at least two countries; (3) the model was parameterised with airline
passenger data. We included modelling studies which considered either dynamic models of
the transmission process or non-dynamic modelling of infected individual movement. The
inclusion of any additional articles, if they were identified as the source of passenger data
used within selected articles, and met the three inclusion criteria above was also permitted.
Although no language restriction was applied to the searches, articles in a non-English
language were excluded during the abstract review if no translated version could be found.
Review articles were also excluded, unless specifically addressing the use of airline passenger
data. Finally, records which could not be accessed through the University of Liverpool or

Lancaster University library records were also excluded.

Following deduplication, the full list of abstracts and titles was first reviewed and included or
excluded by at least two reviewers independently. Any disagreement regarding inclusion of
an article in the review was then discussed between all reviewers. From the relevant articles
selected, the bibliography of each article was searched to find additional relevant articles,
based on title and full text. From the final list of selected articles, the full text was accessed

and screened for relevance in more detail.
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Data collection strategy
From the final selection of articles, information regarding the airline passenger data used in
each article was extracted (Table 2.1). This information focused on the source, type and
validity of data used in the study (Table 2.1A), and the reproducibility of data usage judged
by pre-defined criteria (Table 2.1B). For the purposes of this review, data validation was
defined as the comparison of a primary data set used in an article against at least one
independent and appropriately comparable set of data. An article was deemed to have
validated their data source if they cited another independent and comparable data set and
conducted a comparison. To determine their reproducibility, each article was assessed on
their reporting of data source using the checklist shown in Table 2.1B, and the appropriate
score given accordingly. We did not plan or conduct any bias analysis of the selected

publication.
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Table 2.1: Description of the fields recorded during the literature analysis (Part A) and the
reproducibility criteria used to determine reproducibility of articles and sources (Part B).

A. Data description

Field Description Variable
Article information
Authors List at least first three author names, as on article Text
Year of publication Give year of publication Date
Title Title of article Text
Publication name Name of publication in which the article was published. Text
Data source
Commercial data Commercial databases collecting information about flight routings, Yes/No
aircraft size, number of bookings or passengers. E.g., IATA, OAG, Diio.
Tourism surveys Any surveys done in context of tourism. E.g., UNWTO. Yes/No
National passenger surveys Surveys conducted at airports. E.g., International Passenger Survey. Yes/No
Airport published information Data collected and published by airports, may be groups of airports. Yes/No
Government immigration data  Data collected by governments on immigration numbers, inbound and Yes/No
outbound.
Other E.g., airline published information. Yes/No
Unreported or unclear Yes/No
Data type
Seat capacity Number of seats available on routing. Yes/No
Itinerary Data includes connections, not just origin-destination information. Yes/No
Flight numbers Number of flights between cities/airports/countries or routings. Yes/No
Passenger numbers Data explicitly describes number of passengers travelling. Yes/No
Tickets sold Number of tickets sold or booked per routing. Yes/No
Origin-destination information  Data includes origin airport/city/country and destination Yes/No
airport/city/country.
Direct flight information only Data does not inform on number of passenger taking connecting flights. Yes/No
Unreported or unclear Insufficient information reported to determine data type. Yes/No
Data time period
Date range of data reported Period for which the data pertains is reported. Yes/No
Date range State range. Text
Reporting quality (see part B)
Fully reproducible All handling and manipulation of the data is described in detail adequate  Yes/No
to enable reproducibility.
(reproducibility score = 4)
Partially reproducible Important information on handling of the data is missing, or Yes/No
methodology vague or unclear.
(reproducibility score = 3)
Not reproducible No information on methods and/or data source given and methodology ~ Yes/No
vague or unclear.
(reproducibility score < 2)
Data validation
Is there evidence of data A comparison was made with an independent and appropriate source of  Yes/No
validation? information.
Data usage
Transmission model Airline passenger information is used to parameterise a model of Yes/No
transmission.
Network analysis Airline passenger information is described using social network Yes/No
methodology.
Descriptive or illustrative Airline passenger information is used to illustrate a transmission risk, but ~ Yes/No
no formal analysis or modelling is performed.
Other None of the above (specify or describe what was done). Yes/No
Unclear or unreported Insufficient information to determine data usage. Yes/No
Pathogen modelled
Non-specific Generic model Yes/No
MERS-Corona Virus Yes/No
Seasonal influenza Yes/No
Pandemic influenza Yes/No
Other (specify) Text

(Table 2.1 continues on next page)
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(Table 2.1 continued)

B. Reproducibility*
Field

Description

Variable

Data accessibility
Open source

Publicly available, no restrictions on use, no access fees, and source
(where online) still accessible as of January 2017.

Yes/No (Yes = +1)

Closed source Publicly available but restricted access, access may be granted following Yes/No
registration and/or fee; for example, proprietary data.

Not publicly available Private data, access at discretion of custodian, for example, airport or Yes/No
airline company information.

Reporting clarity of data source (All Yes=+1)t

Source identified The source of the original datais clearly stated. Yes/No

Dataset named The specific name of the data set or database from the source is Yes/No
reported.

Access date specified The date(s) on which data was access is reported Yes/No

Data type reported The type or unit represented by the data is reported. E.g., number of Yes/No

flights, number of seat, number of passengers.

Reporting clarity of data usage
Data handling reported Data manipulation prior to analysis, including data cleaning and/or

aggregation, is reported.

Yes/No (Yes = +1)

Date range of data used

Data time range reported The time period of the data is reported. Yes/No (Yes = +1)

Total reproducibility score Maximum score = 4 Average total
score used if
several sources

used

* Where studies use a third party’s travel model, and if they do not describe the model fully but provide a link or citation, we assessed the cited
external documentation cited for reproducibility.
+ Authors must receive a ‘yes’ for all sub-variables for this variable to contribute +1 point to the reproducibility score

Results

From the 4,012 articles identified in the search, 1,465 were identified as duplicates and
rejected, resulting in 2,547 articles which went forward for title and abstract screening
(Figure 2.1). A further 1,130 were rejected at this stage as they did not meet the inclusion
criteria. A total of 335 articles were selected based on their title and abstract and read in full.
From these, 223 were rejected with the majority (n=87) containing no airline data, 73 were
deemed not relevant (did not meet at least two required criteria, such as airline data and
model...) and 20 used no model. An additional 19 were country specific, 17 were inaccessible
(access to journal or language barrier), five were reviews and two were not focused on
human disease movement. After reading the articles in full, 112 were selected as relevant to
this review. Finally, 24 additional articles, not detected by the search but identified through
reading the bibliography of accepted articles were included after being read in full to

determine their relevance.
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4,012 articles identified
on 2" October 2017
Web of Science: 1,047
Scopus: 1,900
PubMed: 1,065

2,547 articles removed
as duplicates

Y

1,465 articles returned
for screening

1,130 articles rejected
based on title
‘y and abstract

Y

335 articles selected
for full text reading

223 articles rejected after discussion,
for the following reasons:

- No airline data: 87

- Not relevant: 73

- No model: 20

- Country specific: 19

- Inaccessible: 17

- Review: 5

- Doesn't consider human disease
movement: 2

Y

24 articles added
independent and
review on full text

112 articles included
for full data analysis

Y
Final selection of

citations used for the
review: 136

Figure 2.1: Flowchart of the article selection undertaken during the systematic literature review.
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The year of publication for the 136 articles ranged from 1985 to 2017, with the largest
number of articles (n=17) published in 2016 (a detailed list of accepted titles can be found in
Table 2.5). In the twenty years following from the Rvachev and Longini (1985) publication, a
total of seven articles were published [41; 43; 58; 66; 83; 84; 115].

A wide range of data sources have been used to model passenger flow between countries
with a total 45 distinct sources identified here (Table 2.2). Commercial or industry data
sources were most often used (14 sources, used in 133 articles), followed by governmental
data (14 sources, used in 32 articles). Of the commercial data sources, those most often
acknowledged were International Air Transport Association (IATA) (62 articles) and OAG (38
articles); where a database was named from these sources, OAG MAX was the most
frequently used (3 articles) followed by t100 (2 articles) and Traffic Analysis Tool (1 article).
A range of other industry-orientated data sources were cited, including Diio (airline market
information), Amadeus (travel reservations database), Feeyo (Chinese-based flight
scheduler), and an open-access publicly-contributed database (OpenFlights.org). Four
articles used passenger surveys, such as TravelPac from the United Kingdom’s (UK) Office for
National Statistics (ONS), and eight articles used tourism surveys (Table 2.2). Five articles
used information published by airports, and four other sources were reported (the social

media site Twitter, two aircraft manufacturers and EuroStat).

Most data sources used described origin-destination information (n=91, 67%) or passenger
numbers (n=73, 54%) (Table 2.3). Data describing direct flights only were used more often
than data describing full passenger itineraries: n=33 and n=27, respectively. Of those using
IATA as a data source, 15 used direct flights only (1; 6-8; 13; 29-31; 33-35; 64; 105; 109; 119)
and of those using OAG, 11 used direct flights only (7; 8; 10; 18; 22; 45; 82; 87; 119; 123; 124).
Finally, eight articles indirectly used IATA data by using the online modelling tool GLEAMviz
(1; 5; 6; 8; 56; 99; 103; 127) (2017) and two by using BioDisapora (now Bluedot.global) (76;
109) (Bluedot.global).
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Table 2.2: Data sources identified in the selected articles, grouped by sector.

Data Source Number of articles  Article reference number
citing* (see Table 2)
Commercial / industry 133 (62%)
International Air Transport Association (IATA) 62
Unspecified 58 1; 4-8; 11-13; 19; 23; 28-36; 38; 43;
44; 47; 51-53; 55; 56; 58; 63; 64; 66;
72-75; 77-79; 89; 90; 99; 102-105;
109;111;113; 114; 118-120; 127;
132;133; 135
Air Passenger Market Analysis 1 48
Airport Intelligence Services - Passenger 1 134
data
International Travel Statistics 1 62
Passenger Intelligence Services 1 46
OAG 38
Unspecified 32 7;8; 10; 18; 19; 22; 38; 42; 44; 45;
55; 56; 58; 66; 72; 82-84; 87; 88; 93;
94; 99; 104; 114-116; 119; 122; 124;
125;127; 135
0OAG MAX 3 14; 54; 123
t100 2 68; 69
Traffic analyser 1 112
International Civil Aviation Organization (ICAO) 12
Unspecified 11 25; 38; 44;57;72; 83; 84; 115; 120;
126; 129
Traffic by Flight Stage 1 58
Air Transport Statistics 3 38;84; 115
Airports Council International 1 78
Amadeus 1 65
Back Aviation Solutions Incorporated 4 38; 44;58; 72
CapStat 1 98
Diio 3 59;67;70
Feeyo 1 24
Landings.com 1 65
OpenFlights.org 4 37, 81; 96; 97
OurAirports.com 1 37
Turism.se (Swedish Tourist and Travel 1 41
Database)
Tourism surveys 8 (4%)
Icelandic Tourist Board 1 130
Singapore Tourism Board 1 121
UNWTO 5 40; 61;101; 131; 136
US Office of Travel and Tourism Industries 1 124
National Passenger surveys 4 (2%)
Brazilian Ministry of Tourism 1 40
UK Office for National Statistics 3 61;101; 107
Airport published information 12 (7 %)
Amsterdam Airport (Schipol) 1 3
Beijing Capital International Airport 2 62; 63
German airports (Hannover, Frankfurt, 1 3
Hamburg, Munich)
Hong Kong International Airport 2 62; 63
Keflavik Airport 1 130
London airports (Heathrow, Gatwick, Stansted, 1 3
Luton)
Los Angeles International Airport 1 3
Madeira Airport 1 85
Teheran Airport 1 3
Venice Airport 1 3

(Table 2.2 continues on next page)
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(Table 2.2 continued)

Government published information 32 (15%)
US Department of Transport 14 15; 17; 37; 38; 44; 49; 50; 58; 68; 69;
72;86;100; 128
Australian Department of Transport 2 83; 84
Australian International Airport Traffic 4 38; 84; 84; 115
Brazilian Ministry of Tourism 1 92
Hong Kong Tourism Board 1 27
Japan National Tourism Organization 1 110
Malaysian Department of Statistics 1 2
Mexican Secretary Communication and 1 60
Transport
National Statistics China 1 57
Saudi General Authority of Civil Aviation 1 78
Singapore Tourism sector performance 1 91
Statistics Canada 1 80
Statistics Iceland 1 130
UK Civil Aviation Authorities 2 9; 20
Other sources 11 (5 %)
Airbus Industries 3 38; 44; 58
Boeing Corporation 3 44; 38; 58
EuroStat 4 50; 95; 106; 120
Twitter 1 16
Unclear or unreportedt 13 (6 %)
Unclear or unreported 13 21; 26; 38; 39; 44; 58; 71; 76; 80; 84;

93; 115; 117

* Some articles used more than one data source.

Table 2.3: Frequency of use of each data type identified within the literature review.

Data type*

Number of articles citing
(% of selected articles)

Article reference number
(see Table 2)

Includes origin-destination 91 (67%) 3; 5-8; 10-14; 19; 20; 22; 23; 25; 26; 29; 32; 34; 35-

information 37; 40-43; 45-51; 55; 57-61; 65-68; 70; 73-76; 78;
79; 81; 82; 87-90; 93; 96-100; 102; 104; 106-114;
118-120; 122-136

Passenger numbers 73 (54%) 3;9;12;13;15; 17; 20; 21-23; 25; 26; 33; 35; 37; 39-
41; 43; 45-51; 57-63; 66; 70; 73-76; 78; 86; 89-92;
98;100; 101-104; 106; 108-114; 118-122; 124-126;
128-134; 136

Direct flights only 33 (24%) 1; 3;6-8; 10; 13; 18; 22; 25; 29-31; 33-35; 37; 45; 49;
57;64; 67;70;81;82; 87; 105; 106; 109; 119; 120;
123; 124

Full itinerary 27 (20%) 11; 13; 14; 23; 46-48; 51; 68; 73-75; 77; 79; 89; 96;
104; 109; 113; 114; 118-120; 125; 133-135

Unreported or unclear 25 (19%) 2;4;16; 27; 37; 38; 44; 52; 53; 56; 58; 63; 69; 71; 72;
80; 83-85; 92; 93; 95; 107; 115; 117

Seat capacity 24 (18%) 1; 6-8; 10; 18; 28-31; 35; 36; 55; 64; 67; 81; 82; 88;
99; 116; 123; 124; 127; 135

Flight numbers 13 (10%) 14; 17-19; 42; 54; 60; 65; 86; 87; 93; 94; 97

Tickets sold 3 (2%) 11; 24; 37

* An article may use multiple data types
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From the measures of methodological reproducibility described in Table 2.1B, it became
apparent that of the 45 total sources identified, 26 (58%) were open source, and 11 (24%)
were closed source. The date range of the data (start and end date) was reported in 58%
(n=79) of the studies, and an access date (date of data download) was stated in 25% (n=34)
of the sources used. Data validation as previously defined was performed in 5% (n=7) of the
articles collected (16; 41; 53; 75; 119; 120; 127). Only 40 articles (29%) reported performing
any data cleaning or manipulation before using their data set. Given the set of standards
established to determine an article’s reproducibility, no article was considered fully
reproducible; eight (6%) were deemed partially reproducible (score of 3 or above), where
some information regarding the description and use of passenger data were reported (9; 16;

24; 41; 47; 49; 110; 130).

The majority of articles (n=115, 85%) modelled the global spread of infectious diseases, while
the analysis of the airline network itself was the next most common purpose (n=11, 8%). Five
articles used passenger data for descriptive or illustrative purposes (28; 33; 34; 41; 77), two
articles used the data for passenger screening simulations (17; 86) and two articles described
a public health tool development (7; 37). Of the pathogens modelled, pandemic influenza
was the most frequent subject of the models (n=40, 29%) (Table 2.4). Generic models not

focussing on a specific pathogen were also common (n=23, 17%).
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Table 2.4: Pathogens modelled within selected articles.

Pathogen name* Number of articles Article reference number
citing (see Table 2)
(% of selected articles)
Generic model (no specific 23 (17%) 1; 4; 6; 10; 18; 30; 31; 34; 35; 38; 52-54; 63;
pathogen) 69; 76; 77, 94; 106; 107; 117; 123; 129
Influenza virus
Pandemic 40 (29%) 3;5;7;8;17; 21; 24; 26; 27; 29; 36; 42-45; 49;

58; 60; 62; 64-67; 72; 73; 75; 78; 80-84; 86-
88; 95; 115; 127; 128; 136

Seasonal 7 ( 5%) 9; 15; 16; 71; 93; 100; 130
MERS-Corona Virus 7 ( 5%) 22;48;79;97; 102; 103; 105
Other

Chikungunya virus 6( 4%) 23;70; 74; 98; 120; 124

Vibrio cholerae 1( 0%) 37

Clostridium difficile 1( 0%) 28

Dengue virus 17 ( 13%) 25; 47; 50; 51; 85; 91; 92; 98; 108-110; 118-

121; 126; 133

Ebola virus 7 ( 5%) 13;55; 99; 104; 112; 116; 135

Hepatitis A virus 1( 0%) 15

Human Immunodeficiency Virus (HIV) 1 ( 0%) 2

Japanese Encephalitis virus 1( 0%) 61

Plasmodium sp. (malaria) 5( 4%) 15; 39; 101; 124; 125

Measles virus 1( 0%) 134

Polio virus 1( 0%) 132

Severe Acquired Respiratory 6( 4%) 14; 19; 32; 33;57; 114

Syndrome (SARS)

Smallpox virus 1( 0%) 56

Salmonella typhi and enterica 1( 0%) 41

Vector importation 1( 0%) 122

West Nile virus 1( 0%) 20

Yellow fever virus 3( 2%) 40; 68; 131

Zika virus 9( 7%) 11; 12; 46; 59; 89; 90; 96; 111; 113

* An article may use multiple pathogens
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Discussion

The purpose of this review was to assess the source and usage of airline passenger data used
in mathematical models of international infectious disease spread. A total of 136 articles
were identified as meeting the inclusion criteria, from which a total of 45 unique data sources

were identified.

A variety of sources were identified in these articles, with the majority of them produced by
and for the commercial aviation industry. Examples of this type of data source include the
International Air Transport Association (IATA), OAG and the International Civil Aviation
Organization (ICAO). These commercial sources provide information from the aviation
industry for use within that industry, and are marketed as being detailed and accurate. The
data resolution can be high: for example, passenger data is available stratified by routing
(including stopovers), fare class, point of origin, and time period. There are often user
restrictions on the use of the data, and financial charges made for access (Mao et al., 2015).
This type of data can be deemed closed data, meaning it is publicly available but at a price
and with restricted access. Furthermore, the methodology underpinning data collection is
generally undisclosed, and as such it is difficult for researchers to assess the quality,
representability and biases of the data. Although these data sources may have a number of
subsets representing different data types, a more accurate reporting of the data sets,
including name of subsets used and date of access, among other criteria, are not often

reported by authors.

A number of data sources identified in the review are open-access and include passenger
data published by individual airports, data compiled and released by government agencies
(for example, UK Office for National Statistics), and information derived from tourism
surveys. Although freely available to access, these data sets may not provide the resolution
of information required by modelling studies, as they typically are limited to passengers
departing from or arriving at a specific geographical region, or are aggregated over long-time
periods (annual or quarterly data). Additionally, the collection methodology is not always
reported for such data sources. Combining information from such sources represents a

considerable data challenge.

International travel data describing direct flights only were used more often than those with
full itinerary information. Data based on direct flights excludes information on connecting

passengers, and will therefore underestimate the number of passengers travelling to a
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specific destination. This limitation is likely to introduce bias, underestimating passenger flow
between distant or poorly served locations, and overestimating passengers travelling shorter
distances (Johansson et al., 2011). This bias has implications for public health planning, as
some locations or countries may have an apparent lower risk of importation events due to
the lack of direct flights from source countries known to have many infection events. This
may explain the discrepancy between studies during the West Africa Ebola epidemic of 2014-
15 where several studies suggested the USA was at relatively low risk of importation due to
the suspension of direct flights. The USA did however receive two importations through air
travel from the affected area, one due to a passenger reaching their final destination through
indirect flights and the second from a returning healthcare worker (Bogoch et al., 2015;

Gomes et al., 2014; European Centre for Disease Prevention and Control, 2015).

When considering international travel patterns for public health purposes accessing
information on the number of passengers travelling from an origin to a destination is the
most relevant. However, we found several articles used data for which the unit of
measurement was not the number of passengers. Several data sources used describe
passenger traffic in terms of seat capacity — literally the number of seats on aircraft flying
between two specific airports — for which assumptions must be made regarding how full
individual flights are and how this may or may not vary according to seasons. Additionally,
this data type cannot take into account the full routing of a passenger, which must therefore
be inferred from the data, or state that only direct flights are considered for the study in
guestion. The variety of data types used for epidemic modelling purposes perhaps reflects
the lack of a widely accepted and accessible data source, and this variation in data unit could

lead to differences in conclusion between modelling studies.

To ensure reproducibility by others, information regarding the source and type of the data
used, the date of access, and any cleaning or manipulation conducted prior to use should be
reported. This analysis showed this standard is rarely attained. Reporting the date of access
is important as several data providing companies update their data monthly, with
retrospective adjustments of values (OAG, 2015). Few studies (n=34, 25%) reported the date
of access to the data set. Acknowledging any data cleaning/manipulation is also important
for reproducibility (Yale Law School Roundtable on Data and Code Sharing, 2010): for
example, if the authors are considering passengers departing or arriving from cities rather
than airports, but the data were collected at the airport level, the aggregation of passenger
numbers from each airport to the city should be acknowledged by the authors. For additional

clarity, it would be useful for authors to report the stage at which the data were aggregated
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to city level: whether this was part of the original data, or if this was a data manipulation
done by the authors. Additionally, at the time of writing there is a limited understanding of
the sensitivity of this level of data (city level) and how it compares to airport level data and
other aggregated data sets, requiring further analytical work. Overall, the majority of articles
were deemed to have methods that were unreproducible, and while eight studies were
deemed partially reproducible none were considered to be fully reproducible. As it is the
author’s responsibility to ensure accurate reporting for all aspects of their methodology, the
findings of this review suggest that authors of international disease modelling studies should
aim to improve their reporting of airline passenger data source and usage. Authors are
advised to reference the fields reported in Table 2.1B, at a minimum, when using any data

sets.

Data validation is often required to ensure that the data collected is fit for purpose, free from
biases, and is an accurate reflection of the subject or process being described. Validation of
airline passenger data is particularly important to conduct if the passenger data is sourced
from a commercial company with limited or no collection methodology disclosed. Only seven
articles reported validation with at least one independent or appropriately comparable set
of observations. While there is no acknowledged ‘gold standard’ data set, governmental
open source data, such as that from the US Department of Transport or Office for National
Statistics, do at least have published methodology on which potential biases may be

identified.

Human travel introduces pathogens to susceptible populations or with little awareness,
allowing for potential further spread and rising incidence. In the articles considering a
pathogen, the majority used viral transmission or importation. Only three articles were
focused on bacteria (Vibrio cholerae, Clostridium difficile and Salmonella enterica serotypes
typhi and paratyphi), despite the known importance of international travel for their capacity
to initiate epidemics following importation, Haiti cholera outbreak in 2010 for example, (Chin
et al., 2011) and the global dissemination of antibacterial resistance (Amesh et al., 2018;
Bernasconi et al., 2016; Holmes et al., 2016; Lepelletier et al., 2011; Okeke and Edelman,
2001). Pandemic influenza was the virus most often considered by the reviewed articles,
which perhaps reflects the global significance of pandemic events and the ease with which
pandemic strains have spread historically. The other non-influenza viruses noted in these
studies have all initiated outbreaks following introduction through international travel,
namely MERS-Corona virus in South Korea (Cowling, 2015), dengue virus in the Portuguese

islands of Madeira (off the coast of Western Africa) (Semenza et al., 2014) and chikungunya
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virus in the Caribbean (leading to imported cases in the United States) (Khan et al., 2014) and
Italy (Rezza et al., 2007). Finally, the accurate modelling of importation risks for specific
pathogens may require very high resolution passenger data, particularly where routings are
indirect and the total travel time from origin to destination is important in the screening

efficacy due to incubation periods (Read et al., 2015).

To the best of the author’s knowledge, direct comparisons of commercial and open access
data sets, or commercial data sets between themselves, have not yet been accomplished,
preventing an informed decision on which data sets are more suitable to represent airline
passengers. Although a direct comparison between commercial data sets is likely to be very
informative for the modelling community, it is likely to be very expensive. Additionally, the
presence of a single data-set that is agreed by the community to best represent international
(and national) airline passenger flow would be ideal, though may be difficult to realise given
proprietorial restrictions of certain data sets. None-the-less, work is being done regarding
epidemiological data to gather infectious disease outbreak into a central and unified
database structure (Finnie et al., 2016), and the field should aspire to work collaboratively
with industrial data providers to realise accurate passenger data available for research,

particularly during global public health emergencies.

Strengths and limitations

The screening and selection of articles was done in a systematic manner and by two
independent reviewers to ensure all relevant articles downloaded were included in the
selection of articles to be read in full. The full reference list of accepted articles was read to
find additional relevant articles. Although a number of articles were found when reading the
reference lists, the author is confident that this selection is a good representation of the
range of airline data used. Additionally, no other review that the author is aware of was
focused on the analysis of the validity and reproducibility of the data used for mathematical

models.

Limitations of this study include not contacting authors regarding their methods.
Additionally, by limiting the articles to international spread only, some articles which focused
primarily on within country spread, such as Bozick and Real (2015), Charu et al. (2017) and
Epstein et al. (2007), among others, were deliberately left out, even though they may use

relevant data sources.
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Table 2.5: Reference list of the articles analysed (n=136) for the literature review, detailing the

name of their data sources, whether the data was validated and the article’s reproducibility

score.

Num-
ber

10

11

12

13
14

15

16

17
18
19

20

21

22

23

24

25

26
27
28

29

30

31

Authors

Ajelli M, B Gongalves, D
Balcan, et al

Apenteng, O. and Ismail, N.

Apolloni A, C Poletto and V
Colizza

Arino, J. and Khan, K

Bajardi P, C Poletto, J
Ramasco, et al

Balcan D, V Colizza, B
Gongalves, et al

Balcan, D. Goncalves, B.

Hu, H. et al

Balcan D, H Hu, B Goncalves,
etal

Bedford, T. Riley, S. Barr, I.
G.etal

Bobashev G, R Morris and M
Goedecke

Bogoch, I. Brady, O.
Kraemer, M. et al

Bogoch, I. Brady, O.
Kraemer, M. et al

Bogoch I, M Creatore, M
Cetron, et al

Bowen Jr J and C Laroe

Brannen, D. Alhammad, A.
Branum, M. et al

Brennan S, A Sadilek and H
Kautz

Brigantic R, Malone J, Muller
G, etal

Brockmann D and D Helbing
Brockmann D, L Hufnagel
and T Geisel

Brown, E. Adkin, A. Fooks, A.
etal

Caley P, N Becker and D
Philip

Carias, C. O’Hagan, J.
Jewett, A. et al

Cauchemez S, M Ledrans, C
Poletto, et al

Chang C, C Cao, Q Wang, et
al

Cheng, Q. Jing, Q. Spear, R.
etal

Chong, K. Fong, H. and Zee,
C.

Chong, K. and Zee, B.
Clements A, R Magalhdes, A
Tatem, et al

Colizza V, A Barrat, M
Barthelemy, et al

Colizza V, A Barrat, M
Barthelemy, et al

Colizza V, A Barrat, M
Barthelemy, et al

Year

2009

2014

2013

2014

2011

2009

2010

2009

2015

2008

2016

2016

2015
2006

2016

2013

2009
2013
2007

2012

2007

2016

2014

2010

2017

2014
2012
2010

2007

2006

2006

Journal reference

BMC Infect Dis; 10:190

Transactions on
Engineering Technologies;
381-389

BMC Infect Dis; 13:176

Analyzing and Modeling
Spatial and Temporal
Dynamics of Infectious
Diseases (book)

PLoS ONE; 6

PNAS; 106; 21484-21489

J Comput Sci; 1; 3; 132-145
BMC Medicine; 7; 49
Nature; 523; 7559; 217-20

PLoS ONE; 3:9

Lancet ID; 16; 11; 1237-
1245

Lancet; 387; 10016; 335-
336

Lancet; 385; 29-35

GeogrJ; 172; 130-144

Scientifica; 8258946

1JCAI; 2783-2789

Int J Risk Assess Manag;
12; 290-310
Science; 342; 1337-1342

Vector-Borne Zoonot; 12;
4;310-320
PLoS ONE; 2:1

Emerging Infec Diseases;
22; 4;723-725

Euro Surveill; 19; 20854
Chin. Sci. Bull.; 55; 3030-
3016

PLoS Negl Trop Dis; 11; 6
Epidemiol Infect; 142; 5;
955-63

BMC Infect Dis; 12

Lancet Infect Dis; 10; 395-
404

PLoS Med; 4; 95-110

Bull Math Biol; 68; 8;
1893-921

PNAS; 103; 7; 2015-20

Sources used

IATA

Malaysian Department of
Statistics

Airports: LAX, Teheran, London,
Amsterdam, Venice, German

IATA

IATA

IATA

IATA and OAG

IATA and OAG

Civil Aviation Authority
OAG

IATA

IATA

IATA

OAG (OAG MAX)

US Department of
Transportation (Air Carrier
Activity Information System)

Twitter

US Department of Transport
0AG
IATA and OAG

Civil Aviation Authorities
Unknown

O0AG

IATA

Feeyo

ICAO

Unknown
Hong Kong Tourism Board

IATA
IATA
IATA

IATA

Valida-
tion

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No
No

No

No

No

No

No

No

No

No
No

No

No

No

No

Reprod
ucibility
score *

0

(0+0+1+
0+1+0)
0.33

(0+0)

(0+0)
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(Table 2.5 continued)

Num-
ber

32

33

34
35
36

37

38

39
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43

44

45

46
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48

49

50

51

52

53

54

55

56

57

58

59

60

61

Authors

Colizza V, A Barrat, M
Barthelemy, et al

Colizza V, A Barrat, M
Barthelemy, et a/

Colizza V, M Barthélemy, A
Barrat, et a/

Colizza V and A Vespignani
Cooper B, R Pitman, W
Edmunds, et al

Corley C, Lancaster M,
Brigantic R, et a/

Daniel, W. Hengartner, N.
Rivera, M. et a/

Dembele, B. and Yakubu, A.

Dorigatti, I. Hamlet, A.
Aguas, R. et al

Ekdahl, K. De Jong, B. and
Andersson, Y.

Epstein J, D Goedecke, F Yu,
etal

Flahault A, S Deguen and A
Valleron

Flahault A, E Vergu, L
Coudeville, et al

Fraser, C. Donnelly, C.
Cauchemez, S. et al
Gardner, L. Chen, N. and
Sarkar, S.

Gardner, L. and Sarkar, S.
Gardner, L. Chughtai, A. and
Macintyre, C.

Gardner, L. Fajardo, D. and
Waller, S.

Gardner, L. Fajardo, D.
Waller, S. et al

Gardner, L. and Sarkar, S.

Gautreau A, A Barratand M
Barthélemy

Gautreau A, A Barratand M
Barthélemy

Goedecke M, G Bobashev
and F Yu

Gomes M, Y Pastore, L
Rossi, et al

Gongalves, B. Balcan, D. and
Vespignani, A.

Goubar A, Bitar D, Cao W, et
al

Grais R, J Ellis and G Glass

Grills, A. Morrison, S.
Nelson, B. et al

Hanvoravongchai P and
R Coker

Hatz C, ) Werlein, M Mutsch,
etal

Year

2007

2008

2007
2008
2006

2012

2013

2017

2017

2005

2007

1994

2006

2009

2017
2013
2016

2012

2012

2015

2007

2008

2007

2014

2013

2009

2003

2016

2011

2009

Journal reference

BMC Med;5; 34

Biophys Rev Lett; 3; 1-2;
217-226

CR Biol; 330; 364-374
J Theor Biol; 251; 450-467
PLoS Med; 3; 845-855

Proc ACM SIGSPATIAL Int
Conf Adv Inf; 81-86

Math Biosci; 242; 1; 1-8

Math Biosci Eng; 14; 1; 95-
109

Euro Surveill ; 22; 28

J Travel Med; 12; 4; 197-
204

PLoS ONE; 2:5

Eur J Epidemiol; 10; 471-
474

Vaccine; 24; 6751-6755

Science ; 324; 5934; 1557-
1561

PLoS Negl Trop Dis; 11; 3
PLoS One; 8; 8
J Travel Med; 23; 6

Transport Res Rec; 2300;
13-21

J Trop Med;

Transport Res Rec; 2501;
25-30

J Stat Mech Theor Exp; 9

J Theor Biol; 251; 509-522

Proc Winter Simul Conf;
1538-1542

PLoS Curr; 6

Sci Rep-UK; 3

Epidemiol Infect; 137;
1019-1031

Eur J Epidemiol; 18; 1065-
1072

MMWR; 65; 28; 711-715

Southeast Asian ] Trop
Med Public Health; 42;
1093-99

J Travel Med; 16 ; 3; 200-3

Sources used

IATA
IATA

IATA
IATA
IATA

US Department of Transport;
OpenFlights.org;
OurAirports.com

Grais, et al (2003);

Rvachev and Longini (1985)

Unknown

UNWTO;

Brazilian Ministry of Tourism
Swedish Tourist and Travel
Database

OAG (OAG MAX)

IATA

US Department of Transport;
OAG; IATA; ICAO; Back Aviation
Solutions; Air Transportation
Statistics; Australian
International Arrivals; Airbus
Industries; Boeing corporation;
unknown

O0AG

IATA (Passenger Intelligence
Services)

IATA

IATA (Air passenger market
analysis)

US Department of Transport

US Department of Transport;
Eurostat

IATA

IATA

IATA

OAG (0AG MAX)
IATA; OAG

IATA; OAG

ICAO; National Bureau of
Statistics of China

US Department of Transport;
OAG; IATA; ICAO (Traffic by
Flight Stage); Back Aviation
Solutions; Air Transportation
Statistics; Australian
International Arrivals; Airbus
Industries; Boeing corporation;
unknown

DiiO

Mexican Secretary of
communication and transport

UNWTO;
UK Office for National Statistics

Valida-
tion

No

No

No
No

No

No

No

No

No

Yes

No

No

No

No

No
No

No

No

No

No

No

Yes

No

No

No

No

No

No

No

No

Reprod
ucibility
score *

0

(2+1+1)
1.33

(0.4+0.6
) 0.47

0

(2+3)
2.5

3

(2+1+1+

1+1+0+

0+0+1+
1)
0.5

2

(0+0)
0
(0+0)
0
(1+1)
1

(2+0+0+
0+0+0+
0+0+0+
1)
0.4

2

(1+3)
2
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(Table 2.5 continued)

Num-
ber

62

63

64
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Authors
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Ferguson and R Anderson

Hollingsworth D, N Ferguson
and R Anderson

Hosseini P, S Sokolow, K
Vandegrift, et al

Hsu, C. and H. Shih,
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Hwang G, P Mahoney, J
James, et al

Johansson M, N Arana-
Vizcarrondo, B Biggerstaff,
etal

Johansson M, N Arana-
Vizcarrondo, B Biggerstaff,
etal

Johansson, M. Powers, A.
Pesik, N. et al

Kenah E, D Chao, L Matrajt,
etal

Kernéis S, R Grais, P Boélle,
etal

Khan K, J Arino, W Hu, et al

Khan, K. Bogoch, I.
Brownstein, J. et al

Khan K, R Eckhardt, J
Brownstein, et al

Khan, K. Freifeld, C. Wang, J.
etal

Khan K, S McNabb, Z
Memish, et al

Khan K, Z Memish, A
Chabbra, et al

Khan K, J Sears, V Hu, et al
Knipl D, G Rost and J Wu

Lawyer, G.
Lemey P, ARambaut, T

Bedford, et al
Longini Jr, I. M.

Longini |, Fine P. and S.
Thacker

Lourengo, J. and M. Recker,

Malone J, R Brigantic, G
Muller, et al

Marcelino, J. and M. Kaiser,
Marcelino J. and M. Kaiser
Massad, E. Burattini, M.
Khan, K. et al

Massad, E. Tan, S-H. Khan,
K.etal

Massad, E. and A. Wilder-
Smith

Massad, E. Wilder-Smith, A.
Ximenes, R. et al

Year

2006

2007
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2004

2012

2012

2011

2014

2011

2008

2009

2014
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2010

2012

2010

2013
2013
2016
2014
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2009

2009
2012
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2016
2009

2014

Journal reference

Nature Med; 12; 5; 497-
499

Emerg Infect Dis; 13; 1288-
1294

PLoS ONE; 5:9

Accid Anal Prev; 42; 93-
100

PNAS; 101; 15124-15129

Travel Med Infect Dis; 10;
32-42

Am ] Trop Med Hyg; 86;
394-358

PLoS ONE; 6:7

PLoS ONE; 9; 8

PLoS ONE; 6:5

PLoS ONE; 3:1

N EnglJ Med; 361; 212-
214

PLoS Curr; 6

Bull World Health Organ;
91; 368-376

CMAJ; 182; 6; 579-583

Lancet Infect Dis; 12; 222-
230

J Travel Med; 17; 75-81

PLoS Curr; 5

SIAM ] Appl Dyn Syst; 12;
1722-1762

BMC Infect Dis; 16; 70

PLoS Pathog; 10:2

Math Biosci; 90; 367-383

Am J Epidemiol; 123; 383-
391

PLoS Neglected Trop Dis;
8:8

Travel Med Infect Dis; 7;
181-191

PLoS Curr; 1

PLoS Curr; 4

Epidemiol Infect; 145 ; 11
2303-2312

Global Health Action; 9; 1
J Travel Med; 16; 3; 191-3

Memorias do Instituto
Oswaldo Cruz; 109; 3; 394-7

Sources used

Beijing Capital International
Airport (Traffic Data); Hong
Kong International Airport
(Provisional Civil
International Air Traffic
Statistics) ;IATA

IATA (International Travel
Statistics); Hong Kong
International Airport; Beijing
Capital Airport

IATA

Amadeus; Landing.com
IATA; OAG

Dii0

O0AG (Traffic Analyser); US

Department of Transport

OAG (Traffic Analyser); US
Department of Transport
Dii0
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US Department of Transport;
OAG; IATA; ICAO; Back Aviation
Solutions

IATA
IATA
IATA
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IATA

ACI; Saudi Arabia Authority of
Civil Aviation; IATA
(Worldwide passenger ticket
sales)

IATA

Statistics Canada; unknown
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0AG

Rvachev and Longini (1985)
Air Transport Statistics;
Australian international airport
traffic dynamics; ABC World
Airways Guide; OAG; ICAO
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US Department of Transport

0AG
OAG

IATA

IATA

Singapore Tourism Sector
Performance

Brazilian Ministry of Tourism
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tion
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No
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No
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No
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No

No

No
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score *
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(0+1)

(0+0)
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0.5
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0.5

0

(2+0+0+
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0.4

1
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0.6

(0+1+0+
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(Table 2.5 continued)
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Nah, K. Otsuki, S. Chowell,
G.etal

Napoli, C. Salcuni, P. Pompa,
M. et al

Pastore-Piontti, A. Zhang, Q.
Gomes, M. et al

Paul, M. Held, L. and A.
Toschke

Pinset, A. Read, J. Griffin, J.
etal

Poletto, C. Boelle, P.and V.
Colizza,

Poletto, C. Boelle, P.and V.
Colizza,

Poletto, C. Gomes, M.
Pastore Y Piontti, A. et a/
Poletto, C. Pelat, C. Lévy-
Bruhl, D. et al

Poletto, C. Tizzoni, M. and V.
Colizza,

Poletto, C. Tizzoni, M. and V.
Colizza,

Polwiang, S.

Quam, M. Khan, K. Sears, J.
etal

Quam, M. Sessions, O.
Kamaraj, U. et al

Quam, M. and A. Wilder-
Smith,

Read, J. Diggle, P. Chirombo,
J.etal

Rockloy, J. Quam, M. Sudre,
B.etal

Ruan, S. Wang, W. and S.
Levin,
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Sato, A. Sawai, H. Ito, I. et al

Schneider C, T Mihaljev, S
Havlin, et al

Semenza J, B Sudre, J
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Sessions, O. Khan, K. Hou, Y.
etal

Seyler, T. Grandesso, F. Le
Strat, Y. et al

Struchiner C, J Rocklov, A
Wilder-Smith, et a/
Tatem, A. Hay, S. and D.
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Tatem, A. and S. Hay
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2013
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2016

2008
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2012
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2015
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2016
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2015
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2014

2013

2009

2015
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Journal reference

PLoS Comput Biol; 9:3

Sci Rep; 1; 62

Proc Biol Sci; 277; 1681;
557-65

PeerJ; 2016; 4
BMC Infect Dis; 16; 356

J Travel Med; 19; 5; 294-7

Mathematical and
Statistical Modeling for
Emerging and Re-emerging
Infectious Diseases; 39-56

Stat Med; 27; 6250-6267
Malaria J; 13; 298

BMC Infect Dis; 16; 1; 448
Epidemics; 15; 1-9

Euro Surveill; 19:42

Euro Surveill; 19:23

Sci Rep; 2; 476

J Theor Biol; 338; 41-58

J Travel Med; 22; 3; 194-9

J Travel Med

Am J Trop Med Hyg; 94; 2;
409-12

J Travel Med; 23; 6
Lancet; 385; 9962; 23-24

EBioMedicine ; 9; 250-6

Mathematical Biosciences
and Engineering; 3; 1; 205-
218

Math Biosci; 75; 3-22

Proceedings 2015 leee
International Conference
on Big Data

Phys Rev; 84:6

PLoS Neglected Trop Dis;
8:12

Glob Healh Action; 6; 1
Epidemics ; 1; 3; 175-84
PLoS ONE; 10:8

PNAS; 103; 16; 6242-6247

Proc R Soc Lond B. Biol Sci;
274; 1498-6

Parasitology; 139; 14;
1816-30

Sources used

0AG (OAG MAX); unknown
0AG

Eurostat

OpenFlights.org
OpenFlights.org

CapStat

IATA;0AG

US Department of Transport

UNWTO;
UK Office for National Statistics

IATA

IATA
IATA; OAG
IATA
EuroStat

UK Office for National Statistics

Department of Tourism of
Thailand

IATA

Japan National Tourism
Organization

IATA
OAG (Traffic Analyser)

IATA

IATA

OAG; ICAO; Air Transportation
Statistics; Australian
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OAG
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IATA

IATA ; OAG
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OAG

OAG (OAG MAX)

US Office of Travel and Tourism
0AG

Valida-
tion

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Yes

Yes

No

No

No

No

Reprod
ucibility
score *
(2+0)

1

2

(1+1+0+
1+0)
0.6

0

(2+2)
2
( 1+0+0)
0.33

1

2

(2+1)
1.5

(Table 2.5 continues on next page)
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(Table 2.5 continued)

Num-
ber

125
126
127
128
129

130

131

132

133

134
135
136

Authors

Tatem, A. Rogers, D. and S.
Hay,

Tian, H. Sun, Z. Faria, N. et al
Tizzoni, M. Bajardi, P.
Poletto, C. et al

Tuncer Nand T Le

Urabe, C. Tanaka, G. Aihara,
K. etal

Weinberger D, T Krause, K
Molbak, et al

Wilder-Smith, A. and W.
Leong,

Wilder-Smith, A. Leong, W.
Y. Lopez, L. et al
Wilder-Smith A, M Quam, O
Session et al

Wilson, S. Khan, K. Gilca, V.
etal

Xiao L, H Zhang, Y Tang, et al
Yoneyama, T. and M.
Krishnamoorthy,

Year

2006
2017
2012
2014
2016

2012

2017

2015

2014

2015
2015
2012

Journal reference

Malar J; 5; 57

PLoS Negl Trop Dis; 11; 8
BMC Med; 10; 165

Int J Crit Infr Prot; 7; 27-47
PLoS ONE; 11; 12

Am J Epidemiol; 176; 649-
655

) Travel Med; 24; 4
BMC Med; 13; 1
Euro Surveill; 19:8

BMC Infect Dis; 15; 1

SCRAMcon
SIMULATION; 88; 4; 437-
449

*Average total score shown with individual source scores shown in brackets.

Sources used

0AG

ICAO

IATA; OAG

US Department of Transport
ICAO

Icelandic Tourism Board;
Statistics Iceland; Keflavik
Airport

UNWTO
IATA

IATA

IATA (Airport Intelligence
Services - Passenger data)
O0AG

UNWTO; UNWTO

Valida-
tion

No
No
Yes
No

No

No

No

No

No

No
No

No

Reprod
ucibility
score *

(4+3+2)
3
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Chapter 3 — Airline data description

Preamble

Understanding the data to be used in this thesis was crucial before any meaningful
interpretation or analyses to be conducted could be undertaken. To the best of the author’s
knowledge, a detailed description of a closed source airline data set had not previously been
attempted and/or reported. As shown in the previous chapter, a number of airline data sets
from a variety of sources are available, but what each one represents may not always be

clear. This chapter aims to provide a deeper understanding of the data itself.
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Abstract

There is an understandably increasing pressure to ensure the data used in scientific research
is accurate and fit for purpose, with publications such as Nature now requiring data set
descriptors to be submitted with the accompanying manuscript. Fully understanding the data
set that will be used for analysis and ensuring the absence of bias (or mitigating it) is crucial.
As was shown in the previous chapter, a wide range of airline data set are available, each
with its own advantages and drawbacks. The aim of this chapter was to describe in detail the
OAG Traffic Analyser data set (sold as detailed airline bookings covering routings between

global airports (including stopovers)) and uncover any trends and biases that may be present.

A series of methods were used to describe the data set, including aggregating airport
bookings by country and regions, as well as temporal aggregations to quarters and years, and
broken down to daily bookings. Airport bookings were also aggregated to country level and

regional data and the number of bookings compared.

The downloaded data spanned from February 2010 to May 2015 at a monthly resolution and
included 6,726 international airport codes and 12.77 billion bookings. Clear seasonal trends
could be seen with peaks in July and August of every year with the overall number of bookings
increasing each year. Some airports were used for varying travel purposes, such as Hartsfield-
Jackson Atlanta International (ATL), an important connecting airport and Beijing Capital
International (PEK), an important departing airport. As well as airports, the data also included
669 railway stations, bus and ferry terminals across 31 countries. Finally, a sudden increase

in connectivity was also seen from 2014 onward.

Although sold as very detailed and accurate airline data, the collection methods for the OAG
Traffic Analyser data remained undisclosed and therefore unclear. The data provides an
understanding of the global airline network and its seasonality, however, it did not allow any
understanding of the passenger demographics (age, sex, purpose of travel among others).
Without having undertaken an in-depth analysis of the data set, the presence of railway
stations and change in connectivity would not have been identified. Therefore, it isimportant
to undertake a preliminary in-depth analysis of one’s data before its use, followed by a

validation with an independent, yet comparable data set, as done in the following chapter.
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Introduction

Big data is being increasingly used in research, but no clear reporting guidelines allow for
proper acknowledgments, hindering replication by other authors (Mooney and Newton,
2012). However, it is important that data used in any research is accurate and representative
(Emanuelson and Egenvall, 2014) and that the readers are aware of what the data represents
and how it was manipulated prior to use. Peer review journals such as Nature require authors
to provide a data set descriptor that includes a number of mandatory fields such as data set
name, authors and affiliations, abstract, background, summary and methods (data
manipulation and access code), data records and validation (Nature, 2014). Additionally,
having a standardised method of describing data would allow for a more uniform manner of

interpreting results (Yale Law School Roundtable on Data and Code Sharing, 2010).

As all data sets contain errors; to reduce their impact on the results and arrive to the correct
conclusions, it is important for researchers to find and understand these errors. Additionally,
validating secondary data sets to ensure they are ‘fit for purpose’ and correct is crucial
(Emanuelson and Egenvall, 2014). As the systematic review in Chapter 2 demonstrates, there
is a need to improve the description of the nature, sourcing and manipulation of information
used for international human infectious diseases transmission modelling, as well as a need
for data validation. In this spirit, a full description of the data set used throughout this thesis

(OAG Traffic Analyser) will be given here, with a validation in the following chapter.

A wide range of airline travel data sources are available to use to model the international
spread of infectious diseases, however, each data set has its drawbacks. Firstly, the data is
likely to have been collected for commercial or governmental reasons rather than for
scientific research. This may lead the data provider to ask for payment to access the data
(commercial data) or the data may be geographically restricted to a particular government’s
borders. Additionally, commercial data providers may not be able to share their data
collection methodologies for commercial reasons. It is therefore desirable to have a
comprehensive understanding of what the data used represents and determine whether it is
‘fit-for-purpose’. This may be considered an initial step in a transparent and reproducible
methodology. Itis also important to assess any possible bias that may be present in the data
and understand the extent to which data manipulation by researchers prior to use may have

contributed to biases.
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The principal source of information described in this chapter is the OAG Traffic Analyser data,
hereafter referred to as OAG. To the best of the author’s knowledge, an extended description
of this data set has not previously been undertaken and/or reported. Therefore, the aim of
this chapter was to introduce the reader to the data set that will be used throughout this
thesis. It is hoped that such data description will enlighten the reader regarding the use of
certain variables used from OAG further on. A brief introduction about the company
providing the data will start this chapter, before the data itself is described in detail. Finally,

trends and biases discovered will be discussed.

About the data set and its provider

OAG was first implemented under the name of ‘Official Airline Guide’ with the first “Official
Aviation Guide to The Airways” published in 1929 (OAG, 2016b). The company has since
grown to be the “largest global airline network data provider”, with over 25 million flight
status updates made daily (OAG, 2016b). OAG aims to “connect the world of travel” by
aggregating data from various sources and providing real time insights into the network. In
keeping with this goal, the company claims to be the first provider of flight schedules and
status as well as network analysis of flight data (OAG, 2016a). This information is sold to and
used by airlines, airports and governmental agencies, as well as companies specializing in the

travel industry (OAG, 2016a).

In 2013, OAG launched its Traffic Analyser database containing data on passenger traffic
routes, to gather better data on numbers of passengers travelling, and predict future trends
(OAG, 2013). The data available for download during the active license period (beginning
August 2014) for this project ranged from February 2010 to one year in the future (i.e. July
2016) (OAG, 2016c). Finally, the number of adjusted bookings (“Bookings.Adjusted.”)
represents the “true total market figures” according to (2015). These numbers result from a
“sophisticated algorithm” using data from OAG’s own schedule database and the ‘passenger
traffic’ from the Global Distribution System (GDS) and other sources. The unadjusted number
of bookings (“Bookings.Unadjusted.”) are the average fare from Travelport tickets (OAG,
2017), however, the exact differences between the data sets were not shared with us when

enquired.

It was clear when directly comparing the number of adjusted and unadjusted bookings by
year and month (Figure 3.1) that these were very different numbers. Firstly, the Unadjusted

bookings were absent from the data until January 2011 and there was an absence of seasonal
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trends. The author had an a priori knowledge of the seasonal trends present in airline travel,
which was present in the Adjusted bookings making the case for using the Adjusted bookings

rather than the Unadjusted.

Reasoning for choice in data provider
The use of these data was recommended by other modelling groups who had previously used
airline travel data to model the 2009 ‘swine flu" AHIN1pdmOQ9 influenza pandemic spread
(Fraser et al., 2009). Enquiries with OAG in 2014 suggested the data they could provide would
be suitable for modelling purposes relating to exportation of Ebola virus disease from West
Africa during the 2014-2015 epidemic. The funders of this thesis, Health Protection Research
Unit in Emerging and Zoonotic Infections (HPRU EZI) were specifically interested in modelling

the risk to other countries posed by the outbreak.
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Figure 3.1: Direct comparison of OAG's Bookings.Adjusted against Bookings.Unadjusted. by month and year.
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Data description

The OAG Traffic Analyser data set (thereafter referred to as OAG) was downloaded over the
course of one year (August 2014 to July 2015) from www.oag.com, following the data
provider’s licensing restrictions. The downloaded data ranges from February 2010 to May
2015 (a total of 64 months), as January 2010 was not available in the database to download
and it was thought that June 2015 was too close to the collection date to be truly
representative, as the company updates their data monthly so was not downloaded. The final
monthly updates made by the company occur on the third weekend of every month and
cover the latest four months (OAG, 2017). Therefore, when downloading in July, it is possible
the months of March to June were still being updated, with June being the most likely to see
changes in these updates. Downloading bookings for future months was thought not to be a
true representation of bookings for the same reasons. The ‘Original-Destination’ database
from Traffic Analyser offers data regarding flights on global, national and airport level. For
the purposes of this thesis, when downloading the data an origin was always determined
(continental, national or state level), but without specifying a destination. This ensured that
OAG would return information on bookings departing from the desired point of origin, with
a destination anywhere in the world (international and domestic flights alike). Although not
detailed in the original data, we were able to determine the direction of travel by knowing
the booking’s departing airport code and the trip point of origin (see definitions below). Both
variables were downloaded for each temporal and geographic resolution. Figure3.2 A shows
the OAG regions available in the data set, as defined by the company. In this context, regions
are defined as neighbouring countries. Given the data file sizes and the downloadable file
size restrictions, the USA and Western Europe had to be broken down into smaller groups to
be downloaded (Figure 3.2B and C). On the other hand, regions with few bookings (such as
Africa) were grouped and downloaded together. These regional groupings were only used to
download data from September 2014 onward (due to downloadable file size restrictions).
Once all regions and countries were downloaded, they were collated to form a monthly data

set of all global bookings.
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Figure 3.2: Representation of world regions as defined by OAG (A), groupings of states of the United States of America (user-defined) (B)

and of Western European countries (user-defined) (C).
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The Traffic Analyser data base offers the client the possibility of tailoring the reports

according to their needs (OAG, 2013). The fields chosen for download were:

e  “TimeSeries”: Annual or monthly resolution available, between 2010 and 2015. Data
were retrieved at the finest temporal resolution available, monthly, to gain a detailed
idea of seasonal patterns. This also allowed quarterly or annual aggregation of

bookings, if needed.

e  “Routing”: the complete and ordered routing (according to flight itinerary), including
departing, arriving and connecting airports, presented as three character airport codes,
known as International Air and Transport Association (IATA) codes. This included a

maximum of two connections.

e  “Bookings.Adjusted.”: These represent the number of bookings made per routing,
but does not detail the number of passengers included in each booking. According to
OAG (2016c) the “Bookings.Adjusted.” represent the true market figure (as defined by
OAG), and were therefore used in our analysis. Unless stated otherwise, these will be

referred to as “bookings” throughout the rest of this thesis.

¢  “Bookings.Unadjusted.”: Although a less accurate count of bookings (OAG, 2015),
and resulting from models, “Bookings.Unadjusted.” were also recorded when
downloading the data. This was not used in any of the analyses conducted in this thesis

using the OAG data.

e “Point.of.Origin.Cd”: The origin airport for the bookings, not necessarily the origin for
the routing for which the booking is returned. This may be in a different city, region or
country to the departing (origin) airport. For example, a routing of LHR-JFK may have
LHR or JFK as a point of origin depending on whether the booking originated in the
United Kingdom or the USA, respectively, or the point of origin may be a third airport if
this is part of multi-stop journey. This information helped determine the journey type
(inbound or outbound) and whether it was domestic or international, which in turn also

helped determine any directional trends.

A brief description of the data format can be found in the Data Dictionary at the end of this
chapter. Each file was downloaded in CSV format and manipulated using the open access
software R, version 3.4.1 (www.R-project.org). Once all the monthly data sets were
downloaded and corresponding monthly data sets collated together, data cleaning and

manipulation was done as follows to generate distinct sets of data:
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o Aggregation into quarterly data: monthly data sets for each year were grouped
as follows: January-March (Q1), April-June (Q2), July-September (Q3) and October-
December (Q4). Unfortunately, Q1 of 2010 and Q2 of 2015 could not be aggregated
as January 2010 and June 2015 could not be downloaded from OAG. A total of twenty
guarters were thus generated, ranging from Q2 2010 to Q1 2015.

e United Kingdom international routing data: the number of international
bookings arriving into and departing from the United Kingdom was generated per
month and quarter. The data sets were aggregated by selecting routings with a point
of origin in the UK and an arriving or departing airport in the UK, depending on the
journey leg wanted (inbound international, outbound international).

e Country level, origin-destination matrices: origin-destination matrices showing
the number of aggregated bookings were generated linking all countries present in
the data sets. UK centric matrices were also generated using arriving and departing
countries only (i.e. not considering the routing’s point of origin).

The data were made up of a total of 6,726 airports and heliports each with its own IATA code,
across 233 unique countries and territories. The United States was recorded as having the
largest number of airport codes (n=1,135), followed by Canada and Australia, with 456 and
281 airports respectively, whereas the United Kingdom was recorded as having 168 airport
codes. Figure 3.3 represents the location of all airports present in the OAG data with the 20
busiest (in terms of aggregated passengers arriving, connecting and departing bookings)

highlighted by their IATA codes, and listed in Table 3.1 (ranked by size of passenger flow).

The total international connections between the ten busiest countries in terms of aggregated
departing, connecting and arriving bookings is shown in Figure 3.4. Each colour corresponds
to a departing country, and the width of each link representing the number of bookings
associated to each routing (direct and indirect). Only international destinations were
represented here as the number of domestic bookings was overwhelmingly larger, and is of
less interest in the context of a pandemic. Looking at the United Kingdom, a total of 483.3
million bookings were recorded arriving and departing, between February 2010 and May
2015 the highest number of international passengers recorded. Spain was the most popular
destination for UK passengers, with 88.1 million bookings, followed by the United States
(39.0 million bookings). The UK was the first destination for passengers arriving from Spain
(87.6 million bookings). The United States (country with the second highest number of
international departures and arrivals recorded at 426.1 million bookings) had strong links

with its neighbour Canada (73.3 million departing bookings), followed by the UK (40.1 million
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departing bookings). When aggregating the total bookings between the ten busiest countries
by season, shown in Figure 3.5, some variations can be seen with Australia seeing the most
departures in autumn and winter (corresponding to their summer), whereas the UK saw the
most in spring and summer. The UK saw most international departures to Spain in the

summer and the least in winter.

Representing the country to country connections in a heat map was difficult and could not
be presented in a legible manner. However, Figure 3.6 shows the regional level of
connections, both within and between regions (defined here as groups of neighbouring
countries). It can be noted that three regions dominate the internal number of bookings
globally: North America (3.3 billion bookings), Western Europe (2.9 billion bookings) and
North East Asia (2.6 billion bookings). The highest recorded number of inter-regional

bookings was from Western to Eastern Europe, with 240.2 million bookings.

Table 3.1: List of the twenty busiest (largest aggregated departing, connecting and arriving bookings) airport
codes globally with corresponding name, associated city and country as well as total number of bookings and

corresponding percentage of global bookings ranked by size (%) of global bookings.

IATA . . Bookings Global
A
code irport name City Country (millions) bookings (%)
PEK Beijing Capital Beijing China 364.32 1.27
International
LHR Heathrow London United Kingdom 309.06 1.08
ar Hartsfield-Jackson Atlanta USA 308.03 1.07
International
LAX Los Angeles International  Los Angeles USA 283.40 0.99
HND Haneda Tokyo Japan 279.92 0.98
ORD O’Hare International Chicago USA 257.53 0.90
CGK Soekarno-Hatta Jakarta Indonesia 252.11 0.88
International
H K SAR
HKG Hong Kong International Hong Kong ongCh?:ag 250.22 0.87
CDG Charles de Gaulles Paris France 240.43 0.84
JFK John F Kennedy New York USA 233.06 0.81
International
DXB  Dubai International Dubai United Arab 231.93 0.81
Emirates
SIN Changi Singapore Singapore 227.25 0.79
CAN Baiyun International Guangzhou China 220.33 0.77
BKK Suvarnabhumi Bangkok Thailand 216.54 0.75
PVG Pudong International Shangai China 215.86 0.75
DFW Dallas/Fort Worth Dallas USA 215.23 0.75
FRA Frankfurt International Frankfurt Germany 208.94 0.73
DEN Denver International Denver USA 201.19 0.70
LAS McCarran International Las Vegas USA 194.07 0.68
MAD Adolfo Suarez-Barajas Madrid Spain 193.25 0.67
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Figure 3.3: World map of all airports in the OAG Traffic Analyser data set, with the twenty busiest airports (most combined departing, connecting
and arriving bookings) highlighted by their IATA codes.
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Figure 3.4: Connections (in millions) between the ten countries with the highest number of total cumulative international

departing, connecting and arriving bookings, between February 2010 and May 2015.
Note: the arrows illustrate the direction of flow.
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Figure 3.5: Connections (in millions) between the ten countries with the highest number of cumulative international
departures, connections and arriving bookings, according to seasons: A) winter (January to March), B) spring (April to
June), C) summer (July to September) and D) Autumn (October to December), between February 2010 and May 2015.
Note: the black arrows illustrate the direction of booking flow.
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A total of 12.77 billion bookings were present in the data, between February 2010 and May
2015. Anincreasing trend was evident across the years, with distinct seasonal patterns: large
peaks in July and August and troughs in February (Figure 3.7 A). An additional although
smaller, peak could be seen in December of every year. The temporal seasonality was also
considered according to the journey leg (Figure 3.7 B). The same seasonal patterns could be
seen as in Figure 3.7 A but showed a large variation in number of connecting rather than
departing or arriving bookings. The number of departing and arriving bookings overlay each

other exactly as every flight that departs must arrive.

When aggregating the bookings by month (Figure 3.8 A), this increasing trend was still
present with the number of bookings for each month increasing year on year, except for
November, where there was a drop in number of bookings between 2010 and 2011 (175.4
million and 172.4 million bookings, respectively). August saw the largest number of bookings
every year, with August 2014 recoding the largest number of any month with 250 million
bookings, whereas the smallest number of bookings was seen in February 2010 with 155

million bookings.

When comparing the number of bookings per day to the bookings per month (Figure 3.8 B),
the same seasonal patterns could be seen as in Figure 3.8 A. The fall in number of bookings
was clearly seen in November 2011. The seasonality was not as clearly marked when looking
at the average daily bookings by month and year (Figure 3.8 B) with the February dip
previously seen, had now been flattened out. However, July and August still remained the
two months with the largest number of daily bookings. An overall average of daily bookings
was done with the four years where 12 months of data were available (2011 to 2014) (Figure

3.8 C), which also reflected the strong summer seasonality.
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(Figure 3.7 continued)
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Figure 3.7: Total number of global bookings present in OAG by month (A); total number of bookings separated according to journey
leg (departing, connecting and arriving) globally according to time (B), between February 2010 and March 2015.
Note: the sum of arriving and departing bookings overlay each other.
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(Figure 3.8 continued)
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(Figure 3.8 continued)
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Figure 3.8: Monthly bookings aggregated by month and year (A); daily bookings aggregated by month
ggd y)e(acr)(B) and average daily bookings by month, for years containing 12 months of data (2011 to
14 :
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Airports and countries acting as sinks and sources

To determine whether any bookings had been missed from any airport during the
downloading stage, and to determine any initial trends in the data, a sinks and sources
analysis was done. By separating each routing into the individual airport codes, and
determining the number of departing (Bgep), connecting (Bcon) and arriving bookings (Bar), any
airport with a bias in their number of Bgep, Bcon OF Barr Was easily identified. Manipulating and
visualizing the data in the following way allowed for an initial understanding of the data
structure, any gaps and/or trends present. This analysis also allowed for an initial
understanding of the role of various airports in the network, such as which were of most
importance (largest number of total bookings), or had most Ben. It was also possible to
identify which airports had more arrivals (sinks) or departures (sources), and determine any

seasonality present within the data.

Ignoring the point of origin, each routing was broken down to individual component airport
and assigned one of three categories: departing, connecting or arriving, according to its
location within the routing thread. For example, a routing of LHR-JFK-LAX, had LHR and LAX
as departing and arriving airports respectively, and JFK as a connecting airport. The number
of bookings for each airport was then carried over and aggregated according to their category
(arriving, departing or connecting). This was performed for each time resolution available,
resulting in a data set with the cumulative number of bookings for each airport. A global
summary was plotted against time to see any global patterns, shown in Figure 3.7 B. The
total journey leg bookings were then summed by airport and plotted on a natural log scale
(Figure 3.9 A). A number of airports could be seen to have large differences in the number of
bookings recorded either departing or arriving. These airport codes included railway and bus
stations through which no bookings were recorded. However, 37 airports had no departing
bookings (but recorded up to 229,762 bookings accumulated across all time periods) and 22
airports had no arriving bookings but recorded 181,100 departing bookings. Beijing Capital
International airport (PEK) was the busiest airport with the largest number of passenger
bookings (combined arriving and departing bookings) (335.39 million bookings), followed by
London Heathrow airport (LHR) (259.3 million bookings) and Haneda airport (HND) (252.0

million bookings) (Figure 3.9 A).

There was good agreement between the number of departing and arriving bookings for each

airport, except for Washington Dulles International airport (IAD) and Ronald Reagan
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Washington airport (DCA), where graph Figure 3.9 B shows more departing than arriving
bookings for both airports. When comparing all bookings (including connections) to the net
difference (Bgep - Barr) Of bookings, Hartsfield-Jackson Atlanta International Airport (ATL)
became the third busiest airport globally (308.0 million bookings), most likely due to the large
number of B, passing through the airport (158.2 million connecting bookings). Given the
high number of connecting bookings linking ATL to other airports (51% of bookings), this
airport was a good example of a hub airport. Hubs are defined here as an airport with an
important number of connections to other airports and that is central to the airline network
(Woolley-Meza et al., 2011). Airport centrality is defined as having a high number of geodesic
paths passing through, connecting distant parts of the network (Newman, 2003). When
determining which airports act as sinks (Bgr > Baep) and sources (Bgrr < Baep) (Figure 3.9 B), it
became clear that London Heathrow (LHR), Adolfo Suarez Madrid-Barajas (MAD) and
Amsterdam Schiphol (AMS) airports act as important sinks, with Bgr > Bgep. On the other hand,
Incheon International airport (ICN), Haneda (HND) and Beijing Capital airport (PEK) act as

sources, with Bgrr < Bep.

However, two airports stood out from this analysis: Washington Dulles International (IAD)
and Ronald Reagan Washington (DCA) airports, because of missing departing data
(departures from these airports were recorded as zero bookings, which is extremely unlikely),
an error made during data download. These airports are located in Washington DC within
the OAG database, which is considered as an independent US state (District of Columbia) in
the data base, therefore were missed when downloading data at the state level. This error
occurred for data relating to September 2014 onwards. This missing data were addressed by
assuming that the number of departing bookings and routings match exactly the number of
arriving bookings and the routings recorded and travel type were reversed from the data
already available. The decision was taken after considering whether other important airports
(such as JFK) showed similar patterns. It was also assumed that DCA and IAD had no

connecting bookings during this time period.

When identifying connecting airports (Figure 3.9 C), plotting the total number of connecting
bookings (Bcon) against the total difference ((Barr + Baep) — Beon) sShowed that only two airports
are mostly used for connections: Charlotte Douglas International airport (CLT) (79.43 million
connecting bookings) and Hartsfield-Jackson Atlanta International airport (ATL) (158.16
million connecting bookings). Interestingly, Beijing Capital International airport (PEK) has
much fewer connections than arriving or departing bookings (28.93 million connecting

bookings).
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(Figure 3.9 continued)
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(Figure 3.9 continued)
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Figure 3.9: Scatter plots representing the number of departing and arriving bookings from each airport globally
(log scale) (A); total number of bookings against the difference between departing and arriving bookings

(net difference)(B); and total number of connecting bookings against the total difference ((B, + Bgep) - Beon)

of bookings (C). Airports are represented by their three letter IATA code.

Note: the red lines represent the line of equality (x=y) (A) and the line of no difference (y=0) (B and C).
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A more detailed analysis of the ten busiest airports globally (Table 3.1) was conducted, to
determine whether any seasonal variations could be seen (Figure 3.10). The ten busiest
airports were defined as those with the highest cumulative number of bookings (departing,
connecting and arriving) throughout the 64 months. Along with the number of bookings, the

percentage of global bookings traveling through these airports is shown in Table 3.1.

From Figure 3.10 A, a seasonal trend can be seen, where all airports had higher cumulative
total bookings between April and June rather than between July and September, at odds with
the global seasonal trend. The larger number of bookings in the second quarter may reflect
variations in airline routes available between these months. As described by Mao et al.
(2015), a larger number of air routes may be available from smaller airports, allowing
passengers to avoid larger airports over the third quarter. The airports also showed the
smallest number of bookings between October and December, which is in agreement with
the annual trends seen before in the OAG data. When looking at airports acting as sinks and
sources (Figure 3.10 B), different patterns arose depending on the airport, such as LHR having
the largest number of Bg,r between April and June but had most Bge, between October and
December. JFK showed a steady increase in number of bookings from the fourth quarter,
peaking in July to September. However, LAX showed a peak in July to September, following
atroughin April to June. This example shows that even among the busiest airports, the airline
patterns can vary significantly. From this selection of airports, the largest number of Ben
(Figure 3.10 C) was seen in ATL throughout the year. PEK showed the largest number of B,
between April and June (7.78 million bookings) and the least in the final quarter of the year
(6.69 million bookings). Overall, all but one airport (HKG) had the largest number of B, in
the second quarter of the year, whereas HKG had most B, in the first quarter. Finally, all
airports, except CGK, had fewest B.n during the last quarter of the year, reflecting the limited

air routes available as well as the fewest number of bookings.
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(Figure3.10 continued)
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(Figure 3.10 continued)
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Figure 3.10: Scatter plots representing, for the ten busiest airports globally, the quarterly distribution of departing and
arriving OAG bookings (A); quarterly bookings against net difference (B, - Bye,) Of bookings (B); and the total

number of connecting bookings against the total difference ((B,, + Bgep) - Bcon) Of bookings (C).

Note: the red lines represent the line of equality (x=y) (A) and line of no difference (y=0) (B and C).
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Data limitations and biases

Dealing with stations

There was a total of 6,726 airport location codes recorded in the OAG data base, of which
669 (9.9%) were railway, bus stations or ferry terminals, with their own IATA code. The
presence of railway and bus stations in the data was already noticed by Bobashev et al.
(2008). There may be additional stations whose ‘Airport.Name’ was not recorded as a station
as such (i.e. did not explicitly mention any combination of the terms ‘rail’, ‘railway’, ‘station’,
‘stop’, ‘service’, ‘ferry’ or ‘port’), and would therefore be missed in this selection. These
stations were found across 31 country names, and consisted of 562 railway stations, 101 bus
stations (stops and services also included) and six ferry ports. Canada, Norway and Spain
recorded the highest number of these stations with 82, 80 and 71, respectively; and the
United Kingdom recorded 62 of them (see Table 3.2).

It was ultimately decided to keep these stations within the data itself as the number of
bookings associated with them was small relative to the global number of bookings.
Additionally, some bookings used stations in their transfer routings, and with no clear airport
nearby to transfer the bookings to, this added a level of complexity as there was no clear way

of inferring routes via these stations.

UK airports
The complementary data to OAG data set, listing all airport codes and accompanying country
names, recorded 167 airports in the UK. However, 61 were railway stations, bus stops or ferry
terminals (Table 3.2). From the final 106 unique airport names, three airports had duplicated
IATA codes: Bristol (three codes in total), Cardiff (two codes) and Exeter (two codes).
However, each of these airports only had one valid IATA code attached to routings. The

locations of UK airports present in the data is shown in Figure 3.11.
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Table 3.2: List of railway and bus stations, with accompanying IATA codes and full names (according to OAG),
found in the data for the United Kingdom only.

IATA IATA IATA
code Airport name code Airport name code Airport name
BSH | Brighton Rail Station TTY | Taunton Bus Station XVB | Stafford Rail Station
CHW | Cheltenham Bus Station USX | St Austell Rail Station XVC Crewe Rail Station
CLB | Colchester Bus Station WNC | Winchester Bus Station XVG | Darlington Rail Station
OXQ Oxford Rail Station XGM | Grantham Rail Station XVH Peterborough Rail Station
PCW | Par Rail Station XNE | Newport Rail Station XVJ | Stevenage Rail Station
POQ Poole Bus Station XNK | Newark Northgate Rail XVU  Durham Rail Station
Station
QDH | Ashford International Rail XNM | Nottingham Rail Station XVW | Wolverhampton Rail Station
Station
QEW  Leicester Rail Station XNO | Northallerton Rail Station XWD Wakefield Westgate Rail
Station
QQD | Dover Rail Station XNV | Nuneaton Rail Station XWH | Stoke On Trent Rail Station
QQH Harwich Rail Station XPF | Penrith Rail Station XWN  Warrington Bank Quay Rail
Station
QQK | London Kings Cross Rail Station XPT | Preston Rail Station XWS | Swindon Rail Station
QQM  Manchester Piccadilly Rail XQE | London Ebbsfleet ZDU Dundee Rail Station
Station International Rail Station
QQN | Birmingham New Street Rail XQG | Berwick-upon-Tweed Rail ZEP | London Victoria Rail Station
Station Station
QQP London Paddington Rail Station | XQH | Derby Rail Station ZFI = Chesterfield Bus Station
QQR | Ramsgate Rail Station XQL | Lancaster Rail Station ZGB | Nottingham Bus Station
QQS London St Pancras XRC | Runcorn Rail Station ZGG  Glasgow Central Rail Station
International Rail Station
QQU | London Euston Rail Station XRE | Reading Rail Station ZIV | Inverness Rail Station
QQW | London Waterloo Rail Station XRU | Rugby Rail Station ZLS London Liverpool Street Rail
Station
QQX | Bath Spa Rail Station XSR | Salisbury Rail Station ZXA | Aberdeen Rail Station
QQY  York Rail Station XTK | Thirsk Rail Station ZXE = Edinburgh Rail Station
RNW | Ringwood Bus Station XVA | Stockport Rail Station
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Figure 3.11: Map of airport locations used in OAG with their IATA codes, in the United Kingdom, including
Isle of Man, Guernsey and Jersey.
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Increased connectivity
When working with the data for the global analysis (chapter 6), it became apparent that in
2014 there was a sudden increase in number of airport connections (degree) present in the
data (Figure 3.12). This was true for both the in degree (number of direct connections on
inbound leg) and out degree (number of direct connections on departing leg). This is likely to
be artificial, as such a large increase over a short period of time (one month) is unlikely to be
caused by a large amount of additional airports or bookings being included in the data. It is
likely that this rise in connectivity may be a result of a change in data collection methods.
However, this was neither confirmed by the company, or detailed in the collection methods
provided by them (OAG, 2017). Any analysis done using this data may be partially wrong
given that the period prior to 2014 may be an underestimate of the total number of bookings,
or that the period from 2014 onward may be an overestimate of the data. No adjustments
could be made accordingly as it was not clear which were the correct values to use (pre or

post 2014).
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Figure 3.12: Tufte style boxplots of global airports out (A) and in (B) degrees, by month and year, on a log scale.
Note: the points represent the mean, and the vertical lines represent the whiskers.
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Discussion

The author described and presented the OAG Traffic Analyser data set, using a number of
methods with the intention of validating the internal consistency of the data and identifying
missing information and trends. Although several aspects of the collection methods were
unclear, the data showed clear seasonal patterns with the most bookings recorded between

July and September every year.

OAG data allowed for an initial understanding of the global airline network, as it was possible
to determine seasonal trends of the ten busiest airports, but there was no information on
passenger demographics. From the Traffic Analyser data set, it was clear that the number of
connecting bookings (Bcn) globally was much smaller than the number of departing (Bgep) and
arriving (Barr) bookings, but that each airport had its own associated travel patterns and
played its own role in the global network. For example, airports like ATL and CLT were
primarily used for connections whereas PEK had very few connections but a large number of
departing and arriving bookings. The ten busiest airports showed seasonal trends that were
not in agreement with the global average annual trends, such as having the largest number
of bookings between April to June rather than July to September, and the fewest bookings in
October to December rather than January to March. This may be an artefact of the network:
as the number of passengers increases, so does the number of air routes available, allowing

passengers to avoid busier airports (Kraft and Havlikova, 2016).

Although the data set gave some understanding of the airline network, a number of issues
were encountered. First of all, the data included railway and bus stations as well as ferry
terminals, with their own IATA codes. Given their locations within routings (as connecting
points) and that it was not possible to assign these bookings to an actual airport code, these
stations were left in the routings. The company’s data description (OAG, 2017; OAG, 2016c)
provided little information on their data collection methods and did not state the inclusion

of these stations as part of their data.

Additionally, through exploration of airport connectivity it became apparent that there was
an increase in connectivity from 2014 onward. The cause of this change was likely to be a
change in methodology for the company’s data collection; however, this was not confirmed
by the company or their data collection method descriptions. Such an important change in

connectivity is likely to impact any analysis done using this data. This is another example of
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the importance of understanding and describing one’s data to determine whether it is fit for

the task required.

As with all data sets, having a good understanding of one’s data set before any analysis is
done, is important to ensure the correct results are reached (Emanuelson and Egenvall,
2014). As third-party data were not collected for the same specific research question,
researchers have no or little control over its collection methods and quality, and therefore
need to critically assess its usefulness prior to use. This evaluation of usefulness needs to be

determined for the research project in question (Emanuelson and Egenvall, 2014).

Although the OAG data is historic at the time of writing, the use of such data may provide

insights to understand the future spread of outbreaks through air travel.
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Data dictionary

Variable name Definition _Values _ Units Format Source
Arr.Airport.Cd | IATA code of arriving airport. Too many to list here*. N/A Character OAG download
Arr.Country.Name | Arriving Country Name, country See Appendix for table N/A Character Generated from data
where the journey (not country) ends. of OAG country names.
Arr.Region.Name | Arriving Region Name, region See Appendix for table N/A Character Generated from data
where the journey (not country) ends. of OAG region names.
Bookings.Adjusted. | Number of adjusted bookings, between = Ranging from 0 to Bookings Integer OAG download
airports, including indirect bookings. several thousand.
Bookings.Unadjusted. | Number of unadjusted bookings. Ranging from 0 to Bookings Integer OAG download
several thousand.
Dep.Airport.Cd = IATA code of departing airport. Too many to list here. N/A Character OAG download
Dep.Country.Name | Departing Country Name, country where| See Appendix for table N/A Character Generated from data
the journey (not country) begins. of OAG country names.
Dep.Region.Name Departing Region Name, region where See Appendix for table N/A Character Generated from data
the journey (not country) begins. of OAG region names.
Distance...Km | Distance from departing to arriving Too many to list here. Kilometers Integer OAG download
airport in kilometers.
Journey_type | Leg of journey to which the booking 'Outbound international', N/A Character Generated from data
refers to. 'Inbound international’,
'International domestic',
'Domestic’,
'International other' and
'Other".
Number_connections | Number of connections present in a From 0 to 2 Connections Integer Generated from data
given routing.
Point.of.Origin.Cd  IATA code for the airport from which Too many to list here N/A Character OAG download
the journey begins.
Point.of.Sale...Country | Country from which the booking was See Appendix for table N/A Character OAG download
purchased. of OAG region names.
Routing  List of departing, arriving and connecting Too many to list here N/A Character OAG download
airports visited by a given bookings,
given by their IATA code.
TimeSeries | Time series for a given booking, in Years: '2010' to '2015' Time Character OAG download

month and years.

Months: 'January' to
'December’.

* |ATA codes can be found at: www.iata.org/publications/Pages/code-search.aspx
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Chapter 4 — Airline data validation

Preamble

As well as having a good understanding of the data used, researchers should be encouraged
to validate third hand data against independent and comparable data sets. As far as the
author is aware, such an analysis has not yet been reported, and therefore unlikely to have
been undertaken. This analysis allowed for an understanding of what OAG means when using

the term ‘bookings’ and whether this differs from passenger numbers.
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Abstract

Mathematical modellers are known to use commercial airline data sets in models that help
inform governmental policies. However, their reporting has previously been shown to be
insufficient for replication by other research groups, and is understood not to have been
validated to determine whether any biases or anomalies are present within. A detailed
description of the data set was undertaken in the previous chapter, and the aim of this
chapter was to validate the OAG data against independent data sets and determine how

many passengers were considered for each OAG booking.

Four independent yet comparable and open access data sets were acquired and described in
depth before being used to validate the OAG data. These were from the US Department of
Transport (USDoT), Port Authorities of New York and New Jersey (PANYNJ), Civil Aviation
Authority (CAA) and the Office for National Statistics. Several comparisons were done,

including temporal, ratios and mixed effects regression analyses.

All data sets showed the same seasonal patterns, with most travel seen between July and
September, and the least seen between January and March. When directly comparing the
data sets against each other, the TravelPac and USDoT matched closely with OAG, whereas
the CAA and PANYNJ did not match as well. When determining the number of passengers
considered per booking, the TravelPac and USDoT both showed a value of around one
passenger per booking, whereas the CAA and PANYNJ showed values ranging between one

and three passengers per booking and above.

With each data set used for any analysis, it is important for researchers to have a clear
understanding of what the data represents, especially for expensive data and/or if the
methods are not clearly detailed and easily available. Although there are a wide variety of
data sets available to modellers, different data sets will represent airline travel in a different
way that may not be what the researchers need or should use. Therefore, researchers should
be encouraged to not only report the data they are using to allow accurate reproduction of
their work, but they should also be encouraged to validate it, at least in part, against

independent yet comparable data sets.
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Introduction

Researchers must know what the data they are intending to use represents, and what it
contains, to avoid erroneous conclusions. Therefore, a comparison (or validation) of the
whole or partial data set against another source should be done. However, complications
may arise when undertaking this task and may only provide a partial degree of completeness
and agreement between both data sets, especially if neither is thought to be a gold standard.
Secondary data needs to be correct, however, the level of completeness varies with context

(Emanuelson and Egenvall, 2014).

As was highlighted in the systematic review, validation of the airline data used against a
comparable and independent data set is not frequently performed. A large number of data
sources (n=36 identified) have been used by research groups to build mathematical models
that may in turn be used to inform policy makers about potential importation risks. Some of
these sources are expensive to access and marketed as highly accurate (International Air
Transport Association (IATA) and OAG data services, for example), but their collection
methods are unclear due to commercial sensitivities. Open access data sets are available (US
Department of Transport, UK Civil Aviation Authorities, for example) but have limitations. For
example, data on passengers published by governments will be geographically restrained to
that particular country. Furthermore, temporal resolutions vary between sources, such as
monthly, quarterly or annually. Finally, data sources often have different and incompatible

variables.

There is currently no single data source representing airline passenger traffic that has been
agreed upon by the mathematical modelling community as being the most representative or
best to use. However, the implications of using different data sources can be significant; both
for estimating the risk of disease importation and for correct policy planning. For example,
during the West African Ebola (EBV) outbreak of 2013-15, the United States of America was
not estimated as a country with a high risk of EBV importation according to some research
groups (Bogoch et al., 2015). However, the USA saw the highest number of imported cases
outside of West Africa (EImahdawy et al., 2017). The data used for these analyses only
considered direct flights between the West African countries (Liberia, Sierra Leone and
Guinea) and the United States (Bogoch et al., 2015). Given that these were suspended during
the outbreak (European Centre for Disease Prevention and Control, 2014), using indirect

flights (routings with at least one stop) would have given a more accurate representation of
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the risk of importing Ebola cases. This example highlights the need for consistency between
research groups in terms of which data sets to use by the modelling community, and the
importance of using accurate information. Additionally, researchers should make a clear
description of the data type they are using clear to the reader (whether this is direct or
indirect flights, passenger number or aircraft capacity estimates) as using different data types

may lead to different conclusions from the models.

This chapter aimed to compare open access data sets with the closed access and expensive
Traffic Analyser data set downloaded from OAG between August 2014 and July 2015
(thereafter referred to as OAG). This data set was described in the previous chapter, and will
be directly compared against four independent and open access data sets, from various
sources. This comparison serves as a data validation of the OAG data, and can be considered
a first step in determining a commonly agreed data set for future work in infectious disease

modelling.
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Methods

Describing open access data sets
To assess how the OAG data compares to open access and independent measures of
passenger traffic, it was directly compared to four open access data sets, described in Table
4.1. Two of these data sets (Port Authorities of New York and New Jersey (PANYNJ) and the
United States Department of Transport (USDoT)) represent United States airline passenger
information, with varying levels of detail, whereas the Civil Aviation Authorities (CAA) and
Office for National Statistics represent airline patterns relevant to the United Kingdom (UK).
These two countries were chosen as the United States represents a large portion (22% of
global passengers carried) of global airline traffic (The World Bank, 2017) and the UK is central
to this thesis. The full OAG data was stratified and/or aggregated appropriately to permit a

direct comparison with each data set in turn (Table 4.1).
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Table 4.1: Decription of the data sets used for OAG data validation.

Port Authority of United States
Data New Yorkand New Department of Office for National Civil Aviation
provider! Jersey (PANYN]) Transport Statistics (UK) Authorities (UK)
“Monthlv S . “Origin and “International Air
Data setname ¢ ;;’illzpozlt a‘éggﬁ?;ﬁs Destination survey: ~ “TravelPac” Passen_gf’!’r Route
DB1B Market” Analysis
Date
May 2016 May 2017 August 2015 January 2017
downloaded
Date-range January 2010 to April 2010 to March ~ April 2010 to March February 2010 to May
covered December 2015 20152 20152 2015
Tempo.ral Monthly Quarterly Quarterly Monthly
resolution
Geograp.hlc Airport Airport Country Airport and country
resolution

Data nature
(according to
source)

Data
interpretation
(according to
authors)

Collection
method

Corresponding
0AG data
subset

Comments

Passenger numbers;
domestic and
international;
departure airport
only.

Passenger numbers -
international and
domestic flights,
departing from
specified airports.

Unknown

Passengers departing
specified airports
internationally or
domestically;
unknown trip point of
origin.

One data base divided
into 2: international
and domestic.

Passenger numbers,
domestic only; origin
and destinations
included.

Passenger numbers
within the USA and
territories (Puerto
Rico, Guam, Virgin
Islands, Mariana
Islands and
American Samoa3).

“Origin and
destination survey”

Booking numbers for
routings departing
and arriving within
the USA and
associated
territories; unknown
trip point of origin.

The data represents
a 10% sample of
passengers.

Passenger visits,
international.

Passenger numbers
(UK residents
departing and overseas
residents arriving)
according to country
visited (UK residents)
or of origin (overseas
residents).
“International
Passenger Survey”

UK residents:

Trip originated in UK,
passengers returning
into UK.

Overseas residents:
Trip originated
internationally,
passengers departing
from UK.

Can differentiate
between UK and
overseas residents.

Passenger numbers to
and from reporting
airport pairs.

Passenger numbers -
return trips -
between airport pairs.

“CAA Passenger
survey reports”

Passengers leaving
the UK and returning
from abroad,
combined; trip point
of origin unknown.

No journey leg,
therefore flow
direction unknown.

1 PANYN]J: www.panynj.gov/airports/traffic-statistics.html

USDoT:

www.transtats.bts.gov/Tables.asp?DB ID=125&DB Name=Airline%200rigin%20and%20Destination%20

Survey%20%28DB1B%29&DB Short Name=0rigin%20and%?20Destination%20Survey
ONS: www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/datasets/travelpac

CAA: www.caa.co.uk/Data-and-analysis /UK-aviation-market/Airports/Datasets /UK-airport-data/

2 January 2010 and June 2015 were not available in the OAG data; therefore a full comparison of these two
quarters (quarter 1 2010 and quarter 2 2015) was not possible and download of data done accordingly.

3Guam and the US Virgin Islands are “territories of the United States”; Puerto Rico is a “territory of the US
with commonwealth status”; the Mariana Islands are a “commonwealth in political union with the US”; the

American Samoan islands are “self-governing territory of the US” (Central Intelligence Agency, 2013).
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Port Authorities of New York and New Jersev (PANYN])

Two data sets were downloaded from the PANYNJ website: ‘monthly domestic’ and ‘monthly
international’ passenger numbers, leaving from specific airports, but with no defined
destination. International passenger numbers were available from three airports: John F
Kennedy International (JFK), La Guardia (LGA) and Newark Liberty International (EWR)
Airports. The domestic passenger data also included a fourth airport, Stewart International
(SWF) Airport. No detail was given regarding the passenger’s final destination, any stops in
their journey or where their trip originates from (point of origin), which may be different to

the departing airport.

Therefore, the equivalent OAG subset was selected as bookings departing from the same
airports (JFK, LGA, EWR and SWF), and the arrival country, categorised as ‘USA’ or other. If
the arrival country was selected as ‘USA’, the data were used for the domestic data
comparison; if the destination country was not the USA, the data were used for the

international data comparison.

United States Department of Transport (USDoT)

The data were downloaded from the “Origin and destination survey: Market” database,
containing passenger numbers between a specified origin and destination, at a given annual
quarter. This data represented a 10% sample of the passengers interviewed at airports, but
does not mention the number of interviewed passengers. The geographical extent of the
data included the United States as well as some overseas territories (Table 4.1), however, no
stop over or point of origin airports were recorded. The original data represented a 10%
sample of total passengers in the USA and territories, and were inflated by a factor of ten to

correspond to the OAG booking numbers.

The equivalent OAG data subset was selected as bookings with routings within the USA and
territories, without specifying a point of origin. The monthly data was then aggregated to

match the quarterly time resolution of the American data set.

Office for National Statistics (ONS, UK)

The Office for National Statistics (ONS) collects, analyses and publishes nation-wide statistics
about the United Kingdom’s economy and population (Office for National Statistics, 2017).

The International Passenger Survey (IPS) has been generated by the ONS since 1961, from
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which the quarterly data is derived resulting in the TravelPac data set. The IPS data is derived
from ongoing passenger surveys collected through face-to-face interviews with voluntary
participants at various ports of entry into the UK, by various modes of transport: air, sea or
road. The surveys only represent a small proportion of travellers (0.2% in 2009) travelling
through specific airports (with more than 1 million passengers per year) therefore the
numbers are inflated (by the ONS) using weightings to give national estimates and generate

the TravelPac data set (Office for National Statistics, 2014).

For the purposes of this analysis the data were first restricted to passengers travelling
through airports only (‘air’), and a first comparison of the data was done without considering
visitor’s country of residence. A second analysis was then done by separating UK from

overseas residents.

The OAG data was aggregated to a quarterly time series to match that of TravelPac. Both
equivalent data sets (UK or overseas residents) were then compared for all full quarters
available: Q2 2010 to Q1 2015. The OAG equivalent subset also separated into UK and
overseas residents. Bookings representing UK residents were selected as routings with a
point of origin in the UK, and the UK as the arriving country name, but an international
departing country name. In contrast, bookings representing overseas residents were routings
with point of origin anywhere outside the UK and with a departing country name other than

the UK, but the UK as the destination country.

Civil Aviation Authorities (CAA)

This data set represents the monthly number of passengers who travelled between airport
pairs (one of which in the UK, the other international), between February 2010 and May
2015. This number of passengers represented the flow of returning passengers between
specified airport pairs and included indirect flights. However, the direction of passenger flow
between these airport pairs was not specified. It was unclear how many passengers travelled

from LHR to JFK and from JFK to LHR.

The corresponding OAG data was selected by sub-setting routings departing from the UK and
arriving internationally, as well as bookings arriving in the UK but departing from the same
international airports, both with unknown points of origin. The OAG point of origin could not
be specified as it was unclear from the CAA data whether or not these passengers were UK

residents. These bookings were aggregated by month and collated. The airport names used
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in these data did not match those of the OAG data and no IATA code was assigned to them.
Airport names were first cleaned to match those of OAG. If some CAA airport names were
not specific enough (e.g. “oil rigs”) or no OAG equivalent could be found (e.g. “Lyon(Bron)”)

the passenger counts for the associated airport name were excluded from the data.

Comparison and interpretation of independent and OAG data sets
The OAG data were compared to several open access data sets in several ways. First, a
temporal pattern comparison was undertaken at the finest temporal resolution available,
monthly or quarterly. The total aggregated number of passengers per bookings per month or
quarter was plotted against time. The PANYNJ data had the smallest geographic resolution,
with four airports within 62 miles (100 km) of each other, therefore all airports time

variations were included in the comparison.

After aggregating the number of passenger or visits and bookings to the finest geographic
resolution (airport or country) and not taking the temporal resolution into account, a direct
comparison of the passenger flow was done. This calculation of passenger (or visits) per
bookings ratio gave a first understanding of the number of passenger (or visitors) considered

for each booking per airport or country.

These passenger-per-booking ratios were then aggregated by month or quarter and plotted
against time to determine any seasonal trends. Given the large amount of noise present in
the data, the ratios for USDoT, TravelPac and CAA were restricted to values below 7 (USDoT

and TravelPac) or 10 (CAA), and further restricted to only include specified airports.

Finally, these aggregated ratios were plotted by month or quarter and separated by year.
This allowed to determine any seasonal trends within each ratios and see whether the ratios

are consistent across the year.

For all data sets, except PANYNJ, a selection of countries and airports was also plotted for
extra clarity. These were chosen as the ten busiest UK airports (CAA and USDoT), the ten

countries most visited by UK residents or from which residents arrived from (TravelPac).
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Figure 4.1: Visual representation of each data set used for the validation in comparison with OAG.
Note: the routings are for illustrative purposes only.

103 | Chapter 4



Regression analysis
A random effects negative binomial model was developed to determine the average number
of passengers (from open access data) per OAG booking and whether this varied between
geographic resolution (airport or country level). It was assumed that the passenger number
departing from each airport (y;) was drawn from a negative binomial distribution (with mean
u; and dispersal parameter r), and the relationship modelled with departing passenger
bookings (x;) as a regression model with zero-intercept and a random slope for each
departure airport (f;). The author assumed that the random slopes were normally
distributed around zero with standard deviation T; the slope of the regression could be

interpreted as an estimated mean number of passengers per booking. Specifically,

yi~NB (#ir T)
log(u;) = Bilog(x;)
Bi~N(0,72).

This model was run at both airport and country geographic resolutions, with only positive
values used from the airports data set. All analyses were done using the Ime4 package in R
v3.4.1 (R Core Team, 2017). The 95% confidence intervals were not shown here as the author

was only considering the point estimate of each distribution.
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Results

Correspondence of temporal patterns
There were clear seasonal patterns in all data sets, visits or passenger numbers with peaks in
the months of July and August or Q3, and troughs between the months of November and
February or Q1, in agreement with the OAG data (Figure 4.2). The monthly data sets (PANYN)J
and CAA) showed additional small peaks on or around December. All validation data sets
showed larger numbers of passenger visits than their corresponding OAG counter-part, with

varying proportions.

For the PANYNJ airports, the overall variation in passenger numbers departing internationally
from John F Kennedy International Airport (JFK) was greater than the corresponding number
of OAG bookings (Figure 4.2 A). During the time period considered, the number of passengers
departing (PANYNJ) from EWR closely resembled the number of OAG bookings departing
from JFK. Regarding domestic departures (Figure 4.2 B), the number of passengers leaving
EWR, JFK and La Guardia (LGA) was much larger than the number of OAG bookings leaving
these same airports. Although the number of flights and bookings for EWR were on a much

smaller scale, similar trends to the other airports could be seen.

The USDoT (Figure 4.2 C) recorded more passengers within the USA and territories, than OAG
bookings, with 2,224.2 million passengers and 2,217.4 million bookings. Interestingly, in the
USDoT data comparison, the peaks of passenger and booking numbers were seen in Q2 (April

to June) and not in Q3 (July to September) as was the case in all other data sets.

The TravelPac data set (Figure 4.2 D) also showed larger numbers of visits than OAG
bookings, with important inter-seasonal variations in the number of visits and bookings

recorded (max visits= 23.8 million (2014 Q3), max bookings= 11.4 million (2014 Q3)).

With regards to the CAA data set (Figure 4.2 E), the total passenger numbers between airport
pairs was much larger than the equivalent OAG number of bookings. Additional smaller peaks
were seen in the number of passengers in December of every year but were not discernible

in the equivalent OAG bookings.
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Direct comparison of passenger/visitor numbers against OAG bookings by

geographic resolution

OAG bookings were compared with the passenger or visit numbers from each other data set.
Generally, similar patterns of OAG underestimation were evident in these comparisons,
except for TravelPac and USDoT where the linear trends were in agreement with the OAG

bookings (Figure 4.3).

For the PANYNJ data, more passenger numbers (136.1 million) were reported than OAG
bookings (59.0 million) and specific patterns were seen (Figure 4.3 A and B). For example,
JFK was the main airport used for departing international flights, whereas EWR, JFK and LGA
saw overlapping number of domestic passengers and bookings leaving each airport.
Additionally, for both travel directions, the PANYNJ passenger numbers were larger than the
corresponding OAG bookings for JFK and EWR. However, there was more agreement
between the data sets regarding passengers departing internationally from La Guardia and

Stewart International (SWF) airports.

The USDoT data set also shows a good overall relationship between both data sets, with both
data sets over and under estimating passenger numbers and bookings for varying time points
and airports (Figure 4.3 C). The airports with the largest number of bookings and passengers
were Los Angeles International (LAX) (82.6 million passengers and 81.3 million bookings), Las
Vegas McCarren International (LAS) (74.0 million passengers and 74.6 million bookings) and

Orlando International (MCO) (67.3 million passengers and 66.7 million bookings) airports.

The TravelPac data set showed good agreement with its OAG equivalent bookings
comparison data (Figure 4.3 D). It can be noted that the number of visits and bookings
recorded for Spain from both data sets was much larger than those from any other country,
with important variations ranging from 1.7 million to 5.1 million visits and 1.7 million and 4.8
million bookings. The next most important countries in terms of visits and bookings were the
USA (28.0 million visits and 26.7 million bookings), followed by Germany (19.4 million visits

and 23.8 million bookings) and France (21.9 million visits and 19.1 million bookings).

The direct comparison using CAA passenger numbers (Figure 4.3 E) showed the largest
number of passengers travelled via London Heathrow, followed by London Gatwick and
Manchester airports. Once again, the number of passengers recorded in the CAA data was

larger than the equivalent OAG bookings, with 101.9 million passengers and 341.1 million
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bookings for Heathrow, 60.1 million passengers and 155.1 million bookings for London

Gatwick and 31.0 million passengers and 90.4 million bookings for Manchester airports.

Passenger to booking ratios against time

When comparing the passenger per bookings ratios against time the previously distinct

seasonal trends were not as clear as previously (Figure 4.4).

For the international PANYNJ airports (Figure 4.4 A;), JFK was seen to have a passenger per
booking ratios ranging between 1.92 and 2.51 passengers per bookings, whereas EWR ranged
between 2.32 and 2.99 passengers per booking and LGA between 0.75 and 1.65 passengers
per booking. Overall, these ratios showed an increasing trend over time. For domestic flights
(Figure 4.4 A;), lower ratios ranging between 1.86 and 2.63 were seen for LGA and 1.68 and
2.11 for SWF, whereas JFK and EWR showed ratios ranging between 2.43 and 3.39, and 2.42
and 4.01, respectively. The increasing trend seen in the international ratios was not always

seen in the domestic ratios, with SWF and EWR showing decreasing trends.

When considering the ratios for the other three data sets, seasonal trends were once again
unclear, unless considering the busiest (most passengers and bookings) airports or countries.
As either data set may have had zero or very few passengers, visits or bookings recorded for
specific airports or countries, some ratios were therefore much larger than others (Figure 4.4
B;, C1 and D). The graphs shown here were therefore restricted to ratios smaller than 10

(CAA) or 7 (TravelPac and USDoT) passengers per booking for clarity.

For the USDoT total data set (Figure 4.4 B;), ratio values centred on a value of one passenger
per booking, with no clear seasonal trend. However, when considering the ten busiest
airports (those with the largest combined number of passengers and bookings), all values
ranged between 0.83 and 1.15 passengers per booking. The ten busiest airports selected
were: Los Angeles International (LAX), Las Vegas McCarren (LAS), Orlando International
(MCO), O’Hare International (ORD), Denver International (DEN), Hartsfield—Jackson Atlanta
International (ATL), San Francisco International (SFO), Logan International (BOS), La Guardia
International (LGA) and Dallas-Fort Worth International (DFW) airports. A peak can be seen
in Q4 of 2011 and a trough in Q1 of 2012. From 2011 onward, the ratios of passengers per
booking dropped in Q1 and Q3 of each year. The airport with a consistently high ratio value

was DEN (ranging between 1.01 and 1.15), whereas LGA airport had a consistently low range
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of values (ranging between 0.86 and 1.05), in this selection. Generally, these selected airports

showed similar patterns to each other, peaking in the same quarters.

For the TravelPac data set (Figure 4.4 C;, C), a large variation was seen for the ratio of visits
per booking by country, with the majority of ratio centred around a value of one (mean of
1.48). When looking at the ten most visited countries from the same data set, the ratios range
between 0.66 and 1.68 visits per booking. The ten busiest countries (in terms of combined
visits and bookings) were France, Germany, Greece, Italy, Netherlands, Poland, Portugal,
Republic of Ireland, Spain and USA. Some seasonal trends were seen, especially in visits to
France and Greece, where visitors to France peaked in Q1 of every year and visits to Greece
peaked in Q3 of every year. When considering visits to Spain, which was the country with
largest number of visits (Figure 4.3), the ratio ranged between 0.88 and 1.17 visits per
booking. Additionally, the ratio values for some countries like Germany are always smaller

than 0.90 visits per booking.

When selecting the ten busiest UK airports from CAA (Figure 4.4 D,) (with the largest
combined passenger and booking numbers), the results showed very similar ratio values to
each other, varying between 1.53 and 3.84 passengers per booking. The ten busiest airports
selected were: Heathrow (LHR), Gatwick (LGW), London Stansted (STN), Manchester (MAN),
Luton (LTN), Birmingham (BHX), Bristol (BRS), Edinburgh (EDI), Liverpool (LPL) and East
Midlands (EMA) airports. LHR was seen to have the largest ratios of this selection
(mean=3.35 passengers per booking), closely followed by Manchester (MAN) (mean=2.92
passengers per booking), Birmingham (BHX) (mean=2.83 passengers per booking) and

London Gatwick (LGW) (mean=2.57 passengers per booking) airports.

Monthly aggregated passengers per booking ratio per year

Some seasonal trends were apparent when aggregating each data set by month or quarter,

peaking in July to August or Q3, except for the USDoT which peaked in Q2 (Figure 4.5).

The aggregated ratio values for the PANYNJ data (Figure 4.5 A), showed a mean of 2.06
passengers per booking for the international passengers ranging from 1.67 to 2.32
(international), which was smaller than for the domestic ratios (mean =2.47 passengers per
booking, ranging from 2.18 to 3.03). The seasonal trend was not clear for both subsets,

however both showed lower ratio values for January and February than for the rest of the
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year. For the international passengers, there was a general increasing trend with each year.
When considering the domestic passengers, the ratio values were overall stable from

February onward with a few spikes from June onward in certain years.

From the USDoT monthly aggregated data (Figure 4.5 C), the seasonal patterns previously
seen in Figure 4.4 were not seen here, with ratios peaking in Q2, except for 2012 (peak in
Q4). For every year considered here, there was a trough in Q3, as previously seen. The

average number of passengers per booking was 1.02 and ranged from 0.97 to 1.09.

From the TravelPac aggregated ratios (Figure 4.5 D), a seasonal trend was also determined
from these ratio values, with the highest average ratio values seen between July and
September every year, contrary to the two data sets seen so far. This followed a slow rise
between January-March and April-June. The average ratio values ranged between 0.96 and

1.21 with an average of 1.06.

A clear seasonal trend of monthly ratio values could be seen in the CAA data (Figure 4.5 E)
with the majority of peaks between May and August every year. A sharp rise and drop in
average ratio values was seen on either side of these months with an unusual drop in April
2010. The average ratio values ranged between 1.10 and 1.22 passengers per booking with

an average of 1.16.

TravelPac and USDoT data don’t ask/consider whether passengers are travelling alone or
with at least one other passenger, giving the understanding that there is one passenger per

booking.

Regression results

When aggregating the data by geography, the negative binomial model showed a median
random slope coefficient for all airports of 0.90 and centred around one passenger per
booking, with an average of 6.73 (Figure 4.7 and Table 4.2). With regards to the country level
model, the median slope coefficient was 0.82, with an average of 1.88. The average values
for both data sets were heavily influenced by a number of outliers which had very large slope
coefficients, such as the Concord airport, North Carolina in the United States (IATA code
‘USA’) with a slope coefficient value of 2,913.30 (represented as the point with the highest
slope coefficient value in Figure 4.7A) and Greenland with a slope coefficient value of 54.36.

Additionally, the airport data was heavily influenced by the USDoT data as this represented
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the majority of the observations (77.0%), whereas the CAA and PANYNJ data included fewer

observations (19.0% and 3.9%, respectively).

To better understand the range of values represented in Figure 4.7, the range of slope
coefficient values were divided into quartiles and colour coded accordingly, prior to their
associated airport code mapped (Figure 4.8). From these results, it was apparent that when
considering airport data (Figure 4.7A), the slope coefficient values were centred around one
passenger per booking, with variations seen when considering smaller airports, represented
by the first and fourth quartile groups in Figure 4.8. However, larger airports such as Los
Angeles International and Atlanta showed slope coefficients values closer one passenger per
booking, with 0.91 and 0.90 passengers per booking respectively. The variations in slope
coefficients were likely influenced by the difference in number of passengers and bookings
recorded in the data sets. For example, for the Concord airport, the USDoT recorded 18,130
passengers whereas only three were recorded in the equivalent OAG data. Regarding
Greenland, the OAG data underestimated the number of bookings to 11, whereas TravelPac

recorded 1,123.07 visits.

The collection methods for each data set is likely to influence the slope coefficients, as the
data from the Port Authorities of New York and New Jersey seemed to show the least
dispersion (mean and median passenger per booking are both equal to 1.04) with values
ranging between 0.53 and 1.36 (Table 4.2), even with the smallest number of observations.
However, airports recorded in this data show slope coefficients centred around 2 passengers
per booking, in contrast with data from the US Department of Transport for the same

airports.

On the other hand, data set like the TravelPac and US Department of Transport that have
been collected through passenger interviews (10% of travellers are interviewed) and have
been inflated to national numbers are more likely to be erroneous when inflating small
numbers to national averages. This explains the large discrepancies seen when considering
smaller airports in the network. Therefore, OAG can be considered as representing passenger
numbers rather than bookings and can be taken for face value, even if validation is strongly

encouraged.
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(Figure 4.2 continued)
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Figure 4.2: Correspondence of temporal patterns between open access data sets, namely
(A) PANYNLJ international passengers, (B) PANYNJ domestic passengers, (C) USDoT
passengers, (D) TravelPac visits, (E) CAA passengers and OAG bookings.
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(Figure 4.3 continued)
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Figure 4.3: Direct comparison between open access data sets, namely (A) PANYNJ
international passengers, (B) PANYNJ domestic passengers, (C) USDoT passengers,

(D) TravelPac visits, (E) CAA passengers and OAG bookings, by country or airport.

Note: the red lines represent the line of equality (x=y) and the coloured lines represent the
lines of best fit for each airport or country.
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(Figure 4.4 continued)
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Figure 4.4: Temporal comparison between open access data sets, (A;) namely PANYNJ
international passengers, (A,) PANYNJ domestic passengers, (B,) USDoT passengers with
ratio values below 5, (B,) USDoT passengers for selected airports, (C,) TravelPac visits with
ratio values below 7, (C,) TravelPac visits for selected countries, (D;) CAA passengers with
ratio values below 10, (D,) CAA passengers leaving selected UK airports and OAG bookings.
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(Figure 4.5 continued)
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Figure 4.5: Ratios of monthly or quarterly aggregations of open access data sets per
OAG bookings by year, namely (A) PANYNJ international passengers, (B) PANYNJ
domestic passengers, (C) USDoT passengers (monthly aggregations for ratio values of
5 or less passenger/booking), (D) TravelPac visits, (E) CAA passengers.
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(Figure 4.6 continued)
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Figure 4.6: Results of the linear regression model using each open access data sets, namely (A)
PANYNJ international passengers, (B) PANYNJ domestic passengers, (C) USDoT passengers,
(D) TravelPac visits, (E) CAA passengers and OAG bookings.

Note: the red line indicates the line of equality (x=y).
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(Figue 4.7 continued)
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Figure 4.7: Plots representing the value of the slope coefficients (log scale) for each negative binomial model using (A) airports only (data: CAA, PANYNJ,

USDoT) and (B) countries (data: TravelPac).

Note: the vertical lines and the different colours of points represent the quartiles of the number of airports and countries included in data, respectively.
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(Figure 4.8 continued)
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(Figure 4.8 continued)
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(Figure 4.8 continued)

Quantile group

Figure 4.8: Map representations of the location of airports in the (A) world, (B) United States (C) United Kingdom and of countries (D) with random slope

coefficients colour coded by quartiles: group 1 representing the first quartile (0-25%), group 2 the second quartile (25-50%), group 3 the third quartile
(50-75%) and group 4 the fourth quartile (75-100%).
Note: countries in grey represent the United Kingdom or those without data.
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Table 4.2: Summary results of the negative binomial model by airports (total and by data source) and countries, with the number of observations included
in each model and the mean of the observations within each quartile, as shown in Figure 4.7.

Slope coefficients

Geography

Countries

Airports

Data sets
TravelPac
Total
PANYNJ
CAA

USDoT

1,474
11,415
448
2,173

8,794

Mean
1.88
6.73
1.04
1.32

7.39

Median
0.82
0.90
1.04
0.93

0.97

Min
0.12
0.07
0.53
0.24

0.08

Max
54.36
2,913.30
1.36
10.47

3,088.09

Quartile 1
(mean)

0.49
0.67
0.69
0.61

0.71

Quartile 2
(mean)

0.72
0.87
1.02
0.84

0.94

Quartile 3
(mean)

1.03
0.95
1.23
1.04

1.01

127 |

Quartile 4
(mean)

5.27
24.41
1.31
2.85

26.87
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Discussion

The author compared the OAG data against four independent data sets to determine how
comparable a commercial data set was with open access data. From this detailed comparison
it was possible to determine some similarities and differences between the data sets in the
hope of determining which data set matched the OAG subset closest. The author was also
able to determine that one OAG booking represented on average about one passenger or

visit.

The global airline network had strong seasonal trends with all airports or countries showing
most travel occurred on or around August, or Q3, and the least on or around February, or
Q1. This is a strong reflection of the holiday periods from the northern hemisphere, where
most travel (domestic or international) occurs over the summer holiday period, between July
and August. Airline passengers travelling for tourism are motivated by the need to escape
from home (Jonsson and Devonish, 2008). Destination weather and holiday availability also
played important roles in the trip timing: as shown in the number of trips made to Western
Europe during the summer months (June to September) by UK residents, which is double the

number of trips made across the rest of the year (Tourism Intelligence International, 2010).

Spain and France as destination countries accounted for the largest number of airline
passengers in 2002 (28% of total trips from the UK), and 2004 (Tourism Intelligence
International, 2010), and this is reflected in the TravelPac data. As discussed in Chapter 3,
the USA was the non-EU country from which most international travel to the UK arrived from
and accounted for 3.3 million visits in 2015 (Office for National Statistics, 2016; Tourism

Intelligence International, 2010).

Similarly to American business travel, business passengers travelling to or from the UK are
more likely to travel alone (88% of UK residents travelling for business via Heathrow travel
alone). These passengers are also more likely to travel to specific airports such as London City
given its proximity to London’s financial district (Civil Aviation Authorities, 2011). Although
business travel accounts for a smaller percentage (10%) of purpose of travel than leisure
(53%) (US Department of Transport - Bureau of Transportation Statistics, 2015) this purpose
of travel may be influencing travel patterns, and transmission of pathogens. It has been
shown that passengers travelling for leisure or business will face different infection risks. For
example, business travellers have been reported as high risk for sexually transmitted diseases

and vaccine preventable diseases (Chen et al., 2018), whereas passengers travelling for
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tourism were at high risk of diarrhoeal disease (Gautret et al., 2012). Additionally, duration
of stay will impact a passenger travelling for leisure’s risk of vector borne diseases and
diagnosis upon return, with short stays associated with vector borne infection (malaria or
dengue for example) or disease, whereas extended travel periods will be linked to

tuberculosis infection (Gautret et al., 2012).

When considering using airline passenger data, the importance of knowing what the data
contains and its structure cannot be stressed enough. During the comparison between the
open access data sets and OAG, some differences became apparent, as previously described.
When comparing the inter-monthly variations, for all data sets there was more agreement
with OAG during the start and end of the year than during the middle of the year, except for
the USDoT where there was more agreement in July to September than April to June and
October to December. These graphs showed that during the time periods with most

passengers, visits or bookings, there was least agreement between the data sets.

When directly comparing data sets against one another, some large variations could be seen
in terms of temporal corresponding data and passengers per booking ratios, with some data
sets showing more important variations than others. There was also a large amount of noise
within the data themselves. For example, when considering the ratios of passengers per
bookings, some airports datasets showed better agreement with OAG (USDoT for example)
than others (CAA for example). However, for those data sets with many airports or countries
included, a large amount of noise was present. From the negative binomial model, the overall
data aggregation by geography was of roughly one airline passenger per booking with
important variations present when considering smaller and isolated airports. Data collection
methods are likely to play a role in these discrepancies as inflating survey samples to national
averages when a small number of passenger travel may lead to over-estimated numbers of
passengers travelling. However, passenger purpose of travel is also likely to be impactful,
especially for large airports such as London Heathrow and New York John F Kennedy. Given
these results, it was not deemed advisable to adjust the OAG data to reflect a preconceived

understanding that bookings did not represent true passenger numbers.

In conclusion, when using secondary data to model airline passenger movements, the USDoT
and TravelPac are two open access data sets with the best agreement with OAG. Although
these are freely accessible, they have a number of drawbacks, including the temporal
resolution (quarterly rather than monthly) and geographic (Travelpac being in countries

rather than airports; USDoT only considering US domestic travel). The author therefore
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recommends undertaking one’s own comparison analysis against at least one open access
data source before undertaking any modelling, to determine the completeness of the data
and therefore how appropriate it is for the model considered. However, researchers must be
aware of the variations present when directly comparing airports or countries to OAG.
Indeed, the passenger numbers linked to some airports and countries have been over or
under estimated by OAG, especially in remote locations such as Greenland and Sumburg
(UK). However, when undertaking a more appropriate comparison in terms of data size, by
combining data from several airports, even from different sources, the overall number of
passengers per booking averages to just below one. This can be rounded up to one passenger
per booking to have a resulting integer, which is more realistic when considering that the

data represents people.
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Chapter 5 — Region-specific risk of chikungunya and dengue
infection among travellers returning to the United Kingdom

Preamble

Using a subset of the OAG airline data and unique laboratory confirmed anonymised patient
data from Public Health England, it was possible to determine which countries posed the
highest risk for airline passengers travelling from the United Kingdom. As far as the author is
aware, this analysis had not previously been attempted for the United Kingdom regarding
chikungunya and dengue specifically nor have studies focused on within-country specific risks

for travellers compared to local populations.
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Abstract

Assessing the public health risks posed by international travel is an important aspect of
planning for novel and emerging infectious diseases (NEID), as airline passengers play a key
role in their large-scale spread. Here, the author estimated the relative risk of infection by
two different vector-borne viral pathogens (chikungunya and dengue viruses) among

travellers returning to the United Kingdom (UK), relative to the residents of the region visited.

Information relating to returning UK travellers diagnosed with dengue or chikungunya was
used in combination with contemporary passenger itinerary information. Incidence records
for countries visited were gathered to estimate country-specific prevalence. The annual
number of UK patients was modelled as a function of within origin-country prevalence and
the number of passenger bookings returning from the country to the UK. Region-level effects

were fitted to chikungunya and dengue data independently.

After accounting for annual variation in country-specific prevalence, we found several
regions where there was a significant difference in the risk of infection relative to the resident
population. For both diseases, the relative risk of infection for UK travellers was lowest in the
Upper South America compared to the local population. Other regions such as Africa Central
(for dengue) and Asia South (for chikungunya) showed point estimates of relative risk

suggesting UK visitors were at higher risk than residents.

While effects resulting from systematic reporting biases cannot be excluded, regional-level
similarities for two biologically distinct infections suggests our analysis may provide insight
into which regions pose varying levels of risk. The author anticipates this information to be
useful in parameterising future models of importation risks for vector-borne diseases carried

by similar vectors.
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Introduction

Every year, vector borne diseases (VBD) cause one billion deaths globally and represent 17%
of all infectious diseases cases internationally (World Health Organization, 2017g). Caused by
blood-feeding arthropods (including mosquitoes, sand flies and ticks), VBDs affect both rich
and poor populations (Centers for Disease Control and Prevention, 2014). Their geographical
location and spread has previously been linked to trade, as shown with the international
spread of Aedes albopictus mosquitoes, a direct result of the global tyre trade (Tatem et al.,
2006b). Airline travel has also been linked to the global spread of VBDs by transporting
vectors (Tatem et al., 2006b), and infected humans, as was the case in the 2007 chikungunya
outbreak in Italy, linked to the return of an infected traveller from India (Angelini R et al.,

2007).

Two examples of VBDs are dengue and chikungunya fevers, which will be the main focus of
this analysis because of their public health importance and risk of global spread. The dengue
virus (family Flaviviridae, genus Flavivirus) is mainly transmitted by Aedes (Ae) aegypti
mosquitoes, and also to a lesser extent Ae albopictus in the Americas and Europe (World
Health Organization, 2014). Although dengue fever is the main cause of childhood
hospitalisation in South East Asia, up to 70% of patients do not seek medical treatment,
limiting the understanding of the true global burden (Stanaway, 2016). According to World
Health Organization (2014), over 40% of the global population (2.5 billion people) lives in
areas with a risk of dengue infection, mainly in tropical and urban areas. Dengue infections
range from a febrile to haemorrhagic disease with a case fatality rate ranging from 3% to 12%
(European Centre for Disease Prevention and Control, 2012). Following an incubation period
of four to ten days, symptoms last for up to one week with a high fever, severe headache and
nausea. No specific treatment was currently available at time of writing but a vaccine
developed by Sanofi Pasteur was registered in early 2016 in several countries (World Health

Organization, 2016a).

Historically, chikungunya (family Togaviridae, genus Alphavirus) caused small outbreaks in
rural communities in Africa and Asia. Cases of chikungunya fever have been recorded in
Europe, most notably in Italy in 2007 (Rezza et al., 2007) and autochthonous transmissions
have been recorded in Southern France (Grandadam et al., 2011). The geographical spread
of chikungunya is similar to that of dengue, and the first local transmission in the Americas

was reported in Saint Martin in late 2013, starting an outbreak affecting 44 countries (Furuya-
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Kanamori et al., 2016). An estimated 1.3 billion people live in at risk areas for chikungunya
infection, with countries also reporting co-infections with dengue as both diseases are
transmitted by the same vectors (Nsoesie, 2016; European Centre for Disease Prevention and
Control, 2012). Following a three to seven day incubation period, symptoms ranging from
mild/non-existent to severe illness with high fever and joint pain will appear, usually lasting
for days (Public Health England, 2014). Although fatalities are rare, the patient’s quality of
life can be impaired for months or years with the very young and elderly most at risk of

complications (Pan American Health Organization, 2011; Nsoesie, 2016).

Destination and purpose of travel, as well as behaviour while abroad play important roles in
a traveller’s risk of infection (Vilkman et al., 2016). Tourists sleeping in accommodation with
good hygiene and air conditioning, and having visited a travel clinic before travel are at lower
risk of catching a VBD while travelling to endemic areas. Conversely, those traveling to visit
friends and relatives (VFR) or backpacking are more likely to visit rural environments and
therefore at greater risk of VBD (World Health Organization, 2012; World Health
Organization, 2001). Travel health professionals often tailor their advice on protection
measures based on the travel destination and disease epidemiology; this is in turn informed
by World Health Organization (WHO) member states, obliged to alert the global community

about potential health threats (Schlangenhauf, 2011).

In May 2015, Zika virus, another VBD carried by Aedes mosquitoes, was identified in the
Americas, specifically Brazil, for the first time. A causal link between Zika virus and
neurological disorders such as microcephaly in new-borns and Guillain-Barré syndrome in
adults has since been established (World Health Organization, 2016a). Zika rapidly spread
throughout the American continent, but travellers have also transported Zika to

geographically distant countries such as Cape Verde (Bogoch et al., 2016).

The aim of this analysis was to determine whether UK travellers were at varying relative risk
of VBD infection when travelling abroad compared to local populations in endemic areas, by
bringing together patient travel data, airline passenger booking data and passenger duration
of travel per country information. This analysis will focus on chikungunya and dengue and

may also be applicable to Zika.
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Methods

Data on confirmed cases imported into the UK
Information on dengue and chikungunya cases presenting to UK clinics with laboratory-
confirmed infection were provided by Public Health England (PHE). Case records were
collected from the UK for both diseases. Case specific information included month of
laboratory confirmed diagnosis, age group, sex, and recent international travel, including
travel destination (countries and/or regions). The data contained information on cases with
laboratory confirmed infection between January 2009 and December 2014 inclusive,
overlapping the time period for which international airline traveller data was available. The
case records were restricted to February 2010 to December 2014, to match the airline data,
giving a total of 385 chikungunya and 1,562 dengue cases. Where the destination region
name was provided but not the destination country (“Borneo” or “Caribbean”, for example),
an appropriate region name was assigned. For the purposes of this analysis, ‘region’ will refer
to a group of neighbouring countries, chosen at the discretion of the authors, allowing for
model fitting (see below). Surveillance of chikungunya is passively done in the UK, so the
travel history available is that reported by the point of care clinician (Public Health England,
2015). After anonymization and cleaning the data, cases with missing or no recent
international travel history were excluded from the analysis, as were cases without valid
travel destination information for which no region could be assigned. Cases with multiple
assigned destination regions were resampled, and randomly assigned to only one of the
regions, multiple times, by bootstrapping. Thus, for each bootstrap sample of case data the
region in which infection occurred was imputed for all cases. However, a number of cases
(n=4 chikungunya and n=59 dengue) had travelled to countries belonging to more than one
region and were therefore ignored in the analysis as these observations could not be fitted
using the model described below. The model could only be run at the regional and annual
level, as the limited number of observations available for each country and year did not allow
us to fit a model at the country level and the endemic incidence data was only available at
the annual level. This data set did not include duration of travel, so this information was
imputed from the Office for National Statistics’ TravelPac dataset described in Chapter 4. The
data were first restricted to only include “air” travellers who were “UK residents” returning
from a trip abroad. The duration of travel was categorised as: “Nil stay”, “1-3 nights”, “4-13

nights”, “14-27 nights”, “28-90 nights”, “3-6 months”, “6 months — year” and “Stay not
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known”, therefore, the number of nights spent in each country and duration of travel were

imputed using a uniform distribution.

Traveller data
Monthly airline booking data, from February 2010 to May 2015 inclusive, were extracted
from the ‘Traffic Analyser’ database of OAG (OAG, 2016c) previously described. Only
itineraries with a destination airport within the UK, an origin airport belonging to countries
present in the cases data, and a point of origin airport within the UK were included. Thus, the
traveller data represents the number of passenger bookings relating to return travel to the
UK from international countries. Monthly bookings were aggregated to annual, country and
regional levels before matching the region names from the traveller data to those in the case

data regions. Finally, it was assumed that one booking represented one passenger.

Incidence and population data
For each country visited by cases, the annual population size, as well as the number of cases
and deaths for both chikungunya and dengue was collected from a range of online open-data
sources (Table 5.2). Records of annual indigenous incidence of dengue and chikungunya
infection were collated from the World Health Organization’s regional office websites. If the
data was unavailable from any WHO regional office websites, the author attempted to
identify governmental data sources, where possible. A time restriction of data collected was
assigned (2010 to 2014) to match the period of the case and airline data. Annual country
population sizes between 2010 and 2014 was collated from the World Bank website or if
unavailable, from official governmental data sources for that country. For this analysis,
countries were grouped by geography into regions, to permit a greater number of
observations per regions than would be available at the country level. Countries were

grouped by the author according to their close geographic location and climate similarities.

Statistical analysis
Each country may be given a subscript i and be allocated to a region j. We modelled the
number of infected passengers (y;¢) arriving into the UK from country i in year t as a binomial
random variable given the total number of airline bookings arriving (F;;) from country i in

year t, where:
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Yije~Binomial(pyj¢, Fye) Equation 1

and p;j; is the prevalence of infected individuals among the passengers, noting that this

probability is region specific. Furthermore, as p;j; is small it was assumed:
Pije =1 - exp(—{j * Ty¢) Equation 2

where 1;; is the within-country prevalence of infection, and {; is a region-specific parameter,
which captures variation in surveillance accuracy, travel behaviour related to exposure risk,
and other unobserved between-region heterogeneity. For a specific region we may drop the
Jj subscript such that { therefore relates the prevalence of disease in travellers to that of the
resident population of the given region: values of 1 indicate that disease prevalence in
travellers is the same as that of the resident population. The corresponding likelihood

function in this situation is given by:

L({;m F,y) = H(Cnit)y” 1_[(1 — {my)Ficvie Equation 3
i€jt iejt
The approach taken here is knowingly an approximation of a complex system, and strikes a
balance between data availability and model parsimony. Maximum likelihood estimates for
¢ were obtained for each region using the Brent optimisation within R’s optim() routine (R

Core Team, 2017), with asymptotic confidence intervals derived from the Hessian matrix.

A second model was run to include the duration of travel for passengers to each country,
imputed from TravelPac data. Only the year 2010 only was used, as this had the largest
number of observations and we assumed that duration of travel stayed constant throughout

each year and between years. As the incidence of both diseases was small, it was assumed:

d;
P{jtd =1-—exp <—(j * Tt * (ﬁ ) Equation 4

p{jtdwas used as described previously to run the same model even when duration of travel
was included, with d; the duration of travel in days imputed from TravelPac data, m;; is the
within-country prevalence of infection and {; is a region-specific parameter. We assumed
that the duration of travel per country did not change depending on the time of year as
seasonality was not included in the model. Similarly, the likelihood function for the model

including duration of travel was:
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v@mEyd = | |Greae | - dmearee Equation 5

iEj,t L€j,t

With the Maximum likelihood ({) for each region were estimated using the same

optimisation method described for Equation 3.

Finally, the absolute risk per country was also calculated by dividing the number of imported

cases from each country by the number of corresponding returning passengers.

Results

Data description

Countries and regions visited

From the 432 chikungunya cases recorded in the United Kingdom between February 2010
and December 2014, 19 (4%) had no associated travel history and were excluded from the
analysis. A further 30 (7%) had no destination, clear country or region stated, and were also
excluded. An additional two cases were excluded as they had travelled to two distinct regions
and did not fit into the regional model, therefore a total of 382 cases remained and were
included in the model. Of the 1,941 dengue cases reported between February 2010 and
December 2014, only one dengue case reported not having travelled, and 367 (19%) cases
were recorded as “not stated” in the travel field, and therefore excluded. From the 1,573
cases remaining, 19 reported a region name from which no country or region could be
assigned (‘Latin America’ for example which is not politically recognised) and were also
excluded. A total of 49 (3%) cases had travelled to countries belonging to more than one
region, and did not fit the regional model so were also excluded, leaving 1,505 dengue cases

included in the model.

The total number of cases that travelled to each region was highlighted in Figure 5.1. Jamaica
was the most visited country by chikungunya cases, with all visits (n=90, 24%) occurring in
2014, and India (n=89, 23%) was the second most visited country by chikungunya cases,
across all years available. For dengue, India and Thailand were the most visited countries with
n=362 (24%) and n=361 (24%) cases, respectively. The majority of chikungunya cases had
visited Caribbean countries (n=219, 57%). However, the majority of dengue cases (n=784,

52%) travelled to South East Asia (especially Thailand), followed by South Asia (especially
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India) (n=578, 48%). The UK saw a total of 23 dengue imported cases from Western Europe

(specifically Madeira, Portugal), and only in 2012.

There was an overall increasing and seasonal trend in the number of both chikungunya and
dengue cases seen, with dengue cases peaking on or around August and chikungunya cases
peaking around November each year (Figure 5.2 A). Although the number of chikungunya
cases remained lower than those of dengue before 2014 (up to 19 chikungunya cases per
month), a sharp rise can be seen from June 2014 onward (n=275 in 2014 alone compared to
n=160 between 2010 and 2013), which was not seen in previous years. The total number of
imported cases by month showed no strong correlation with the airline passenger numbers

according to country and time series (Figure 5.2 A).

The variation of age distribution of cases differed according to disease (Figure 5.2 B), with
the majority of dengue cases recorded in the 20-24 age group (n=238, 15%) and the majority
of chikungunya cases in the 35-39 age group (n=55, 14%). However, when breaking down
each age group by sex, the majority of cases diagnosed with chikungunya virus were female
(n=245, 58%) and between 55 and 59 years old (n=35). Fewer males were diagnosed with
chikungunya (n=175, 42%). With regards to dengue cases, the majority were male (n=860,
55%) and aged between 30 and 34 years old (n=113). Of the female cases (n=686) the 20 to

24 age group was most represented (n=110).
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Disease

L -

Figure 5.1: Map of countries visited by cases diagnosed with chikungunya and dengue after international travel between 2010 and 2014 grouped by region (see
Table 5.2). Note: the Portuguese island of Madeira was included in the West Africa region, due to geographical proximity.
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(Figure 5.2 continues on next page)

141| Chapter 5



(Figure 5.2 continued)
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Figure 5.2: (A) Time distribution of international travel-associated chikungunya and dengue cases reported in the United Kingdom, with the black line showing
the number of bookings returning from visited countries; (B) age distribution of chikungunya and dengue cases reported in the United Kingdom.
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Results from model fitting
The model was run at an annual and regional level for each disease to determine the relative
risk of travellers becoming infected within each region, compared to the local populations.
By aggregating countries to the regional level, the model worked more effectively, by
overcoming the problem of some countries having very few observations, and therefore the

model not fitting (data not shown).

When not considering duration of travel, travellers visiting the Caribbean were at a reduced
relative risk of becoming infected with either disease compared to the local populations
(Figure 5.3 A; coefficients in Table 5.1). Additionally, regions such as Upper South America,
Central America and South East Asia also represented a reduced relative risk for UK travellers
of becoming infected with dengue compared to the local populations (coefficients in Table
5.1). Travellers to North America were at a significantly increased relative risk of chikungunya
infection compared to the local population. Lastly, regions such as Central Africa, North
America and Lower South America also posed a higher relative risk for UK visitors of

becoming infected with dengue.

In contrast, when duration of travel was included in the model, some variations were seen
relative to the level of risk encountered by travellers compared to local populations (Figure
5.3B, Table 5.1). When comparing the overall risks for each disease, the average risk of
infection with chikungunya was estimated at 4.09e**® and 1.18e**! with and without
considering duration of travel, respectively. When considering the risk of infection with

dengue, the average risks were 21.86 and 2.034e*%®

with and without considering duration
of travel. These averages showed a protective effect when including duration of travel in the
model. When considering global regions, passengers travelling to the same regions as earlier
(Caribbean, Upper South America and Central America) also faced a reduced risk compared
to local populations. On the other hand, for regions such as Southwest Pacific, Asia South and
Asia South East, travellers were at increased risk of infection with chikungunya, whereas
Africa central and Asia South were riskiest regarding dengue infection, compared to local

populations. From this comparison, it was clear that including purpose of travel to the model

had an impact on the level of risk faced by UK travellers compared to local populations.

Overall, the absolute risk for UK travellers was low (Figures 5.4 and 5.5), with visited country
mean of 5.16e® (confidence intervals ranging between 4.92e® and 5.41e®) and region
mean of 5.17e® (confidence intervals of 4.62e and 1.02e*). Tonga (South West Pacific)

posed the highest risk for chikungunya (0.0081, 95% CI 0.00021 and 0.044) whereas
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Guadeloupe (Caribbean) posed the highest absolute risk for dengue (0.0045, 95% CI 0.0012
and 0.011). It must be noted that the total number of airline bookings for each country over
the time period considered was small (123 for Tonga and 891 for Guadeloupe) (Guadeloupe
is a French region but was considered as a country for the purposes of this analysis).
Variations were also seen between regions according to disease: the Caribbean posed the
highest absolute risk for chikungunya but not for dengue (4.49e % for chikungunya with 95%
Cl 3.90e% and 5.13e%; 8.68e™® for dengue and 95% Cl 7.50e® and 1.00e*). On the other
hand, South East Asia saw the highest absolute risk for dengue but not for chikungunya:

1.13e for dengue (95% Cl 1.04e % and 1.24e*) and 2.05e™® (95% Cl 1.38e and 2.95e%).
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(Figure 5.3 continues on next page)
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(Figure 5.3 continued)
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Figure 5.3: (A) Not considering duration of travel, regional relative risk (of infection prevalence for airline passengers relative to within-country population) model results and
(B) considering duration of travel, regional relative risk (of infection prevalence for airline passengers relative to within-country population) model results; both for returning
cases of chikungunya and dengue virus cases, with 95% confidence intervals surrounding each point.

Note: some values were so large (see Table 5.1) so the log scale was used for clarity. The vertical line represents the line of equality (travellers are at equal risk to the local
population).
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Table 5.1: Table of coefficient results (£ in equation 2), standard error, absolute risk values and confidence intervals (95%) for each region,

disease and whether duration of travel was included. The absolute risk was calculated as the number of imported cases divided by the number
of returning travellers, for the given region.
Note: four regions (Africa South (Chikungunya and Dengue) and Middle East (Dengue)) were included in the absolute risk calculations but in

the relative risk, as their endemic

prevalence could not be determined.

No duration included

Duration included

Region name
Africa: Central

Asia: South
Asia: South East
Caribbean

North America

Southwest
Pacific
Upper South
America

Africa: Central
Africa: Western
Asia: North East

Asia: South

Virus name
Chikungunya
Chikungunya
Chikungunya
Chikungunya
Chikungunya
Chikungunya
Chikungunya

Dengue
Dengue
Dengue

Dengue

Relative
risk
2.83
3.10
1.27
1.05

8.28e+31

4.72

1.86

1.20e+02
2.69
4.26
1.23

SE
1.33

1.12
1.26
1.07
1.42

1.41

1.22

1.11
1.07
1.44
1.05

95% CI
1.62 -4.92

2.47 -3.89
8.02e01-2.00
9.14e01-1.21

4.17e+31 - 1.64e+32

2,42 -9.20

1.26-2.73

9.71e+01 - 1.47e+02
2.36-3.08
2.10-8.66
1.12-1.34

Relative
risk
1.33

2.84e+04
7.85
2.57

1.50e+02

40.56

5.20

1.92e+02
7.69
2.32
5.87

SE
5.28

1.13

1.29

1.07
452.60

1.92

1.41

1.37
1.20
6.18
1.05

95% CI
5.08e-02 - 3.46e+01

2.24e*% - 3,60e*
4.77-12.90
2.24 -2.96

9.32e04 - 2.40e+07

1.13e+01 - 1.46e+02

2.64 - 1.02e+01

1.04e+02 - 3.53¢+02
5.37 - 1.10e+01
6.54e02 - 8.25¢+01
5.36 - 6.44

Absolute
risk
4.43e05
1.99¢e-05
2.05e-05
4.49e-04

3.10e07

5.66¢-06

3.13e04

2.51e05
2.09e-05
4.54¢-06
7.75e-05

95% CI
1.63e05-9.64e05

1.58e-05 - 2.49¢-05
1.38e-05- 2.95e05
3.90e04 - 5.13e04
7.86e-09 - 1.73e-06

6.85e-07 - 2.04e-05

1.50e-04- 5.76e-04

1.79e-05 - 3.44e-05
1.49e-05 - 2.86e-05
1.15e-07 - 2.53e05
7.07e-05- 8.47e05

(Table 5.1 continues on next page)
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(Table 5.1 continued)

No duration included

Duration included

Virus Relative SE Relative Absolute

Region name | name risk 95% CI risk SE 95% CI risk 95% CI
Asia: South East | Dengue 1.10 1.04 1.02-1.19 2.27 1.05 2.09-2.48 1.13e-04 1.04e04- 1.24e-04
Caribbean | Dengue 1.03 1.07 9.11e01-1.17 1.57 1.08 1.36-1.82 8.68e05 7.50e95- 1.00e-04
Central America | Dengue 1.08 1.10 8.85e01-1.31 1.33 1.20 | 9.35e01-1.89 4.32e05 2.85e05- 6.29e05
Lower South America | Dengue 7.31e+03 1.13 | 5.77e+03-9.27e+03 13.75 2.27 | 2.77 - 6.83e+01 4.05e-05 1.03e06- 2.26e04
North America | Dengue 2.24e+09 1.06 | 2.00e*09-2.51e+09 11.59 2.29 | 2.29 - 5.88e+01 2.98e07 7.54e09-1.66e06
Southwest Pacific | Dengue 1.94 1.08 1.66 - 2.28 1.26 1.50 | 5.71e01-2.79 1.10e-05 4.77e06-2.17e05
Upper South America | Dengue 1.04 1.10 8.61e01-1.26 1.25 1.13 | 9.84e01-1.58 1.04e-04 8.03e05- 1.32¢-04
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Figure 5.4: Absolute risk (imported cases / returning passengers) per country visited by chikungunya and dengue
cases reported to PHE, restricted to the ten countries with the highest and lowest absolute risk values.
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Figure 5.5: Absolulte risk (imported cases/returning passengers) per region (grouped neighbouring countries) visited by
chikungunya and dengue cases reported to PHE.
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Discussion

The annual number of chikungunya and dengue cases imported into the United Kingdom for
the period ranging 2010 to 2014 was modelled as a function of the number of travellers and

the known prevalence of each disease in the visited regions.

The results showed a seasonal and increasing trend in the number of detected cases
imported in the UK from international travel. The largest number of imports occurred
between August and November each year, whereas February saw the smallest number of
imported cases. This trend reflects the seasonal patterns of both diseases in countries and
regions in the Northern hemisphere (Johansson, 2015; San Martin et al., 2010). The
importation trend does not closely follow the number of airline bookings returning to the UK.
Additionally, the structure of the age pyramid showed that younger age groups were more
affected by dengue whereas older age groups by chikungunya, with the exception of the 35-

39 year olds for chikungunya.

Understanding the passenger’s demographic characteristics provides insights into their
exposure risks. In the data shown here, there is a notable difference in the number of cases
recorded for each disease when grouped by sex. Of the chikungunya cases, more females
(58%) than males (42%) were diagnosed, whereas more male cases (55%) than female cases
(44%) were diagnosed with dengue (with a small number of ‘unknown’ in this variable).
Variations in the age groups affected by either disease were seen, with chikungunya affecting

older generations (55-59 years old) and dengue younger generations (30-34 years).

The patterns were broadly consistent between regional-scale relative risk (regional
coefficients) of infection for both diseases, and a range of regional-level coefficients. Regions
where UK travellers had a lower relative risk of infection compared to the local populations,
without considering duration of travel, were the Caribbean for both diseases and Upper
South America for dengue only. However, regions such as Africa Central and Lower South
America posed a higher relative risk to UK travellers relative to Caribbean with point
estimates of relative risk suggestive of UK travellers being at higher relative risk than the local
populations for dengue. It is worth noting that without considering duration of travel, North
America and Southwest Pacific countries were associated with an increased risk of
chikungunya virus infection in travellers compared to the local population, relative to the
Caribbean. It must be remembered that Chikungunya was not present in the Americas before

late 2013 and therefore the local population was in a naive state of immunity. However, UK
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passengers to South East Asia were likely to have been at a reduced risk due to their within-
country behaviour, affecting their exposure risk, which could not be modelled. The variations
in disease reporting varied greatly by country and region and are likely to have influenced

their relative risks.

Although not present in the original data, the impact of duration of travel on relative risk was
modelled using imputed third-party data from the UK’s Office for National Statistics.
Including this data showed an overall protective effect by a factor of ten (1.60e** compared
to 4.60e**°) for passengers to all regions, with variations when considering each region in
turn. For example, duration of travel showed a protective effect on chikungunya infection for
passengers travelling to North America and Africa Central, but the opposite was true for
passengers travelling to Southwest Pacific and Asia South. Regarding dengue infections,
considering duration of travel had a protective effect for passengers travelling to Lower South
America and Southwest Pacific but the opposite effect for those travelling to the Caribbean
and Asia South East. The reasoning behind these variations was unclear, especially as these
pathogens are transmitted by the same vectors. It is likely that these variations are a result
of within-country behaviour and how much information and information passengers receive
prior to travel, impacting their behaviour and whether precautions were taken prior or during

travel.

The overall absolute risk encountered by UK passengers was low and in good agreement
between diseases, except for a number of countries and regions, such as Guadeloupe and
the Caribbean. In terms of airline bookings returning to the UK with chikungunya, the highest
proportion returned from the Caribbean, especially the Guadeloupe, and those with dengue
from South East Asia, especially Laos. However, the number of airline bookings to these

regions and countries were relatively small.

Even though the largest number of cases in the data was reported from the Caribbean and
South East Asia for chikungunya and dengue respectively, UK passengers travelling to these
two regions were at reduced relative risk of infection compared to local populations,
according to our model, before including duration of travel. Once duration was included, the
Caribbean remained a safe destination in terms of dengue infection whereas South East Asia
was a risky destination for chikungunya. On the other hand, countries in Upper South
America were visited less frequently by chikungunya cases but presented a higher relative
risk for travellers. The trend reflects the introduction of chikungunya in the Americas in

December 2013, starting a large outbreak which affected over 43 countries, and caused a
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reported 1.4 million cases and 191 deaths (World Health Organization, 2017a). In the time
period covered by this cases data set, a dengue outbreak was seen in the Portuguese island
of Madeira in 2012, with a total of 23 known imported cases in the UK (European Centre for
Disease Prevention and Control, 2013). Other large dengue outbreaks have not been

recorded in Europe to this scale and/or during this time period.

The model developed here shows a good agreement between the regions with known
outbreaks between 2010 and 2014, and their relative risk posed to UK travellers, even with
known limitations. Regions affected by dengue outbreaks over the time period considered
included South East Asia, Pacific Islands, Central America as well as Florida (United States)
and China (World Health Organization, 2016a). However, regional results showed very large
confidence intervals, which may be a result of localised outbreaks occurring within the
associated countries, or little information available from the endemic countries. Indeed, the
island of Madeira (Portugal, Western Africa for the purposes of this analysis) and the Yunnan
region (China, North East Asia) saw localised dengue outbreaks, affecting a small percentage
of the populations respectively (World Health Organization, 2016a). North America is very
likely to have been impacted by the outbreaks seen in the rest of the continent, also affecting
the size of its confidence intervals. However, India (South Asia) reported a large number of
cases of chikungunya between 2010 and 2014 (ranging between 12,700 and 20,400 cases per
year), across the country (Government of India, 2015). Such numbers are likely to have an
impact on the model regional results. The variation in relative risks between both diseases
for some regions such as Asia South and Central America, is likely to be a result of the varying
levels of reporting for either disease. Indeed, as previously mentioned, chikungunya
reporting is done less frequently than dengue in many countries, making estimating the level
of endemic disease difficult. Finally, the countries visited by zika cases diagnosed by PHE
(2014 to 2016 included) overlap the regions visited by dengue and chikungunya cases, further

strengthening the need to develop a model suitable for all three VBDs.

Even if travellers are at reduced relative risk compared to local populations, personal
protection must still be effectively taken to avoid illness. International travel advice providers
such as NaTHNaC (travelhealthpro.org.uk) and the Centres for Disease Control and
Prevention (wwwnc.cdc.gov/travel) both provide useful information to travellers regarding
known countries at risk and prevention methods on a range of diseases that can be easily
accessed. This information has implications in educating public health and point of care
clinicians about pre-travel health advice, including information regarding personal protection

methods, and post-travel infection treatment options in returning passengers.
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Limitations
A number of limitations were known to the author when analysing this data, regarding both

the data and the model.

Firstly, the relative risks of the two VBDs described here, at a specific travel destination may
be difficult to determine, as the global burden of chikungunya and dengue can only be
estimated based on the data freely available and are sometimes lacking in some countries
where the exposure risk may be high (Nsoesie, 2016; World Health Organization, 2016a).
Precisely determining the global burden of chikungunya is difficult given the varying levels of
reporting provided by national and international health agencies (Nsoesie, 2016). These
levels of reporting are also likely to change during the course of an epidemic, with suspected
cases being reported at the start of an outbreak, followed by confirmed cases. This may give
a false sense that cases numbers are decreasing when it is not the case. The model developed
by Nsoesie (2016) suggests that 1.3 billion people live in areas at risk of chikungunya
infection, whereas the WHO does not provide a global account of people living in at risk areas
(Nsoesie, 2016). Even with such high numbers, chikungunya is an under-estimated and
under-recognised problem globally, but especially in Africa, given the low mortality rates and
misdiagnosis with dengue (Nsoesie, 2016). Although a potentially more severe disease given
the possibility of haemorrhage from multiple dengue virus infections, dengue fever is also
under-reported, and often misdiagnosed (Nsoesie, 2016). It is also estimated that 70% of
dengue cases do not seek medical help when infected (Stanaway, 2016), and misdiagnosis
may also contribute to under reporting (Nsoesie, 2016). Serological analyses would need to
be done in countries with limited data availability to establish the true number of populations
living in at-risk locations (Nsoesie, 2016), which may impact (positively or negatively) the
model results. The endemic prevalence levels were calculated from the annual case numbers
reported by each country, preventing any analysis of the seasonal and within-country
variations. The absolute risk (returning cases among returning airline passenger bookings) is
also likely to be underestimated given the potentially high number of asymptomatic cases as
well as misdiagnosis by healthcare personnel. The original case data set only recorded known
chikungunya and dengue cases in the United Kingdom, so travellers who were ill while abroad

or who only experience mild (or asymptomatic) disease are unlikely to have been recorded.

The case data were not refined enough to provide the within-country destinations visited.
This is of importance when looking at countries such as China and the United States with
important environmental and climatic variations between northern and southern within-

country regions. These variations determine vector habitat suitability and therefore potential
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outbreaks, as was seen in the chikungunya outbreak in the Guangdong province of southern
China in 2010 (Nsoesie, 2016). Passenger’s purpose of travel was not recorded in the data
either but will impact a passenger’s behaviour and therefore relative risk within the visited
country. However, it is difficult to determine the impact this variables would have with
certainty without any additional data; it was therefore assumed that all travellers behave in
the same manner within and between countries. Appropriate knowledge of infection risks in
visited counties may influence travellers into taking personal precautions, such as wearing
appropriate clothing, minimising time spent outdoors at high risk times, and using insect
repellent (World Health Organization, 2012). Tourists are more likely to behave differently to
the local population by choosing to sleep in air conditioned hotels and/or only frequent
locations that reduce their risk of infection (World Health Organization, 2012; Schlangenhauf,
2011). Therefore, understanding risk perceptions by traveller purpose of travel may help

refine this analysis, as exposure risks are likely to change.

Lastly, it was assumed that all cases recorded in the imported case data started their journey
in the UK and became infected while abroad. The equivalent OAG airline data was therefore
selected to match this returning leg of a round trip, originating and ending in the UK, but
flying back from an international destination. This excludes cases diagnosed by the National

Health Service but who were residents of another country (unknown number).
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Table 5.2: List of sources used to collect disease and population data for the regional risk with chikungunya and
dengue among travellers returning to the UK. Note that the list of coutries reflects those visited by returning UK
passengers cases during the time period considered (2010-2014).

Region Country  Sources (chikungunya virus) Sources (dengue virus) Population
name name (years included) (years included) (years included)
World Bank Data (2010-2014)
Cameroon (data.worldbank.org/country/cameroon)
International Federation Red Cross and Crescent World Bank Data (2010-2014)
Congo Societies (2011) (data.worldbank.org/country/congo-rep)
(www.ifrc.org/docs/Appeals/11/MDRCGO07FR.pdf]
Congo World Health Organization World Bank Data (2010-2014)
Democratic  (Epidemic and Pandemic Alert and Response (data.worldbank.org/country/congo-dem-rep)
Republic of Programme - Outbreak Report; July 25, 2011)
Djibouti World Bank Data (2010-2014) - )
(data.worldbank.org/country/djibouti)
Egypt World Bank Data (2010-2014)
(data.worldbank.org/country/egypt)
National Accounts Main Aggregates Database
Eritrea (unstats.un.org/unsd/snaama/dnllist.asp)
World Health Organization Africa, Regional Office World Bank Data (2010-2014)
Outbreak Bulletin (vol1, issue 6,Nov 2011) (2011) (data.worldbank.org/country/kenya)
Kenya (www.afro.who.int/en/disease-outbreaks/outbreak- (2010-2014)
news/4155-dengue-outbreak-in-the-united-republic-
of-tanzania-30-may-2014.html) (2014)
World Bank Data (2010-2014)
= Rwanda (data.worldbank.org/country/rwanda)
8 World Bank Data (2010-2014)
- Somalia (data.worldbank.org/country/somalia)
©
Lg World Health Organization regional office for the World Bank Data (2010-2014)
< Eastern Mediterranean (data.worldbank.org/country/sudan)
(applications.emro.who.int/dsaf/epi/2014/Epi_Monitor_2014_7
_25.pdf?ua=1) (2010-2012)
Sudan World Health Organization (2013)
(reliefweb.int/sites/reliefweb.int/files/resources/Sudan%20Heal
th%20Highlights%20Weeks%2022-23%200f%202013.pdf)
European Centre for Disease Prevention and Control
(ecdc.europa.eu/en/publications/publications/communicable-
disease-threats-report-6-dec-2014.pdf) (2014)
World Health Organization Africa, Regional Office World Bank Data (2010-2014)
T o (www.afro.who.int/en/disease-outbreaks/outbreak- (data.worldbank.org/country/tanzania)
anzania e ) )
news/4155-dengue-outbreak-in-the-united-republic-of-
tanzania-30-may-2014.html) (2014)
World Bank Data (2010-2014)
Uganda (data.worldbank.org/country/uganda)
e World Bank Data (2010-2014)
g (data.worldbank.org/country/angola)
8 Malawi World Bank Data (2010-2014)
b3 alawi (data.worldbank.org/country/malawi)
ﬂE) Health Statistics Unit, Ministry of Health and World Bank Data (2010-2014)
S Mauritius Quality of Life (2012-2014) (health.govmu.org) (data.worldbank.org/country/mauritius)
3 World Bank Data (2010-2014)
Mozambique (data.worldbank.org/country/mozambique)

(Table 5.2 continues on next page)
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(Table 5.2 continued)

Region Country | Sources (chikungunya virus) Sources (dengue virus) Population
name name (years included) (years included) (years included)
© South World Bank Data (2010-2014)
2 Africa (data.worldbank.org/country/south-africa)
< _ World Bank Data (2010-2014)
E Zambia (data.worldbank.org/country/zambia)
§ i World Bank Data (2010-2014)
Zimbabwe (data.worldbank.org/country/zimbabwe)
Cote World Bank Data (2010-2014)
d'Ivoire (data.worldbank.org/country/cote-divoire)
. World Bank Data (2010-2014)
Gambia (data.worldbank.org/country/gambia)
World Bank Data (2010-2014)
Ghana (data.worldbank.org/country/ghana)
. World Bank Data (2010-2014)
Guinea (data.worldbank.org/country/guinea)
o World Bank Data (2010-2014)
Liberia (data.worldbank.org/country/liberia)
2 o World Bank Data (2010-2014)
= Nigeria (data.worldbank.org/country/nigeria)
©
'E European Centre for Disease Prenvention and Direcao regional de estatica da Madeira
< Madeira Control (2010-2014) (2010-2014)
(Portugal) (ecdc.europa.eu/en/threats-and-outbreaks/ (estatistica.madeira.gov.pt/en/download
reports-and-data/weekly-threats) -now-3/social-gb/popcondsoc-gb/
demografia-gb/demografia-serie-gb/
demografia-long-series-gb.html)
World Bank Data (2010-2014)
Senegal (data.worldbank.org/country/senegal)
Sierra World Bank Data (2010-2014)
Leohe (data.worldbank.org/country/sierra-leone)
World Bank Data (2010-2014)
Togo (data.worldbank.org/country/togo)
- World Bank Data (2010-2014)
Tunisia (data.worldbank.org/country/tunisia)
Qiaoli Z et al, (2012) National Health and Family Planning Commission World Bank Data (2010-2014)
China (journals.plos.org/plosone/article?id=10.137 of the PRC (2012-2013) (data.worldbank.org/country/china)
1/journal.pone.0042830 ) (en.nhfpc.gov.cn/2014-07/15/c_46865_2.htm)
World Health Organization (2014)
(www.wpro.who.int/emerging_diseases/
3 dengue_biweekly_29dec2014.pdf?ua=1)
E Japan National Institute of Infectious Diseases World Bank Data (2010-2014)
g Japan (2010-2014) (data.worldbank.org/country/japan)
z (www.niid.go.jp/niid/en/survei/2085-idwr/
2 ydata/6058-report-ea2014-20.html)
< Republic World Bank Data (2010-2014)
of Korea (data.worldbank.org/country/korea-rep)

(Table 5.2 continues on next page)
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(Table 5.2 continued)

Region Country Sources (chikungunya virus) Sources (dengue virus) Population
name name (years included) | (years included) (years included)
World Bank Data (2010-2014)
Afghanistan (data.worldbank.org/country/afghanistan)
Diop et al (2015) Government of the People’s Republic of Bangladesh (2010-2014) World Bank Data (2010-2014)
Bangladesh medcraveonline.com/MOJPH/MOJPH-02-00043.pdf (2013) (www.dghs.gov.bd/images/docs/Publicaations/HB%202015_1st_edition (data.worldbank.org/country/bangladesh)
311 22015.pdf)
Government of India - national vector borne disease control Government of India (2010-2014) World Bank Data (2010-2014)
India programme, annual report 2014-15 (2010-2014) (nvbdcp.gov.in/den-cd.html) (data.worldbank.org/country/india)
(nvbdcp.gov.in/doc/annual-report-nvbdcp-2014-15.pdf)
Institut de Veille Sanitaire — Bilan épidémiologique, Monde Institut de Veille Sanitaire Département international (2010) World Bank Data (2010-2014)
© (invs.santepubliquefrance.fr//Dossiers-thematiques/Maladies- (opac.invs.sante.fr/doc_num.php?explnum_id=8622 ) (data.worldbank.org/country/maldives)
< Maldives infectieuses/Maladies-a-transmission-vectorielle/Chikungunya/ Republic of Maldives Ministry of Heath (2010-2014)
% Donnees-epidemiologiques/Monde) (2010-2014) (health.egov.mv/publications/50_Maldives_Health_Profile_2016_
3 D1%203rd%20May.pdf)
Government of Nepal Ministry of health (2010-2014) World Bank Data (2010-2014)
Nepal (dohs.gov.np/wp-content/uploads/2016/06/Annual_Report_FY_2071_ (data.worldbank.org/country/nepal)
P 72.pdf)
World Health Organization Eastern Mediterranean (2010-2014) World Bank Data (2010-2014)
Pakistan (applications.emro.who.int/dsaf/epi/2013/Epi_Monitor_2013_6_ (data.worldbank.org/country/pakistan)
37.pdf?ua=1)
Sri Lanka Ministry of Health (2010-2014) World Bank Data (2010-2014)
Sri Lanka (www.epid.gov.lk/web/index.php?option=com_casesanddeaths&I (data.worldbank.org/country/sri-lanka)
temid=448&lang=en#)
Brunei World Bank Data (2010-2014)
Darussalam (data.worldbank.org/country/brunei-darussalam)
World Health Organization Western Pacific Region (2010-2014) World Bank Data (2010-2014)
Cambodia (http://www.wpro.who.int/emerging_diseases/DengueSituation (data.worldbank.org/country/cambodia)
Updates/en/)
Chinese Taiwan National Infectious Disease Statistics System (2010-2014) Centre for Disease Control, ROC (Taiwan) (2010-2014) National Statistics Republic of China (2010-2014)
Taipei (nidss.cdc.gov.tw/en/CDCWNHO07.aspx?dc=1&dt=2&disease=A920) (www.cdc.gov.tw/english/info.aspx?treeid=e79c7a9e1e9b1cdf&n (eng.stat.gov.tw/Ip.asp?CtNode=6339&CtUnit=1072&Ba
owtreeid=e02c24f0dacdd729&tid=D76AD76D26365478) seDSD=36&mp=5)
2 Government of the Hong Kong Special Administrative Region - World Bank Data (2010-2014)
; Hong Kong Department of health (2010-2014) (data.worldbank.org/country/hong-kong-sar-china)
8 (www.chp.gov.hk/en/data/1/10/26/43/2285.html)
S - ey n + N -
3 Ministry of Health Republic of Indonesia - Indonesia Health World Health Organization South East Asia (2010-2012) World Bank Data (2010-2014)
a ;()\:‘?\?llx/i.tzig:)?(e(zzt‘?‘i—(izj):e?q:)tlrces/download/pusdatill/pmﬁl- (\?‘/;«;\}:/.gse)zlf'(;:;/lj(]).)il1t/entity/vcctor_hornc_tropica]_discascs/data/ (data.worldbank.org/country/indonesia)
Indonesia kesehatan-indonesia/Indonesia%20Health%20Profile% SRS
202014.pdf)
World Health Organization Western Pacific Region (2010-2014) World Bank Data
Lao (www.wpro.who.int/emerging_diseases/dengue_biweekly_20160 (data.worldbank.org/country/lao-pdr)

113.pdf?ua=1)

(2010-2014)

(Table 5.2 continues on next page)
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(Table 5.2 continued)

Region Country Sources (chikungunya virus) Sources (dengue virus) Population
name name (years included) (years included) (years included)
Institut de Veille Sanitaire — Bilan épidémiologique, Monde World Health Organization Western Pacific Region (2010-2014) World Bank Data (2010-2014)
(invs.santepubliquefrance.fr//Dossiers-thematiques/Maladies- (http://www.wpro.who.int/emerging_diseases/documents/Dengue_  (data.worldbank.org/country/malaysia)
infectieuses/Maladies-a-transmission-vectorielle/Chikungunya/ Archives/en/)
Donnees-epidemiologiques/Monde) (2010-2012)
World Health Organization South East Asia Region (2010-2012) World Bank Data (2010-2014)
(www.searo.who.int/entity/vector_borne_tropical_diseases/data/ (data.worldbank.org/country/myanmar)
graphs.pdf?ua=1)
M
yanmar Myanmar Ministry of Information (2013-2014)
(www.moi.gov.mm/moi:eng/?q=news/29/06/2015/id-4205)
World Health Organization South East Asia Region (2010-2014) World Bank Data (2010-2014)
2 Philippines (www.wpro.who.int/emerging_diseases/documents/Dengue_Archives (data.worldbank.org/country/philippines)
p fen/)
]
_"":" Ministry of Health Singapore (2010-2014) World Health Organization South East Asia Region (2010-2014) World Bank Data (2010-2014)
§ Singapore (www.moh.gov.sg/content/moh_web/home/Publications/ (www.wpro.who.int/emerging_diseases/documents/Dengue_Archives (data.worldbank.org/country/singapore)
@ Reports/) /en/)
Thailand Ministry of Health (2010-2014) Thailand Ministry of Health (2010-2014) World Bank Data (2010-2014)
Thailand (www.boe.moph.go.th/Annual /AESR2014 /aesr2557 /Part%202/ (www.boe.moph.go.th/Annual/AESR2014/aesr2557 /Part%202/ (data.worldbank.org/country/thailand)
table05.pdf) table05.pdf)
N World Bank Data (2010-2014)
Timor Leste
(data.worldbank.org/country/timor-leste)
World Health Organization South East Asia Region (2010-2014) World Bank Data (2010-2014)
Viet Nam (www.wpro.who.int/emerging_diseases/documents/Dengue_Archives (data.worldbank.org/country/vietnam)
Jen/)
Antiguaand  Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Barbuda, (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/antigua-and-barbuda)
Leeward dall&cid=5927&Itemid=40931&lang=en) ew&gi d=23999&Itemid=&lang=en)
Islands
Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Barbados (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/barbados)
dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Cuba (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/cuba)
ew&gid=23999&Itemid=&lang=en)
§ Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
ﬁ Dominica (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/dominica)
5 dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
n Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Domln;Fan (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/dominican-republic)
Republic dall&cid =5927&Itemid=40931&lang=en) ew&gid=23999& Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Grenada (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/grenada)

dall&cid=5927&Itemid=40931&lang=en)

ew&gid=23999&Itemid=&lang=en)

(Table 5.2 continues on next page)
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(Table 5.2 continued)

Region Country Sources (chikungunya virus) Sources (dengue virus) Population
name name (years included) (years included) (years included)
Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) Institut d’Emission Des Departements d'Outre-Mer
Guadeloupe (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (2010-2014)
dall&cid=5927&It emid=40931&lang=en) ew&gid=23999&Itemid=&lang=en) (www.iedom.fr/IMG/pdf/ra_2015_iedom_gua.pdf)
Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Haiti (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/haiti)
dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Jamaica (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/jamaica)
dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2010-2014) Institut national de la statistique et des etudes economiques
(www.paho.org/hq/index.php?option=com_docman&task=doc_vi (2010-2013)
- ew&gid=23999&Itemid=&lang=en) (www.insee.fr/fr/accueil)
W RIS Institut d’Emission d’Outre-Mer (2014)
(www.iedom.fr/IMG/pdf/ra_2015_iedom_mar_.pdf)
Pan American Health Organisation (PAHO) (2010-2014) Statistics Netherlands (2010-2014)
Netherlands (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (statline.cbs.nl/Statweb/publication/?VW=T&DM=SLEN
c Antilles ew&gid=23999&Itemid=&lang=en) &PA=80534ENG&D1=0&D2=0&D3=0&D4=a&D5=8-13&HD=
E 160721-1631&LA=EN&HDR=T,G2,G1,G4&STB=G3)
’g Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
o Puerto Rico (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/puerto-rico)
dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Saint Lucia (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/st-lucia)
ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Saint Martin (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/st-martin-french-part)
ew&gid=23999&Itemid=&lang=en)
St Vincent Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
and the (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/st-vincent-and-the-
Grenadines dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en) grenadines)
Trinidadand FanAmerican Health Organisation (PAHO) (2013-2014) Pan American Health F)rganisaﬁon (?AHO) (2010-2014) _ World Bank Data (2010-2014)
(www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/trinidad-and-tobago)
Jobako dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
Virgin Pan American Health Organisation (PAHO) (2013-2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Islands, (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/british-virgin-islands)
British dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
© Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
2 Costa Rica (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/costa-rica)
g ew&gid=23999&Itemid=&lang=en)
,;(n Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
% El Salvador (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/el-salvador)
o ew&gid=23999&Itemid=&lang=en)

(Table 5.2 continues on next page)
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(Table 5.2 continued)

Region Country Sources (chikungunya virus) Sources (dengue virus) Population
name name (years included) (years included) (years included)
Pan American Health Organisation (PAHO) (2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Guatemala (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/guatemala)
dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
o Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
2 Honduras (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/honduras)
g ew&gid=23999&Itemid=&lang=en)
;—(“ Pan American Health Organisation (PAHO) (2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
g Mexico (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/mexico)
o dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Nicaragua (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/nicaragua)
ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Panama (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/panama)
ew&gid=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
3 Argentina (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/argentina)
é ew&gid=23999&Itemid=&lang=en)
< Pan American Health Organisation (PAHO) (2014) World Bank Data (2010-2014)
§ Bolivia (www.paho.org/hq/index.php?option=com_topics&view=rea (data.worldbank.org/country/bolivia)
xg dall&cid=5927&Itemid=40931&lang=en)
g Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
S Peru (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/peru)
ew&gid=23999&Itemid=&lang=en)
World Bank Data (2010-2014)
ltan (data.worldbank.org/country/iran-islamic-rep)
a United Arab World Bank Data (2010-2014)
b Emirates (data.worldbank.org/country/united-arab-emirates)
E . i World Bank Data (2010-2014)
= Saudi/Arabia (data.worldbank.org/country/saudi-arabia)
Yemen World Bank Data (2010-2014)
(data.worldbank.org/country/yemen)
8 Pan American Health Organisation (PAHO) (2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
g ® (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/united-states)
=z E = dall&cid=5927&Itemid=40931&lang=en) ew&gid=23999&Itemid=&lang=en)
Australian Government Department of Health - National World Bank Data (2010-2014)
& Australia Notifiable Diseases Surveillance System (2010-2014) (data.worldbank.org/country/australia)
5 (www?9.health.gov.au/cda/source/rpt_2.cfm)
E Fiji Journal of Public Health (2010) World Bank Data (2010-2014)
E (www.health.gov.fj/PDFs/Fiji%20Journal%200f%20Public%20H (data.worldbank.org/country/fiji)
3 Fiji ealth%20Vol2Issue2.pdf)

Fiji Ministry of health and medical services (2011-2014)
(www.health.gov.fj/?page_id=198#1)

(Table 5.2 continues on next page)
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(Table 5.2 continued)

Region Country Sources (chikungunya virus) Sources (dengue virus) Population
name name (years included) (years included) (years included)
Institut Pasteur de Nouvelle Calédonie — Rapport sur les activités World Bank Data (2010-2014)
de sante publique (2011-2014) (data.worldbank.org/country/french-polynesia)
French . (www.institutpasteur.nc/wp-content/uploads/2014/07/
o Polynesia Rapport-IPNC-Sant%C3%A9-Publique-2014-n%C2%B060-2015
E -du-30.3.15.pdf)
§ New Zealand Public Health Observatory (2010-2014) World Bank Data (2010-2014)
§ New Zealand (www.nzpho.org.nz/NotifiableDisease.aspx) (data.worldbank.org/country/new-zealand)
'F:.; Papua New World Bank Data (2010-2014)
3 Guinea (data.worldbank.org/country/papua-new-guinea)
Solomon World Bank Data (2010-2014)
Islands (data.worldbank.org/country/solomon-islands)
Tonga World Bank Data (2010-2014)
8 (data.worldbank.org/country/tonga)
Pan American Health Organisation (PAHO) (2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Brazil (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/brazil)
dall&cid=5927&Itemid=40931&lang=en) ew&gi d=23999&Itemid=&lang=en)
Pan American Health Organisation (PAHO) (2014) World Bank Data (2010-2014)
Colombia (www.paho.org/hq/index.php?option=com_topics&view=rea (data.worldbank.org/country/colombia)
dall&cid=5927&Itemid=40931&lang=en)
53 Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
5 Ecuador (http://www.paho.org/hqg/index.php?option=com_docman&task (data.worldbank.org/country/ecuador)
E =doc_view&gid=18233&Itemid=&lang=en)
S Pan American Health Organisation (PAHO) (2010-2014) Institut d’Emission Des Departements d'Outre-Mer
2 French (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (2010-2014)
:'-i Guiana ew&gid=18233&Itemid=&lang=en) (www.iedom.fr/IMG/pdf/ra_2015_iedom_guy_pour_
= menl.pdf)
Pan American Health Organisation (PAHO) (2014) Pan American Health Organisation (PAHO) (2010-2014) World Bank Data (2010-2014)
Guyana (www.paho.org/hq/index.php?option=com_topics&view=rea (www.paho.org/hq/index.php?option=com_docman&task=doc_vi (data.worldbank.org/country/guyana)
dall&cid=5927&Itemid=40931&lang=en) ew&gid=18233&Itemid=&lang=en)
Pan American Health Organisation (PAHO) World Bank Data (2010-2014)
Venezuela (www.paho.org/hq/index.php?option=com_topics&view=rea (data.worldbank.org/country/venezuela)

dall&cid=5927&Itemid=40931&lang=en)

162 |

Chapter 5



Chapter 6 — Understanding the possible origin of the next
pandemic using airline travel patterns and healthcare
development.

Preamble

There is an abundance of literature stating that weak healthcare systems are ideal settings
for the emergence of an outbreak with slow within-country detection (Barber et al., 2017;
Bonds et al., 2018; Elmahdawy et al., 2017; Moore et al., 2016). Although Bogoch et al. (2018)
did relate the Madagascar healthcare system and the country’s global connectivity in the
context of the plague outbreak, no work has yet attempted, to the author’s knowledge, to
link national healthcare development and global connectivity to estimate the potential
impact of such outbreaks for the global community. It is hoped that this novel approach will

give new insights for future pandemic preparedness.
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Abstract

Pandemics may spread very rapidly around the world and can have significant costs
associated to them, in terms of economic and health impacts. Early detection of an outbreak
is key to its control and to limiting its further spread, both nationally and internationally.
Given the significant level of global connectivity described in Chapter 3, an uncontrolled
outbreak in one country may quickly reach other countries and develop into a pandemic. The
aim of this chapter was to explore variation in potential country-level risk for novel outbreaks

to go undetected and for the pathogen to spread internationally via air-passenger travel.

The approach used in this chapter was to compare data regarding each country’s healthcare
development against its global airline connectivity, assigning equal weights to each. It was
originally thought that a single parameter could be used as a proxy for healthcare
development; however, the use of two indices made up of multiple parameters was
ultimately deemed to be more appropriate. Global connectivity was estimated by generating
an information flow matrix from the global airline data set downloaded from OAG. A fictitious
‘worst case scenario’ (WCS) country was assigned the best connectivity value of the network
and the worst healthcare development score. Each country’s relative proximity to WCS was

subsequently calculated and plotted according to each index value.

The results indicate that India and Pakistan were the two closest countries to the WCS point
for both indices, and were thereby postulated to pose the greatest risk to the global
community. Additionally, countries that have recently seen the spread of outbreaks develop
into pandemics (such as Brazil (Zika) and Mexico (H1N1), for example) were also identified as
being relatively high potential threat to the global community. On the other hand, countries

such as Monaco, Tuvalu and Slovenia were shown as posing the lowest risk.

This analysis highlights the importance of considering a country’s connectivity as well as
healthcare development when considering its potential impact in the spread of the next
pandemic. In a world increasingly well connected, an outbreak in one country should be of
concern for the global community. In order to reduce the global financial burden and reduce
the mortality and morbidity, healthcare development and global connectivity should be
considered together. This analysis highlights the potential risk posed to the global community
of not detecting outbreaks early through strong healthcare systems. The international
community could consider the potential benefits of additional support aimed towards those

countries with the potential to cause the highest risk to the global community.
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Introduction

In the wake of the Zika pandemic and Ebola outbreak, airline travel and level of healthcare
provided by each country, have been demonstrated to impact a country’s ability to contain
outbreaks. The early detection and containment of an outbreak are of critical importance for
the country’s population health, as well as for the global community, to prevent a potential
pandemic (International Working Group on Financing Preparedness, 2017). The Sustainable
Development Goals (SDGs) require countries to improve their quality and access to
healthcare (goal 3) and meet specific targets by 2030 (United Nations, 2017), as these are
important tools to preventing and controlling future outbreaks. If a system is ready (well
established with appropriate facilities, equipment and trained staff), it may be more likely to
detect an outbreak quickly with trained staff triggering the appropriate response systems
(Bonds et al., 2018; Moore et al., 2016). Although access to quality healthcare has greatly
improved globally since 1990, the gap between countries with good or poor healthcare
access is widening. Countries offering the best quality and access to healthcare are found in
Western Europe, especially in Scandinavia, whereas the poorest quality and access is
provided in Sub Saharan Africa and Oceania, according to the Global Burden of Disease’s

recent work (Barber et al., 2017).

As described in previous chapters, the global airline network is growing at an accelerated
pace, linking geographically distant countries (Glaesser et al., 2017). As well as the increasing
number of passengers, airline travel is continuously getting quicker, with the first Perth
(Australia) to London (UK) direct flight landing in March 2018, linking the two countries in 17
hours (BBC, 2018). A non-negligible threat to global health today is the possibility of travelling
to the other side of the world before becoming symptomatic, with passenger numbers and
distances travelled both increasing rapidly (World Health Organization, 2018b). Infected
passengers travelling within the airline network to epidemiologically suitable locations have
the potential to propagate outbreaks through onward transmission (Tian et al., 2017). Airline
travel is the main access route to some remote locations (Bobashev et al., 2008) and given
the different exposure risks between local and visiting populations (Mier et al., 2017), this is

the most likely means of distant international disease spread (Bobashev et al., 2008).

Some countries’ airports are also increasingly being used as hubs (airports with a large
number of connections to other airports) to reach other destinations where direct flights may
be absent or rare (Wandelt and Sun, 2015). These country hubs include India, Singapore and

Thailand, as the Asian air travel has seen a sharp growth in number of passengers and airports
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since the 1980s (Tian et al., 2017). Although the overall network diameter is getting smaller
(increasing number of flights and passengers to cross the entire network) (Huang et al.,
2013), as countries are increasingly well connected, some nations, especially island nations
such as Papua New Guinea and Falkland Islands remain relatively hard to reach, and are

therefore more distantly connected to the rest of the network (Guimera et al., 2005).

A pandemic’s dissemination from its source strongly depends on the local connectivity of the
source country and the time for an outbreak to arrive through the airline network is
independent of disease characteristics (Lawyer, 2016). Within the airline network, a total of
73 airports (2%) act as major hubs, with other airports acting as bridges between these hubs,
peripheral airports (28%) and regional population centres. For example, following strong
economic cooperation, the United Arab Emirates acts as a bridge between Europe and Asia,
as well as between Asia and Africa (Wandelt and Sun, 2015). It must be noted that city size
and their flight volumes are not closely related: large cities aren’t always the most connected
or have the largest passenger volumes (Bobashev et al., 2008). However, a group of nodes
(airports) can act as a clique by being well linked to each other, such that any node within a
cligue can be reached quickly in a few steps (Wandelt and Sun, 2015). Countries such as the
United States and the United Kingdom, among others, are highly influential in terms of
passenger transfers within the network, due to their population size and GDP (Wandelt and

Sun, 2015).

Pandemics are unpredictable (geographically and temporally) and very costly, both in terms
of financial losses, fatalities and morbidity; therefore, investing in preparedness at the
country level should be encouraged. A country’s pandemic preparedness (and response)
relies heavily on the capacity of rapid detection and response to outbreaks. Accurate and
timely detection by surveillance systems allows an outbreak to be identified quickly, with
ongoing monitoring of cases assisting with the goal of avoiding important consequences both
nationally and internationally, as was seen in the West African Ebola outbreak (International
Working Group on Financing Preparedness, 2017). Although knowing or estimating the level
of imported cases by travellers is important, it must also be noted that the risk may be
underestimated if this is based on import notification alone (Lopez et al., 2016). The 2014
West Africa Ebola outbreak is an example of the potential impact of an outbreak on an
unstable healthcare system and vice versa (International Working Group on Financing
Preparedness, 2017; Omoleke et al., 2016). Although Guinea, Liberia and Sierra Leone had
achieved significant economic progress through post-conflict reconstruction, access to good

quality healthcare was still limited. Prior to the outbreak, a total of 39 inter-continental flights
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to and from these countries were operated weekly by major airlines, thus creating a
potentially important risk of spreading the virus to the global community. This potential risk
led to the suspension of flights to and from the region (Omoleke et al., 2016), even though
this was not advised by the WHO (Nutall, 2014). It was additionally noted that most sub-
Saharan African countries did not have the capacities to contain the viral outbreak due to

inadequate health facilities (Omoleke et al., 2016).

Understanding the vulnerability of countries in the event of an outbreak has recently become
afocus for some international groups, including the International Working Group on Financial
Preparedness set up by the World Bank in November 2016, with the aim of identifying sectors
which could help countries be more prepared for a pandemic (International Working Group
on Financing Preparedness, 2017). Additionally, the WHO and World Bank have very recently
co-created the Global Preparedness Monitoring Board with the goal of improving global
preparedness (World health Organization, 2018e). Several groups have also developed
pandemic preparedness indices to evaluate how vulnerable or resilient countries are to a
potential pandemic (International Working Group on Financing Preparedness, 2017). In
response to the Severe Acute Respiratory Syndrome (SARS) pandemic, the WHO updated its
International Health Regulations (IHR) in 2005, requiring all member states to report in a
timely manner any outbreak posing a possible international public health threat. However,
few (64) countries had reported to WHO as having good surveillance systems in place, and
48 would not be capable to cope with a significant outbreak. Early detection and reporting
remains crucial for a quick and effective response, ultimately costing fewer lives

(International Working Group on Financing Preparedness, 2017).

The aim of this study was to further evaluate global preparedness by understanding how
likely an outbreak would be to spread internationally when started from a given seed
country. To do this, every country’s global connectivity was estimated using a global network
analysis of airline passenger bookings and pandemic preparedness levels estimated using a

range of infectious disease proxies and health system indices.
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Methods

Measure of global connectivity
To determine the level of connectivity between countries, a network percolation model was
developed using global airline bookings. The airline data used for this model was the Traffic
Analyser data set from OAG, spanning February 2010 to May 2015, downloaded between
August 2014 and July 2015. The data represents the number of monthly bookings for routings
between international airports, including any stop overs aggregated by country, both
domestically and internationally. The percolation model simulates the spread of
‘information’ through a network, where country nodes exist in one of two states: empty or
occupied. This model is analogous to an S| epidemic model, but should not be considered
equivalent to a pandemic model as no within country transmission occurs, and the ‘force of
infection’ represented by an occupied country remains constant over time. The probability
that node i with empty status becomes occupied, p;, is determined by the number of
occupied nodes it is connected to, the rate of passenger flow along the network edges for a

specific month, F, and a rate coefficient, 8 of value 1e® (arbitrary value):

P =1-exp(-f Y F)
JEW(D),j#i
where j denotes other nodes, and W(t) is the set of occupied nodes at time t. This model
was implemented as a discrete time, stochastic Markov process, where all countries (nodes)
are empty at the start of a simulation apart from a designated node, the seed country.
Simulations proceeded until at least 25% of all nodes had been occupied (arbitrary values),
at which point the simulation time was recorded (end time, ¢). Simulations were performed
1,000 times for each seed country (243 in total) and month combination (64 in total) in turn.
A cap of 2,000 iterations was imposed (arbitrary value), though in practise ¢p << 2000. The

mean and 2.5% and 97.5% percentiles of ¢‘>i,m = % were calculated across K=1,000

replicates as a summary of the connectivity associated with each seed country and each
month of airline data. Further average across all months and consider the connectivity as a

rate such that the connectivity 8 for country i was given by:

KM

9 = ———
' Zm Zk (.bi,m,k
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To calculate Figure 6.1 below the average across all countries was used and the connectivity
was consider as a rate such that the connectivity by month for C the total number of countries
is:

KC

9, =———
C ZiZk Pimi

Additionally, to calculate Figure 6.2, the same method was used as for Figure 6.1 but month

55 only.

Understanding the level of healthcare provided
Although the structure of a healthcare system is complicated, involving many governmental
branches, private and international organizations, it was initially hoped to use a single
indicator as a proxy of the level of healthcare provided within each country. However, very
limited information was available regarding which factors would be best to use as proxies, so
five published indicators were considered (Table 6.1). It was necessary for the indicators to
be relatable to all countries and not be specific to a given region (for example, malaria related
indicators could not be applied to all countries given the parasite’s geographic distribution)
and to be indicators all countries measure routinely. Note that ‘regions’ in this context were

defined as a group of neighbouring countries.

The WHO published a list of World Health Statistics Indicators (World Health Organization,
2015a), with a description of each indicator, from which the indicators used for this analysis
were chosen. However, some drawbacks could be noted against the use of each one
including the difficulty to dissociate the role of external funding from governmental. Each
factor was used in turn to determine how likely a given country was to detect and control a
novel infectious disease outbreak. All factors were plotted against each other and the
Pearson correlation coefficients calculated, to determine possible associations between

them (See Appendix, Table 2).

No strong correlation could be found between these indicators, with the strongest
correlation coefficient of 0.63 between life expectancy and measles vaccination (95%
confidence intervals ranging between 0.54 and 0.70). The absence of correlation between
indicators implied that the indicators affected different parts of the healthcare within each
country. Such variation suggested that using a single indicator was not reasonable and
therefore a combination of several indicators may be needed to be used instead. These

findings were supported by Moore et al. (2016), who also found that healthcare systems
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could not be adequately described by a single factor. Given the need for a more holistic
understanding of healthcare systems, epidemic preparedness indices were used instead of a
single factor. A very small number of indices could be identified to have been fully developed
and with results freely available, namely the Rand Corporation’s Infections Disease
Vulnerability Index and the Global Burden of Disease’s Healthcare and Quality Access Index,
with more in the process of development (Global Health Security Index) or publication
(Metabiota), at time of writing. Very little detail was available regarding methods or results
from the two latter indices. Finally, the author was aware of the Joint External Evaluation
(JEE), a WHO endorsed tool to determine country level preparedness. However, the number
of countries taking part was too small to provide any insight into global preparedness
(International Working Group on Financing Preparedness, 2017) and was therefore not used

for this analysis.

The indices used for this specific analysis were therefore, those developed by Rand
Corporation and the Global Burden of Disease. Each index was based on different factors and
therefore represented health in different ways, as described in Table 6.2. Note that, as very
limited information was available on the Global Health Security Index, this was not included
in the Table 6.2. Additionally, the Rand Corporation index will thereafter be referred to as
the ‘Rand index’ and the Healthcare Access and Quality Index as the ‘GBD’ index. To make

both index results comparable, the GBD scores were divided by a factor of 100.

Although the preliminary results from both indices were very similar, their representation of
healthcare systems were very different (Table 6.2), with the GBD index only considering
diseases (both infectious and non) and the Rand index also considering governmental and
demographic aspects of health. As it was unclear whether focusing on population health
alone was a good manner of representing a country’s healthcare system or not, it was
therefore not possible to justify the use of one index over the other. Therefore, both (Rand

and GBD) were used in turn for this analysis.
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Table 6.1: Summary of the indicators (downloaded from the World Bank, data.worldbank.org), reasoning and drawbacks for each indicator used as a
proxy for healthcare development.

Download
Indicator name date Reasoning Drawback
Provides an estimate of the burden of Tuberculosis infection in the
Incidence of population and the challenge for control programmes. Given the External funding is likely to have a large
, 21st February . . . : . .
tuberculosis (per 2018 slow progress of the disease; control programmes are slower in impact on certain countries; difficult to tell
100,000 people) reducing incidence than prevalence and mortality (World Health how much.
Organization; 2015b).
suli Gl Allows an understanding of the progress made to provide therapy External funding is likely to have a large
therapy coverage 21st February . . . . . . . ; . .
o to all infected (especially in low- and middle-income countries) impact on certain countries; difficult to tell
(% of people living 2018 N
. (World Health Organization, 2015b). how much.
with HIV)
. According to the WHO, in order for a country healthcare system to External fundlng s llkely.to ha.ve.: alarge
Health expenditure, | 21st February . . . . impact on certain countries; difficult to tell
prevent infections, it must have a well-functioning system e ) .
total (% of GDP) 2018 o how much. Difficult to dissociate
(World Health Organization, 2005). .
governmental from out-of-pocket funding.
Immunization, According to the WHO, immunization is crucial in reducing under- External fundmg s llkely.to ha.ve.: e
. . L . impact on certain countries; difficult to tell
measles (% of five mortality, and measles vaccination an indicator of healthcare
. 6th March 2018 how much.
e eREEa el e Some developed countries (good healthcare
months) (World Health Organization, 2015b). ped. &
systems) are seeing reduced uptakes.
. This indicator captures both infectious and non-infectious causes of
Life expectancy at 6t March 2018 | morbidity and mortality Does not only depend on healthcare system

birth, total (years)

(World Health Organization, 2015b).

(for example, air pollution, war...)
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Table 6.2: Brief summary of each preparedness index considered for this analysis and for which some information is known, including methods,
factors considered, results and additional comments.

(For further information regarding the methods, it is advised to refer directly to the index description documents).

Source and . . . Results (3 most and
. Aims Methods (brief) Factors considered ( Comments
index name least vulnerable)
Rand Provide a tool to hel Using a literature review search and Demographics; health care; public health; Most vulnerable: Validates own
Can L understand which p professional experiences. Each indicator disease dynamics; political-domestic and Somalia, Central weighting system
'lo;potatlon - countries are most was weighted and summed into one international; economic African Republic, and includes
.n ectious . index. Chad. indirect influences
disease vulnerable to a potential

vulnerability
index'

Global
Burden of
Disease 2-
'Health Care
Access and
Quality Index'

Metabiota
Preparedness
Index3

outbreak, not success or
failure to respond.

To gain an
understanding of global
healthcare access and
quality, and its changes
between 1990 and 2015,
from the Global Burden
of Diseases, Injuries and
Risk Factors Study 2015.

Develop a measure of
understanding of a
country’s ability to
detect and respond to an
outbreak.

Country rankings: 0 (worst) to 1 (best)
Data years included: unclear
Number of countries: 195

The group calculated “cause-specific
mortality and population attributable
fractions” taking into account a number of
risk factors from Nolte and McKee.
Country rankings: 0 (worst) to 100 (best)
Data years included: 1990 to 2015
Number of countries: 195

Multidimensional framework based on
index weighting then ranking .
Country rankings: 5 (worst) to 1 (best)

Data years included: unknown
Number of countries: 188

1 Moore et al. (2016) and www.rand.org/pubs/research_reports/RR1605.htm};
2 Barber et al. (2017) and www.thelancet.com/journals/lancet/article/P1IS0140-6736(17)30818-8/fulltext;
3 International Working Group on Financing Preparedness (2017) and www.metabiota.com/product.

Diarrhoeal diseases; respiratory infections
(lower and upper, Tuberculosis);
diphtheria; whooping cough; tetanus;
measles; maternal disorders; neonatal
disorders; cancer (non-melanoma skin;
cervical; uterine; testicular; Hodgkin’s
lymphoma; leukaemia); heart disease
(rheumatic; ischaemic; hypertensive);
cerebrovascular disease; peptic ulcer
disease; appendicitis; hernia; gallbladder
and biliary diseases; epilepsy; diabetes
mellitus; chronic kidney disease; congenital
heart anomalies; adverse effect of medical
treatment

Public health infrastructure; infrastructure
(physical and communication);
management capacities (bureaucratic and
public); financial resources; risk
communication

Least vulnerable:
Norway, Canada,
Finland

Most vulnerable:
Central African
Republic, Afghanistan,
Somalia.

Least vulnerable:
Andorra, Iceland,
Switzerland.

Most vulnerable: West
and Central Africa,
some of South East
Asia.

Least vulnerable:
Western Europe,
North America.
Detailed results not
yet available.

on healthcare.

Very detailed
methods and
results by country.
Only focusses on
disease (infectious
and non) but not
external factors.
Reflects our
previous finding
that healthcare
level varies
according to
indicator used.

No more details on
methods available
(in process of
publishing)
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Relative distance and regression analysis
To determine whether the two indices provided similar results in terms of healthcare access,
the country scores according to each index were plotted against one another, before
performing a Bland-Altman analysis (analysis of measuring agreement between two
guantitative measurements; Giavarina (2015)). The latter method plots the mean of results
for both methodologies (here the healthcare index scores per country) against the difference
in results. Note that the GBD index scores were divided by a factor of 100 for this analysis

only, to make the results more readily comparable.

To determine which countries might pose a higher risk for the global community, it was
assumed that connectivity and the level of healthcare provided should be weighted evenly,
and therefore the connectivity of each country was plotted against each healthcare index
value. A point representing the ‘worst case scenario’ (WCS) showing the highest connectivity
present in the data against a healthcare development index score of zero, was added to these
plots. This point was, of course fictitious, but helped determine which countries were closest
to such a scenario. The relative distance between each country and the WCS point was then
calculated and represented using a radar plot, for each index. The equation used to calculate

the relative distance of country i was:

0.
relative distance; = |[(x; —0)? + (1 — 5‘)2

Where 8 is the fastest connectivity observed in all countries, 8; is the connectivity for country
i and x; is the preparedness index value. In order to calculate these relative distance values,
both axes were adjusted to be on comparable scales; ranging between 0 and 1 for both
indices. The relative distance of each country from the WCS point was recorded in Table 6.4,

along with each index score and connectivity.

To determine whether there was a relationship between each county’s connectivity and
healthcare index, a simple linear regression analysis was first attempted. However, when
plotting residuals it became clear that the relationship was not linear, therefore a second

order polynomial model was developed, with the equation:
X; = ag+ a,0; + a0 + €

With x; index score (GBD or Rand) for country i, 6; is the connectivity for country i, with

parameters a and € an error coefficient.
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Results

The seasonality of the global connectivity (6) can be seen in Figure 6.1, with some similar
seasonal patterns to the global airline network seen in previous chapters clearly evident:
peaks occurring between July and September and troughs between January and March, with
additional peaks and troughs were seen in the intervening seasons. However, the average
seasonal variations in global connectivity are relatively small, ranging from 0.03 (month 1) to

0.05 (month 55).

As can be seen in Figure 6.1, month 55 was the month with the quickest connectivity, so was
used to determine the 2.5 and 97.5% percentiles for each country, as a means of representing
the worst-case scenario of an outbreak spreading internationally, shown in Figure 6.4.
Overall, the majority of countries showed consistent connectivity values, especially those
with high index scores, with some variations. Additionally, some island countries like Fiji and

Iceland, showed large variations in connectivity.

Overall, both healthcare indices showed similar results (correlation coefficient=0.90), with
countries such as Somalia and the Central African Republic recorded as being some of the
most vulnerable countries to the threat of an epidemic by both indices, whereas countries in
Western Europe were most resilient (Table 6.3, Figure 6.2). The Rand index showed a large
number of countries with healthcare scores of less than 0.50 (n=72, 38.5%) and the majority
of these were in the Western/Central Africa region (n=24, 33%). The GBD index showed fewer
countries with scores below 0.50 (n=47, 24%), with the majority of these (n=17, 36%) again

in Western/Central Africa.

However, when considering the Bland-Altman analysis (Figure 6.3), most disagreement
(largest differences between index scores for each country) was seen in the countries with
the smallest index scores, such as Somalia and Central African Republic. Most agreement
(smallest differences) was seen in countries with high index scores, represented closer to the
red line of no difference. The largest difference between index scores was seen in Mauritania

(difference=-0.41).

174| Chapter 6



MW 2.5%
0.100
0
© 50%
O
w
(@)}
ke
SN
=
% 0.010
[H)
c
c
@)
@)
/_/_\/\/_f/\_\’_,\/_/\w_/—\,/\/\/\_/\h 97.5%
0.001

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Month

Figure 6.1: Global connectivity, mean, 2.5% and 97.5% percentiles (log scale), from the percolation model in monthly intervals,
with Juy to September shadded in dark and January to March shadded in light.
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(Figure 6.4 continued)
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Figure 6.4: Country connectivity value (2.5% and 97.5% quantiles) for the month with the fastest
global connectivity (month 55 from Figure 6.1) against each index score values (Rand index A and
GBD index B), with each country grouped according to OAG region.

Note: The errorbars for each index score value could not be determined because of the nature of the data.

The HAQ index score have been divided by a factor of 100.
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Figure 6.5 A showed the range of index scores for each country, from 0 (Somalia) to 1
(Norway). The USA was the country with the fastest connectivity (0.17 countries per time-
step), whereas Tuvalu was the slowest (0.00071 countries per time-step). From Figure 6.5 A,
it could be seen that countries with the lowest index scores also tended to be poorly
connected, and that the majority of these were in Africa. Additionally, a number of small
island nations (such as Tuvalu, Tonga and Samoa) had an average-to-good healthcare score
but poor connectivity. A number of European countries such as Iceland and Luxembourg had
good healthcare index scores but low connectivity scores (index=0.98, connectivity=0.047
and index=0.88, connectivity=0.049, respectively). Overall, Latin American countries
(excluding Caribbean) and Middle Eastern countries had good healthcare and average
connectivity, with some exceptions such as Honduras, which had a low healthcare score
relative to other neighbouring countries (Table 6.5). The smaller islands of the Caribbean
were not very well connected but had over average healthcare scores, except for Haiti, with
poor healthcare and poor connectivity. On the other hand, Jamaica and especially the
Dominican Republic had average healthcare and good connectivity. A group of six countries
(France, Germany, Italy, Spain, United Kingdom and USA) were seen as having excellent
connectivity and excellent healthcare. Countries such as India, Morocco, Egypt, Indonesia
and the Dominican Republic were seen to have good connectivity but average healthcare

scores, whereas Pakistan was seen to have a lower healthcare score than the latter countries.

Regarding the Global Burden of Disease’s Healthcare Access and Quality Index, the smallest
value was recorded in Central African Republic (29), and the highest in Andorra (95) although
the latter was not represented in Figure 6.6A as this principality was not registered in the
OAG data. Similar patterns and groupings of countries could be seen for both index scores
(Figure 6.5 A and Figure 6.6 A), with African countries grouped together with low healthcare
index scores and low connectivity, in direct opposition to Western European countries.
Countries with good connectivity but average healthcare index scores or below were India,
Philippines, Indonesia and Pakistan. Another grouping of countries could be seen with slightly
above average healthcare and relatively good connectivity included the Dominican Republic,

Viet Nam, Malaysia, Brazil, Egypt and Morocco.

From Figures 6.5 B and 6.6 B, it became apparent that India was the closest to the Worst-
Case Scenario point, thereby potentially posing the greatest risk to the global community
(according to this analysis), followed by either Pakistan (Rand Index) or Indonesia (GBD
Index). When considering the regional variations (black stars), both indices agreed that South

Asia posed the highest risk to the global community (distance to WCS= 0.71 (Rand) and 0.77
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(GBD)) (Table 6.4). In contrast, South West Pacific posed the lowest risk, with distance to
W(CS values of 1.06 (Rand) and 1.05 (GBD). This results from both the lower than average
connectivity and higher than average level of healthcare development of South West Pacific

nations (Table 6.3 and 6.4).

From the second order polynomial model (red line in Figures 6.5A and 6.6A), the associated
Akaike Information Criterion (AIC) values were smaller for the linear model: -109.42 for the
linear model and -113.95 for the polynomial model using the Rand index; -96.93 for the linear

model and -106.43 for the polynomial model using the GBD index.

182| Chapter 6



Rand Index score

1.00

0.75

0.50

0.25

0.00

Norway H
Finland
inlan: 5 N
Iceland New Zealand
Luxembourg
Czech Republic
Slovefilavakia . Chil
aésqonla _ . ile Q aﬂ*’mgarylsrael
A Brunei Darussalam Lithiiagia

GebrgiEY

Costa Rica

Region
- Africa: Central/Western
Africa: Eastern

__ Am t'i‘nia Croatjg Blta Jordan g . AKC tines®ied Africa: North
-.1 of i
fumtedt [ Turkey . Africa: Southern
) Russian Federation Asia: Central
Ukraine viethyam
Asia: North East
olombia
asld@itk®&epublic of ';qmﬁibsia Asia: South
= ekistan ve"ezue'?‘m ja EghBines Asia: South East
ey a JamaicxiGenainicanRepublic india Europe: Eastern/Central
uatemala
SNanay . anmar Europe: Western
i, Iraq Bangladesh Latin America: Caribbean
onduras Nepal : t e
I°°D Ethiopia_Kenya Latin America: Central
e AR !lgggatggrﬁgg%hc of [Fambodia Lat?n Americaf Lower South
r-IBSE)outl . Pakistan Latin America: Upper South
uaan .
T;:g miaglygire Nigeria Middle East
Yemen North America
Southwest Pacific
%%'Republlc of
HafapaRistan
I&Haﬂi\r‘éﬁldan
0.00 0.25 0.50 0.75 1.00
Connectivity

(Figure 6.5 continues on next page)

183 | Chapter 6



(Figure 6.5 continued)
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Figure 6.5: Using the Rand Index, (A) plot of country connectivity against index scores colour coded by OAG region, with linear regression
line (blue) and second order binomial line (red); (B) radar plot of the relative distance of each country (grouped by OAG region) from the

'Worst Case Scenario' (WCS) in incremental steps with regional averages in black stars.

Note: the ten countries with the smallest relative distance (rank one to ten) have been named on (B), as well as the UK.
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(Figure 6.6 continued)
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Figure 6.6: Using the Global Burden of Disease HAQ Index, (A) plot of country connectivity against
HAQ index score colour coded by OAG region, with linear regression line (blue) and second order
binomial line (red); (B) radar plot of the relative distance of each country (grouped by OAG region)
from 'Worst Case Scenario' (WCS) in incremental steps with regional averages in black stars.

Note: the ten countries with the smallest relative distance (rank one to ten) have been named (B),
as well as the UK. HAQ score values have been divided by a factor of 100.
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Table 6.3: Summary of the OAG region mean index scores, speed of connectivity (in countries per time
step) and relative distance to WCS, according to index, ranked according to Rand ranking values.

Region name

South Asia

North Africa

South East Asia

Middle East

North Asia

Latin America: Upper South
Latin America: Central

Latin America: Lower South
East Africa

West/Central Africa
Central Asia

Western Europe

Southern Africa

North America
Eastern/Central Europe
Latin America: Caribbean
South West Pacific

GBD
score

0.366
0.510
0.466
0.693
0.692
0.491
0.500
0.594
0.268
0.238
0.452
0.889
0.253
0.773
0.712
0.530
0.447

Rand
score

0.419
0.486
0.574
0.610
0.697
0.564
0.577
0.702
0.322
0.251
0.522
0.863
0.389
0.949
0.693
0.571
0.572

Distance
(GBD)

0.681
0.740
0.744
0.906
0.898
0.872
0.863
0.853
0.920
0.940
0.911
0.955
0.898
0.954
0.980
0.933
0.999

Distance
(Rand)

0.707
0.727
0.822
0.848
0.900
0.905
0.915
0.935
0.939
0.941
0.945
0.952
0.953
0.955
0.965
0.973
1.066

Ranking
(GBD)

Ranking
(Rand)
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Discussion

The aim of this study was to explore variations in the risk of international spread of an
epidemic based on a composite score incorporating the given country’s global connectivity
and level of healthcare development. The results suggest that certain countries such as India
and Pakistan, are well connected but with low-to-average healthcare systems, and as such
may have high potential risk for international spread should an outbreak start in these
countries. On the other hand, countries like Monaco and Slovenia were more likely to detect
an outbreak early due to their good healthcare systems, but also had low connectivity,

thereby better able to control its international spread.

The proxies initially considered to represent healthcare systems globally were all included in
the World Health Organization’s 2015 Global Reference List of 100 Core Health Indicators
(World Health Organization, 2015a), and it was first assumed that these proxies were closely
connected to a country’s outbreak preparedness. However, each indicator had its flaws, such
as the difficulty in determining the amount of foreign aid given for measles vaccination
campaigns in resource poor countries (Gavi, 2017) from governmental vaccination
campaigns, for example. Additionally, a country’s spending on healthcare as a percentage of
its GDP may also include external funding from the private sector, which may or may not be
recorded and reported, depending on the country (World Health Organization, 2015b). The
use of a single indicator to represent a healthcare system was determined not to be
representative enough of a healthcare system for our purposes, and as has been suggested
in previous studies (Chan et al., 2013; Moore et al., 2016), multi-factorial indices were used
there-after. The two indices used here provided freely available results describing
international healthcare systems, using factors such as population, health, demographics and
economics among others (International Working Group on Financing Preparedness, 2017).
Although this analysis was primarily focused on the international spread of infectious
diseases, having an accurate representation of a country’s healthcare system also included
other factors such as demographics and economics. Therefore, it was difficult to determine

which of the indices was the most appropriate to use.

It is interesting to note that countries which have seen important outbreaks develop into
pandemics in this century alone were identified among those having good connectivity but
also, interestingly, above average healthcare index scores. Of note were: Brazil from which

the Zika pandemic spread across the American continent in 2015; China (including Hong
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Kong) from which the Severe Acute Respiratory Syndrome (SARS) outbreak spread globally
in 2003, and Mexico from which the HIN1 Influenza A strain also spread globally in 2009.
These examples give some confidence that our model is able to predict which countries pose
an international risk; however, it is worrisome that other countries like India, Pakistan, the
Philippines and Indonesia, are equally well connected but with less developed healthcare
systems than the countries previously listed. It might be reasonably expected that if an
outbreak were to spark in these countries, the pathogen may be undetected for an extended
period of time and could readily spread internationally, with the potential to spark further
outbreaks. Some regions of the world may have good healthcare systems but be poorly
connected, such as South West Pacific islands, resulting in a reduced risk to the global
community as a consequence. At the regional level, there was agreement between both
indices that Southern Asian countries (such as India) pose a higher risk to the global
community, whereas the South West Pacific countries pose the lowest risk. This is likely a
direct result of the connectivity of these locations, as South Asia is better connected than

South West Pacific.

Whether a pathogen will spread internationally after initial importation and at what speed
depends not only on the country of origin, but also on the epidemiological features of the
pathogen. For example, vector borne pathogens will only spread into their imported
destinations if the correct vectors are present (Tatem and Hay, 2007; Wilson, 1995).
Additionally, the pathogen must be able to spread with relative ease within and between
susceptible populations. Airborne pathogens, and especially those that are transmissible
before the symptomatic phase, are particularly prone to global spread (Amesh et al., 2018;
Wilson, 1995). Finally, it can be argued that the pathogen must reach a part of the population

that is able to fly internationally and come into contact with those who are infectious.

Civil unrest is known to impact a country’s infrastructure, including healthcare and
transportation (Bonds et al., 2018). When considering where the next pandemic is most likely
to spread from, having an understanding of the stability of a given country (political or
otherwise) helps understand whether this risk is likely to change. The impact of war was seen
in countries like Syria where the global connectivity was significantly reduced over the time
period examined. The West African Ebola virus outbreak of 2014 showed the devastating
impact an outbreak can have on a healthcare system and reverse hard-fought progress in a
country’s development. In 2014, it was reported by countries to WHO that only one-third of
countries globally were suitably prepared to detect and respond to a national public health

emergency, with African countries being the least prepared (International Working Group on
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Financing Preparedness, 2017). A good and trusted healthcare system should be able to
detect and control a pathogen in a timely manner, but will also disseminate correct and
appropriate information to the population, thereby reducing the level of fear associated with
an outbreak that may lead to large population movements (International Working Group on
Financing Preparedness, 2017). In our strongly connected world, an outbreak in one country
has the potential to cause public health concern internationally (Brower, 2003). Therefore,

understanding global connectivity and preparedness is crucial.

Given the relatively large number of countries with poor-to-average healthcare but average-
to-good connectivity, such as India and Pakistan, improving surveillance systems to quickly
detect an outbreak is crucial to help avoid future pandemics. These countries must be
encouraged (and/or supported by the international community) to further develop their
healthcare system and preparedness to cope with the possibility of an outbreak without
generating an international public health concern (International Working Group on Financing
Preparedness, 2017). In the event of a public health event of international concern, the global
community must unite to help control the spread of the given pathogen, however, this
emergency help may be detrimental to the future development of a country by reducing the
system’s long term effectiveness and resilience (Harvard Global Health Institute, 2018).
Therefore, international aid must be given in a manner that will encourage the development
of a healthcare system, with staff training and infrastructure development (Bonds et al.,

2018).

In May 2018, the WHO and World Bank co-created the Global Preparedness Monitoring
Board in the hope of improving global preparedness for the next pandemic, by holding all
actors accountable for the development and maintenance of adequate healthcare systems.
Additionally, the Board is placed in an ideal position to keep global health at the top of the
international agenda, rather than letting other international issues take precedence and
therefore continuing the pattern of responding only during international emergencies
(Harvard Global Health Institute, 2018; World health Organization, 2018e). It could be argued
that this analysis may help provide the new Board with the initial information regarding

which countries should receive international funding as a priority.

Pandemics are known to be very costly. For example, the SARS outbreak of 2003 is estimated
to have cost $52.2 billion to the global economy (International Working Group on Financing
Preparedness, 2017). The most conservative models of future pandemic estimate the

economic losses to be between 0.1 and 1.0% of the global GDP, which is relative to climate
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change and natural disasters (International Working Group on Financing Preparedness,
2017). Countries such as the United Kingdom regard the threat of a future pandemic as very
serious, with the potential of causing thousands of extra deaths and important economic
losses (United Kingdom Government, 2017). Given uncertainty about the timing of the next
pandemic, global preparedness is all the more essential to reduce potential costs

(International Working Group on Financing Preparedness, 2017; Semenza et al., 2016b).

There is an abundance of literature stating that weak healthcare systems are ideal settings
for an outbreak to spark due to slow within-country detection (Barber et al., 2017; Bonds et
al., 2018; Elmahdawy et al., 2017; Moore et al., 2016). However, how these countries are
connected globally and the potential international spread of an epidemic (thus developing
into a pandemic) is not often considered together. Although developing healthcare systems
globally is of crucial importance (and strongly encouraged by the Sustainable Development
Goals (United Nations, 2017)), it can be argued that considering each country’s pandemic
spread potential must also be considered to prioritise and take early and adequate control
measures and thereby prevent the further costs associated with a pandemic, both in terms
of mortality, morbidity and economics. Given today’s global connectivity and the
unpredictability of the location of the start of an outbreak, ensuring a level of preparedness

at a global level is critical (International Working Group on Financing Preparedness, 2017).

Although significant progress had been made globally in terms of access to and overall quality
of healthcare provided by each country, the gap between countries with good and poor
healthcare systems is widening. Some countries like Turkey, China and South Korea have
improved their healthcare systems in a short period of time and now have good systems.
Others such as Ethiopia, Peru and the Maldives have out-performed their expected rate of

improvement (Barber et al., 2017).

Itis in the interest for the global community to invest in strong healthcare systems to prevent
outbreaks from developing into pandemics, as these have a direct impact on economic
growth (as seen in South Korea, and West Africa) and may overturn developmental progress
already achieved (International Working Group on Financing Preparedness, 2017). Because
a country is deemed vulnerable, that does not entail that an outbreak will start in that
country or that it will fail in controlling it. But rather that control measures must be taken
promptly, in a culturally sensitive manner and be adequately targeted given the pathogen

and population (Moore et al., 2016).
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Limitations
A number of limitations were present in this analysis, including some relating to the index
data available. Firstly, although a remarkable effort was made by the different groups to
represent healthcare systems in the most accurate manner possible, there is always the
possibility of bias and error that the author is not aware of, and that cannot be accounted
for. Therefore, adding confidence intervals was not possible. Of the many factors included in
each index, not many overlapped and which ones represent healthcare in a more accurate
manner was unclear at time of writing. Even though there was a large overlap in the number
of countries present in all data sets (global connectivity and both indices), a number were
notably absent from various ones. The majority of those were small nations, such as Andorra
and San Marino (missing from the airline data); however, the majority if not all of those
missing from the indices were island nations, such as Aruba and Saint Kitts (missing from both
indices). The absence of these nations may prove to be of importance if, like the Dominican
Republic, they are well connected to the rest of the world but have a limited healthcare
system. Additionally, these indices were done at the country level and did not consider
within-country regions, which may have a significant impact on the results, especially for
large countries like India. Only the Rand index included demographics in its factors, which is
likely to also influence the location of the emergence of the next outbreak. Neither index
used any measure of ecological changes within the country, such as level of deforestation,
which have an important impact on the number of spill over events, from which outbreaks
of zoonotic origin may spark (Jones et al., 2008). Finally, the speed at which a pandemic
would spread globally varies according to the pathogen in question and how contagious it is.
For example, respiratory pathogens are difficult to control given their modes of transmission,
and RNA viruses have high replication and mutation rates (Amesh et al., 2018). Taking the
pathogen type into account was partially considered by the GBD index, but not by the Rand
index. Finally, this analysis only considered the airline spread of a pathogen, without
considering other modes of transportation that cross international boundaries, such as sea
and land travel. This could not be considered in the model as the only transportation data

available to the author at the time was airline data.
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Table 6.4: List of countries with OAG region, with scores assigned by each index and connectivity speed when used as seeding

country and relative distance to 'WCS' according to index name, ordered by Rand ranking score.

Region name

Asia: South

Asia: South

Africa: North

Asia: South East

Latin America: Caribbean
Asia: South East

Africa: Central/Western
Africa: North

Asia: North East

Europe: Eastern/Central
Asia: South East

Africa: North

Asia: South

Europe: Western

Latin America: Caribbean
Asia: South East

Africa: North

Asia: South East

Asia: South

Asia: North East

Latin America: Central
Africa: North

Latin America: Upper South
Africa: Eastern

Middle East

Middle East

Europe: Eastern/Central
Asia: South

Country name
India
Pakistan
Egypt
Philippines
Dominican Republic
Indonesia
Nigeria
Morocco
China
Russian Federation
Cambodia
Algeria
Bangladesh
Turkey
Jamaica
Viet Nam
Tunisia
Thailand
Nepal
Chinese Taipei
Mexico
Sudan
Colombia
Kenya

Iran Islamic Republic of

Lebanon
Ukraine
Afghanistan

GBD score
0.45

0.43
0.61
0.52
0.62
0.49
0.51
0.61
0.74
0.72
0.51
0.64
0.52
0.76
0.64
0.66
0.7
0.71
0.51
0.78
0.63
0.5
0.68
0.49
0.71
0.8
0.73
0.32

Rand score
0.49

0.31
0.53
0.55
0.50
0.56
0.27
0.57
0.66
0.64
0.36
0.50
0.42
0.68
0.50
0.63
0.54
0.71
0.40
0.71
0.74
0.29
0.58
0.39
0.57
0.55
0.62
0.16

Connectivity
0.812

0.571
0.654
0.665
0.615
0.709
0.448
0.664
0.874
0.793
0.465
0.561
0.481
0.825
0.482
0.627
0.532
0.763
0.408
0.736
0.775
0.293
0.530
0.366
0.484
0.499
0.535
0.240

Distance

(GBD)
0.307
0.478
0.595
0.483
0.631
0.420
0.645
0.590
0.693
0.684
0.630
0.688
0.625
0.733
0.741
0.673
0.778
0.679
0.680
0.788
0.562
0.776
0.755
0.703
0.819
0.921
0.813
0.761

Distance

(Rand)
0.530
0.534
0.631
0.638
0.639
0.647
0.650
0.666
0.678
0.681
0.683
0.684
0.684
0.710
0.726
0.734
0.742
0.747
0.750
0.756
0.763
0.764
0.765
0.767
0.768
0.772
0.773
0.773

Ranking

(GBD)
1
3
7
4

12
2
13
6
20
18
11
19
9
24
25
15
33
16
17
37
5
32
28
22
48
9%
45
29

Ranking
(Rand)
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(Table 6.4 continued)

‘ ‘ Distance Distance Ranking Ranking
Region name Country name GBD score | Rand score | Connectivity (GBD) (Rand) (GBD) (Rand)
Europe: Eastern/Central Romania 0.74 0.66 0.590 0.795 0.781 41 29
Latin America: Lower South Brazil 0.65 0.72 0.688 0.628 0.786 10 30
Africa: Southern Angola 0.41 0.15 0.238 0.783 0.786 34 31
Latin America: Upper South Venezuela 0.65 0.53 0.349 0.850 0.787 58 32
Asia: South Sri Lanka 0.73 0.57 0.472 0.850 0.789 59 33
Middle East United Arab Emirates 0.72 0.77 0.753 0.697 0.798 21 34
Middle East Saudi Arabia 0.79 0.74 0.727 0.805 0.799 42 35
Middle East Iraq 0.6 0.43 0.371 0.785 0.802 35 36
Europe: Western Greece 0.87 0.73 0.790 0.904 0.810 81 37
Latin America: Caribbean Haiti 0.38 0.15 0.223 0.789 0.813 39 38
Europe: Western Cyprus 0.85 0.67 0.574 0.949 0.815 120 39
Middle East Kuwait 0.82 0.67 0.554 0.919 0.816 92 40
Middle East Yemen 0.5 0.25 0.248 0.817 0.817 47 41
Asia: South East Malaysia 0.67 0.76 0.688 0.655 0.820 14 42
Asia: South East Myanmar 0.48 0.45 0.356 0.705 0.824 23 43
Europe: Western Italy 0.89 0.82 0.913 0.913 0.827 89 44
Latin America: Lower South Argentina 0.68 0.71 0.536 0.751 0.834 27 45
Europe: Eastern/Central Poland 0.8 0.78 0.696 0.830 0.835 51 46
Africa: Eastern Ethiopia 0.44 0.38 0.271 0.764 0.835 30 47
Europe: Eastern/Central Serbia 0.75 0.57 0.420 0.907 0.836 83 48
Africa: Eastern Tanzania United Republic of 0.5 0.34 0.302 0.767 0.836 31 49
Middle East Oman 0.77 0.63 0.440 0.918 0.840 90 50
Africa: Southern South Africa 0.52 0.70 0.489 0.618 0.845 8 51
Africa: Central/Western Senegal 0.44 0.33 0.217 0.815 0.846 46 52
Latin America: Upper South Ecuador 0.61 0.58 0.382 0.786 0.848 36 53
Asia: Central Uzbekistan 0.62 0.52 0.329 0.837 0.853 54 54
Latin America: Central Guatemala 0.56 0.48 0.274 0.833 0.857 52 55
Latin America: Upper South Peru 0.7 0.65 0.454 0.827 0.858 49 56
Europe: Western France 0.88 0.86 0.918 0.898 0.860 79 57
Middle East Bahrain 0.79 0.66 0.442 0.941 0.866 114 58

(Table 6.4 continues on next page)
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(Table 6.4 continued)

‘ ‘ Distance Distance Ranking Ranking
Region name Country name GBD score | Rand score | Connectivity (GBD) (Rand) (GBD) (Rand)
Asia: Central Kazakhstan 0.61 0.61 0.427 0.751 0.871 26 59
Africa: North Libya 0.7 0.49 0.322 0.919 0.873 93 60
Middle East Israel 0.86 0.78 0.631 0.939 0.874 112 61
Europe: Western Spain 0.9 0.88 0.935 0.927 0.878 103 62
Latin America: Central Honduras 0.54 0.41 0.217 0.870 0.880 69 63
Europe: Eastern/Central Azerbaijan 0.64 0.55 0.321 0.861 0.886 64 64
Europe: Eastern/Central Bulgaria 0.71 0.67 0.504 0.807 0.887 43 65
Latin America: Caribbean Bahamas 0.64 0.65 0.391 0.807 0.887 44 66
Africa: Central/Western Ghana 0.5 0.46 0.273 0.794 0.890 40 67
Asia: South Maldives 0.76 0.58 0.339 0.972 0.890 134 68
Asia: South East Lao People’s Democratic 0.45 0.36 0.191 0.844 0.893 55 69
Republic
Latin America: Central Panama 0.64 0.61 0.331 0.854 0.894 61 70
Asia: Central Tajikistan 0.59 0.51 0.251 0.876 0.895 72 71
Africa: Central/Western Cote D'lvoire 0.42 0.27 0.172 0.851 0.896 60 72
Europe: Western United Kingdom 0.85 0.90 0.992 0.849 0.897 57 73
Africa: Central/Western ~ Congo Democratic Republic of 0.4 0.18 0.132 0.884 0.901 75 74
Middle East Jordan 0.76 0.71 0.490 0.876 0.902 71 75
Asia: North East Korea Republic of 0.86 0.88 0.789 0.889 0.905 77 76
Africa: Southern Zimbabwe 0.49 0.34 0.176 0.878 0.909 73 77
Africa: Central/Western Mali 0.46 0.18 0.098 0.938 0.909 110 78
Africa: Eastern Uganda 0.43 0.37 0.194 0.834 0.910 53 79
Africa: Eastern Madagascar 0.44 0.17 0.108 0.921 0.913 95 80
Europe: Eastern/Central Hungary 0.8 0.80 0.555 0.892 0.913 78 81
Africa: Eastern South Sudan 0.39 0.10 0.090 0.922 0.914 98 82
Asia: South East Singapore 0.86 0.88 0.725 0.906 0.915 82 83
Europe: Western Belgium 0.88 0.87 0.723 0.936 0.916 109 84
Africa: Southern Mozambique 0.43 0.26 0.159 0.867 0.916 67 85
Latin America: Caribbean Cuba 0.74 0.70 0.377 0.924 0.923 101 86
Middle East Qatar 0.85 0.79 0.528 0.971 0.924 133 87

(Table 6.4 continues on next page)
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(Table 6.4 continued)

‘ ’ Distance Distance Ranking Ranking
Region name Country name GBD score | Rand score | Connectivity (GBD) (Rand) (GBD) (Rand)
North America USA 0.81 0.93 1.000 0.788 0.925 38 88
Europe: Western Portugal 0.85 0.89 0.765 0.880 0.926 74 89
Africa: Central/Western Congo 0.44 0.27 0.116 0.913 0.926 88 90
Europe: Western Austria 0.88 0.87 0.658 0.957 0.928 126 91
Africa: Central/Western Benin 0.43 0.21 0.086 0.938 0.934 111 92
Europe: Western Switzerland 0.92 0.92 0.793 0.977 0.936 140 93
Africa: Central/Western Cameroon 0.44 0.39 0.154 0.876 0.936 70 94
Europe: Western Ireland Republic of 0.88 0.91 0.750 0.928 0.938 104 95
Africa: Central/Western Mauritania 0.52 0.11 0.058 1.005 0.939 153 96
Europe: Western Malta 0.85 0.71 0.468 1.002 0.940 152 97
Asia: North East Japan 0.89 0.93 0.837 0.924 0.940 99 98
Europe: Western Netherlands 0.9 0.92 0.769 0.953 0.945 122 99
Europe: Eastern/Central Czech Republic 0.85 0.85 0.587 0.944 0.947 116 100
Africa: Southern Zambia 0.42 0.42 0.167 0.856 0.948 62 101
Africa: Central/Western Burkina Faso 0.43 0.23 0.074 0.950 0.949 121 102
Latin America: Upper South Bolivia 0.59 0.50 0.237 0.888 0.949 76 103
Latin America: Central Costa Rica 0.73 0.74 0.382 0.909 0.950 87 104
Southwest Pacific Australia 0.9 0.91 0.729 0.963 0.950 128 105
Europe: Eastern/Central Albania 0.78 0.63 0.266 1.044 0.951 171 106
Africa: Central/Western Chad 0.38 0.10 0.057 0.953 0.954 123 107
Africa: Eastern Somalia 0.34 0.00 0.072 0.931 0.956 107 108
Southwest Pacific Papua New Guinea 0.39 0.34 0.105 0.908 0.956 85 109
Africa: Central/Western Guinea 0.39 0.21 0.056 0.956 0.958 125 110
Africa: Eastern Rwanda 0.48 0.36 0.139 0.908 0.959 86 111
Latin America: Central El Salvador 0.64 0.61 0.248 0.920 0.960 94 112
Latin America: Central Nicaragua 0.64 0.49 0.166 0.988 0.961 144 113
Southwest Pacific Fiji 0.47 0.57 0.219 0.828 0.964 50 114
Africa: Eastern Mauritius 0.66 0.64 0.260 0.928 0.964 105 115
Asia: Central Kyrgyzstan 0.6 0.56 0.272 0.866 0.966 66 116
Europe: Western Germany 0.86 0.97 0.950 0.865 0.968 65 117

(Table 6.4 continues on next page)
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(Table 6.4 continued)

’ ‘ Distance Distance Ranking Ranking
Region name Country name GBD score | Rand score | Connectivity (GBD) (Rand) (GBD) (Rand)
Africa: Central/Western Niger 0.41 0.17 0.041 0.976 0.972 139 118
Africa: Central/Western Gambia 0.5 0.21 0.039 1.012 0.974 160 119
Europe: Eastern/Central Croatia 0.82 0.72 0.591 0.901 0.976 80 120
Africa: Eastern Eritrea 0.38 0.25 0.065 0.945 0.976 117 121
Africa: Central/Western Togo 0.44 0.26 0.061 0.966 0.977 130 122
Latin America: Caribbean Trinidad and Tobago 0.62 0.60 0.217 0.929 0.978 106 123
Africa: Central/Western Central African Republic 0.29 0.00 0.017 0.983 0.979 142 124
Africa: Southern Malawi 0.47 0.28 0.108 0.933 0.981 108 125
Africa: Central/Western Sierra Leone 0.41 0.22 0.048 0.969 0.982 131 126
Africa: Central/Western Liberia 0.45 0.21 0.053 0.977 0.983 141 127
Africa: Eastern Djibouti 0.45 0.30 0.061 0.970 0.983 132 128
North America Canada 0.88 0.97 0.847 0.907 0.985 84 129
Africa: Southern Namibia 0.54 0.49 0.139 0.941 0.987 113 130
Latin America: Lower South Chile 0.76 0.80 0.409 0.926 0.988 102 131
Africa: Central/Western Gabon 0.51 0.40 0.106 0.954 0.989 124 132
Africa: Central/Western Cape Verde 0.62 0.49 0.148 0.988 0.993 145 133
Europe: Eastern/Central Latvia 0.78 0.76 0.367 0.975 0.999 138 134
Africa: Central/Western Guinea-Bissau 0.36 0.19 0.009 0.996 0.999 148 135
Europe: Western Sweden 0.9 0.96 0.698 0.972 1.000 135 136
Europe: Western Denmark 0.86 0.95 0.688 0.918 1.002 91 137
Africa: Eastern Comoros 0.48 0.24 0.036 1.006 1.004 156 138
Latin America: Lower South Paraguay 0.6 0.54 0.157 0.965 1.004 129 139
Latin America: Caribbean Saint Lucia 0.63 0.52 0.120 1.020 1.004 162 140
Europe: Eastern/Central Lithuania 0.77 0.77 0.396 0.945 1.004 119 141
Africa: Central/Western Sao Tome and Principe 0.5 0.22 0.012 1.038 1.010 170 142
Asia: Central Turkmenistan 0.58 0.49 0.113 0.990 1.012 147 143
Europe: Eastern/Central Armenia 0.68 0.71 0.292 0.922 1.017 97 144
Europe: Eastern/Central Belarus 0.74 0.62 0.227 1.030 1.018 168 145
Africa: Eastern Burundi 0.4 0.35 0.070 0.945 1.022 118 146
Europe: Eastern/Central Bosnia and Herzegovina 0.78 0.52 0.196 1.094 1.023 183 147

(Table 6.4 continues on next page)
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(Table 6.4 continued)

‘ ’ Distance Distance Ranking ‘ Ranking
Region name Country name GBD score | Rand score | Connectivity (GBD) (Rand) (GBD) (Rand)
Southwest Pacific New Zealand 0.86 0.92 0.520 0.988 1.023 146 148
Africa: Central/Western Equatorial Guinea 0.48 0.43 0.058 0.985 1.034 143 149
Europe: Eastern/Central Moldova Republic of 0.73 0.64 0.241 1.010 1.041 158 150
Southwest Pacific Solomon Islands 0.43 0.37 0.013 1.009 1.045 157 151
Latin America: Caribbean Barbados 0.67 0.68 0.166 1.013 1.045 161 152
Asia: North East  Korea Democratic People’s 0.62 0.38 0.016 1.104 1.046 186 153
Republic of
Europe: Western Norway 0.9 1.00 0.690 0.975 1.047 136 154
Africa: Southern Lesotho 0.36 0.35 0.006 0.999 1.050 150 155
Africa: Southern Swaziland 0.42 0.36 0.008 1.011 1.051 159 156
Middle East Syrian Arab Republic 0.75 0.39 0.031 1.194 1.051 192 157
Europe: Eastern/Central Montenegro 0.81 0.61 0.254 1.085 1.054 182 158
Latin America: Central Belize 0.58 0.55 0.096 1.005 1.056 154 159
Latin America: Upper South Guyana 0.5 0.56 0.113 0.942 1.057 115 160
Africa: Southern Botswana 0.51 0.55 0.097 0.962 1.059 127 161
Latin America: Lower South Uruguay 0.72 0.75 0.242 0.999 1.062 149 162
Europe: Western Finland 0.9 0.97 0.564 1.022 1.064 164 163
Europe: Eastern/Central Georgia 0.62 0.74 0.289 0.869 1.065 68 164
Southwest Pacific Vanuatu 0.43 0.49 0.048 0.975 1.067 137 165
Latin America: Upper South Suriname 0.57 0.56 0.088 1.005 1.068 155 166
Southwest Pacific Kiribati 0.45 0.39 0.000 1.029 1.068 167 167
Southwest Pacific  Micronesia Federated States of 0.54 0.43 0.008 1.062 1.073 176 168
Asia: Central Bhutan 0.53 0.46 0.045 1.022 1.073 163 169
Asia: North East Mongolia 0.59 0.63 0.196 0.924 1.074 100 170
Europe: Eastern/Central Estonia 0.81 0.80 0.256 1.084 1.099 181 171
Africa: Eastern Seychelles 0.66 0.63 0.094 1.065 1.101 177 172
Latin America: Caribbean St Vincent and the Grenadines 0.57 0.55 0.034 1.055 1.104 174 173
Europe: Eastern/Central Maced°’;::3t:ﬁlegfvug°5'av 0.76 0.69 0.225 1.053 1.105 173 174
Southwest Pacific Samoa 0.62 0.58 0.050 1.074 1.105 180 175

(Table 6.4 continues on next page)
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(Table 6.4 continued)

‘ ‘ Distance Distance Ranking Ranking

Region name Country name GBD score | Rand score | Connectivity (GBD) (Rand) (GBD) (Rand)
Latin America: Caribbean Grenada, Windward Islands 0.58 0.60 0.071 1.028 1.107 166 176
Asia: South East Brunei Darussalam 0.7 0.76 0.186 1.024 1.115 165 177
Latin America: Caribbean ~ "HEY2 a”dISBIZ;b d“sda’ Leeward 0.67 0.69 0.097 1.071 1.121 179 178
Southwest Pacific Marshall Islands 0.5 0.55 0.003 1.047 1.131 172 179
Europe: Western Luxembourg 0.89 0.88 0.314 1.139 1.132 189 180
Europe: Eastern/Central Slovakia 0.79 0.81 0.201 1.101 1.135 185 181
Latin America: Caribbean Dominica 0.58 0.60 0.039 1.056 1.138 175 182
Southwest Pacific Tonga 0.62 0.63 0.025 1.096 1.152 184 183
Europe: Western Iceland 0.94 0.91 0.393 1.157 1.164 191 184
Europe: Eastern/Central Slovenia 0.87 0.81 0.155 1.219 1.165 193 185
Southwest Pacific Guam 0.63 NA 0.314 0.858 NA 63 186
Southwest Pacific American Samoa 0.63 NA 0.012 1.114 NA 187 187
Latin America: Caribbean Virgin Islands, US 0.7 NA 0.217 1.000 NA 151 188
North America Greenland 0.71 NA 0.055 1.139 NA 190 189
Southwest Pacific N°rth(‘:('l:::r6'1';:;'a”ds 0.72 NA 0.153 1.068 NA 178 190
Latin America: Caribbean Puerto Rico 0.77 NA 0.564 0.848 NA 56 191
Latin America: Caribbean Bermuda 0.79 NA 0.153 1.137 NA 188 192
NA Andorra 0.95 0.63 NA NA NA 194 193
NA Palestine 0.7 NA NA NA NA 194
NA Timor-Leste 0.52 NA NA NA NA 195
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Chapter 7 — Discussion and conclusion

Preamble

This final chapter summaries key findings of the thesis as well as their implications in terms

of research and suggests possible future work.
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Summary of findings

In the 21 century alone, the global community has seen a number of outbreaks develop into
pandemics, such as SARS (2003), Influenza A HIN1 (2009) or Zika virus (2016), each with an
important cost, both in terms of lives lost (or impacted) and economics. With ever more
airline passengers travelling today, modelling international travel is an important tool that is
being increasingly used and referred to by policy makers. The aims of this thesis were to
understand what the airline data represents in terms of global airline passenger movements
and determine whether its use was appropriate to understand the international spread of

human infectious diseases.

From the systematic review it became apparent that expensive and closed-source data sets
such as IATA and OAG were most often used by researchers to model the international
spread of human infectious diseases. These data sets are sold (sometimes at a very high cost)
by the commercial airline industry as highly accurate airline data between international
airports (OAG, 2013). Access to this global representation of passengers comes with a license
for a given length of time and user restrictions but shows limited geographical and temporal
restrictions. However, the financial cost of these data sets may be a barrier for some research
groups, making open access data a more suitable alternative. Examples of such data
providers include the US Department of Transport and the UK’s Office for National Statistics.
Although it should be noted that these are freely accessible data sets, they are geographically
and temporally restricted; being only available for internal flights or at country level (rather
than airport) travel or are usually only available at the quarterly temporal resolution (rather
than monthly). Another issue is the lack of consensus regarding which data type (number of
seats, passenger or flights for example) are reported by these data. This makes the potential
aggregation of different data sets difficult (as they are not representing the same factors)
and the comparison of models using them difficult as well. Open access data sets have the
advantage of providing clear data collection methods (which is not always the case with
closed source data) and can be used for validating a modelling group’s data prior to its use.
This additional step of validating data (as defined in Chapter 2) was found to be infrequently
performed by researchers yet should be encouraged. Data validation provides the researcher
with a clear understanding of what the data represents and identifies any errors and/or
trends it may contain, as well as providing the reader with confidence that the work
presented is valuable and noteworthy. Another data quality check often overlooked by

researchers was the detailed reporting of the data set name, date of download, date range
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and any manipulation done to the data prior to use, such as grouping nearby airports under
one label. As a result, a set of reporting guidelines containing all the fields required to make
the use of a third-party data reproducible was generated (Figure 2.1B). It is hoped that this
will be used by other research groups in the future. Finally, the majority of articles selected
here focused on viruses and very few on other pathogens. Although viruses like Influenza are
a known threat to the global community, bacteria (including antibiotic resistant ones) are
also known to be carried internationally by people, including airline passengers, yet are

seldom considered for modelling.

The author conducted initial quality checks to understand what the OAG data represented in
terms of passenger numbers and determine any potential trends and biases. It soon became
apparent that the data showed a strong seasonality and that specific airports were shown to
play specific roles. For example, ATL was predominantly used for connections whereas PEK
was very few connections compared to the number of departing and arriving bookings.
However, it was identified that OAG, sold as international airline data between airports (OAG,
2013) also contained railway stations as well as bus and ferry terminals among the routings
provided, each with their own IATA codes. As these could not be assigned to an airport, the
codes were kept in the data but their presence recorded. Recording of these stations was
only noted in Bobashev G. et al (2008) but had not been shared with the authors in any
correspondence with the company. This highlights the importance of knowing one’s data as
issues may not be reported but still be present when the data are bought at high cost.
Additionally, by checking one’s data, any collection errors lay become apparent and may be

addressed appropriately if possible, as was done here.

The strong network seasonality seen in the previous chapter was linked to countries in the
northern hemisphere, as this is where the majority of the global population resides. It was
also noted that some countries are strongly connected to each other, such as Spain and the
United Kingdom. These trends are likely to be influenced by passenger purpose of travel to
these destinations, such as travelling for leisure to Spain from the UK, for example. When
directly comparing open access data sets to OAG, a general overall agreement could be
noted, with a large amount of noise and some discrepancies. When validating the OAG data
against open access data sets to understand how many passengers were included in the OAG
bookings, it was clear that in the aggregated airport level data that one booking represented
roughly one passenger. However, when directly comparing airport level data, differences in
how many passengers were included in each booking became apparent such that smaller

airports and countries showed some discrepancies with OAG data. Because of this overall
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agreement, it was decided not to adjust the data and continue the analyses with OAG

bookings representing one passenger.

The use of accurate airline data may provide important information regarding the
international spread of human pathogens. For example, using returning airline passengers as
a sentinel can help understand the changing epidemiology of disease in a given country
(Fricker and Steffen, 2008; Lopez et al., 2016), as well as the risk in the passenger’s home
country upon their return, as infected humans can transmit pathogens to local vectors
(Angelini R et al., 2007). When comparing returning chikungunya and dengue cases with that
of returning travellers, no clear link could be identified, suggesting that the risk of infection
faced by travellers was not relative to the number of passengers but rather seasonal
according to their destination. Additionally, the age pattern of the returning cases provides
insights into their exposure risks that should be considered by point of care clinicians.
However, this airline travel data along with endemic incidence, also allowed the author to
understand the risks faced by passengers compared to local populations within visited
countries and also when taking duration of travel into account. When travelling to a country
with a known infectious disease risk, it can be assumed that a percentage of passengers
would take necessary precautions, if the risk is known prior to travel. However, sentinel
surveillance also allows medical professionals to treat returning passengers quicker by
knowing which pathogen to suspect first when patients return from international travel, as
well as informing future travellers. The within country risk of dengue and chikungunya varied
with the destination, such that UK residents travelling to the Caribbean were at reduced risk
of dengue or chikungunya infection compared to the local population. On the other hand,
travellers to Lower South America faced a higher risk of contracting dengue compared to the
local populations. However, when including duration of travel in the model, there was an
overall protective effect for travellers compared to local populations, with some variations
between regions. For example, travellers to the Caribbean still faced a reduced risk for
dengue but faced an increased risk of chikungunya infection in Southwest Pacific, compared
to local populations. However, considering the variations in passenger number to these
regions, the absolute risk showed large discrepancies with the relative risk, with North
America being the safest destination according to the absolute risk whereas South East Asia
was the riskiest for dengue and the Caribbean for chikungunya when using the relative risk.
Passenger purpose of travel could not be included in this analysis as it was absent from the
original data, however, this is very likely plays an important role in the varying levels of risks

faced by travellers compared to local populations. Although reporting of dengue and
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especially chikungunya may not always be systematically done by countries and UK residents
and doctors may not be aware of what infection they are faced with, this was the first
attempt (that the author is aware of) of using sentinel data to understand within country

risks faced by travellers.

Finally, global pandemic preparedness was analysed by understanding how likely an outbreak
would be to spread internationally when started from a given seed country. Understanding
the level of the healthcare provided in each country was attained using two indices, both
combining a number of factors such as level of disease in population (GBD) or politics as well
as demography and education among others (Rand Index). It was determined early that using
a single factor such as measles vaccination or GDP was not representative of an HCS. Using
two different indices to determine the level of healthcare provided by each country and their
global connectivity, it was determined that India was the country with the potential to cause
the biggest threat to global populations, followed by either Indonesia (Global Burden of
Disease’s Healthcare Quality Index) or Pakistan (Rand Corporation Index) depending on the
index used. Additionally, the countries from which recent pandemics have spread (Brazil,
China (including Hong Kong), Mexico and Saudi Arabia) showed some of the lowest risks for
global pandemic spread. This is in contrast with the large amount of literature stating that
countries with poor healthcare systems are more likely to see the development of an
outbreak, which, with slow within-country detection has the potential to cause a pandemic.
However, these groups do not also consider each country’s global connectivity, except for
Bogoch, I. et al (2018). This analysis does not mean that a vulnerable country won’t be able
to control an outbreak, but rather that there is a significant risk that it will generate a
pandemic if an outbreak isn’t controlled early (Moore et al. 2016). Although access to
healthcare has improved globally overall, the gap between countries providing good and
poor healthcare is still widening, with the majority of HCS not ready to deal with a pandemic
(International Working Group on Financing Preparedness, 2017). Additionally, civil unrest,
humanitarian and natural disasters have a direct and significant impact on HCS (Bonds et al.
2018). However, for an outbreak to develop into a pandemic the pathogen must be
transmissible with relative ease and with minimal detection (for example, prior to the
symptomatic phase), reach a population that can afford to fly internationally as well as
coming into contact with potentially infectious people. If these events occur in a location
with a vulnerable healthcare system and relatively good global connectivity, there is a high
risk that an outbreak will reach other countries and potentially cause a public health event

of international concern. Therefore, it is in every country’s interest to enhance their
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pandemic preparedness, not only because it will cause fewer deaths in their country but also
be financially cheaper to them and to the global community. In 2018, the WHO and World
Bank co-created the Global Preparedness Monitoring Group to tackle this issue. This analysis
has some limitations, including the absence of other modes of transport and the only use of
historical data and the author was unaware of which index was best suited for this analysis.

However, this was the first analysis of its kind at the global level.

A brief summary of the key findings described above can be found in Box 7.1.

Box 7.1: Overview of thesis aims and summary of key findings.

ams of thesis: \

Understand what the airline data represents in terms of passenger movements and
Determine whether its use was appropriate to understand the international spread of human
infectious diseases.

Summary of key findings:

Chapter 2 showed that expensive data sets (IATA and OAG) were most often used to model the
international spread of human infectious diseases and poor reporting of sources.

Validating data (as defined in Chapter 2) prior to use was infrequently performed but should be
encouraged.

The author developed a reporting frame work outlining the minimum information to report when
using third party data to make the work reproducible by others.

From Chapter 3 clear seasonal trends in travel: peaks in July-August, troughs in November,
corresponding to their summer and winter months of the Northern hemisphere.

OAG was sold as international airline data between airports, yet also contained railway, bus and ferry
stations and terminals.

The strong seasonality was driven by countries such as China and the United States. Passenger
purpose of travel was also shown to play an important role in seasonality of travel.

In Chapter 4, a comparison of airport-level data combined from various data sets showed that OAG
bookings represent 0.91 passenger per booking. Therefore, one passenger per booking ratio was
used for the rest of this thesis.

Age and seasonality patterns can be seen in the imported cases of chikungunya and dengue from
Chapter 5.

The airline travel data, along with endemic prevalence and duration of travel, showed that UK
passengers were at reduced risk of becoming infected with dengue when visiting the Caribbean, than
the local populations. On the other hand, passengers to South Asia were at highest risk of contracting
chikungunya, compared to the local population.

Sentinel surveillance allows medical professionals to understand which potential pathogens patients
returning from international travel may be infected with, as well as informing future travellers
regarding the within-country risks.

From the global pandemic preparedness analysed in Chapter 6 it was determined that India, Pakistan
and Indonesia are most likely to see the initial spread of a pandemic.

Two indices made up of several factors were used to describe HCS but no understanding of which
one is best could be determined from this analysis alone.

There is an abundance of literature stating that poor healthcare systems lead to disease outbreaks,
however the author was only aware of one group (at time of writing) who combined this information

to international travel.
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Limitations

The systematic literature review had the limitation of only including international travel
articles, therefore, some relevant articles were knowingly excluded. As this thesis related to
the international spread of infectious diseases, it was not deemed relevant to include articles
relating to national travel patterns, even though these may impact the further international

spread of a pathogen.

Coding and data constraints have had an impact on the level of detail that could be attained
for Chapters 5 and 6. The risks faced by airline passengers when travelling abroad (Chapter
5) could only be modelled for the years 2010 to 2014 as the airline data used was restricted
to those years. Therefore, it was not possible to consider the risk for Zika during the 2016
pandemic, another mosquito borne virus carried by the same vectors as the chikungunya and
dengue viruses, without access to the airline travel data contemporary to the outbreak.
Additionally, the transmission seasonality for chikungunya and dengue could not be taken
into consideration as the endemic prevalence in each visited country was only available at
the annual level. Knowing the strong role played by seasonality in the transmission of these
pathogens, this is a clear limitation to the analysis that could be addressed in future work.
Additionally, the absence of duration and purpose of travel from the returning passenger
data, have implications on the accuracy with which the author was able to model the within-
country risks. It was shown in the analysis that duration of travel impacts on the risks faced
when travelling, however, this was imputed from an independent data source which may not

be as accurate as if the information from the patient directly.

When considering the level of healthcare development for each country (Chapter 6), two
indices were used, made up of several individual factors representing several aspects of the
healthcare system. A clear limitation of this analysis is the absence of temporal variation for
each country. In fact, between 2010 and 2015, a number of countries are likely to have seen
their healthcare system quality vary as a consequence of conflict (Syria for example),
important health events (Ebola in West Africa for example) or other known or unknown
causes. The lack of annual values for these indices is a clear limitation as this may provide
important information on the varying levels of risk countries pose to the global community
according to their concurrent level of HCS development. For example, it was shown in
Chapter 6 that the connectivity of countries like Syria and West African countries significantly
reduced during the conflict and the Ebola outbreak, respectively, however, according to this

analysis, their healthcare system development stayed constant. This is unlikely to be true;
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but, the exact extent of the variation generated by these events remains unclear.
Additionally, this analysis only considers airline travel without considering land or sea travel,
which is also likely to disseminate pathogens internationally. Finally, there was no breakdown
of within-country regions which is problematic for countries such as India that are
geographically large and may have varying baseline risks of developing an outbreak

depending on the within-country region.

Implications of research

Mathematical models using airline passenger data are increasingly used to inform public
health policy (Basu and Andrews, 2013). However, a number of limitations considering their
use and origin need to be considered by researchers and policy makers alike. Firstly, the
validity of the airline data itself. As shown in Chapter 2, commercial airline data, such as IATA
and OAG, is most frequently used by researchers, and it can be assumed that because these
data come at a very high price, they are taken as the truth. Because researchers are not
second guessing the data, or at least not reporting that they are, their validity is assumed not
to be questioned. However, when doing some simple analyses for this thesis, it became clear
that the OAG data were not perfect, namely because they included railway stations as
‘connections’ in routings with recognised departing and arriving airport codes. This was not
disclosed by the company and the routings could not be corrected as no airport code could
not be attributed as a replacement for those railway stations. Additionally, the data were
sold as airline ‘Adjusted.Bookings’ and ‘Unadjusted.Bookings’, with no indication from their
documentation regarding the differences between the two, and what a booking represents
in terms of passenger count. When asked in personal communications what the differences
were between each type of booking and whether they could provide additional information
regarding their collection methods, the company did not provide any additional details.
However, they informed the author that the ‘Adjusted.Bookings’ were more accurate, which,
when plotting against time, matched the author’s a priori knowledge of the seasonal trends
of global travel. Therefore, this thesis has provided the first in-depth description of a closed-
source data set (the author is aware of), highlighting problems with the collection methods

and with the data themselves.

As well as not reporting what the data represent, detailed reporting of the data set names
and sources used in models is infrequently communicated by researchers. While it is
increasingly requested in other fields such as biological sciences (Nature, 2014), accurate

reporting of third party data, such as airline data, does not seem to be held accountable to
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the same reporting standards. With so many data sources available and with varying levels
of quality, strongly encouraging a set of reporting standards, leading to reproducibility is in
the interest of the field of research and the basis of scientific research. Additionally, the
availability of a data set that the modelling community can agree upon using, providing
accurate and detailed information about airline data would make the comparison of models
more realistic. Until this is a reality, policy makers and journals relying or publishing these
models (either to influence policy or to understand outbreak developments) should
encourage researchers to report data according to the guidelines developed from this thesis

and detailed in Figure 2.1B.

Furthermore, providing a description and performing a validation of the airline data used for
these models will give readers an insight into their accuracy. As many research groups are
using commercial airline data, knowing their flaws may encourage them to validate them
before use. At the time of writing, the author was unaware of any such data comparisons
having previously been attempted or published, and one was therefore attempted with the
aim of understanding how many passengers were included in each ‘Adjusted.Bookings’ from
OAG. Using four open access and independent data sets, it became apparent that when
considering single airports and countries there were some discrepancies between the open
access data sets and OAG, especially when considering small airports. Similar discrepancies
were apparent when considering countries. However, when open access data sets were
aggregated together to the airport or country level, the overall ratio of passenger per booking
was much closer to one. Nevertheless, the OAG data severely underestimated the number
of passengers departing from airport code ‘USA’ (Concorde airport in the United States,
USDoT data) and passengers departing from Greenland (UK ONS data). Chapter 4 aimed to
provide the first validation of a commercial data set with open access data to determine the
validity of the former. Additionally, it was determined that possible reasons behind these
variations at the airport level of passengers per booking may also include a passenger’s
purpose of travel: if travelling for work, the booking is more likely to only consider one
passenger, whereas if travelling for leisure or to visit friends and relatives, a booking may
consider multiple passengers. These variations may also reflect the choice of departure and
destination airport for passengers, such that business passengers travelling between London
and Europe are more likely to use London City airport due to its proximity to the financial

district (Civil Aviation Authority, 2011), for example.

To the author’s knowledge, this thesis showed the first attempt at using sentinel data to

understand within-country risks of chikungunya and dengue faced by UK travellers. It was
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determined that duration of travel within each country played an important role and overall
protective effect in the level of risk encountered by the travellers. This analysis gives a first
impression of the impact of duration of travel by country using aggregated data from another
source collected for a different purpose (TravelPac data). Although the risk of contracting a
VBD when travelling to affected regions is known to vary according to factors such as
duration of travel and within country behaviour, little data was available regarding the
within-country behaviours and therefore could not be included in the model. For example,
passengers travelling to visit rural locations to visit relatives or for backpacking will face a
different level of risk than passengers staying in air-conditioned hotel and spending their time
in urban areas. However, there is little data available combining duration and purpose of
travel with passenger numbers and demographics by country other than TravelPac, which is
not very detailed in terms of passenger numbers as previously described. Having such
detailed data freely available would be an asset to the field. In a time when the global
population is increasingly well connected with airline travel, it can be hoped that the more
information modellers have available to use to build their models, the more representative
it will be. Indeed, this lack of information may have a detrimental effect when it comes to
modelling within-country risks for varying diseases and potentially for the understanding of
the spread of the next pandemic. In must also be remembered that knowledge of the risks
faced by passengers according to their duration of travel and within-country behaviour will
also have an impact on how travel clinics disseminate information and how clinicians treat

returning passengers.

Finally, using global airline connectivity and the level of healthcare development in each
country could help understand which countries may pose a higher risk in the potential initial
spread of a pandemic. Such an analysis had only been previously attempted at the national
level in relation to the 2017 plague outbreak in Madagascar by Bogoch et al. (2018), but not
at the global level. An abundance of literature states that countries with poor healthcare
development are more likely to see the development of an outbreak (Barber et al., 2017,
Bonds et al., 2018; EImahdawy et al., 2017; Moore et al., 2016), however, this is not often
considered in combination with their international airline connectivity, which is of
importance when considering the spread of pandemics. The results from this analysis showed
that a different set off countries pose a higher risk to the global community (India, Pakistan
and Indonesia) than those with the poorest healthcare development (Central African
Republic, Somalia and South Sudan) (Moore et al, 2016 and International Working Group on

Financial Preparedness, 2017) or those which have recently seen the development of an
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outbreak that developed into a pandemic (Mexico, Brazil and Saudi Arabia). Given the
number of passengers who travel internationally every day, the global community should be
encouraged to consider healthcare development and international travel together. This
analysis has highlighted the fact that there are very few indices freely available to represent
healthcare development and the factors used (for example, level of infectious diseases,
education, politics...) were different in the two indices used here. As there does not seem to
be a set of guidelines advising which factors may be more or less representative of healthcare
development, the development of more indices using a range of factors but with comparable
methods, would be helpful for the field and for future policy development at the
international level. Additionally, understanding the impact of civil unrest and humanitarian
crises by having a more detailed historical view at changes over time would be very useful to

understand the potential future risks faced by the global community.

Understanding which countries may pose a more significant international risk provides
crucial information about where to (re-)direct international aid over a longer period of time,
which is more advantageous to a country than short term investment. Such aid allows the
development of the country’s infrastructure, thereby becoming more resilient to future
disease outbreaks (Bonds et al., 2018; Harvard Global Health Institute, 2018; Moore et al.,
2016). By assisting in the strengthening of HCS of the most vulnerable countries, the global
community will become a safer place. Additionally, by providing healthcare workers in the
UK information about which countries pose varying risks to travellers will help them identify
potential pathogens quicker when patients present to them and disseminate the correct

information from travel clinics.
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Future perspectives

A number of projects could derive from this thesis, of which a few are described below.
Firstly, a detailed direct comparison of the two data sources principally used by mathematical
modellers, IATA and OAG, has not yet been reported, therefore it is still unclear whether one
is better than the other. If this is the case, researchers and organisations relying on this data
should be made aware and encouraged to use the most appropriate data set. Therefore, a
continuation of this thesis would include undertaking such a comparison at the most refined
level of detail possible, at least monthly airport data comparison. Although potentially very
costly for the research group, it would help determine the differences between both data
sets and whether one is indeed more favourable to use for infectious disease modelling than
the other. This may also be of interest to the companies themselves if they wish for

researchers to use their data for public health purposes.

Another important follow on would be to generate an open access data base that combines
airline travel information and demographic information, such as age group, sex, size of travel
party, purpose of travel and within-country activities. Such information could result from a
collaboration with social scientists to gain a detailed understanding of behaviours during
travel. Although TravelPac does provide some of this information, gaining more detailed data
is likely to require more in-depth or different interviews than the ones being undertaken by
the ONS team. This data base would need to be as accurate as possible both geographically
(at airport level) and temporally (at least monthly, although the daily and/or weekly
variations may also provide key insights). Given that IATA and OAG are data sources
generated by and for the airline industry, generating a database specifically for
epidemiological purposes, is very likely to provide key insights into the development and
geographical extent of a pandemic, thus providing more accurate and more reliable
information for policy makers. Such a data base wold also allow researchers to use the same
information, therefore making their work more comparable between them. However, the
data base would need to be updated on a regular basis to keep the information relevant to
outbreak scenarios, which may require cooperation from the airline data providers

themselves.

From the dengue and chikungunya analysis chapter, seasonality could not be considered due
to the nature of the endemic levels of disease identified. A future piece of work could include
this factor as seasonal transmission is known to be very important in the spread of these

VBDs and will likely impact the relative risk for UK passengers in different regions of the
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world. Additionally, adding within-country activities as a model parameter could provide
additional insights into which behaviour pose more or less of a risk to UK travellers and in

which countries.

Understanding the impact of conflict and important events (such as natural disasters or
severe outbreaks) on HCS over time would provide important additional information for
international health policy makers. This would provide insights into which countries to target
for long term development aid, to improve base levels of vaccination, sanitation and basic
healthcare needs. Another perspective is the breakdown of the index scores by within-
country regions (for the highest risk countries to start off with, such as India, Pakistan and
Indonesia) and seeing the geographical variations. Accomplishing this work would require
access to detailed data relating to health, and recreating the work done in the indices, which
was beyond the scope of this thesis. Therefore, the creation of an open access database
collating annual and sub-national data directly and indirectly relating the healthcare could
provide key insights into the impact of unrest on healthcare, which country may pose varying

threats and how these change over time.

Finally, media reporting of an outbreak of international concern is likely to have an impact
on its containment from the speed of the international response before it escalates to a
pandemic. For example, during the 2014 West African Ebola outbreak, WHO and the global
community were criticised for their slow response (BBC, 2014). Indeed, international aide
and press coverage were slow and minimal until cases from Western countries were
identified. On the other hand, when the Zika epidemic started to affect Brazil a few months
before the 2016 Rio de Janeiro Olympic Games, the response was much faster, and news
coverage more important. The significant variations in reporting between these outbreaks is
thought provoking (Hayden, 2016) and merits a detailed analysis regarding the factors
influencing these reports and the impact media reporting may have on the development of

the outbreak and pandemic.
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Appendices

Table 1: List of countries names (according to OAG) included in each OAG region and sub-region.

Sub-region
name

Region name Countries included

AF1  Algeria, Egypt, Libya, Morocco, Sudan, Tunisia

Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa,

AF2
Swaziland, Zambia, Zimbabwe
Benin, Burkina Faso, Cameroon, Cape Verde, Central African Republic, Chad, Congo,
. Congo Democratic Republic of, Cote D’Ivoire, Equatorial Guinea, Gabon, Gambia,
Africa AF3

Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Mayotte, Niger, Nigeria,
Saint Helena, Sao Tome and Principe, Senegal, Sierra Leone, Togo, Zaire
Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Mauritius,

AF4  Reunion, Rwanda, Seychelles, Somalia, South Sudan, Tanzania United Republic of,
Uganda

AS1  Afghanistan, Bangladesh, India, Maldives, Nepal, Pakistan, Sri Lanka

AS2 Bhutan, Kazakhstan, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan

Brunei Darussalam, Cambodia, Cocos (keeling) Islands, East Timor, East Timor,
As3  Indonesia, Lao People’s Democratic Republic, Malaysia, Myanmar, Philippines,
Asia Singapore, Thailand, Timor-Leste, Viet Nam

Chinese Taipei, Hong Kong, Hong Kong (sar) China, Japan, Korea Democratic
AS41China People’s Republic of, Korea Republic of, Macao (sar) China, Macau, Mongolia,
Taiwan Province of China

China China

Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia,

Czech Republic, Estonia, Georgia, Hungary, Latvia, Lithuania, Macedonia Former
EU2 Yugoslav Republic of, Moldova Republic of, Montenegro, Poland, Romania, Russian

Federation, Serbia, Serbia and Montenegro, Slovakia, Slovenia, Ukraine and

Yugoslavia
Europe W_EU*  Faroe Islands, France, Great Britain, Iceland, Ireland, Monaco
South_EU*  Gibraltar, Italy, Malta, Portugal, Spain
Scandinavia*  Denmark, Finland, Netherlands, Norway, Sweden
Central_EU*  Austria, Belgium, Germany, Luxembourg, Switzerland
SE_EU*  Cyprus, Greece, Turkey
Anguilla-Leeward Islands, Antigua and Barbuda-Leeward Islands, Aruba, Bahamas,
Barbados, Bermuda, Bonaire, Saint Eustatius and Saba, Cayman Islands, Cuba,
Curacao, Dominica, Dominican Republic, Grenada, Windward Islands, Guadeloupe,
LA1 Haiti, Jamaica, Martinique, Montserrat-Leeward Islands, Netherlands Antilles,
Puerto Rico, Saint Barthelmy, Saint Kitts and Nevis-Leeward Islands, Saint Lucia,
Saint Martin, St Maarten (Dutch Part), St Vincent and the Grenadines, Trinidad and
Latin America Tobago, Turks and Caicos Islands, Virgin Islands-British, Virgin Islands-US
LA2 Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama
LA3 Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname, Venezuela
LA4  Argentina, Brazil, Chile, Falkland Islands, Paraguay, Uruguay
Bahrain, Iran Islamic Republic of, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman,
Middle East ME1 Palestine, Qatar, Saudi Arabia, Syrian Arab Republic, United Arab Emirates, Yemen

(Table 1 continues on next page)
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(Table 1 continued)

Arkansas, Colorado, Kansas, Louisiana, Nebraska, New Mexico, North Dakota, South

*
e Dakota, Oklahoma and Texas

Canada, Greenland, Saint Pierre and Miquelon, United States Minor Outlying
NA1!USA

Islands, USA
NE USA* Connecticut, Delaware, Maine, Massachusetts, Maryland, New Hampshire, New
- Jersey, New York, Pennsylvania, Rhode Island, Vermont, Virginia, West Virginia
North America
North_USA* lllinois, Indiana, lowa, Kentucky, Michigan, Minnesota, Missouri, Ohio, Wisconsin
NW_USA*  Alaska, Idaho, Montana, Oregon, Washington, Wyoming
SE_USA*  Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, Tennessee
SW_USA*  Arizona, California, Hawaii, Nevada, Utah
American Samoa, Australia, Christmas Island-Indian Ocean, Cook Islands, Fiji,
Southwest French Polynesia, Guam, Kiribati, Marshall Islands, Micronesia Federated States of,
outhwes
Pacific SW1 Nauru, New Caledonia, New Zealand, Niue, Norfolk Island, Northern Mariana

Islands (except Guam), Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga,
Tuvalu, Vanuatu and Wallis, Futuna Islands

* User defined sub-region grouping.
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Table 4.3: Random slope coefficient values for each airport present in the open access and OAG data, with their respective number of passengers and bookings and the ratios
calculated as passengers per bookings. Airport codes ending in “_dom” and ”_int” represent airports in the PANYNJ data, as per Table 4.1.
Note: the quartile groups 1 to 4 are those shown in Figure 4.7.

Airport code Airport name Country Random slope Quantile group Bookings Passengers  Ratio
MKK Hoolehua USA 0.07 1 292,023 18,190 0.06
LNY LanaiCity USA 0.11 1 259,647 27,540 0.11
ENA Kenai USA 0.15 1 431,033 72,680 0.17
GST  Gustavus Airport USA 0.17 1 52,656 10,720 0.20
JHM  Kapalua USA 0.19 1 125,854 20,530 0.16
PHO Point Hope USA 0.22 1 499 110 0.22
00K Toksook Bay USA 0.22 1 142 20 0.14
CYF Chefornak USA 0.22 1 1,785 170 0.10
SPN Saipan Northern Mariana Islands (except Guam) 0.26 1 195,297 44,330 0.23
KKI  Akiachak USA 0.27 1 236 60 0.25
HOM Homer USA 0.31 1 129,216 35,240 0.27
ROP Rota Northern Mariana Islands (except Guam) 0.33 1 11,991 1,420 0.12
YAK Yakutat USA 0.36 1 95,159 38,440 0.40
VQS Vieques Puerto Rico 0.37 1 107,743 32,510 0.30
VDZ Valdez USA 0.38 1 56,993 17,570 031
AIN  Wainwright USA 0.39 1 380 150 0.39
KSM St Mary's USA 0.40 1 3,136 270 0.09
NUI  Nuigsut USA 0.40 1 115 40 035
MWH Moses Lake Grant County Apt USA 0.43 1 1,063 420 0.40
PIP  Pilot Point Airport USA 0.43 1 55 20 0.36
VAK Chevak USA 0.44 1 176 80 045
AKN  King Salmon USA 0.44 1 110,806 53,950 0.49
SGY Skagway USA 0.46 1 211 90 0.43
SNP St Paul Island USA 0.48 1 6,116 2,620 043
DLG Dillingham USA 0.48 1 85,417 39,010 0.46

(Table 4.3 continues on next page)

224|Appendices



(Table 4.3 continued)

Airport

code | Airport name Country Random slope Quantile group ‘ Bookings Passengers | Ratio
PGA Page USA 0.50 1 24,341 12,660 0.52
ADK Adak Island USA 0.51 1 18,895 10,490  0.56
WRG Wrangell USA 0.52 1 89,691 51,620 0.58
CDV Cordova Merle K (Mudhole) Smith Apt USA 0.52 1 109,814 64,550  0.59
TNK Tununak USA 0.55 1 40 20 050
DUT Dutch Harbor USA 0.55 1 152,373 87,920 0.58
CDB Cold Bay USA 0.56 1 9,272 4,990 0.54
OXF Oxford United Kingdom 0.56 1 4,514 2,509  0.56
GUM Guam Antonio B Won Pat International Guam 0.57 1 451,330 282,620 0.63
GAM  Gambell USA 0.58 1 37 40 1.08
MBL Manistee USA 0.58 1 10,425 4,500 043
CBG Cambridge United Kingdom 0.58 1 43,347 26,641  0.61
DDC Dodge City USA 0.59 1 26,607 17,120 0.64
DEC Decatur USA 0.60 1 5,415 1,680 0.31
MCG Mcgrath USA 0.60 1 2,222 780 035
MVY Martha's Vineyard USA 0.61 1 176,289 127,580 0.72
EAR Kearney USA 0.61 1 58,573 40,100 0.68
ACK Nantucket USA 0.61 1 343,417 242,180 0.71
HYS Hays USA 0.62 1 49,215 32630 0.66
CEZ Cortez USA 0.62 1 31,102 21,890 0.70
HNS Haines USA 0.62 1 192 140 073
FMN Farmington USA 0.63 1 58,877 40,160  0.68
UNK Unalakleet USA 0.63 1 4,013 670  0.17
ADQ Kodiak Apt USA 0.63 1 318,708 225,830 0.71
DIK Dickinson USA 0.64 1 175,821 140,380 0.80

(Table 4.3 continues on next page)
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(Table 4.3 continues)

Airport code | Airport name Country Random slope Quantile group Bookings Passengers Ratio
SHR  Sheridan USA 0.67 1 66,989 48,280  0.72
ISN  Williston USA 0.67 1 355,764 300,470 0.84
ART  Watertown (US) NY USA 0.68 1 99,896 77,710  0.78
SCC  Prudhoe Bay/Deadhorse USA 0.68 1 209,904 155,820 0.74
SDP  Sand Point USA 0.68 1 14,748 6,540 0.44
PSG Petersburg USA 0.69 1 104,751 80,540  0.77
WYS  West Yellowstone USA 0.69 1 38,916 27,660 0.71
ECP  Panama City Nw Florida Beaches Intl USA 0.69 1 2,523,009 1,918,840 0.76
LBL Liberal USA 0.69 1 24,481 18,700  0.76
RIW Riverton USA 0.71 1 67,035 50,640  0.76
BKG Branson USA 0.72 1 571,570 466,180  0.82
SAF Santa Fe (US) USA 0.72 1 345,955 277,890  0.80
FOE Topeka Forbes AFB USA 0.72 1 13,790 10,790  0.78
LEB Lebanon USA 0.73 1 28,529 22,000 0.77
LWB Lewisburg USA 0.73 1 59,629 51,390 0.86
HHH  Hilton Head Island USA 0.73 1 392,905 319,370 0.81
TUP Tupelo USA 0.74 1 43,497 37,750  0.87
OGD Ogden Hinckley Apt USA 0.75 1 34,364 30,690  0.89
ROA Roanoke USA 0.75 1 1,591,399 1,335,810 0.84
PIR Pierre USA 0.76 1 63,817 54,500  0.85
PVU Provo USA 0.76 1 161,366 142,260  0.88
KTN  Ketchikan International Apt USA 0.77 1 540,702 468,950 0.87
PVC Provincetown USA 0.77 1 35,372 15,960  0.45
LAW Lawton/Fort Sill USA 0.77 1 364,298 305,140 0.84
GRK  Killeen/Fort Hood Regional/R. Gray AAF USA 0.77 1 1,010,434 869,990  0.86

(Table 4.3 continues on next page)
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(Table 4.3 continued)

Airport code | Airport name Country Random slope Quantile group | Bookings | Passengers | Ratio
CRW Charleston (US) WV USA 0.77 1 1,366,256 1,184,210 0.87
ERI Erie USA 0.77 1 573,071 494,260 0.86
GYY Chicago Gary International Apt USA 0.77 1 17,430 14,330 0.82
VEL Vernal USA 0.78 1 31,748 26,030 0.82
RKD Rockland USA 0.78 1 24,725 15,330  0.62
CGl Cape Girardeau USA 0.78 1 23,202 17,390 0.75
MHK Manhattan USA 0.78 1 328,192 286,020  0.87
ITH Ithaca USA 0.79 1 579,734 508,010 0.88
GRI Grand Island USA 0.79 1 272,838 241,730 0.89
ATW Appleton USA 0.79 1 1,229,054 1,081,500 0.88
BHB Bar Harbor USA 0.79 1 49,287 41,850 0.85
HDN Hayden USA 0.79 1 540,373 514,120 0.95
AMA Amarillo Rick Husband Intl Apt USA 0.79 1 2,132,255 1,887,150  0.89
JLN Joplin USA 0.79 1 138,150 118,910 0.86
BFF Scottsbluff USA 0.79 1 39,046 34,140 0.87
CAE Columbia Metropolitan Apt USA 0.80 1 2,478,105 2,213,110  0.89
PHF Newport News USA 0.80 1 1,906,988 1,741,270 0.91
DAL Dallas/Fort Worth Dallas Love Field USA 0.80 1 16,980,240 15,251,670  0.90
FAl Fairbanks International Apt USA 0.80 1 1,861,681 1,657,740 0.89
GCK Garden City USA 0.80 1 98,169 94,290 0.96
CHO Charlottesville USA 0.81 1 1,145,651 1,032,640  0.90
MDT Harrisburg International Apt USA 0.81 1 3,221,666 2,911,570  0.90
BKW Beckley USA 0.81 1 17,266 13,620 0.79
GRB Green Bay USA 0.81 1 1,498,035 1,358,430 0.91
ELP El Paso International Apt USA 0.81 1 7,096,254 6,448,020 0.91

(Table 4.3 continues on next page)
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(Table 4.3 continued)

Airport code | Airport name Country Random slope Quantile group Bookings Passengers Ratio
XNA  Fayetteville/Springdale NW Arkansas Reg USA 0.81 1 2,784,420 2,533,420 0.91
LCK  Columbus Rickenbacker Apt USA 0.81 1 76,512 74,880 0.98
HTS Huntington USA 0.82 1 571,447 521,530 091
TYS  Knoxville USA 0.82 1 4,040,561 3,684,450 0.91
HSV  Huntsville International Airport USA 0.82 1 2,847,483 2,594,780 091
FNL Fort Collins/Loveland Municipal Apt USA 0.82 1 97,819 90,240 0.92
MDW  Chicago Midway Apt USA 0.82 1 32,227,040 29,515,740  0.92
STL St Louis Lambert Intl Apt USA 0.82 1 25,494,269 23,345,920 0.92
LBF North Platte USA 0.82 1 34,640 30,880  0.89
JNU  Juneau USA 0.82 1 1,158,134 1,053,580  0.91
GSO  Greensboro/High Point USA 0.82 1 4,173,342 3,830,440 092
PKB Parkersburg/Marietta USA 0.82 1 37,733 34,170 0.91
SFB  Orlando Sanford International Airport USA 0.82 1 3,216,638 2,996,840  0.93
TOL Toledo Express Apt USA 0.83 1 388,257 360,180 0.93
YNG Youngstown USA 0.83 1 199,120 188,160  0.94
RAP  Rapid City Regional Apt USA 0.83 1 1,290,009 1,193,910 0.93
LEX Lexington Blue Grass Apt USA 0.83 1 2,602,527 2,412,130  0.93
SHV  Shreveport Regional Apt USA 0.83 1 1,399,691 1,297,870  0.93
ANC  Anchorage Ted Stevens Intl Apt USA 0.83 1 8,047,246 7,442,000 0.92
SBN  South Bend USA 0.83 1 1,511,994 1,401,680 0.93
MSN  Madison (US) WI USA 0.83 1 3,779,528 3,508,810  0.93
ABQ Albuquerque USA 0.83 1 12,141,184 11,275,290 0.93
OTZ Kotzebue USA 0.83 1 150,703 139,600  0.93
HOU Houston William P. Hobby Apt USA 0.83 1 20,038,823 18,611,620 0.93
0GG Kahului USA 0.83 1 11,429,179 10,578,010  0.93

(Table 4.3 continues on next page)
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(Table 4.3 continued)

Airport code | Airport name Country Random slope | Quantile group Bookings Passengers Ratio
MLI  Moline USA 0.83 1 1,965,234 1,827,110 0.93
RFD Chicago Rockford Airport USA 0.83 1 409,365 379,610 093

TRl  Tri-Cities Regional USA 0.83 1 1,071,900 997,760  0.93
IAG Niagara Falls USA 0.83 1 328,475 315,820  0.96
SIT Sitka USA 0.83 1 317,134 295,910 0.93
HVN New Haven USA 0.83 1 210,032 193,820 0.92
AZA  Phoenix Mesa Gateway Airport USA 0.83 1 2,632,689 2,421,940 0.92
DAY Dayton Intl Apt USA 0.83 1 5,975,615 5574910 0.3
OWB Owensboro USA 0.84 1 104,083 96,780  0.93
ORH  Worcester USA 0.84 1 85,869 80,120  0.93
LIT  Little Rock USA 0.84 2 5,326,653 4,982,990  0.94
CVG Cincinnati Northern Kentucky Intl Apt USA 0.84 2 9,955,490 9,320,650  0.94
AUG Augusta USA 0.84 2 27,906 21,920 0.79
AZO Kalamazoo USA 0.84 2 616,101 577,280  0.94
CID  Cedar Rapids USA 0.84 2 2,327,840 2,187,460  0.94
ROC Rochester (US) NY USA 0.84 2 5,731,577 5,383,080 0.94
ICT Wichita Dwight D. Eisenhower Apt USA 0.84 2 3,505,782 3,304,410 0.94
PIE Tampa St Petersbrg-Clearwater Intl Apt USA 0.84 2 2,209,433 2,108,260  0.95
MEM Memphis International Apt USA 0.84 2 8,137,382 7,664,410  0.94
MOB  Mobile Municipal Apt USA 0.84 2 1,391,357 1,310,600  0.94
TLH  Tallahassee USA 0.84 2 1,521,613 1433540 094
FLO Florence USA 0.84 2 392,768 370,220  0.94
BGM  Binghamton USA 0.84 2 530,688 501,130  0.94
SYR Syracuse USA 0.84 2 4,717,221 4,458,060 0.95
PGD Punta Gorda (US) USA 0.85 2 732,713 720,650  0.98

(Table 4.3 continues on next page)
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(Table 4.3 continued)
Airport code | Airport name

Country Random slope | Quantile group Bookings Passengers | Ratio

FAY Fayetteville Municipal Apt USA 0.85 2 1,287,845 1,219,830 0.95
MGM Montgomery Dannelly Field USA 0.85 2 910,502 861,630 0.95
CYS Cheyenne Regional Apt USA 0.85 2 76,733 71,390 0.93
JFK New York J F Kennedy International Apt USA 0.85 2 46,340,395 43,874,250  0.95
EVW Evansville USA 0.85 2 810,471 768,040  0.95
SGF Springfield (US) MO USA 0.85 2 1,767,571 1,678,980  0.95
LSE LaCrosse USA 0.85 2 480,924 453,560 0.94
CHA Chattanooga Lovell Field Apt USA 0.85 2 1,613,807 1,535,220 0.95
STX St Croix Henry E. Rohlsen Apt Virgin Islands, US 0.85 2 683,620 648,360 0.95
HPN Westchester County USA 0.85 2 4,473,395 4,263,400  0.95
PIA Peoria USA 0.85 2 1,337,672 1,277,180  0.95
SCE State College USA 0.85 = 681,573 650,410  0.95
BWI Baltimore Washington International Apt USA 0.85 2 40,326,358 38,556,220 0.96
RHI Rhinelander USA 0.85 2 96,608 97,310  1.01
AEX Alexandria International Apt USA 0.85 2 681,005 650,350 0.95
RIC Richmond (US) USA 0.86 2 7,627,200 7,306,470  0.96
JAN Jackson-evers International Airport USA 0.86 2 2,918,738 2,790,820 0.96
SDF Louisville International USA 0.86 2 7678670 7,355,170  0.96
BHM Birmingham USA 0.86 2 6,493,202 6,220,420 0.96
SCK Sacramento Stockton Metropolitan USA 0.86 . 318,802 308,560  0.97
BTR Baton Rouge USA 0.86 2 1,922,006 1,843,760  0.96
MWA Marion USA 0.86 & 32,596 25090  0.77
ORF Norfolk International Apt USA 0.86 2 7,452,003 7,186,950  0.96
SBY Salisbury-Ocean City USA 0.86 2 350,056 334550 096
MLU Monroe USA 0.86 2 550,400 529370  0.96

(Table 4.3 continues on next page)
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(Table 4.3 continued)

Airport code | Airport name Country Random slope | Quantile group Bookings Passengers Ratio
BUF Buffalo USA 0.86 2 12,170,421 11,740,790 0.96
ABE Allentown/Bethlehem/Easton USA 0.86 2 1,809,320 1,751,470  0.97
ELM Elmira/Corning USA 0.86 2 721,053 694,360  0.96
EGE Vail/Eagle County Rgnl Apt USA 0.86 2 821,452 832,050 1.01
OAJ Jacksonville (US) NC USA 0.86 2 898,836 868,580  0.97

FWA Fort Wayne Baer Field USA 0.86 2 1,409,350 1,359,780  0.96
DSM Des Moines USA 0.86 2 4,687,385 4,532,040 0.97
FSM  Fort Smith (US) USA 0.86 2 443,129 426,090 0.96
PBG Plattsburgh USA 0.86 2 553,714 538,470 0.97
LRD Laredo USA 0.86 2 507,586 489,800 0.96
OKC Oklahoma City Will Rogers Apt USA 0.86 2 8,332,767 8,052,740  0.97
BMI Bloomington-Normal USA 0.86 2 1,183,809 1,144,590  0.97
OXR Oxnard/Ventura USA 0.86 2 1,982 1,860 0.94
TUL Tulsa International Apt USA 0.86 2 6,364,106 6,158,410 0.97
LAN Lansing USA 0.87 2 861,658 836,560 0.97
GRR Grand Rapids USA 0.87 2 5,052,674 4,885,460 0.97
CSG  Columbus Metropolitan Apt USA 0.87 2 296,519 287,260  0.97
MCI Kansas City International Apt USA 0.87 2 22,036,969 21,342,820 0.97
MSP  Minneapolis/St Paul International Apt USA 0.87 2 39,320,247 38,034,060 0.97
KOA Kona USA 0.87 2 5,678,751 5,490,290 0.97
PIT Pittsburgh International Apt USA 0.87 2 17,428,010 16,952,620  0.97
LGA New York La Guardia Apt USA 0.87 2 55,430,852 53,971,160  0.97
LFT  Lafayette Regional Apt USA 0.87 2 1,080,167 1,050,940  0.97
CRP Corpus Christi International Apt USA 0.87 2 1,646,106 1,602,250  0.97
COS Colorado Springs Municipal USA 0.87 2 3,579,762 3,487,910 0.97
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Airport code | Airport name Country l Random slope | Quantile group Bookings Passengers Ratio
BNA Nashville USA 0.87 2 19,981,783 19,488,500 0.98
RST Rochester (US) MN USA 0.87 2 547,421 533,060 0.97
GPT Gulfport/Biloxi USA 0.87 2 1,466,847 1,431,990 0.98
IAD Washington Dulles International Apt USA 0.87 2 18,464,556 17,880,610  0.97
IND Indianapolis USA 0.87 2 16,419,175 16,022,060 0.98
SPS Wichita Falls Municipal/Sheppard AFB USA 0.87 2 251,653 240,460  0.96
LNK Lincoln USA 0.87 2 646,048 631,570 0.98
FSD Sioux Falls USA 0.87 2 2,088,917 2,044,050 0.98
STC St Cloud USA 0.88 2 45,388 46,450  1.02
CMH  Columbus Port Columbus Intl Apt USA 0.88 2 14,229,550 13,938,120 0.98
HOB Hobbs Lea County Regional Apt USA 0.88 2 76,642 70,050 091
SEA Seattle-Tacoma International Apt USA 0.88 2 52,926,494 51,924,550  0.98
SUN Sun Valley Friedman Memorial Apt USA 0.88 2 285,693 281,110  0.98
TXK Texarkana USA 0.88 2 177,744 173,620 0.98
BLV Belleville USA 0.88 2 37,010 36,710  0.99
CWA Wausau Central Wisconsin Apt USA 0.88 2 632,775 622,150  0.98
IDA Idaho Falls USA 0.88 2 740,021 727,960 0.98
SWF Newburgh USA 0.88 2 934,280 919,820 0.98
AGS Augusta Bush Field USA 0.88 2 1,311,708 1,292,590  0.99
CLL College Station USA 0.88 2 384,482 380,300 0.99
VPS Destin-Ft Walton Beach Apt USA 0.88 2 1,758,647 1,727,280  0.98
CNY Moab USA 0.88 2 25,145 22,450 0.89
PIH Pocatello USA 0.88 2 116,992 117,650 1.01
GSP  Greenville/Spartanburg Apt USA 0.88 2 3,955,568 3,920,010  0.99
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Country Random slope | Quantile group Bookings Passengers Ratio

MFR Medford USA 0.88 2 1,415,879 1,397,430 0.99
OMA Omabha Eppley Airfield USA 0.88 2 9,348,981 9,239,820 0.99
ACT Waco Regional Apt USA 0.88 2 325,570 319,860 0.98
FNT Flint USA 0.89 2 2,059,843 2,033,510 0.99
BIL Billings USA 0.89 2 1,856,760 1,839,830 0.99
BGR Bangor USA 0.89 2 1,139,288 1,136,300 1.00
SJU  SanJuan Luis Munoz Marin Intl Apt Puerto Rico 0.89 2 15,582,750 15,422,880 0.99
CAK Akron/Canton Ohio Regional USA 0.89 2 3,974,304 3,945,820 0.99
AVP Wilkes-Barre Scranton International Apt ~ USA 0.89 = 1,100,693 1,090,830 0.99
ALB Albany International Airport USA 0.89 2 5,833,349 5,794,160 0.99
LAS Las Vegas McCarran International Apt USA 0.89 2 74,569,285 74,001,180 0.99
SLK Saranac Lake USA 0.89 2 16,224 11,370 0.70
ASE Aspen USA 0.89 2 1,083,573 1,074,190 0.99
MKE Milwaukee General Mitchell Intl Apt USA 0.89 2 15,520,339 15,438,390 0.99
LBB Lubbock Preston Smith International Apt  USA 0.89 = 2,328,279 2,315,360 0.99
AVL Asheville USA 0.89 2 1,725,598 1,722,650 1.00
SIT SanAngelo USA 0.89 2 316,023 310,610 0.98
MHT Manchester (US) USA 0.89 2 6,130,663 6,125,020 1.00
ISP Long Island Macarthur USA 0.89 - 3,611,260 3,608,050 1.00
GIT Grand Junction USA 0.89 2 1,048,359 1,042,680 0.99
PFN Panama City Bay County Apt USA 0.89 - 22,517 21,920 0.97
RDU Raleigh/Durham USA 0.89 2 19,597,642 19,549,050 1.00
PSC Pasco USA 0.89 2 1,507,652 1,502,780 1.00
TEX Telluride USA 0.89 2 33,993 32,310 095
FAR Fargo USA 0.89 2 1,792,418 1,788,930 1.00
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ORD Chicago O'Hare International Apt USA 0.89 2 66,609,586 66,588,890  1.00
GNV  Gainesville USA 0.90 2 871,901 873,890 1.00
OME Nome USA 0.90 2 157,883 157,100 1.00
ATL Atlanta Hartsfield-jackson Intl Apt USA 0.90 2 62,515,596 62,734,610 1.00
BLI Bellingham USA 0.90 2 2,409,066 2,418,700  1.00
SLC Salt Lake City USA 0.90 2 24,165,486 24,247,150  1.00
PWM Portland (US) ME USA 0.90 2 3,990,080 4,033,560 1.01
SAT San Antonio International Apt USA 0.90 2 17,447,412 17,534,300 1.00
OAK Oakland International Apt USA 0.90 2 21,778,444 21,885,730 1.00
CLE Cleveland Hopkins International Apt USA 0.90 2 13,573,919 13,659,980 1.01
YKM  Yakima Air Terminal USA 0.90 2 250,583 252,760 1.01
MBS Saginaw USA 0.90 2 617,675 623,070 1.01
MCO Orlando International Apt USA 0.90 2 66,735,463 67,270,530 1.01
BOl Boise USA 0.90 2 6,178,562 6,228,440 1.01
DCA Washington Ronald Reagan National Apt ~ USA 0.90 2 32,900,624 32,931,260 1.00
TYR Tyler USA 0.90 2 400,981 404,440 1.01
SMX Santa Maria (US) USA 0.90 2 220,973 223,070 1.01
PIB Laurel Hattiesburg-Laurel Regional Apt USA 0.90 2 49,672 47,650 0.96
DHN Dothan USA 0.90 2 233,340 236,220 1.01
MIA MiamiInternational Apt USA 0.90 2 23,604,776 23,852,020 1.01
BRW Barrow USA 0.90 3 158,729 158,810 1.00
TWF Twin Falls USA 0.90 3 147,362 148,550 1.01
DRO Durango La Plata County Apt USA 0.90 3 896,367 906,830 1.01
BET Bethel Apt USA 0.90 3 243,292 244,870 1.01
DTW Detroit Wayne County USA 0.91 3 33,319,495 33,738,120 1.01
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Airport code | Airport name Country Random slope | Quantile group Bookings Passengers | Ratio
GLH Greenville (US) MS USA 0.91 3 21,753 21,500 0.99
PNS Pensacola International USA 0.91 3 3,326,927 3,380,750  1.02
TPA Tampa International Apt USA 0.91 3 35,093,562 35,612,400 1.01
JAX Jacksonville International Apt USA 0.91 3 11,958,229 12,148,810 1.02
PSE Ponce Puerto Rico 0.91 3 462,957 469,250 1.01
GEG Spokane International Apt USA 0.91 3 6,758,459 6,875,550 1.02
BDL Hartford Bradley International Apt USA 0.91 3 12,763,773 12,979,180 1.02

BIS Bismarck USA 0.91 3 1,061,582 1,080,700 1.02
BOS Boston Logan International Apt USA 0.91 3 54,440,570 55,421,330 1.02
HGR Hagerstown USA 0.91 3 54,548 49,150  0.90
LAX Los Angeles International Apt USA 0.91 3 81,264,569 82,634,970 1.02
GTF Great Falls International Apt USA 0.91 3 836,865 852,710 1.02
ACY Atlantic City International USA 0.91 3 2,683,249 2,722,200 1.01
EKO Elko USA 0.91 3 103,636 106,040 1.02
DFW Dallas/Fort Worth International Apt USA 0.91 3 51,966,894 53,031,060 1.02
PVD Providence USA 0.91 3 8,938,442 9,146,930 1.02
HRL Harlingen USA 0.91 3 1,589,324 1,625,800 1.02
RUT Rutland USA 0.91 3 16,396 14,540 0.89
SIC SanJose Norman Y. Mineta Intl USA 0.92 3 19,192,098 19,664,910 1.02
PDX Portland (US) OR USA 0.92 3 26,931,037 27,616,270 1.03
DLH Duluth USA 0.92 3 721,471 740,630 1.03
AUS Austin-Bergstrom International Apt USA 0.92 3 20,465,694 21,025,670 1.03
BQN Aguadilla Puerto Rico 0.92 3 1,046,203 1,069,730  1.02
SAV Savannah/Hilton Head International Apt ~ USA 0.92 3 3,709,252 3,820,460 1.03
EWR Newark Liberty International Apt USA 0.92 3 39,375,327 40,336,720  1.02
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PSP  Palm Springs International Apt USA 0.92 3 3,286,803 3,422,720 1.04
GFK Grand Forks USA 0.92 3 623,547 642,310 1.03
BZN Bozeman USA 0.92 3 1,960,551 2,020,650 1.03
HNL Honolulu USA 0.92 3 24,817,996 25,556,570 1.03

SMF Sacramento International Apt USA 0.92 3 19,640,268 20,271,650 1.03
MAF  Midland International Apt USA 0.92 3 2,443,178 2,517,780 1.03
CPR Casper USA 0.92 3 443,310 455,970 1.03
EAT Wenatchee USA 0.92 3 240,917 249,150 1.03
GUC Gunnison USA 0.92 3 177,604 184,510 1.04
LGB LongBeach USA 0.92 3 6,580,131 6,796,890 1.03
LCH Lake Charles USA 0.92 3 313,266 323,520 1.03
EWN New Bern USA 0.92 3 627,949 651,030 1.04
IPT  Williamsport USA 0.92 3 139,894 143,230 1.02
FAT Fresno Yosemite International Airport USA 0.92 3 2,648,587 2,740,340 1.03
STT St Thomas Cyril E King Apt Virgin Islands, US 0.93 3 2,758,053 2,848,840 1.03
DUJ Dubois USA 0.93 3 27,464 28,120 1.02
UTM  Tunica USA 0.93 3 16,385 16,700 1.02
RNO Reno USA 0.93 3 7,720,620 8,002,930 1.04
ILG Wilmington Greater Wilmington Apt USA 0.93 3 157,392 162,650 1.03
HLN Helena USA 0.93 3 457,768 474,920 1.04
UIN  Quincy USA 0.93 3 30,957 24,020 0.78
MSY New Orleans Louis Armstrong Intl Apt USA 0.93 3 19,354,625 20,125,400 1.04
MOT  Minot International Apt USA 0.93 3 877,372 915,750  1.04
SDY Sidney USA 0.93 3 20,084 13,990 0.70
TTN  Philadelphia Trenton-Mercer Apt USA 0.93 3 591,435 613,170 1.04
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MSO Missoula USA 0.93 3 1,371,353 1,434,030 1.05
PBI West Palm Beach International Apt USA 0.93 3 13,164,236 13,757,790  1.05
RDM Redmond/Bend USA 0.93 3 1,053,541 1,096,050 1.04
BRO Brownsville USA 0.94 3 408,982 427,260 1.04
LYH Lynchburg USA 0.94 3 407,814 426,630 1.05
PHX Phoenix Sky Harbor Intl Apt USA 0.94 3 50,789,575 53,265,630 1.05
MFE McAllen/Mission USA 0.94 3 1,555,787 1,628,910 1.05
CKB Clarksburg USA 0.94 3 50,229 51,320 1.02
SBA Santa Barbara USA 0.94 3 1,692,881 1,775,380  1.05
PHL Philadelphia International Apt USA 0.94 3 36,608,206 38,391,140 1.05
LWS Lewiston USA 0.94 3 284,143 298,140 1.05
SGU St George USA 0.94 3 245,250 262,980 1.07
TUS Tucson International Apt USA 0.94 3 7,508,534 7,895,510 1.05
MEI Meridian USA 0.94 3 60,907 65,190 1.07
RSW Fort Myers Sw Florida International Apt USA 0.94 3 16,972,922 17,980,010 1.06
ABY Albany Dougherty County Apt USA 0.94 3 174,395 183,740 1.05
FLL Fort Lauderdale/Hollywood Intl Apt USA 0.94 3 41,904,841 44,194,300 1.05
ACV Arcata/Eureka USA 0.94 3 320,974 338,130 1.05
SFO San Francisco USA 0.94 3 58,784,697 62,028,940 1.06
TVC Traverse City USA 0.95 3 806,682 853,370 1.06
MYR Myrtle Beach AFB USA 0.95 3 3,506,727 3,723,290 1.06
PGV Greenville (US) NC USA 0.95 3 314,717 333,810 1.06
LIH Lihue USA 0.95 3 5,635,997 5,967,870 1.06
ABI Abilene Regional Apt USA 0.95 3 389,094 413,160 1.06
BPT Beaumont/Port Arthur J. Brooks Regional USA 0.95 3 118,352 129,090 1.09
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ILM  Wilmington (US) NC USA 0.95 3 1,765,308 1,884,320 1.07
SAN San Diego International USA 0.95 3 36,417,937 38,819,640 1.07
CHS Charleston (US) SC USA 0.95 3 5,813,660 6,230,530 1.07
MTJ Montrose USA 0.95 3 423,930 451,430 1.06
PUB Pueblo USA 0.95 3 49,455 44,130 0.89
JAC Jackson (US) WY USA 0.95 3 1,289,233 1,364,420 1.06
GTR Columbus Golden Triangle Regional Apt USA 0.95 3 180,585 193,140 1.07
PUW Pullman/MOscow ID USA 0.96 3 180,569 193,460 1.07
BUR Burbank USA 0.96 3 9,626,949 10,299,130 1.07
SRQ Sarasota/Bradenton USA 0.96 3 2,784,401 2,980,050 1.07
DEN Denver Intl Apt USA 0.96 3 61,679,658 66,134,280 1.07
ONT Ontario USA 0.96 3 9,763,343 10,510,230 1.08
AOO Altoona USA 0.96 3 20,448 21,570 1.05
MQT Marquette USA 0.97 3 219,438 233,280 1.06
UST St Augustine USA 0.97 3 23,861 25,490 1.07
SNA SantaAna USA 0.97 3 19,546,474 21,211,330 1.09
PSM Portsmouth Pease International Airport USA 0.97 3 23,987 25,660 1.07
ALW WallaWalla USA 0.97 3 153,307 167,100 1.09
BFL Bakersfield USA 0.97 3 628,572 680,120 1.08
MGW Morgantown USA 0.97 3 42,031 45,960 1.09
ALO Waterloo USA 0.97 3 102,545 111,450 1.09
MRY Monterey/Carmel Monterey Regional USA 0.97 3 878,008 955,200 1.09
SHD Staunton USA 0.97 3 64,077 70,690 1.10
HYA Hyannis USA 0.97 3 33,147 17,610 0.53
SUX Sioux City USA 0.98 3 131,584 143,460 1.09
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FCA Kalispell USA 0.98 3 862,353 945,020 1.10
JST Johnstown USA 0.98 3 34,708 37,840 1.09

EYW Key West International Apt USA 0.98 3 1,530,997 1,692,460 1.11
FLG Grand Canyon Flagstaff Pulliam USA 0.98 3 325,773 357,700 1.10
YUM Yuma International Apt USA 0.98 3 397,650 431,940 1.09
ITO Hilo USA 0.99 3 2,776,276 3,062,930 1.10
BTM Butte USA 0.99 3 124,067 139,320 1.12
GGG Longview USA 0.99 3 108,993 118,590 1.09
COD Cody USA 0.99 3 144,660 158,930 1.10
VLD Valdosta Regional Apt USA 0.99 3 183,958 204,750 1.11
FBS Friday Harbor SPB USA 0.99 3 18 20 111
ESC Escanaba USA 1.00 3 68,881 76,080 1.10
CMI Champaign USA 1.00 3 365,948 409,330 1.12
IMT Iron Mountain USA 1.00 3 47,576 52,430 1.10
COU Columbia USA 1.00 3 198,486 221,970 1.12
PRC Prescott USA 1.00 3 7,764 6,250 0.80
GCC Gillette USA 1.00 3 153,804 173,230 1.13
RKS Rock Springs USA 1.00 3 130,542 148,470 1.14
BJI Bemidji USA 1.00 3 106,362 119,610 1.12
ABR Aberdeen (US) USA 1.00 3 114,322 129,390 1.13
PPG Pago Pago American Samoa 1.00 3 105,440 118,260 1.12
DBQ Dubuque USA 1.01 3 157,460 177,900 1.13
STS Santa Rosa (US) USA 1.01 3 445,968 501,940 1.13
MAZ Mayaguez Puerto Rico 1.01 3 10,711 10,310 0.96
MLB Melbourne USA 1.01 3 917,701 1,040,590 1.13
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DAB Daytona Beach USA 1.02 3 1,218,729 1,387,950 1.14
ALS Alamosa USA 1.02 3 23,540 24,710 1.05
PDT Pendleton USA 1.02 3 2,368 590 0.25

SPI Springfield (US) IL USA 1.03 3 333,176 378,300 1.14
CLT Charlotte USA 1.04 4 20,619,805 23,902,520 1.16
LBE Latrobe USA 1.04 4 333,877 387,040 1.16
IAH Houston George Bush Intercont. USA 1.04 4 26,410,615 30,471,770 1.15
BFD Bradford USA 1.04 4 11,603 13,130 1.13

IYK Inyokern USA 1.05 4 29,685 33,390 1.12
INL International Falls USA 1.05 4 65,071 77,600 1.19

LGA_int New York La Guardia Apt USA 1.05 4 6,455,199 7,660,330 1.19
MCW  Mason City USA 1.05 4 33,426 34,130 1.02

PQl Presque Isle USA 1.05 4 55,468 66,520 1.20

BQK Brunswick Glynco Jetport USA 1.07 4 145,718 174,280 1.20
JHW Jamestown (US) NY USA 1.07 4 16,060 18,730 1.17
DVL Devils Lake USA 1.08 4 19,751 21,430 1.09

IRK Kirksville USA 1.08 4 15,815 10,940 0.69
LAR Laramie USA 1.09 4 43,839 55,470 1.27
RDD Redding USA 1.09 4 155,199 189,370 1.22
MSL Muscle Shoals USA 1.09 4 25,951 24,660 0.95
JMS  Jamestown (US) ND USA 1.09 4 24,405 22,900 0.94
LNS Lancaster USA 1.10 4 12,064 9,290 0.77
CDC Cedar City USA 1.10 4 43,554 55,650 1.28

MMH Mammoth Lakes USA 1.10 4 108,745 128,620 1.18
TVF  Thief River Falls USA 1.12 4 8,241 9,230 1.12
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MSE  Manston United Kingdom 112 4 38,754 48,185 124
CIU  Sault Ste Marie Chippewa County Apt USA 112 4 86,658 108,450  1.25
EUG Eugene USA 1.12 4 1,681,856 1,843,300 1.10
MCE Merced Regional Apt USA 112 4 10,332 4,660  0.45
OTH North Bend USA 112 4 79,850 102,240 1.28
VIS \Visalia USA 113 4 10,990 7,280 0.66
SBP  San Luis Obispo USA 113 4 615,466 772,670  1.26
APN Alpena USA 1.14 4 50,267 64,620 1.29
PLN Pellston USA 1.14 4 107,649 136,960 1.27
ROW Roswell USA 1.14 4 154,449 196,920 1.27
BRD Brainerd USA 1.15 4 70,737 91,940 1.30
ATY Watertown (US) SD USA 1.16 4 25,898 28,930 1.12
CLD San Diego McClellan-Palomar Arpt USA 117 4 207,451 268,780  1.30
HIB  Hibbing/Chisholm USA 118 4 50,520 65,800  1.30
SOW Show Low USA 1.18 4 8,968 6,430 0.72
MLS  Miles City USA 1.18 4 685 1,050 1.53
IWD Ironwood USA 1.20 4 5,994 4,970 0.83
IPL  Imperial County Apt USA 1.20 4 18,136 25,130  1.39
DRT Del Rio International Apt USA 1.22 4 31,473 39,100 1.24
HON Huron USA 1.23 4 5,078 4,650 0.92
EAU Eau Claire USA 1.23 4 97,187 134,680 1.39
PAH Paducah USA 1.24 4 96,071 133,890 1.39
LMT  Klamath Falls USA 1.24 4 65,107 89,030 137
MKG Muskegon USA 1.25 4 74,234 104,480 141
FOD Fort Dodge USA 1.26 4 24,995 29,070 1.16
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MOD Modesto USA 1.26 4 66,712 96,470 1.45
MCK Mccook USA 1.30 4 5,880 7,300 1.24
CMX Hancock USA 1.30 4 109,656 159,820 1.46

CIC Chico USA 133 4 80,907 122,460 1.51
CEC Crescent City USA 1.33 4 56,308 84,100 1.49
VCT Victoria USA 1.34 4 15,802 21,490 1.36
JBR Jonesboro USA 1.34 4 518 680 131
TBN Fort Leonard Wood USA 135 4 31,627 42,000 133
BRL Burlington (US) 1A USA 1.45 4 1,104 1,540 1.39
FKL Franklin Chess Lamberton Apt USA 1.46 4 4,773 7,170 1.50
WRL Worland USA 1.47 4 7,141 9,520 1.33
GBD Great Bend USA 1.47 4 2,716 3,090 1.14
MCN Macon Lewis B Wilson Apt USA 1.48 4 5,537 4,650 0.84
ANI  Aniak USA il 4 2,691 360 0.13
CVN Clovis Municipal Apt USA 1.52 4 4,161 2,960 0.71
LDY Derry United Kingdom 1.54 4 119,151 221,932 1.86
CDR Chadron USA 1.55 4 4,827 7,960 1.65
SXP Nunam Iqua USA 1.55 4 10 20 2.00
JER Jersey United Kingdom 1.67 4 174,385 336,860 1.93
SWF_dom Newburgh USA 1.68 4 1,002,016 1,886,366 1.88
STG St George Island USA 1.68 4 9 20 2.22
IGM  Kingman USA 1.69 4 2,701 2,220 0.82
PIK Glasgow Prestwick Apt United Kingdom 1.73 4 2,689,574 5,177,870 1.93
SEN London Southend Apt United Kingdom 1.75 4 1,137,845 2,271,988 2.00
LPL Liverpool United Kingdom 1.75 4 9,470,665 18,597,862 1.96
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LTN London Luton Apt United Kingdom 1.84 4 21,753,310 45,183,148 2.08
SPB St Thomas Charlotte Amalie SPB Virgin Islands, US 1.84 4 8 20 2.50
AIA  Alliance USA 1.84 4 3,629 6,340 1.75
STN London Stansted Apt United Kingdom 1.87 4 41,840,667 87,957,362 2.10
CPX Culebra Puerto Rico 1.88 4 605 1,040 1.72
LBA Leeds Bradford United Kingdom 191 4 6,173,042 13,364,266 2.16
BOH Bournemouth United Kingdom 191 4 1,564,152 3,274,628 2.09
GCl Guernsey United Kingdom 1.93 4 32,416 54,948 1.70

EMA Nottingham East Midlands Airport United Kingdom 1.94 4 8,653,193 19,138,478 2.21
LGA_dom New York La Guardia Apt USA 1.96 4 58,714,031 129,161,074 2.20
ELY Ely USA 1.98 4 690 240 035
DSA Doncaster/Sheffield United Kingdom 2.01 4 1,560,236 3,476,071 2.23
BRS Bristol (GB) 00 United Kingdom 2.02 4 10,889,003 24,756,936  2.27
LCY London City Apt United Kingdom 2.03 4 5,817,034 13,246,107 2.28
JFK_int  New York J F Kennedy International Apt USA 2.05 4 59,017,777 136,143,142 231
GLO Gloucester/Cheltenham United Kingdom 2.06 4 166 441 2.66
BLK Blackpool United Kingdom 2.08 4 372,326 886,221 2.38
BFS Belfast International Apt United Kingdom 2.09 4 2,943,541 7,058,851 2.40
EDI Edinburgh United Kingdom 2.16 4 10,307,629 25,058,001 243
GGW  Glasgow USA 2.20 4 1,334 2,250 1.69
HVR Havre USA 2.20 4 1,164 1,880 1.62
KOl  Kirkwall United Kingdom 2.22 4 347 435 1.25
SVC Silver City USA 2.22 4 2,992 1,370 0.46
EXT Exeter (GB) 00 United Kingdom 2.26 4 827,126 2,078,031 2.51
SOU Southampton United Kingdom 2.28 4 1,314,100 3,389,175 2.58

(Table 4.3 continues on next page)
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(Table 4.3 continued)
Airport code | Airport name

Country I Random slope | Quantile group Bookings Passengers Ratio

LGW London Gatwick Apt United Kingdom 2.28 4 60,134,571 155,048,677 2.58
0GS Ogdensburg USA 238 4 4,299 5810 135
INV  Inverness United Kingdom 241 4 56,916 152,700  2.68
EWR_int Newark Liberty International Apt USA 2.41 4 22,319,934 60,597,950 2.71
LWT Lewistown USA 248 4 293 460 157
JFK_dom New York J F Kennedy International Apt USA 2.50 4 45,951,975 128,904,173 2.81
BHX Birmingham Airport United Kingdom 2.52 4 14,103,311 39,797,043  2.82
CNM  Carlsbad USA 2.54 4 2,122 2370 112
MAN Manchester (GB) United Kingdom 2.60 4 31,007,267 90,446,148  2.92
NCL Newcastle United Kingdom 2.63 . 5,548,510 16,130,750 2.91

OLF Wolf Point USA 2.64 4 2,600 2,290 0.88
EWR_dom Newark Liberty International Apt USA 2.66 4 41,102,901 122,359,098 2.98
GAL Galena USA 2.76 4 353 80 023
MSS Massena USA 2.84 - 5,286 9,420 178
CWL Cardiff (GB) 00 United Kingdom 2.87 4 1,553,931 4,561,283 2.94
GLA Glasgow International Airport United Kingdom 2.90 = 5,684,941 18,553,184 3.26
LHR London Heathrow Apt United Kingdom 2.98 4 101,883,653 341,385,643 3.35
LAM Los Alamos USA 3.04 N 24 190 7.92
ABZ Aberdeen (GB) United Kingdom 3.14 4 1,333,790 4,721,406  3.54

SSB St Croix SPB Virgin Islands, US 3.18 . 31 80 258
AHN  Athens (US) USA 3.29 4 291 680 234
BID Block Island USA 332 4 8 40 5.00
MME Durham United Kingdom 3.37 4 193,800 678,364 3.50
IFP  Bullhead City USA 3.47 4 38,154 139,330  3.65

GDV Glendive USA 3.48 4 759 1,840 242

(Table 4.3 continues on next page)
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(Table 4.3 continued)

Airport code | Airport name Country Random slope | Quantile group Bookings Passengers Ratio
IOM Isle of Man United Kingdom 3.49 4 55,967 196,496 3.51
NWI Norwich United Kingdom 3.70 4 258,319 1,032,095 4.00
BHD Belfast George Best City Apt United Kingdom 3.93 4 209,537 487,209 233
HUY Humberside United Kingdom 471 4 152,113 753,649 4.95
ALM  Alamogordo Municipal Apt USA 491 4 82 280 3.41
MKL  Jackson USA 498 4 195 270 1.38

HNM  Hana USA 5.25 4 9 40 444
SCM Scammon Bay USA 5.30 4 2 20 10.00
NQY  Newquay United Kingdom 7.45 4 29,261 44,935 1.54
MLL  Marshall USA 9.01 4 1 20 20.00
WIC  Wick United Kingdom 9.98 4 38 398 10.47
EWB  New Bedford USA 13.54 4 3 60 20.00

LSI  Shetland Islands Sumburgh Apt United Kingdom 24.86 4 3,277 13,750 4.20
USA  Concord USA 2983.51 4 3 18,130 6043.33
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Table 4.4: Random slope coefficient values for each country present in TravelPac and OAG data, with their respective number of passengers and bookings and the ratios calculated
as passengers per bookings.
Note: the quartile groups 1 to 4 are those shown in Figure 4.7.

Country name Random slope Quantile group Bookings Passengers Ratio
Turkmenistan 0.12 1 3,045 600.47 0.20
Falkland Islands 0.25 1 2,044 537.36 0.26
Norway 0.32 1 81,412 43,737.87 0.54
Singapore 0.37 1 37,279 23,634.15 0.63
Barbados 0.37 1 24,175 17,980.49 0.74
Hong Kong (sar) China 0.39 1 52,515 36,156.41 0.69
Costa Rica 0.41 1 3,357 2,819.27 0.84
Denmark 0.42 1 71,122 41,052.33 0.58
Russian Federation 0.42 1 23,635 12,221.13 0.52
Algeria 0.43 1 8,310 2,725.80 0.33
Uruguay 0.44 1 345 77.39 0.22
Sweden 0.45 1 63,083 62,879.03 1.00
Angola 0.45 1 1,779 2,609.58 1.47
Switzerland 0.45 1 272,540 304,337.23 112
Fiji 0.48 1 820 979.97 1.20
Bahrain 0.48 1 7,889 6,028.59 0.76
Bermuda 0.49 1 4,008 431.53 0.11
Azerbaijan 0.49 1 2,980 2,531.39 0.85
Israel 0.49 1 17,364 19,430.99 112
Indonesia 0.49 1 5,692 2,933.86 0.52
Luxembourg 0.50 1 10,235 13,410.23 131
Faroe Islands 0.50 1 572 340.50 0.60
Iceland 0.51 1 16,523 17,709.41 1.07
Ireland Republic of 0.51 1 360,516 292,546.30 0.81
Saint Lucia 0.51 1 9,659 5,054.37 0.52
Guatemala 0.52 1 699 924.05 1.32

(Table 4.4 continues on nextpage)
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(Table 4.4 continued)

Country name Random slope Quantile group Bookings Passengers Ratio
Kuwait 0.52 1 4,269 3,650.48 0.86
Bahamas 0.53 1 2,426 1,599.60 0.66
Jordan 0.53 1 5,401 4,468.00 0.83
Oman 0.54 1 8,074 9,668.17 1.20
Slovakia 0.54 1 23,918 23,685.60 0.99
Germany 0.55 1 370,813 358,104.39 0.97
Nigeria 0.56 1 30,597 32,777.28 1.07
Brunei Darussalam 0.57 1 524 481.29 0.92
Saudi Arabia 0.59 1 14,605 15,430.71 1.06
Syrian Arab Republic 0.59 1 6,109 6,397.97 1.05
Korea Republic of 0.60 1 4,376 5,877.42 1.34
Sudan 0.60 1 2,014 3,167.38 1.57
Lebanon 0.60 1 5,374 2,621.49 0.49
Tanzania United Republic of 0.60 1 5,823 6,375.63 1.09
Puerto Rico 0.61 1 4,147 3,413.47 0.82
Georgia 0.63 1 1,050 1,273.76 121
Albania 0.63 1 3,340 9,373.23 2.81
Mongolia 0.63 1 834 714.07 0.86
Japan 0.64 2 13,055 22,532.57 1.73
Belgium 0.64 2 42,283 51,230.36 121
Mauritius 0.64 2 12,223 11,356.21 0.93
United Arab Emirates 0.64 2 102,106 133,335.04 131
USA 0.65 2 475,051 566,019.87 1.19
Latvia 0.65 2 15,811 14,160.26 0.90
Estonia 0.65 2 4,934 6,135.42 1.24

(Table 44 continues on next page)
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(Table 4.4 continued)

Country name Random slope Quantile group Bookings Passengers Ratio
Gibraltar 0.65 2 9,492 14,504.86 1.53
Maldives 0.66 2 15,528 16,263.75 1.05
Saint Kitts and Nevis, Leeward Islands 0.66 2 2,105 3,368.42 1.60
Libya 0.66 2 7,816 8,536.33 1.09
Ethiopia 0.66 2 3,566 5,271.89 1.48
Malaysia 0.67 2 27,646 30,294.13 1.10
Italy 0.68 2 296,363 381,569.13 1.29
Lithuania 0.68 2 18,838 18,078.53 0.96
Zambia 0.69 2 2,054 1,269.88 0.62
Thailand 0.69 2 72,382 117,542.09 1.62
Canada 0.69 2 47,435 68,786.01 1.45
Sri Lanka 0.71 2 18,005 23,674.39 131
South Africa 0.71 2 69,500 132,434.49 191
Romania 0.71 2 20,841 31,186.87 1.50
Cayman Islands 0.72 2 1,727 1,626.07 0.94
Iran Islamic Republic of 0.72 2 7,600 6,296.62 0.83
Peru 0.72 2 1,956 1,272.33 0.65
Kazakhstan 0.74 2 2,833 3,069.29 1.08
Hungary 0.74 2 32,073 52,854.40 1.65
Finland 0.74 2 19,228 12,036.16 0.63
Seychelles 0.74 2 1,879 457.66 0.24
Uganda 0.74 2 4,359 7,216.23 1.66
Belarus 0.75 2 1,331 872.80 0.66
Chile 0.75 2 2,318 3,530.42 1.52
Qatar 0.76 2 8,176 9,895.16 1.21
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(Table 4.4 continued)

Country name Random slope Quantile group Bookings Passengers Ratio
Namibia 0.76 2 860 991.08 1.15
Armenia 0.77 2 416 702.76 1.69
Netherlands 0.78 2 174,269 274,514.24 1.58
Czech Republic 0.78 2 44,395 73,252.45 1.65
China 0.79 2 33,672 51,818.75 1.54
Egypt 0.80 2 72,302 183,194.40 2.53
India 0.80 2 138,584 276,666.33 2.00
Ukraine 0.80 2 6,509 9,329.28 143
Cambodia 0.81 2 1,646 541.97 0.33
Poland 0.82 2 156,728 228,409.62 1.46
Serbia 0.82 2 4,127 8,096.60 1.96
Brazil 0.82 2 17,063 32,529.77 191
Argentina 0.82 3 5,962 9,553.15 1.60
Belize 0.82 3 859 954.39 111
Dominica 0.83 3 800 953.26 1.19
Australia 0.83 3 75,384 161,429.76 2.14
Haiti 0.83 3 387 392.94 1.02
Antigua and Barbuda, Leeward Islands 0.84 3 8,623 10,025.59 1.16
Panama 0.84 3 1,130 1,318.05 1.17
Philippines 0.84 3 11,690 16,464.26 141
New Zealand 0.87 3 29,845 80,308.04 2.69
Croatia 0.87 3 7,148 7,175.72 1.00
Nepal 0.90 3 3,653 6,480.11 1.77
Ecuador 0.91 3 1,467 4,330.90 2.95
Ghana 0.91 3 8,008 16,255.95 2.03
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(Table 4.4 continued)

Country name Random slope Quantile group Bookings Passengers Ratio
Trinidad and Tobago 0.94 3 5,719 13,415.46 2.35
Morocco 0.94 3 41,698 84,871.93 2.04
Gabon 0.99 3 672 856.96 1.28
Bolivia 1.00 3 793 471.12 0.59
Kyrgyzstan 1.01 3 354 482.70 1.36
Mali 1.02 3 277 424.22 1.53
Eritrea 1.02 3 367 679.62 1.85
Pakistan 1.02 3 38,877 110,727.27 2.85
Kenya 1.02 3 16,648 44,073.56 2.65
Turkey 1.02 3 52,506 79,352.63 1.51
Cyprus 1.03 3 49,894 75,493.52 1.51
Slovenia 1.03 3 4,352 10,274.22 2.36
Austria 1.05 3 59,093 162,048.30 2.74
Uzbekistan 1.08 3 990 422.58 0.43
Yemen 1.08 3 942 2,393.20 2.54
Portugal 1.09 3 115,195 193,193.80 1.68
Grenada, Windward Islands 1.09 3 3,254 9,111.78 2.80
France 1.11 3 271,331 755,972.37 2.79
Rwanda 1.13 3 559 1,085.19 1.94
Colombia 1.15 3 2,013 6,589.16 3.27
Spain 1.16 3 659,647 1,499,430.50 227
Congo 1.17 3 425 769.71 1.81
Bulgaria 1.18 3 18,308 51,380.73 2.81
Viet Nam 1.19 3 5,570 14,415.06 2.59
Venezuela 1.19 3 1,094 1,108.99 1.01
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(Table 4.4 continued)

Random slope

Country name Quantile group Bookings Passengers Ratio
Malta 1.20 3 28,636 52,631.91 1.84
Bangladesh 1.20 3 7,673 20,985.11 273
Greece 1.21 3 31,787 29,699.81 0.93
Mauritania 1.24 3 268 519.16 1.94
Madagascar 1.29 3 136 477.46 3.51
Benin 131 3 349 722.23 2.07
Jamaica 1.35 4 17,378 66,547.38 3.83
Virgin Islands, British 1.35 4 543 2,693.46 4.96
Myanmar 1.40 4 452 1,930.52 4.27
El Salvador 1.45 4 168 392.94 2.34
Botswana 1.46 4 444 1,700.07 3.83
Cameroon 1.47 4 720 3,626.78 5.04
Zimbabwe 1.48 4 2,772 8,243.12 2,97
Bosnia and Herzegovina 1.56 4 597 1,902.49 3.19
Nicaragua 1.57 4 369 948.85 2.57
Mozambique 1.60 4 272 1,147.10 4.22
Cote D'lvoire 1.61 4 835 1,019.37 1.22
Senegal 1.63 4 489 1,161.70 2.38
Dominican Republic 1.63 4 11,056 9,464.87 0.86
Guyana 1.71 4 440 2,663.80 6.05
French Polynesia 1.73 4 221 638.61 2.89
Mexico 1.76 4 13,858 56,840.96 4.10
Turks and Caicos Islands 1.78 4 818 2,798.28 3.42
Malawi 1.88 4 484 1,392.78 2.88
Macedonia Former Yugoslav Republic of 1.97 4 543 3,252.49 5.99
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(Table 4.4 continued)

Country name Random slope Quantile group Bookings Passengers Ratio
Sierra Leone 1.98 4 1,154 6,558.69 5.68
Iraq 1.99 4 837 861.38 1.03
St Vincent and the Grenadines 2.19 4 873 474.21 0.54
Djibouti 2.23 4 257 1,006.65 3.92
Montenegro 2.29 4 1,118 3,776.93 3.38
Cuba 2.30 4 10,762 40,196.86 3.74
Honduras 2.52 4 679 3,060.83 451
Liberia 2.52 4 143 702.76 491
Paraguay 2.52 4 162 732.02 4.52
Moldova Republic of 2.58 4 713 3,796.39 5.32
French Guiana 2.72 4 140 691.35 494
Swaziland 2.80 4 81 415.57 5.13
Tunisia 3.28 4 13,227 54,533.34 412
Togo 3.37 4 226 1,434.71 6.35
Afghanistan 3.95 4 187 582.84 3.12
Gambia 4.72 4 2,575 16,800.78 6.52
Niger 4.85 4 57 554.59 9.73
Lao People's Democratic Republic 5.27 4 91 1,465.63 16.11
Somalia 5.39 4 110 1,206.60 10.97
Burkina Faso 5.75 4 340 4,012.89 11.80
Guadeloupe 6.87 4 55 806.63 14.67
Monaco 10.74 4 121 3,035.79 25.09
Papua New Guinea 18.83 4 15 696.28 46.42
Macao (sar) China 45.22 4 13 1,592.48 122.50
Greenland 54.36 4 4 679.08 169.77
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Table 6.2: Pearson correlation coefficient and confidence intervals for each factor used, to
determine a single proxy for healthcare (Chapter 6).

Health
expenditure
HIV
treatment
Life
expectancy
Measles
vaccination
Tuberculosis
incidence

Health
expenditure

0.27
(0.11, 0.40)
0.40
(0.28, 0.50)
0.24
(0.11, 0.35)
-0.12
(-0.25, 0.01)

HIV
treatment

0.34
(0.19, 0.47)
0.35
(0.20, 0.48)
-0.12
(0.28, 0.04)

Life Measles Tuberculosis
expectancy vaccination incidence
0.63

(0.54, 0.70)

-0.66 -0.35

(-0.73,-0.57) (-0.46, -0.22)
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