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“Commercial airline travel and the international spread of emerging 
infectious diseases” by Margaux Meslé 

Abstract 
 

 A total of 1.186 billion international airline arrivals were recorded globally in 2015 alone, a 
4.6% increase from 2014 (Glaesser et al., 2017). As airplanes now fly very long distances at 
greater speeds, a passenger is likely to travel while incubating a pathogen and may only 
become ill once at their destination. In the 21st century alone, a number of pathogens have 
been transported in this way, causing epidemics (Cholera in Haiti, 2010) and pandemics 
(Influenza A H1N1, 2009). The aims of this thesis were to understand what previously 
purchased airline data represents in terms of passenger movement and whether this is a 
useful and/or accurate tool to use to predict the international spread of human infectious 
diseases. 

A systematic literature review first analysed what airline data was most often used by 
mathematical modellers to determine the international spread of human infectious diseases 
and how well the data sources were reported. From there, the OAG airline data was 
extensively described and validated against independent and open access data sets. With a 
better understanding of the airline data, the author modelled which regions posed varied 
risks of chikungunya and dengue infection for UK passengers compared to the local 
populations, by combining endemic and imported number of cases to the airline data. Finally, 
the author conducted an analysis regarding which countries posed a higher risk for the initial 
spread of a pandemic by deriving their global connectivity from the airline data and using the 
level of healthcare provided from two indices. Both parameters were given equal importance 
by providing equal weightings before ranking each country by proximity to a fictitious ‘Worst 
Case Scenario’. 

It was determined that commercial (closed access) airline data was most often used by the 
modelling community and that the reporting of sources used did not often allow for 
independent validation of a group’s work. As a result, a framework was developed for 
researchers to report specific aspects of the data set, such as date range included, any 
manipulation and date of collection. When describing the airline data, clear seasonal trends 
were apparent, and countries such as the United States and China contribute large numbers 
of passengers to the network. Additionally, the data are sold as highly accurate airline only 
data, but was identified as also containing land and sea transportation. When validated, the 
OAG data showed good agreement with the other data sets used such as from the United 
Kingdom’s Office for National Statistics and the United States’ Department of Transport. 
From the modelling chapters, some regions, such as the Caribbean, proved less dangerous 
for UK airline passengers in terms in chikungunya and dengue infection compared to the local 
populations whereas regions such as Lower South America were more dangerous for dengue 
specifically, for UK passengers. Using two independent indices and the same connectivity 
data, the author showed that certain countries exhibited the potential greatest risk of 
international pandemic spread, whereas countries with recent pandemic emergence, such 
as Brazil and Mexico, showed lower potential risk. 

Future perspectives of this work include taking the global connectivity and healthcare 
chapter further by including within-country data. Additionally, the creation of an open-access 
data set combining detailed airline travel and passenger epidemiology that all research 
groups could use is an important continuation of this work.  
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Chapter 1 – Introduction  
	

Preamble 

This introductory chapter offers a brief overview of infectious disease events of note since 

the start of the 21st century, and the role played by airline travel in their international 

propagation. Additionally, a brief introduction to mathematical models is provided, with a 

short outline of what information models can provide policy makers and how to represent 

the airline network are also presented. Finally, the cost of pandemics is described before the 

aims of the thesis are listed. 
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Abstract 

Within the 21st century alone, a number of infectious diseases outbreaks have spread rapidly 

across international boundaries, developing into pandemics, as a direct result of human 

airline travel. Outbreaks such as the 2009 H1N1 Influenza A pandemic or the Zika pandemic 

were the result of novel pathogens quickly spreading globally via human international 

movements. In contrast, the ongoing antibiotic resistance pandemic has resulted from 

decades of (usually inappropriate) antibiotic use allowing pathogens to evolve relatively 

unnoticed, but making their detection by the health authorities very slow. The high level of 

connectivity between countries means that no country is isolated and a pathogen can be 

transported into an epidemiologically suitable setting within a few hours, sparking a localised 

outbreak, as was the case in Haiti (2010) with cholera. 

To gain a clearer understanding of the human airline travel patterns, mathematical models 

may provide crucial insights. Mathematical models are defined as a set of mathematical rules 

designed to represent a biological system, in a more or less complex manner, based on a set 

of parameters. Models not only help understand the epidemiology of a pathogen, but also 

provide an understanding of the consequences of implementing a given policy. When based 

on the airline network, mathematical models help understand the possible development of 

an outbreak into a pandemic and geographical spread. The network that is made up of airline 

movements is known to be a ‘small-world’ network, in which any two nodes (here airports) 

can be reached in a given small number of steps (here routes), compared to that expected in 

an equivalent random network.  

The origin of a pandemic is known to be unpredictable (both in time and geography) and the 

resulting outbreak may be very costly (in fatalities and economic burden) for the affected 

countries and the global community. However, by using mathematical models, these costs 

can be reduced, through a better understanding of a pathogen’s potential spread.  

Therefore, through a thorough analysis of the global airline network, this thesis aims to 

determine whether the use of airline data were appropriate to understand the international 

spread of human infectious diseases, through four main objectives.  
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Introduction  

In March 2018 the first direct flight between London (United Kingdom) and Perth (Australia) 

successfully landed after 17 hours flying time (BBC, 2018). In the last century, this trip would 

have taken at least 24 hours, and one month the century before that (Cliff and Haggett, 

2004). Important advances in transport technology over recent centuries have improved how 

distant cities and populations are connected to each other, with the largest cities becoming 

increasingly connected, and previous refuelling points (for airplanes and ships) becoming less 

required as airplanes now need fewer stops for equal distance travelled (Cliff and Haggett, 

2004).  

An increasing number of passengers travel annually, with 1.186 billion international arrivals 

recorded globally in 2015, a 4.6% increase from the previous year (Glaesser et al., 2017). This 

increasing number of airline passengers is posing an increased burden on international public 

health organisations. Indeed one of the biggest threats faced by modern populations globally 

is the speed, distance and number of airline passengers travelling today, the likes of which 

have never previously been seen (Lopez et al., 2016). Healthcare practitioners need to 

correctly diagnose and treat for pathogens they may be unfamiliar with, all while trying to 

avoid an outbreak (Fricker and Steffen, 2008). Passengers are faced with varying levels of risk 

when travelling, with a small proportion of them making more frequent trips and mixing with 

similar people (so called assortative, or like-with-like, mixing). These frequent flyers are more 

likely to board an international flight while in the incubation or asymptomatic phases of an 

illness (Hollingsworth et al., 2007), increasing the potential of introducing a pathogen into a 

susceptible population, potentially resulting in an outbreak (Tian et al., 2017).   

International travel has been determined to be an important driver of novel or Emerging 

Infectious Diseases (EID) (Arcilla et al., 2017; Fricker and Steffen, 2008; Semenza et al., 

2016a). According to Jones et al. (2008), EIDs can be defined in a number of ways, such as 1) 

novel pathogens or mutated strains of known pathogens (Multi-Drug Resistant Tuberculosis, 

for example); 2) pathogens entering naïve populations or ones with reduced immunity, such 

as Ebola; or 3) those showing a recent increase in incidence in a given population (measles in 

Europe (World Health Organization, 2017c)). Pathogens such as the Human 

Immunodeficiency Virus (HIV) affect the host’s immune system leading to an increased 

susceptibility to other pathogens, as was seen at the start of the pandemic in the 1980s and 

1990s (Jones et al., 2008). If the necessary protective precautions are not adhered to 
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correctly, travellers visiting tropical and subtropical countries pose a health risk to 

themselves as well as to local populations, and populations from their home country, as they 

can transmit a pathogen to local vectors in the visited country (Semenza et al., 2016a) or in 

their home country (Angelini R et al., 2007; Mier et al., 2017). An example of passengers 

introducing vector-borne pathogens to local vectors upon their return from international 

travel was the 2007 chikungunya outbreak in the Ravenna region of Italy (Angelini R et al., 

2007). 

Monitoring the levels of disease importation resulting from travel may help determine 

epidemiological changes in visited countries (Fricker and Steffen, 2008; Lopez et al., 2016), 

which along with monitoring underlying drivers of emerging pathogens may help identify 

early cases, which may accelerate and improve outbreak detection and control (Semenza et 

al., 2016a).  

Human pathogens follow human travel patterns and are therefore more likely to start 

spreading within the same region as the majority of passengers (four out of five) travel within 

their own region (Glaesser et al., 2017). In an effort to control outbreaks early, the World 

Health Organization (WHO) coordinates the international response to reported outbreaks 

from its 194 member states adhering to the International Health Regulations (IHR). This set 

of guidelines updated in 2005 after the Severe Acute Respiratory Syndrome (SARS) outbreak, 

legally requires countries to report cases or outbreaks that may require international 

coordination especially in the event of an international spread. Additionally, sentinel 

organisations such as GeoSentinel and Trop Net Europe collect disease importation 

information from general practitioners to help understand the international importation 

risks (Fricker and Steffen, 2008).  
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Human infectious diseases events of importance in the 21st century 

Since the start of the 21st century, a number of infectious disease events have taken place 

globally, with at least four causing international concern: SARS (2003), H1N1 Influenza A 2009 

pandemic strain, Ebola virus (2014) and Zika virus (2016). This situation is at odds with what 

some in the medical community believed about infectious diseases in the 1970s, when it was 

thought the war on micro-organisms was all but over. However, important factors such as 

pathogen evolution, ecology and human travel were not considered at the time as posing 

significant threats (Arnal et al., 2011). The next section will describe outbreaks of importance 

from the 21st century alone and how unique influential factors shaped each outbreak’s 

severity, ranging from pandemics to significant localised outbreaks with pandemic potential.  

Pandemics 

Infectious disease pandemics refer to outbreaks that have affected populations over a large 

geographic area, countries or continent (Porta, 2008). These outbreaks may cause fear in 

populations leading to behaviour changes and population movements that in turn cause 

important economic loss and/or increased mortality rates (International Working Group on 

Financing Preparedness, 2017).  

An unusual rise in infectious disease cases of any kind needs to be detected and controlled 

very early on to allow an appropriate response and resource allocation. Early detection and 

control depends significantly on good communication within governmental branches and 

with the private sector (International Working Group on Financing Preparedness, 2017). This 

absence of communication within governmental authorities led to an important time lag 

allowing the SARS virus to spread widely within Southern China (Bowen Jr and Laroe, 2006; 

World Health Organization, 2003). The pandemic started in a live market in Guangdong 

province, Southern China, probably in November 2002. A then novel coronavirus that 

emerged to cause the 2003 pandemic is now known to have a reservoir in three animal 

species (civet cats, badgers and dogs) (Brower, 2003). Even though a number of super-

spreading events (one infection event creating a much larger than average number of next 

generation events) occurred during the outbreak and no cure was available, the disease was 

controlled more easily than others as patients were only infectious when symptomatic 

(Heymann et al., 2013). For example, in February 2003, a health care professional travelled 

to Hong Kong and was taken ill when staying at an international hotel, leading to a number 

of infections (Bowen Jr and Laroe, 2006; World Health Organization, 2003) as susceptible 
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clients came into contact with virus shed in the hotel corridor and lift by the health care 

worker (Bowen Jr and Laroe, 2006). Within ten days of the virus being introduced in Hong 

Kong, cases were reported across the world, in Canada, Vietnam, and the United Kingdom 

(UK), among others, as the direct result of airline passengers travelling internationally 

(Bowen Jr and Laroe, 2006). After this international spread, the WHO advised airport staff to 

question passengers about symptoms when leaving the airport from March 2003, and the 

following month advised against all non-emergency flights to affected areas. By May, air 

travel to and from China fell drastically. The outbreak was declared over in July 2003, after a 

total of 8,096 cases, including 774 recorded deaths (Bowen Jr and Laroe, 2006). Although air 

travel restrictions played a role in stopping the international spread of the virus through 

airline passengers, the economic impact on the airline and tourism industries was significant. 

According to the International Working Group on Financing Preparedness (2017) China alone 

is thought to have lost 0.5% of its Gross Domestic Product (GDP) as a consequence of the 

travel advisory. Great international collaboration and cooperation allowed the outbreak to 

be brought under control and person-to-person transmission stopped within eight months 

(Heymann et al., 2013).		

In response to the significant economic losses from the airline travel advisory and initial slow 

case reporting to and by the Chinese health authorities, WHO revised its IHR policies to 

encourage faster detection and reporting by countries. The new guidelines came into effect 

in 2007 (Heymann et al., 2013), four years before the next pandemic occurred, the 2009 

H1N1 Influenza A pandemic. The novel strain had been shown to infect healthy Mexican 

populations, causing severe disease outside of influenza season (European Centre for Disease 

Prevention and Control, 2010).  As a result, case reporting for the novel Influenza A virus 

strain in two Californian children was reported to the Centre for Disease Prevention and 

Control (CDC) early after detection. Four days later, on the 25th of April, WHO declared the 

outbreak a “public health emergency of international concern” (European Centre for Disease 

Prevention and Control, 2010). However, even with early detecting and reporting of the novel 

strain, WHO thought that the virus had already spread too far internationally and therefore 

advised against airline restrictions. Indeed given the virus natural history (being infectious 

before being symptomatic) makes its control more difficult, and the virus was reported on 

four continents within three weeks of Mexican authorities reporting the outbreak, most likely 

as a result of international air travel and trade. It was therefore too late for an airline ban to 

have any significant impact on the development of the pandemic (Hosseini et al., 2010). 

Despite its close genetic proximity to the virulent 1918 strain (European Centre for Disease 
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Prevention and Control, 2010), the 2009 pandemic strain was much less virulent than feared 

due to previous immunity in older generations (leading to fewer mortalities) but a high 

mortality among children and young adults was recorded (Fineberg, 2014). The outbreak was 

officially declared over on the 10th of August 2010 after 68 weeks, 925,861 cases (European 

Centre for Disease Prevention and Control, 2010) and 18,449 deaths reported (World Health 

Organization, 2010), although some researchers argue this may be a severe underestimation 

of the true number of cases and deaths (Dawood et al., 2012). 

Although the implementation of the revised IHR guidelines showed a positive impact on the 

H1N1 pandemic, such as improved communication between WHO and member states, it 

became apparent that many countries were unprepared to handle a future pandemic 

(Fineberg, 2014).  

Contrary to the previous two pandemics for which the spread was well reported and 

described in the media, Zika virus spread slowly from Africa through South Asia and into the 

Americas without causing international concern until it was detected in Brazil in late 2015 

(Basundra et al., 2016). During its eastward spread from Africa, the virus caused small, 

localised outbreaks with symptoms similar to those of dengue virus infections (Jamil et al., 

2016). Although the virus mutated over time, it still caused low mortality, but an increasing 

trend in new-born microcephaly and adults presenting with Guillain-Barré syndromes 

became more prominent (Chang et al., 2016; Mlacker et al., 2016). The introduction of the 

virus to the American continent a few months prior to the 2016 Rio de Janeiro Olympic games 

may have provided a pathway for the virus  to be transmitted further on the continent via 

airline travel (Chang et al., 2016). Overall, the outbreak is estimated to have cost between 

US$2.3-6 billion per year, or 0.05-0.12% of the global GDP. Such costs, partly due to the 

surprise and timing of the outbreak, could have been mitigated by more sensitive and 

stronger healthcare systems. These could have been in a position to disseminate accurate 

information about co-factors for microcephaly, transmission patterns and disease 

understanding (United Nations Development Programme, 2017). It is likely that once again 

airline travel bans for passengers travelling to and from the American continent would not 

have been beneficial (and would have resulted in bigger economic losses) as these would 

have been implemented too late to have proved any benefit for the spread of the virus.  
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Antibiotic resistance importation 

The pandemics described so far have had significant costs associated to them, both 

economical and in terms of mortality or morbidity. However, viruses are not the only 

pathogens being transported by human travel (Amesh et al., 2018). In fact, an emerging and 

important public health problem therefore is the international movement of antibiotic 

resistant bacteria. 

The emergence of a drug resistant bacterial strain in a given location should not be 

considered an isolated event, but rather a global threat, given the global airline passenger 

volume and level of connectivity (Choudhury et al., 2012) and posing a significant threat to 

the entire modern medicine (Amesh et al., 2018). Several examples of imported drug 

resistant bacteria have been reported in Spain and Sweden after travellers and diaspora 

returned to their country of residence (Choudhury et al., 2012). They may acquire the 

pathogen and be asymptomatic in these communities for an extended period of time after 

their return. As Arcilla et al. (2017) show, 11.3% of passengers returning from international 

travel were still colonised with Extended Spectrum β-Lactamase-producing Enterobacteracae 

(ESBL-E) one year after their return. This result was accompanied by a 12% risk of onward 

transmission within the household (Arcilla et al., 2017).  

Several antibiotic resistant strains have been identified as imported from several global 

regions, with varying levels of associated risks. However, India has been noted to cause the 

largest risk to international travellers regarding antibiotic resistant bacterial strains 

(Choudhury et al., 2012). Two resistant Escherichia coli (E. coli) strains (enterotoxigenic and 

enteroaggregative) have been identified in returning travellers from India, as was also the 

case for the New Delhi Metallo-betalactamase 1 resistance gene discovered in Swedish 

diaspora in 2007 (Choudhury et al., 2012). Asia was reported as the most likely region to 

acquire ESBL-E resistance gene (Arcilla et al., 2017; Choudhury et al., 2012), followed by 

Central and Eastern Asia (Choudhury et al., 2012). Pre-travel advice on reducing the use of 

antibiotics could play an important role in reducing the importation of ESBL-E genes by 

travellers (Choudhury et al., 2012), as well as other resistance genes or pathogens. The 

antibiotic resistance pandemic is estimated to cost the global economy up to 3.8% of the 

global GDP by 2050 and to impact low-income countries most. This cost is higher than the 

predicted cost of a pandemic, estimated at up to 1% of the global GDP (International Working 

Group on Financing Preparedness, 2017). As well as this significant financial cost, the 

morbidity and mortality rates are going to rise (World Bank, 2017a). These costs will increase 

rapidly if the spread of resistant strains is undetected as a result of weak surveillance, delayed 
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appropriate treatments to be provided to human as well as animal cases. This in turn puts 

additional strain on control measures as they will be confronted with a higher number of 

cases (World Bank, 2017a). 

Recent localised outbreaks 

Within the past decade, airline passengers travelling between distant countries have 

imported pathogens, resulting in country-level outbreaks of importance within the 

international destination. Examples include the importation of Vibrio cholerae to Haiti (2010) 

and the Middle East Respiratory Syndrome Corona virus (MERS-CoV) to South Korea (2015). 

Two additional outbreaks of note that developed although without airline importation but 

saw a number of air-travel associated exports were the West African Ebola (2014-2015) 

(classified as a “public health emergency of international concern” by WHO) and the 

Madagascar plague outbreak (2017) (World Health Organization, 2016b). 

On the 21st of October 2010, the Haitian Ministry of Public Health declared a cholera outbreak 

of particular virulence. This was the first reported cholera outbreak on the island for over a 

century. The resulting fear in the local population led to populations moving from Meille, (the 

epicentre) which allowed the bacteria to be carried to distant locations across the country 

(Piarroux et al., 2011).  The introduction of a hyper-virulent strain with high infectiousness in 

a naïve population made this outbreak particularly virulent (Piarroux et al., 2011). 

Additionally, the outbreak occurred a few months after the devastating earthquake had left 

the capital, Port-au-Prince, in a fragile state with 1.3 million people homeless and in 

makeshift camps throughout the capital as well as thousands of deaths and injuries. Within 

these precarious living conditions, with little sanitation and access to water, an infectious 

disease outbreak was reported as highly likely to develop (Walton and Ivers, 2011). The 

introduction of the bacterium (Vibrio cholerae O1, serotype Ogawa, biotype El Tor) was linked 

to an outbreak in Kathmandu (Nepal) that occurred just one month prior to the one in Haiti. 

The link between the two outbreaks was quickly established and the pathogen’s entry into 

Haiti was linked to a Nepal-based battalion suffering from cholera, who arrived a few days 

prior to the first cases being reported locally (Chin CS, 2011). As of the 30th of November 

2011, a total of 515,699 cases were reported of which 54% were hospitalised and 1% died, 

according to Pan American Health Organisation (2011). This outbreak was still ongoing at 

time of writing, with cases reported on a regular basis (United Nations News Centre, 2017). 

This unusual outbreak resulting from a single importation event but contained to one country 
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is a reminder that a disease outbreak in one country can very quickly affect populations much 

further away, and highlights the importance of the IHR and rapid reporting of cases. 

Although first identified in the Middle East in 2012 as a human respiratory virus, the MERS 

Corona virus is now known to have circulated in dromedary camels for decades prior to 

causing human disease (Gardner et al., 2016). Human-to-human transmission is uncommon 

except in close contact and hospital settings, with sporadic cases linked to close proximity 

with dromedary camels. The majority  of cases (80%) have been concentrated in the Middle 

East, with airline passengers exporting the virus to 27 countries, but rarely causing an 

outbreak (World Health Organization, 2017d). As of March 2018, there have been a total of 

2,144 laboratory confirmed cases of MERS, of which 750 were fatal (World Health 

Organization, 2018c). Few exported cases have led to an outbreak, of which the most notable 

was in South Korea during the summer of 2015, when a patient became ill with the virus upon  

his return from a business trip in Saudi Arabia (Su et al., 2015). After visiting three hospitals, 

the patient (who was later determined to be a super-spreader) caused an outbreak of 186 

cases, due to slow identification of the virus by healthcare professionals (Gardner et al., 2016; 

Ki, 2015). Because the Middle East is very well connected to the rest of the world, millions of 

airline passengers travel through airports such as Dubai and Doha annually. Along with mass 

gathering events, such as the Hajj, taking place every year there is a clear risk of further 

international dissemination of the virus from this region by international airline travel 

(Gardner et al., 2016; Al-Tawfiq et al., 2014). Even though the risk of onward international 

transmission is high for this ongoing outbreak, no flight or travel restrictions have been put 

in place by WHO at time of writing (World Health Organization, 2017d).  

These two examples (cholera and MERS-CoV) illustrate the potentially dramatic effects of a 

small number of airline passengers may have on local populations, the next examples 

highlight the potential risk of international dissemination from an outbreak.  

The largest Ebola virus outbreak ever recorded occurred between 2014 and 2016 in West 

Africa, specifically Liberia, Guinea and Sierra Leone (Dhama et al., 2015) with few exported 

cases, causing a total of 28,616 confirmed cases and 11,310 deaths (World Health 

Organization, 2016b). Although the outbreak principally affected the three previously named 

countries, onward transmission from exported cases was also recorded, although to a smaller 

extent and mostly in Nigeria (20 cases), Mali (8 cases) and United States (4 cases) (Elmahdawy 

et al., 2017). It was determined that the burial practices of the local populations facilitated 

transmission between family members and close contacts as the virus is transmitted by 
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bodily fluids (Dhama et al., 2015). An important challenge faced during the outbreak was 

keeping track of cases and their numbers, as many could not attend a hospital because of 

distance, overcrowding and/or stigmatisation (Elmahdawy et al., 2017). Prior to the 

outbreak, the healthcare facilities in these countries were far from end-users, closed (due to 

lack of staff or equipment) or overcrowded. Additionally, the population had a strong belief 

that hospitals did not heal patients (but rather killed them) causing many families to hide 

cases, allowing the virus to spread further (Omoleke et al., 2016). The three West African 

countries had seen a recent and important post-conflict economic growth, leading to 

improvements in transportation (including international airline travel). Indeed, some 39 

weekly inter-continental flights from the three capitals with major international airlines were 

available prior to the outbreak, but the healthcare system still remained vulnerable. These 

flights were suspended during the outbreak due to the perceived high risk of international 

dissemination of the virus (Omoleke et al., 2016) against the advice of the WHO (Nutall, 

2014). Quick international transport links made the potential for the international 

dissemination of cases at the start of the outbreak a high risk (Dhama et al., 2015). The WHO 

lifted the state of “public health emergency of international concern” on the 29th of March 

2016 (World Health Organization, 2016b). 

Another example of the importance of global connectivity was seen in Madagascar. In 2017, 

the island saw an unusually large outbreak of plague recording 2,417 cases including 209 

deaths recorded by the 26th of November 2017. The peculiarity of this outbreak was that 77% 

of cases were clinically pneumonic rather than bubonic (World Health Organization Africa, 

2017) and affected urban rather than rural areas (Burki, 2017). The risk of international 

dissemination through airlines has been assessed as low by WHO, but a number of closely 

connected countries (Seychelles) put a temporary flight ban in place (World Health 

Organization, 2017f) or set up preparedness actions (South Africa, Tanzania, among others) 

(World Health Organization, 2017f). Bogoch et al. (2018) analysed which countries were most 

at risk of an importation event, potentially resulting into an outbreak, using each nation’s 

airline connectivity with Madagascar and their health care system capacity to cope in the 

event of an outbreak. Although no international exportation events have taken place from 

this outbreak, this is one of the latest outbreaks with the potential to cause international 

concern at time of writing (the Nipah virus outbreak in India and the Ebola outbreak in the 

Democratic Republic of the Congo should also be considered). Madagascar’s healthcare 

system had deteriorated since the 2009 coup and is now one of the most underfunded 

systems globally, as well as being ineligible for international aid. This outbreak highlighted 
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the need for quick and accurate detection of pathogens by the local healthcare systems 

(Bonds et al., 2018). Given the situation with a possible risk of international dissemination, 

WHO helped the nation by providing personal and financial support (Bogoch et al., 2018). 

Although treatable with antibiotics, the disease is still feared (World Health Organization, 

2017e). 

The examples highlighted above show the potential impact of rapid airline travel on global 

health, whether these importation events occurred rapidly and were easily noticed, such as 

the H1N1 outbreak, or slower and more difficult to identify, such as antibiotic resistant 

bacteria. Pandemics are also known to be very costly to the global economy, as well as that 

of the affected countries. For example, the 2003 SARS outbreak cost an estimated US$52.2 

billion to the global economy (International Working Group on Financing Preparedness, 

2017). This significant economic impact is the result of poor pandemic preparedness within 

countries as well as changes in population behaviour. In fact, it was noted that the important 

cost of MERS-CoV on the South Korean economy (US$ 10 billion) was in part a result of flight 

cancellations by travellers from fear of becoming infected when visiting the country 

(International Working Group on Financing Preparedness, 2017). As well as having a 

significant impact on local and global economies, pandemics can also cause a large number 

of deaths in the affected countries (International Working Group on Financing Preparedness, 

2017), even if the case fatality rates vary according to the pathogen, as shown in Figure 1.1. 

Both of these costs can be significantly reduced by improving country level preparedness, 

which must be taken both nationally with appropriate reference to healthcare systems 

(including trained staff, appropriate facilities and trust from the population) and globally with 

international surveillance systems that report outbreaks accurately and in a timely manner 

(Omoleke et al., 2016). Therefore, understanding the dynamics and spread of future 

outbreaks and predicting origins, destinations and speed of dissemination is a research field 

of its own that, through mathematical modelling can help public health organisations make 

better and more informed decisions concerning the development of an outbreak into a 

pandemic and containment measures.  
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Introduction to mathematical models 

When studying the transmission cycle of malaria in the early 20th century, Ronald Ross 

derived a series of equations relating to the parasite’s transmission cycle and potential 

effects of vector control on malaria incidence in the local population. Still relevant today, his 

work is one of the earliest examples of models using mathematical equations to understand 

the spread of human infectious diseases (Anderson and May, 1992; Lessler and Cummings, 

2016). Contemporary with Ronald Ross was William Hamer who, while studying measles 

epidemics, understood that epidemics depend on the contact between infectious and 

susceptible parts of the affected population (Anderson and May, 1992).  As well as being 

among the first to use mathematical equations to represent infectious disease spread, Ross 

and Hamer also worked on understanding the parameters used within those equations 

(Anderson and May, 1992). Later on, in the 1930 and 40s, Reed and Frost taught 

epidemiological theory at John’s Hopkins University using mathematical models and 

mechanical epidemiology simulators. These are some of the earliest examples of the use of  

mathematical equations to understand the spread and control of infectious diseases (Lessler 

and Cummings, 2016). Later, in the 1980s, Rvachev and Longini developed the first model to 

explore the international spread of influenza using airline data from 52 airports  located on 

all continents (Rvachev and Longini Jr, 1985). 

Mathematical models are useful tools to understand the spread of infectious diseases within 

and between populations and the potential impact of policies on their spread and control 

(Lessler and Cummings, 2016), as well as understanding a pathogen’s mechanical (within a 

host) and epidemiological (between hosts) spread. In today’s increasingly connected world, 

and given the unpredictability of outbreaks, understanding and knowing how to control an 

outbreak from an unknown imported case is crucial to avoid the further spread of an 

infection (Hollingsworth et al., 2007).  

The next section will introduce the concept of mathematical models, why these are 

important and what previous models of international infectious diseases spread have shown.  

What are mathematical models 

Mathematical models are conceptual tools used to explain the behaviour of objects (in this 

context, objects being humans and pathogens) (Arnal et al., 2011) in a set of precise 

mathematical rules, thus providing a clear and concise language (Huppert and Katriel, 2013). 

In public health, their use ranges from understanding the epidemiology of an infection within 
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a host, to understanding of the impact of vaccination on infectious disease spread within 

populations. Models are more or less complex (Lessler and Cummings, 2016), but are all 

wrong on some level, as simplifications and assumptions must be taken at some stage of 

developing the model (Keeling and Rohani, 2008).  These simplifications may affect any part 

of the model, such as using a unique level of infectiousness between members of a 

population (ignoring super-spreaders), or assuming that the population as a whole is at equal 

risk of infection (ignoring previous immunity) (Ferguson et al., 2003). Models help predict the 

course of an outbreak and guide policy makers in making difficult decisions, but also help 

understand how a pathogen spreads within a population and any influencing dynamics (Basu 

and Andrews, 2013; Keeling and Rohani, 2008; Lessler and Cummings, 2016). Each factor can 

be examined independently, creating an ideal world for disease study. However, models can 

never be fully accurate as some unknown behaviours will always be present in populations 

and disease transmission, this uncertainty in turn provides the confidence intervals for the 

model and the levels of risks among different groups (Keeling and Rohani, 2008). The 

development and availability of tools to predict and evaluate the impact of varying policies 

affecting the spread of infectious diseases is important. However, these tools must also be 

flexible enough to represent different populations and pathogens (Arnal et al., 2011).   

An ideal model should be based on essential features, and must balance a number of 

essential elements, namely 1) accuracy (data availability, computer power and 

understanding of the disease will determine a model’s complexity); 2) transparency (using 

different elements in turn to understand their role, but considering that more parameters 

make for more complicated models) and 3) flexibility (how adaptable the model is to another 

pathogen) (Basu and Andrews, 2013; Keeling and Rohani, 2008). An oversimplified model will 

lead to the wrong conclusions whereas an overcomplicated model will obscure clear 

understanding of the results (Basu and Andrews, 2013; Ferguson et al., 2003; Grassly and 

Fraser, 2008). Researchers must also be able to parameterise the model with the data 

available to them, which may create a difficult research situation when considering an 

emerging pathogen with little data available (Ferguson et al., 2003; Keeling and Rohani, 

2008).  Models should be validated to ensure they correctly represent the disease dynamics 

where possible, and this should ideally be done using independent data or by using good 

statistical methods. Models used to inform policy must capture the underlying mechanisms 

of the policy being considered (Ferguson et al., 2003). 

Different model types have been developed over time to understand the spread of infectious 

diseases, with Kermack and McKendrick (1927) being among the earliest to describe an 
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epidemic through a contact network, by developing the Susceptible-Infected-Recovered (SIR) 

model for a given pathogen in a population of size N (Figure 1.2). SIR models represent the 

pathway of how individuals start as susceptible (no previous infection), become infected 

(have acquired the infection), and recover (either acquire immunity or become susceptible 

again) (Arnal et al., 2011; Keeling and Eames, 2005). A number of variations of this simple 

model exist, taking into consideration, for example, the population as a whole (including 

number of births and deaths, previous immunity), as well as whether the patient is infectious 

before becoming symptomatic (latency period) (Keeling and Rohani, 2008). These models 

and variations there-of have provided important knowledge on the epidemiology of a 

number of human pathogens, even with a number of significant assumptions having to be 

made. Some of the most important assumption for these models are that all members of the 

population mix homogeneously, and therefore are at equal risk of infection from each other 

and that once infected, the level of individual infectiousness remains constant over time and 

is the same for all infected individuals (Ferguson et al., 2003). These, of course, cannot be 

true in a real-world population, as previous infections and/or vaccinations will alter the 

number of truly susceptible individuals in a population and different individuals will interact 

with other members of the population in different ways. Therefore, including these 

assumptions in a model will significantly impact the results, especially if those assumptions 

are invalid in the context of the specific use of the model (Ferguson et al., 2003; Grassly and 

Fraser, 2008). 
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When considering the spread of infectious disease between multiple international 

populations, assuming homogenous population mixing may not be correct. Therefore, it may 

be more appropriate to use an alternative approach such as a network representation of 

connectivity between individuals (Keeling and Eames, 2005), as the contact patterns within 

a population network are heterogeneous and each individual will only come into contact with 

a small fraction of the total population (Keeling and Rohani, 2008). Although they may be 

more difficult to interpret, network models are very important when contacts occur within a 

heterogeneous population (Arnal et al., 2011).  

A network represents a set of nodes (airports or countries for example) joined by links, also 

called contacts (direct flight routes for example), as a function of time. In the case of the 

airline network, two airports are linked if there is a direct flight between them (Arnal et al., 

2011). A network can also be directed (also called weighted or asymmetric, if for example 

more passengers travel towards one airport and then from it) or otherwise be undirected 

(also called unweighted or symmetric, if passengers travel in both directions between both 

airports in roughly equal numbers). Additionally, a network’s links may be weighted, by using 

for example, a proportion of the number of airline passengers travelling between airports 

(Barrat et al., 2014). Other ways of describing a network include the ‘geodesic path’, defined 

as the shortest path between node pairs across the network, with the ‘diameter’ being the 

longest shortest path between any two nodes across the network (Newman, 2003). Some 

additional characteristics will be described in Chapter 3.  

The global airline network is an example of a small-world network (Barrat et al., 2014; 

Guimera et al., 2005; Wandelt and Sun, 2015), where each airport is connected to many 

neighbouring airports, with a few being additionally connected to distantly located airports 

(Figure 1.3) (Newman, 2003). This provides high levels of clustering in terms of number of 

neighbours (average probability that two nodes are in neighbouring networks are also 

geographic neighbours (Newman, 2003)) and little heterogeneity, allowing an infection to 

spread quickly within a cluster, with the long-range connections providing an outlet for the 

infection to reach other parts of the network quickly (Watts and Strogatz, 1998). There are 

two main characteristics of small-world networks, namely that there are neighbourhoods 

within the nodes, and the network diameter increases logarithmically with the number of 

nodes. The second characteristic allows all nodes within the network to be connected to each 

other in a small number of steps, meaning that the network has a finite dimension (Amaral 

et al., 2000).  
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Understanding a network’s topology is important, however, so is understanding its 

vulnerabilities. In general, the removal of at least one node from a network is enough to 

cause its breakdown. Therefore, the elimination of a central airport will result in more 

important consequences to the network than by eliminating a single random airport. This is 

a direct result of the overload generated on the rest of the network by altering traffic flows 

(Tran and Namatame, 2016).  
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What are models used for and why are they important? 

If developed correctly, with the appropriate data and methodology, mathematical models 

are powerful tools that help understand a pathogen’s mechanics, potential spread and 

effective control measures (Alshammari and Mikler, 2016; Arnal et al., 2011; Lessler and 

Cummings, 2016). Models help inform public health policy in various ways, ranging from 

broad information on feasibility to detailed recommendations, allowing policy makers to 

choose between interventions and compare investments (Lessler and Cummings, 2016). The 

aim of such models was to determine which individuals will be most infectious in order to 

reduce transmission (vaccination, isolation, treatment) and control the outbreak more 

efficiently (Grassly and Fraser, 2008).  

Models can help understand the basic epidemiology of a pathogen and its control (Keeling 

and Rohani, 2008; Lessler and Cummings, 2016). This may be of particular relevance for a 

novel or re-emerging pathogen, especially in a naïve population, to limit the size of the 

outbreak early on, thereby reducing economic costs, and health impact. Building on a better 

understanding of basic epidemiological principles, models can also help understand 

surveillance (Lessler and Cummings, 2016). For example, by using surveillance data (known 

number of cases) and the known incubation period, Ron Brookmeyer was able to understand 

the true number of cases infected by Human Immunodeficiency Virus (HIV) (Brookmeyer, R. 

2016). In other words, he calculated the number of unreported cases. From this, he was then 

able to predict how many HIV infections would then develop to Acquired Immune Deficiency 

Syndrome (AIDS) (Lessler and Cummings, 2016).  

Models allow researchers to understand the potential role of interventions without the use 

of experimental epidemiological studies as these may not be feasible in the population (for 

cost, ethical or other reasons). Although challenging, forecasting and preparing for 

catastrophic events (even if unlikely to occur) are crucial for population health and security. 

For example, when the next influenza pandemic emerges, understanding the timing of 

antiviral drug distribution and the potential impact of social-distancing measures (such as 

school closures) and whether this would suffice to mitigate the outbreak may prove crucial 

in reducing the number of cases (Lessler and Cummings, 2016). Indeed, once a model has 

been formulated and calibrated; it can be used to understand a potential future outbreak. 

For example, a model can help determine the number of potential cases, how these numbers 

may vary with vaccination rates, estimate the epidemic curve, among other useful pieces of 

information (Huppert and Katriel, 2013). Such a model was implemented by Klepac et al. 
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(2018), modelling an influenza pandemic in the United Kingdom using mobile phone data. 

The model considered the introduction of targeted vaccination and hand hygiene as control 

measures and their impact on the spread of the outbreak. The results showed the significant 

impact these control measures had on the spread of the outbreak, both in terms of lives 

saved and significant reduction in speed of spread. Such models are likely to influence policy 

makers as to which control measures to prioritize when the next pandemic is detected in the 

country (Klepac et al., 2018). Finally models can help understand the potential consequences 

of policy changes on one or more pathogen (Lessler and Cummings, 2016). It is important to 

not only report the worst and most likely scenarios to policy makers, but also to allow for an 

understanding of the model sensitivities and best ways to apply the policy (Ferguson et al., 

2003). 

As well as providing insights into national epidemics, models can also be used to estimate 

the reach and speed of a pandemic, by using network models based on international airline 

data. The movement of pathogens is helped by the development of transport, allowing for 

their rapid and effective global spread. Factors such as the increasing susceptible population 

and the ability of pathogens to cross the species barrier  increase the risk of pathogens 

emerging (Arnal et al., 2011).  As will be shown in Chapter 3, the global airline network 

(sometimes referred to as the World Airport Network, or WAN) is growing annually, 

connecting geographically distant locations. These circumstances allow pathogens to be 

transmitted across increasingly large geographical ranges through human travel (Tatem and 

Hay, 2007). Chapter 6 of this thesis aims to provide an understanding of how the potential 

origin from which a pandemic may start might affect its international spread. 

Although very powerful tools, it must be remembered that mathematical models are never 

fully accurate. Additional challenges modellers may not be able to take into consideration 

include anything that cannot be observed or hasn’t been measured, such as pathogen 

evolution (in response to selection pressure and control measures); reporting accuracy 

(under-reporting may significantly impact the data available for the model and thereby 

influence the model results); non-homogeneous contact patterns (parts of the population 

come into more or less contact with other parts of the population); and pathogen ecology 

(understanding dynamics between multiple hosts and pathogens) (Grassly and Fraser, 2008). 
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What previous models have shown 

Airline passenger travel patterns are known to be good indicators of human international 

movements and their pathogens (Hosseini et al., 2010). Global events, such as international 

sporting events and pilgrimages, cause important health threats for the population of the 

host country by gathering large numbers of travellers from around the world. Consequently, 

participant population demographics (age, gender, country of origin) are also important to 

include in any modelling study (Alshammari and Mikler, 2016). 

Adequate data relating to instances of the international movements of human infectious 

disease via airline travel is scarce; making a detailed understanding based solely on 

notifications of cases related to those instances is difficult, given that in such instances case 

numbers are likely to be underestimated. Therefore, mathematical models may provide 

useful tools in better understanding risks posed by international airline travel (Lopez et al., 

2016).   

The airline network is influenced by the global economy, politics and geography (Guimera et 

al., 2005), and most seasonal changes in passenger movements occur in the Northern 

hemisphere, as the largest population resides there (Mao et al., 2015). However, less 

economically advanced countries are increasingly contributing to the number of outbound 

tourists as their income and leisure time increase. These countries are also becoming 

attractive tourist destinations, as tourists now want to visit new and unusual destinations 

(Wandelt and Sun, 2015). Central cities to the network are not always the most connected to 

other cities (defined here as a node through which most geodesic paths go to connect to 

other nodes (Newman, 2003))  in the continent. For example, Atlanta (USA) and Istanbul 

(Turkey) are very well connected cities, but are not central to the network (not many 

geodesic paths, or shortest paths, in the network go through them), whereas Anchorage 

(USA) and Singapore are central to the network but do not feature among the 25 most 

connected cities (Guimera et al., 2005).  

Lopez et al. (2016) calculated the risk of travellers importing or exporting diseases by using 

the force of infection faced by travellers and residents in an endemic country, whereas 

previous papers have not always considered this risk of infection in the visited country 

together with airline data to estimate the risk of importation from an endemic to non-

endemic country. Lopez et al. (2016) use the force of infection but with arbitrary values of 

airline passengers (of 1,000 passengers), which may be grossly underestimated depending 

on the country, and thereby give misleading imported infection risks. Therefore, an ideal 
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scenario would be to combine both accurate passenger numbers and the endemic force of 

infection in the visited country (personal observation).		

 

Aims and objectives of the thesis 

Mathematical models can play an important role in providing insights into the predicted 

spread of an outbreak and may be insightful regarding the most effective control measures 

to be used to halt the development of a pandemic (Klepac et al., 2018).  

The aims of this thesis were to understand what the airline data represents and determine 

whether the use of airline data were appropriate to understand the international spread of 

human infectious diseases. Four main objectives were developed to meet these aims, 

namely: 

1) To investigate the data sets and types used by previous mathematical models 

investigating the international spread of human infectious diseases by airline travel. 

A checklist to improve the reporting of second-hand data, to be made publicly 

available, was a sub-objective. 

2) To fully understand and compare a detailed airline data set against four independent 

yet comparable data sets to determine any trends and biases as well as gaining an 

understanding of the airline network.  

3) To model the risk of contracting chikungunya or dengue virus infections faced by 

travellers from the UK when abroad, compared to the local populations, using a 

subset of the airline data. 

4) Finally, to use a previously generated connectivity matrix derived from the airline 

data alongside a measure of national health indicators to understand which 

countries may tend to pose a higher risk for the spread of the next pandemic. 
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Chapter 2 – The use and reporting of airline passenger data 
for infectious disease modelling: a systematic review. 

	

Preamble 

To understand what data mathematical modellers use to model the international spread of 

human infectious diseases through airlines, a systematic review was undertaken. As well as 

looking at the data sources and data types used (bookings or passenger numbers, direct or 

indirect flights for example), the level of source reporting (allowing independent replication 

of work) and whether the data were validated were also assessed.  

To the best of the author’s knowledge, such a review had not been undertaken before, but 

addressed clear issues in the field. Furthermore, this review allowed for a deeper 

understanding of the variety of data sources currently available to model human airline 

movements and their drawbacks. From the results of this review, undertaking a full data 

description and validation was deemed necessary, and are presented in chapters three and 

four. 
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Abstract 

A variety of airline passenger data sources are used for modelling the international spread of 

infectious diseases, with questions existing regarding the suitability and validity of sources 

used. A systematic review was conducted to identify the sources of airline passenger data 

used for these purposes, and to assess validation of the data and reproducibility of 

methodology. 

Articles matching the search and inclusion criteria were identified from three databases. 

From the final 136 articles selected, information regarding the type and source of airline 

passenger data used was collated, before assessing the studies’ reproducibility. 

The majority of studies (n=96) used data sources primarily used by the airline industry. 

Government published data sources were used in 30 studies, and data published by 

individual airports were used in four studies. Validation of passenger data was conducted in 

only seven studies. No study was found to be fully reproducible, though eight were partially 

reproducible. 

The author recommends that more effort be made to assess the validity and biases of airline 

passenger data used for modelling studies, particularly when model outputs are to inform 

national and international public health policies. Improving reporting standards and more 

detailed studies to better understand the different biases in different commercial and open 

access data to permit greater understanding around reproducibility, is also recommended. 
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Introduction 

The international movement of individuals through commercial airline travel has been 

implicated in the transnational dissemination of many infectious diseases and is thought to 

be the principle mode of human pathogen transfer between continents. Examples include 

the global dissemination of the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003, 

which quickly spread to North America from Hong Kong (Wilder-Smith, 2006). The 2009 

influenza pandemic (Fraser et al., 2009), which emerged in Mexico and affected over 208 

countries, also saw a similar international dissemination (Al Hajjar and McIntosh, 2010). 

There is, year-on-year, an increasing number of airline travellers, with a total of 1,186 million 

international tourist arrivals globally in 2015, a 4.6% increase from 2014 and an additional 

510 million arrivals compared to 2000 (Glaesser et al., 2017). Additionally, tourism arrivals 

from emerging economies are now comparable to those of advanced economy countries, 

with nations like Mexico and Thailand entering the top 15 of the most visited destinations. 

This trend in international arrivals is expected to keep rising and reach 1.8 billion arrivals in 

2030 (Glaesser et al., 2017). Lower fares and greater availability mean that geographically 

distant countries and cities are becoming easier and quicker to reach for a greater number 

of individuals (Saker et al., 2004). Such rapid population movements pose an increasing 

threat to global populations (Johansson et al., 2011). 

The increasing volume of airline passengers seen each year (World Tourism Organisation, 

2016) highlights the importance of gaining a better understanding of the dynamics of the 

airline network and its role in disease spread and control (Mao et al., 2015). There is also a 

need for accurate prediction of international transmission through passenger flow. 

Mathematical models are useful tools that can provide an estimated risk of infectious disease 

importation and exportation by international airline passengers (Lopez et al., 2016), 

especially in the early stages of an outbreak when accurate reporting may be difficult (Quam 

and Wilder-Smith, 2016). Models such as the one developed by Lopez et al. (2016) use the 

force of infection in the visited country to determine the risk posed to international 

passengers, taking an arbitrary number of airline passengers. However, this risk can also 

extend to new areas when returning passengers carry pathogens back to their residing 

country, as was the case in Italy in 2007, when a chikungunya outbreak was identified (Quam 

et al., 2015). Mathematical models of pathogen importation/exportation risks usually entail 

a function of the infection level in the visited country and the airline passenger volume 

between the two desired geographical locations, as described in Quam and Wilder-Smith 
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(2015). Access to accurate and appropriate data sets describing passenger flow between 

locations is crucial in developing transmission models of global spread (Huang et al., 2013), 

with which to understand the potential role the airline network may play in the spread of 

disease, but also to predict future spread, particularly when new threats emerge. However, 

a variety of data sources have been used (Mao et al., 2015) leading to inconsistency and 

incomparability between modelling studies. The sources themselves are generally not 

designed for epidemic modelling purposes. They include data for use within the aviation 

industry, which may be expensive to access, impose user restrictions, including prohibition 

from sharing with a third party (Mao et al., 2015; Huang et al., 2013). Open access data 

sources do exist, but may be geographically restricted, provide information in forms not 

easily convertible into passenger numbers, or limited in temporal resolution (Mao et al., 

2015). Although different sources of passenger data are available, many have drawbacks and 

inconveniences. Data to model airline passenger movements is, therefore, not necessarily 

easy to access or appropriate for epidemic modelling purposes. As Balcan et al. (2009) state: 

“The main difficulty in defining a commuting network worldwide is the lack of a global 

database as opposed to the case of the air-traffic flow”.  

To gain an overview of the range of airline passenger data sources used by modelling studies, 

a systematic literature review was designed and conducted. The principal aim of the review 

was to determine the data types (e.g. passenger numbers, seat capacity) and sources used 

for the purposes of modelling international infectious disease importation. A secondary aim 

of the review was to assess the reproducibility of those studies regarding sourcing and use 

of airline passenger data.  



37	|		C h a p t e r 	 2 	
	

Methods 

Search strategy 

The search of the literature was conducted on the 2nd of October 2017 using PubMed, Web 

of Science and Scopus with no restriction on the earliest date of the articles returned. A 

combination of three sets of search terms was used in this review (#1 AND #2 AND #3). The 

first set (#1) was: “air” OR “airline” OR “aviation” OR “flight” OR “airport” OR “passenger” OR 

“transport*” OR “travel*” AND NOT “pollution”. The second set (#2) was: “epidemic” OR 

“pandemic”. The final set (#3) was: “global” OR “international”. The term ‘Pollution’ was 

classed as an exclusionary term as initial scoping suggested a large proportion of results 

included pollution studies, which were deemed irrelevant to this review.  

Articles were included if they matched the following inclusion criteria: (1) they were primary 

and peer-reviewed research; (2) they modelled the international spread of human infectious 

diseases between at least two countries; (3) the model was parameterised with airline 

passenger data. We included modelling studies which considered either dynamic models of 

the transmission process or non-dynamic modelling of infected individual movement. The 

inclusion of any additional articles, if they were identified as the source of passenger data 

used within selected articles, and met the three inclusion criteria above was also permitted. 

Although no language restriction was applied to the searches, articles in a non-English 

language were excluded during the abstract review if no translated version could be found. 

Review articles were also excluded, unless specifically addressing the use of airline passenger 

data. Finally, records which could not be accessed through the University of Liverpool or 

Lancaster University library records were also excluded.  

Following deduplication, the full list of abstracts and titles was first reviewed and included or 

excluded by at least two reviewers independently. Any disagreement regarding inclusion of 

an article in the review was then discussed between all reviewers. From the relevant articles 

selected, the bibliography of each article was searched to find additional relevant articles, 

based on title and full text. From the final list of selected articles, the full text was accessed 

and screened for relevance in more detail.  
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Data collection strategy 

From the final selection of articles, information regarding the airline passenger data used in 

each article was extracted (Table 2.1). This information focused on the source, type and 

validity of data used in the study (Table 2.1A), and the reproducibility of data usage judged 

by pre-defined criteria (Table 2.1B). For the purposes of this review, data validation was 

defined as the comparison of a primary data set used in an article against at least one 

independent and appropriately comparable set of data. An article was deemed to have 

validated their data source if they cited another independent and comparable data set and 

conducted a comparison. To determine their reproducibility, each article was assessed on 

their reporting of data source using the checklist shown in Table 2.1B, and the appropriate 

score given accordingly. We did not plan or conduct any bias analysis of the selected 

publication. 
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Results 

From the 4,012 articles identified in the search, 1,465 were identified as duplicates and 

rejected, resulting in 2,547 articles which went forward for title and abstract screening 

(Figure 2.1). A further 1,130 were rejected at this stage as they did not meet the inclusion 

criteria. A total of 335 articles were selected based on their title and abstract and read in full. 

From these, 223 were rejected with the majority (n=87) containing no airline data, 73 were 

deemed not relevant (did not meet at least two required criteria, such as airline data and 

model…) and 20 used no model. An additional 19 were country specific, 17 were inaccessible 

(access to journal or language barrier), five were reviews and two were not focused on 

human disease movement. After reading the articles in full, 112 were selected as relevant to 

this review. Finally, 24 additional articles, not detected by the search but identified through 

reading the bibliography of accepted articles were included after being read in full to 

determine their relevance. 



41	|		C h a p t e r 	 2 	
	

	



42	|		C h a p t e r 	 2 	
	

The year of publication for the 136 articles ranged from 1985 to 2017, with the largest 

number of articles (n=17) published in 2016 (a detailed list of accepted titles can be found in 

Table 2.5). In the twenty years following from the Rvachev and Longini (1985) publication, a 

total of seven articles were published [41; 43; 58; 66; 83; 84; 115].  

A wide range of data sources have been used to model passenger flow between countries 

with a total 45 distinct sources identified here (Table 2.2). Commercial or industry data 

sources were most often used (14 sources, used in 133 articles), followed by governmental 

data (14 sources, used in 32 articles). Of the commercial data sources, those most often 

acknowledged were International Air Transport Association (IATA) (62 articles) and OAG (38 

articles); where a database was named from these sources, OAG MAX was the most 

frequently used (3 articles) followed by t100 (2 articles) and Traffic Analysis Tool (1 article). 

A range of other industry-orientated data sources were cited, including Diio (airline market 

information), Amadeus (travel reservations database), Feeyo (Chinese-based flight 

scheduler), and an open-access publicly-contributed database (OpenFlights.org). Four 

articles used passenger surveys, such as TravelPac from the United Kingdom’s (UK) Office for 

National Statistics (ONS), and eight articles used tourism surveys (Table 2.2). Five articles 

used information published by airports, and four other sources were reported (the social 

media site Twitter, two aircraft manufacturers and EuroStat). 

Most data sources used described origin-destination information (n=91, 67%) or passenger 

numbers (n=73, 54%) (Table 2.3). Data describing direct flights only were used more often 

than data describing full passenger itineraries: n=33 and n=27, respectively. Of those using 

IATA as a data source, 15 used direct flights only (1; 6-8; 13; 29-31; 33-35; 64; 105; 109; 119) 

and of those using OAG, 11 used direct flights only (7; 8; 10; 18; 22; 45; 82; 87; 119; 123; 124). 

Finally, eight articles indirectly used IATA data by using the online modelling tool GLEAMviz 

(1; 5; 6; 8; 56; 99; 103; 127) (2017) and two by using BioDisapora (now Bluedot.global) (76; 

109) (Bluedot.global).  
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From the measures of methodological reproducibility described in Table 2.1B, it became 

apparent that of the 45 total sources identified, 26 (58%) were open source, and 11 (24%) 

were closed source. The date range of the data (start and end date) was reported in 58% 

(n=79) of the studies, and an access date (date of data download) was stated in 25% (n=34) 

of the sources used. Data validation as previously defined was performed in 5% (n=7) of the 

articles collected (16; 41; 53; 75; 119; 120; 127). Only 40 articles (29%) reported performing 

any data cleaning or manipulation before using their data set. Given the set of standards 

established to determine an article’s reproducibility, no article was considered fully 

reproducible; eight (6%) were deemed partially reproducible (score of 3 or above), where 

some information regarding the description and use of passenger data were reported (9; 16; 

24; 41; 47; 49; 110; 130).   

The majority of articles (n=115, 85%) modelled the global spread of infectious diseases, while 

the analysis of the airline network itself was the next most common purpose (n=11, 8%). Five 

articles used passenger data for descriptive or illustrative purposes (28; 33; 34; 41; 77), two 

articles used the data for passenger screening simulations (17; 86) and two articles described 

a public health tool development (7; 37). Of the pathogens modelled, pandemic influenza 

was the most frequent subject of the models (n=40, 29%) (Table 2.4). Generic models not 

focussing on a specific pathogen were also common (n=23, 17%).  
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Discussion 

The purpose of this review was to assess the source and usage of airline passenger data used 

in mathematical models of international infectious disease spread. A total of 136 articles 

were identified as meeting the inclusion criteria, from which a total of 45 unique data sources 

were identified.  

A variety of sources were identified in these articles, with the majority of them produced by 

and for the commercial aviation industry. Examples of this type of data source include the 

International Air Transport Association (IATA), OAG and the International Civil Aviation 

Organization (ICAO). These commercial sources provide information from the aviation 

industry for use within that industry, and are marketed as being detailed and accurate. The 

data resolution can be high: for example, passenger data is available stratified by routing 

(including stopovers), fare class, point of origin, and time period. There are often user 

restrictions on the use of the data, and financial charges made for access (Mao et al., 2015). 

This type of data can be deemed closed data, meaning it is publicly available but at a price 

and with restricted access. Furthermore, the methodology underpinning data collection is 

generally undisclosed, and as such it is difficult for researchers to assess the quality, 

representability and biases of the data. Although these data sources may have a number of 

subsets representing different data types, a more accurate reporting of the data sets, 

including name of subsets used and date of access, among other criteria, are not often 

reported by authors.  

A number of data sources identified in the review are open-access and include passenger 

data published by individual airports, data compiled and released by government agencies 

(for example, UK Office for National Statistics), and information derived from tourism 

surveys. Although freely available to access, these data sets may not provide the resolution 

of information required by modelling studies, as they typically are limited to passengers 

departing from or arriving at a specific geographical region, or are aggregated over long-time 

periods (annual or quarterly data). Additionally, the collection methodology is not always 

reported for such data sources. Combining information from such sources represents a 

considerable data challenge. 

International travel data describing direct flights only were used more often than those with 

full itinerary information. Data based on direct flights excludes information on connecting 

passengers, and will therefore underestimate the number of passengers travelling to a 
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specific destination. This limitation is likely to introduce bias, underestimating passenger flow 

between distant or poorly served locations, and overestimating passengers travelling shorter 

distances (Johansson et al., 2011). This bias has implications for public health planning, as 

some locations or countries may have an apparent lower risk of importation events due to 

the lack of direct flights from source countries known to have many infection events. This 

may explain the discrepancy between studies during the West Africa Ebola epidemic of 2014-

15 where several studies suggested the USA was at relatively low risk of importation due to 

the suspension of direct flights. The USA did however receive two importations through air 

travel from the affected area, one due to a passenger reaching their final destination through 

indirect flights and the second from a returning healthcare worker (Bogoch et al., 2015; 

Gomes et al., 2014; European Centre for Disease Prevention and Control, 2015). 

When considering international travel patterns for public health purposes accessing 

information on the number of passengers travelling from an origin to a destination is the 

most relevant. However, we found several articles used data for which the unit of 

measurement was not the number of passengers. Several data sources used describe 

passenger traffic in terms of seat capacity – literally the number of seats on aircraft flying 

between two specific airports – for which assumptions must be made regarding how full 

individual flights are and how this may or may not vary according to seasons. Additionally, 

this data type cannot take into account the full routing of a passenger, which must therefore 

be inferred from the data, or state that only direct flights are considered for the study in 

question. The variety of data types used for epidemic modelling purposes perhaps reflects 

the lack of a widely accepted and accessible data source, and this variation in data unit could 

lead to differences in conclusion between modelling studies.  

To ensure reproducibility by others, information regarding the source and type of the data 

used, the date of access, and any cleaning or manipulation conducted prior to use should be 

reported. This analysis showed this standard is rarely attained. Reporting the date of access 

is important as several data providing companies update their data monthly, with 

retrospective adjustments of values (OAG, 2015). Few studies (n=34, 25%) reported the date 

of access to the data set. Acknowledging any data cleaning/manipulation is also important 

for reproducibility (Yale Law School Roundtable on Data and Code Sharing, 2010): for 

example, if the authors are considering passengers departing or arriving from cities rather 

than airports, but the data were collected at the airport level, the aggregation of passenger 

numbers from each airport to the city should be acknowledged by the authors. For additional 

clarity, it would be useful for authors to report the stage at which the data were aggregated 
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to city level: whether this was part of the original data, or if this was a data manipulation 

done by the authors. Additionally, at the time of writing there is a limited understanding of 

the sensitivity of this level of data (city level) and how it compares to airport level data and 

other aggregated data sets, requiring further analytical work. Overall, the majority of articles 

were deemed to have methods that were unreproducible, and while eight studies were 

deemed partially reproducible none were considered to be fully reproducible. As it is the 

author’s responsibility to ensure accurate reporting for all aspects of their methodology, the 

findings of this review suggest that authors of international disease modelling studies should 

aim to improve their reporting of airline passenger data source and usage. Authors are 

advised to reference the fields reported in Table 2.1B, at a minimum, when using any data 

sets.  

Data validation is often required to ensure that the data collected is fit for purpose, free from 

biases, and is an accurate reflection of the subject or process being described. Validation of 

airline passenger data is particularly important to conduct if the passenger data is sourced 

from a commercial company with limited or no collection methodology disclosed. Only seven 

articles reported validation with at least one independent or appropriately comparable set 

of observations. While there is no acknowledged ‘gold standard’ data set, governmental 

open source data, such as that from the US Department of Transport or Office for National 

Statistics, do at least have published methodology on which potential biases may be 

identified. 

Human travel introduces pathogens to susceptible populations or with little awareness, 

allowing for potential further spread and rising incidence. In the articles considering a 

pathogen, the majority used viral transmission or importation. Only three articles were 

focused on bacteria (Vibrio cholerae, Clostridium difficile and Salmonella enterica serotypes 

typhi and paratyphi), despite the known importance of international travel for their capacity 

to initiate epidemics following importation, Haiti cholera outbreak in 2010 for example, (Chin 

et al., 2011) and the global dissemination of antibacterial resistance (Amesh et al., 2018; 

Bernasconi et al., 2016; Holmes et al., 2016; Lepelletier et al., 2011; Okeke and Edelman, 

2001). Pandemic influenza was the virus most often considered by the reviewed articles, 

which perhaps reflects the global significance of pandemic events and the ease with which 

pandemic strains have spread historically. The other non-influenza viruses noted in these 

studies have all initiated outbreaks following introduction through international travel, 

namely MERS-Corona virus in South Korea (Cowling, 2015), dengue virus in the Portuguese 

islands of Madeira (off the coast of Western Africa) (Semenza et al., 2014) and chikungunya 
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virus in the Caribbean (leading to imported cases in the United States) (Khan et al., 2014) and 

Italy (Rezza et al., 2007). Finally, the accurate modelling  of importation risks for specific 

pathogens may require very high resolution passenger data, particularly where routings are 

indirect and the total travel time from origin to destination is important in the screening 

efficacy due to incubation periods (Read et al., 2015).   

To the best of the author’s knowledge, direct comparisons of commercial and open access 

data sets, or commercial data sets between themselves, have not yet been accomplished, 

preventing an informed decision on which data sets are more suitable to represent airline 

passengers. Although a direct comparison between commercial data sets is likely to be very 

informative for the modelling community, it is likely to be very expensive. Additionally, the 

presence of a single data-set that is agreed by the community to best represent international 

(and national) airline passenger flow would be ideal, though may be difficult to realise given 

proprietorial restrictions of certain data sets. None-the-less, work is being done regarding 

epidemiological data to gather infectious disease outbreak into a central and unified 

database structure (Finnie et al., 2016), and the field should aspire to work collaboratively 

with industrial data providers to realise accurate passenger data available for research, 

particularly during global public health emergencies. 

Strengths and limitations 

The screening and selection of articles was done in a systematic manner and by two 

independent reviewers to ensure all relevant articles downloaded were included in the 

selection of articles to be read in full. The full reference list of accepted articles was read to 

find additional relevant articles. Although a number of articles were found when reading the 

reference lists, the author is confident that this selection is a good representation of the 

range of airline data used. Additionally, no other review that the author is aware of was 

focused on the analysis of the validity and reproducibility of the data used for mathematical 

models.  

Limitations of this study include not contacting authors regarding their methods. 

Additionally, by limiting the articles to international spread only, some articles which focused 

primarily on within country spread, such as Bozick and Real (2015), Charu et al. (2017) and 

Epstein et al. (2007), among others, were deliberately left out, even though they may use 

relevant data sources.  
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Chapter 3 – Airline data description 

Preamble 

Understanding the data to be used in this thesis was crucial before any meaningful 

interpretation or analyses to be conducted could be undertaken. To the best of the author’s 

knowledge, a detailed description of a closed source airline data set had not previously been 

attempted and/or reported. As shown in the previous chapter, a number of airline data sets 

from a variety of sources are available, but what each one represents may not always be 

clear. This chapter aims to provide a deeper understanding of the data itself. 
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Abstract 

There is an understandably increasing pressure to ensure the data used in scientific research 

is accurate and fit for purpose, with publications such as Nature now requiring data set 

descriptors to be submitted with the accompanying manuscript. Fully understanding the data 

set that will be used for analysis and ensuring the absence of bias (or mitigating it) is crucial. 

As was shown in the previous chapter, a wide range of airline data set are available, each 

with its own advantages and drawbacks. The aim of this chapter was to describe in detail the 

OAG Traffic Analyser data set (sold as detailed airline bookings covering routings between 

global airports (including stopovers)) and uncover any trends and biases that may be present.  

A series of methods were used to describe the data set, including aggregating airport 

bookings by country and regions, as well as temporal aggregations to quarters and years, and 

broken down to daily bookings. Airport bookings were also aggregated to country level and 

regional data and the number of bookings compared. 

The downloaded data spanned from February 2010 to May 2015 at a monthly resolution and 

included 6,726 international airport codes and 12.77 billion bookings. Clear seasonal trends 

could be seen with peaks in July and August of every year with the overall number of bookings 

increasing each year. Some airports were used for varying travel purposes, such as Hartsfield-

Jackson Atlanta International (ATL), an important connecting airport and Beijing Capital 

International (PEK), an important departing airport. As well as airports, the data also included 

669 railway stations, bus and ferry terminals across 31 countries. Finally, a sudden increase 

in connectivity was also seen from 2014 onward. 

Although sold as very detailed and accurate airline data, the collection methods for the OAG 

Traffic Analyser data remained undisclosed and therefore unclear. The data provides an 

understanding of the global airline network and its seasonality, however, it did not allow any 

understanding of the passenger demographics (age, sex, purpose of travel among others). 

Without having undertaken an in-depth analysis of the data set, the presence of railway 

stations and change in connectivity would not have been identified. Therefore, it is important 

to undertake a preliminary in-depth analysis of one’s data before its use, followed by a 

validation with an independent, yet comparable data set, as done in the following chapter. 
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Introduction 

Big data is being increasingly used in research, but no clear reporting guidelines allow for 

proper acknowledgments, hindering replication by other authors (Mooney and Newton, 

2012). However, it is important that data used in any research is accurate and representative 

(Emanuelson and Egenvall, 2014) and that the readers are aware of what the data represents 

and how it was manipulated prior to use. Peer review journals such as Nature require authors 

to provide a data set descriptor that includes a number of mandatory fields such as data set 

name, authors and affiliations, abstract, background, summary and methods (data 

manipulation and access code), data records and validation (Nature, 2014). Additionally, 

having a standardised method of describing data would allow for a more uniform manner of 

interpreting results (Yale Law School Roundtable on Data and Code Sharing, 2010).  

As all data sets contain errors; to reduce their impact on the results and arrive to the correct 

conclusions, it is important for researchers to find and understand these errors. Additionally, 

validating secondary data sets to ensure they are ‘fit for purpose’ and correct is crucial 

(Emanuelson and Egenvall, 2014). As the systematic review in Chapter 2 demonstrates, there 

is a need to improve the description of the nature, sourcing and manipulation of information 

used for international human infectious diseases transmission modelling, as well as a need 

for data validation. In this spirit, a full description of the data set used throughout this thesis 

(OAG Traffic Analyser) will be given here, with a validation in the following chapter. 

A wide range of airline travel data sources are available to use to model the international 

spread of infectious diseases, however, each data set has its drawbacks. Firstly, the data is 

likely to have been collected for commercial or governmental reasons rather than for 

scientific research. This may lead the data provider to ask for payment to access the data 

(commercial data) or the data may be geographically restricted to a particular government’s 

borders. Additionally, commercial data providers may not be able to share their data 

collection methodologies for commercial reasons.  It is therefore desirable to have a 

comprehensive understanding of what the data used represents and determine whether it is 

‘fit-for-purpose’. This may be considered an initial step in a transparent and reproducible 

methodology.  It is also important to assess any possible bias that may be present in the data 

and understand the extent to which data manipulation by researchers prior to use may have 

contributed to biases.  
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The principal source of information described in this chapter is the OAG Traffic Analyser data, 

hereafter referred to as OAG. To the best of the author’s knowledge, an extended description 

of this data set has not previously been undertaken and/or reported. Therefore, the aim of 

this chapter was to introduce the reader to the data set that will be used throughout this 

thesis. It is hoped that such data description will enlighten the reader regarding the use of 

certain variables used from OAG further on. A brief introduction about the company 

providing the data will start this chapter, before the data itself is described in detail. Finally, 

trends and biases discovered will be discussed. 

About the data set and its provider 

OAG was first implemented under the name of ‘Official Airline Guide’ with the first “Official 

Aviation Guide to The Airways” published in 1929 (OAG, 2016b). The company has since 

grown to be the “largest global airline network data provider”, with over 25 million flight 

status updates made daily (OAG, 2016b). OAG aims to “connect the world of travel” by 

aggregating data from various sources and providing real time insights into the network. In 

keeping with this goal, the company claims to be the first provider of flight schedules and 

status as well as network analysis of flight data (OAG, 2016a). This information is sold to and 

used by airlines, airports and governmental agencies, as well as companies specializing in the 

travel industry (OAG, 2016a). 

In 2013, OAG launched its Traffic Analyser database containing data on passenger traffic 

routes, to gather better data on numbers of passengers travelling, and predict future trends 

(OAG, 2013). The data available for download during the active license period (beginning 

August 2014) for this project ranged from February 2010 to one year in the future (i.e. July 

2016) (OAG, 2016c). Finally, the number of adjusted bookings (“Bookings.Adjusted.”) 

represents the “true total market figures” according to (2015). These numbers result from a 

“sophisticated algorithm” using data from OAG’s own schedule database and the ‘passenger 

traffic’ from the Global Distribution System (GDS) and other sources. The unadjusted number 

of bookings (“Bookings.Unadjusted.”) are the average fare from Travelport tickets (OAG, 

2017), however, the exact differences between the data sets were not shared with us when 

enquired. 

It was clear when directly comparing the number of adjusted and unadjusted bookings by 

year and month (Figure 3.1) that these were very different numbers. Firstly, the Unadjusted 

bookings were absent from the data until January 2011 and there was an absence of seasonal 
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trends. The author had an a priori knowledge of the seasonal trends present in airline travel, 

which was present in the Adjusted bookings making the case for using the Adjusted bookings 

rather than the Unadjusted.  

 

Reasoning for choice in data provider 

The use of these data was recommended by other modelling groups who had previously used 

airline travel data to model the 2009 ‘swine flu’ AH1N1pdm09 influenza pandemic spread 

(Fraser et al., 2009). Enquiries with OAG in 2014 suggested the data they could provide would 

be suitable for modelling purposes relating to exportation of Ebola virus disease from West 

Africa during the 2014-2015 epidemic. The funders of this thesis, Health Protection Research 

Unit in Emerging and Zoonotic Infections (HPRU EZI) were specifically interested in modelling 

the risk to other countries posed by the outbreak. 	
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Data description 

The OAG Traffic Analyser data set (thereafter referred to as OAG) was downloaded over the 

course of one year (August 2014 to July 2015) from www.oag.com, following the data 

provider’s licensing restrictions. The downloaded data ranges from February 2010 to May 

2015 (a total of 64 months), as January 2010 was not available in the database to download 

and it was thought that June 2015 was too close to the collection date to be truly 

representative, as the company updates their data monthly so was not downloaded. The final 

monthly updates made by the company occur on the third weekend of every month and 

cover the latest four months (OAG, 2017). Therefore, when downloading in July, it is possible 

the months of March to June were still being updated, with June being the most likely to see 

changes in these updates. Downloading bookings for future months was thought not to be a 

true representation of bookings for the same reasons. The ‘Original-Destination’ database 

from Traffic Analyser offers data regarding flights on global, national and airport level. For 

the purposes of this thesis, when downloading the data an origin was always determined 

(continental, national or state level), but without specifying a destination. This ensured that 

OAG would return information on bookings departing from the desired point of origin, with 

a destination anywhere in the world (international and domestic flights alike). Although not 

detailed in the original data, we were able to determine the direction of travel by knowing 

the booking’s departing airport code and the trip point of origin (see definitions below). Both 

variables were downloaded for each temporal and geographic resolution. Figure3.2 A shows 

the OAG regions available in the data set, as defined by the company. In this context, regions 

are defined as neighbouring countries. Given the data file sizes and the downloadable file 

size restrictions, the USA and Western Europe had to be broken down into smaller groups to 

be downloaded (Figure 3.2B and C). On the other hand, regions with few bookings (such as 

Africa) were grouped and downloaded together. These regional groupings were only used to 

download data from September 2014 onward (due to downloadable file size restrictions). 

Once all regions and countries were downloaded, they were collated to form a monthly data 

set of all global bookings. 
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The Traffic Analyser data base offers the client the possibility of tailoring the reports 

according to their needs (OAG, 2013). The fields chosen for download were: 

• “TimeSeries”: Annual or monthly resolution available, between 2010 and 2015. Data 

were retrieved at the finest temporal resolution available, monthly, to gain a detailed 

idea of seasonal patterns. This also allowed quarterly or annual aggregation of 

bookings, if needed. 

• “Routing”: the complete and ordered routing (according to flight itinerary), including 

departing, arriving and connecting airports, presented as three character airport codes, 

known as International Air and Transport Association (IATA) codes. This included a 

maximum of two connections. 

• “Bookings.Adjusted.”: These represent the number of bookings made per routing, 

but does not detail the number of passengers included in each booking. According to 

OAG (2016c) the “Bookings.Adjusted.” represent the true market figure (as defined by 

OAG), and were therefore used in our analysis. Unless stated otherwise, these will be 

referred to as “bookings” throughout the rest of this thesis. 

• “Bookings.Unadjusted.”: Although a less accurate count of bookings (OAG, 2015), 

and resulting from models, “Bookings.Unadjusted.” were also recorded when 

downloading the data. This was not used in any of the analyses conducted in this thesis 

using the OAG data. 

• “Point.of.Origin.Cd”: The origin airport for the bookings, not necessarily the origin for 

the routing for which the booking is returned. This may be in a different city, region or 

country to the departing (origin) airport. For example, a routing of LHR-JFK may have 

LHR or JFK as a point of origin depending on whether the booking originated in the 

United Kingdom or the USA, respectively, or the point of origin may be a third airport if 

this is part of multi-stop journey. This information helped determine the journey type 

(inbound or outbound) and whether it was domestic or international, which in turn also 

helped determine any directional trends.  

 

A brief description of the data format can be found in the Data Dictionary at the end of this 

chapter. Each file was downloaded in CSV format and manipulated using the open access 

software R, version 3.4.1 (www.R-project.org). Once all the monthly data sets were 

downloaded and corresponding monthly data sets collated together, data cleaning and 

manipulation was done as follows to generate distinct sets of data:  
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• Aggregation	into	quarterly	data:	monthly data sets for each year were grouped 

as follows: January-March (Q1), April-June (Q2), July-September (Q3) and October-

December (Q4). Unfortunately, Q1 of 2010 and Q2 of 2015 could not be aggregated 

as January 2010 and June 2015 could not be downloaded from OAG. A total of twenty 

quarters were thus generated, ranging from Q2 2010 to Q1 2015.	
• United	 Kingdom	 international	 routing	 data:	 the number of international 

bookings arriving into and departing from the United Kingdom was generated per 

month and quarter. The data sets were aggregated by selecting routings with a point 

of origin in the UK and an arriving or departing airport in the UK, depending on the 

journey leg wanted (inbound international, outbound international).	
• Country	level,	origin-destination	matrices:	origin-destination matrices showing 

the number of aggregated bookings were generated linking all countries present in 

the data sets. UK centric matrices were also generated using arriving and departing 

countries only (i.e. not considering the routing’s point of origin).	
The data were made up of a total of 6,726 airports and heliports each with its own IATA code, 

across 233 unique countries and territories. The United States was recorded as having the 

largest number of airport codes (n=1,135), followed by Canada and Australia, with 456 and 

281 airports respectively, whereas the United Kingdom was recorded as having 168 airport 

codes. Figure 3.3 represents the location of all airports present in the OAG data with the 20 

busiest (in terms of aggregated passengers arriving, connecting and departing bookings) 

highlighted by their IATA codes, and listed in Table 3.1 (ranked by size of passenger flow).  

The total international connections between the ten busiest countries in terms of aggregated 

departing, connecting and arriving bookings is shown in Figure 3.4. Each colour corresponds 

to a departing country, and the width of each link representing the number of bookings 

associated to each routing (direct and indirect). Only international destinations were 

represented here as the number of domestic bookings was overwhelmingly larger, and is of 

less interest in the context of a pandemic. Looking at the United Kingdom, a total of 483.3 

million bookings were recorded arriving and departing, between February 2010 and May 

2015 the highest number of international passengers recorded. Spain was the most popular 

destination for UK passengers, with 88.1 million bookings, followed by the United States 

(39.0 million bookings). The UK was the first destination for passengers arriving from Spain 

(87.6 million bookings). The United States (country with the second highest number of 

international departures and arrivals recorded at 426.1 million bookings) had strong links 

with its neighbour Canada (73.3 million departing bookings), followed by the UK (40.1 million 
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departing bookings).  When aggregating the total bookings between the ten busiest countries 

by season, shown in Figure 3.5, some variations can be seen with Australia seeing the most 

departures in autumn and winter (corresponding to their summer), whereas the UK saw the 

most in spring and summer. The UK saw most international departures to Spain in the 

summer and the least in winter. 

Representing the country to country connections in a heat map was difficult and could not 

be presented in a legible manner. However, Figure 3.6 shows the regional level of 

connections, both within and between regions (defined here as groups of neighbouring 

countries). It can be noted that three regions dominate the internal number of bookings 

globally: North America (3.3 billion bookings), Western Europe (2.9 billion bookings) and 

North East Asia (2.6 billion bookings). The highest recorded number of inter-regional 

bookings was from Western to Eastern Europe, with 240.2 million bookings. 

 

Table 3.1: List of the twenty busiest (largest aggregated departing, connecting and arriving bookings) airport 
codes globally with corresponding name, associated city and country as well as total number of bookings and 
corresponding percentage of global bookings ranked by size (%) of global bookings. 
IATA 
code 

Airport name City Country 
Bookings 
(millions) 

Global 
bookings (%) 

Rank 

PEK Beijing Capital 
International Beijing China 364.32 1.27 1 

LHR Heathrow London United Kingdom 309.06 1.08 2 

ATL Hartsfield-Jackson Atlanta 
International Atlanta USA 308.03 1.07 3 

LAX Los Angeles International Los Angeles USA 283.40 0.99 4 
HND Haneda Tokyo Japan 279.92 0.98 5 
ORD O’Hare International Chicago USA 257.53 0.90 6 

CGK Soekarno-Hatta 
International Jakarta Indonesia 252.11 0.88 7 

HKG Hong Kong International Hong Kong Hong Kong SAR 
China 250.22 0.87 8 

CDG Charles de Gaulles Paris France 240.43 0.84 9 

JFK John F Kennedy 
International New York USA 233.06 0.81 10 

DXB Dubai International Dubai United Arab 
Emirates 231.93 0.81 11 

SIN Changi Singapore Singapore 227.25 0.79 12 
CAN Baiyun International Guangzhou China 220.33 0.77 13 
BKK Suvarnabhumi Bangkok Thailand 216.54 0.75 14 
PVG Pudong International Shangai China 215.86 0.75 15 

DFW Dallas/Fort Worth Dallas USA 215.23 0.75 16 
FRA Frankfurt International Frankfurt Germany 208.94 0.73 17 
DEN Denver International Denver USA 201.19 0.70 18 
LAS McCarran International Las Vegas USA 194.07 0.68 19 

MAD Adolfo Suarez-Barajas Madrid Spain 193.25 0.67 20 
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A total of 12.77 billion bookings were present in the data, between February 2010 and May 

2015. An increasing trend was evident across the years, with distinct seasonal patterns: large 

peaks in July and August and troughs in February (Figure 3.7 A). An additional although 

smaller, peak could be seen in December of every year. The temporal seasonality was also 

considered according to the journey leg (Figure 3.7 B). The same seasonal patterns could be 

seen as in Figure 3.7 A but showed a large variation in number of connecting rather than 

departing or arriving bookings. The number of departing and arriving bookings overlay each 

other exactly as every flight that departs must arrive. 

When aggregating the bookings by month (Figure 3.8 A), this increasing trend was still 

present with the number of bookings for each month increasing year on year, except for 

November, where there was a drop in number of bookings between 2010 and 2011 (175.4 

million and 172.4 million bookings, respectively). August saw the largest number of bookings 

every year, with August 2014 recoding the largest number of any month with 250 million 

bookings, whereas the smallest number of bookings was seen in February 2010 with 155 

million bookings.  

When comparing the number of bookings per day to the bookings per month (Figure 3.8 B), 

the same seasonal patterns could be seen as in Figure 3.8 A. The fall in number of bookings 

was clearly seen in November 2011. The seasonality was not as clearly marked when looking 

at the average daily bookings by month and year (Figure 3.8 B) with the February dip 

previously seen, had now been flattened out. However, July and August still remained the 

two months with the largest number of daily bookings. An overall average of daily bookings 

was done with the four years where 12 months of data were available (2011 to 2014) (Figure 

3.8 C), which also reflected the strong summer seasonality. 
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Airports and countries acting as sinks and sources 

To determine whether any bookings had been missed from any airport during the 

downloading stage, and to determine any initial trends in the data, a sinks and sources 

analysis was done. By separating each routing into the individual airport codes, and 

determining the number of departing (Bdep), connecting (Bcon) and arriving bookings (Barr), any 

airport with a bias in their number of Bdep, Bcon or Barr was easily identified. Manipulating and 

visualizing the data in the following way allowed for an initial understanding of the data 

structure, any gaps and/or trends present. This analysis also allowed for an initial 

understanding of the role of various airports in the network, such as which were of most 

importance (largest number of total bookings), or had most Bcon. It was also possible to 

identify which airports had more arrivals (sinks) or departures (sources), and determine any 

seasonality present within the data. 

Ignoring the point of origin, each routing was broken down to individual component airport 

and assigned one of three categories: departing, connecting or arriving, according to its 

location within the routing thread. For example, a routing of LHR-JFK-LAX, had LHR and LAX 

as departing and arriving airports respectively, and JFK as a connecting airport. The number 

of bookings for each airport was then carried over and aggregated according to their category 

(arriving, departing or connecting). This was performed for each time resolution available, 

resulting in a data set with the cumulative number of bookings for each airport. A global 

summary was plotted against time to see any global patterns, shown in Figure 3.7 B. The 

total journey leg bookings were then summed by airport and plotted on a natural log scale 

(Figure 3.9 A). A number of airports could be seen to have large differences in the number of 

bookings recorded either departing or arriving. These airport codes included railway and bus 

stations through which no bookings were recorded. However, 37 airports had no departing 

bookings (but recorded up to 229,762 bookings accumulated across all time periods) and 22 

airports had no arriving bookings but recorded 181,100 departing bookings. Beijing Capital 

International airport (PEK) was the busiest airport with the largest number of passenger 

bookings (combined arriving and departing bookings) (335.39 million bookings), followed by 

London Heathrow airport (LHR) (259.3 million bookings) and Haneda airport (HND) (252.0 

million bookings) (Figure 3.9 A).  

There was good agreement between the number of departing and arriving bookings for each 

airport, except for Washington Dulles International airport (IAD) and Ronald Reagan 
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Washington airport (DCA), where graph Figure 3.9 B shows more departing than arriving 

bookings for both airports. When comparing all bookings (including connections) to the net 

difference (Bdep - Barr) of bookings, Hartsfield-Jackson Atlanta International Airport (ATL) 

became the third busiest airport globally (308.0 million bookings), most likely due to the large 

number of Bcon passing through the airport (158.2 million connecting bookings). Given the 

high number of connecting bookings linking ATL to other airports (51% of bookings), this 

airport was a good example of a hub airport. Hubs are defined here as an airport with an 

important number of connections to other airports and that is central to the airline network 

(Woolley-Meza et al., 2011). Airport centrality is defined as having a high number of geodesic 

paths passing through, connecting distant parts of the network (Newman, 2003). When 

determining which airports act as sinks (Barr > Bdep) and sources (Barr < Bdep) (Figure 3.9 B), it 

became clear that London Heathrow (LHR), Adolfo Suarez Madrid-Barajas (MAD) and 

Amsterdam Schiphol (AMS) airports act as important sinks, with Barr > Bdep. On the other hand, 

Incheon International airport (ICN), Haneda (HND) and Beijing Capital airport (PEK) act as 

sources, with Barr < Bdep. 

However, two airports stood out from this analysis: Washington Dulles International (IAD) 

and Ronald Reagan Washington (DCA) airports, because of missing departing data 

(departures from these airports were recorded as zero bookings, which is extremely unlikely), 

an error made during data download. These airports are located in Washington DC within 

the OAG database, which is considered as an independent US state (District of Columbia) in 

the data base, therefore were missed when downloading data at the state level. This error 

occurred for data relating to September 2014 onwards. This missing data were addressed by 

assuming that the number of departing bookings and routings match exactly the number of 

arriving bookings and the routings recorded and travel type were reversed from the data 

already available. The decision was taken after considering whether other important airports 

(such as JFK) showed similar patterns. It was also assumed that DCA and IAD had no 

connecting bookings during this time period.  

When identifying connecting airports (Figure 3.9 C), plotting the total number of connecting 

bookings (Bcon) against the total difference ((Barr + Bdep) – Bcon) showed that only two airports 

are mostly used for connections: Charlotte Douglas International airport (CLT) (79.43 million 

connecting bookings) and Hartsfield-Jackson Atlanta International airport (ATL) (158.16 

million connecting bookings). Interestingly, Beijing Capital International airport (PEK) has 

much fewer connections than arriving or departing bookings (28.93 million connecting  

bookings).
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A more detailed analysis of the ten busiest airports globally (Table 3.1) was conducted, to 

determine whether any seasonal variations could be seen (Figure 3.10). The ten busiest 

airports were defined as those with the highest cumulative number of bookings (departing, 

connecting and arriving) throughout the 64 months. Along with the number of bookings, the 

percentage of global bookings traveling through these airports is shown in Table 3.1. 

From Figure 3.10 A, a seasonal trend can be seen, where all airports had higher cumulative 

total bookings between April and June rather than between July and September, at odds with 

the global seasonal trend. The larger number of bookings in the second quarter may reflect 

variations in airline routes available between these months. As described by Mao et al. 

(2015), a larger number of air routes may be available from smaller airports, allowing 

passengers to avoid larger airports over the third quarter. The airports also showed the 

smallest number of bookings between October and December, which is in agreement with 

the annual trends seen before in the OAG data. When looking at airports acting as sinks and 

sources (Figure 3.10 B), different patterns arose depending on the airport, such as LHR having 

the largest number of Barr between April and June but had most Bdep between October and 

December. JFK showed a steady increase in number of bookings from the fourth quarter, 

peaking in July to September. However, LAX showed a peak in July to September, following 

a trough in April to June. This example shows that even among the busiest airports, the airline 

patterns can vary significantly. From this selection of airports, the largest number of Bcon 

(Figure 3.10 C) was seen in ATL throughout the year. PEK showed the largest number of Bcon 

between April and June (7.78 million bookings) and the least in the final quarter of the year 

(6.69 million bookings). Overall, all but one airport (HKG) had the largest number of Bcon in 

the second quarter of the year, whereas HKG had most Bcon in the first quarter. Finally, all 

airports, except CGK, had fewest Bcon during the last quarter of the year, reflecting the limited 

air routes available as well as the fewest number of bookings. 
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Data limitations and biases 

Dealing with stations 

There was a total of 6,726 airport location codes recorded in the OAG data base, of which 

669 (9.9%) were railway, bus stations or ferry terminals, with their own IATA code. The 

presence of railway and bus stations in the data was already noticed by Bobashev et al. 

(2008). There may be additional stations whose ‘Airport.Name’ was not recorded as a station 

as such (i.e. did not explicitly mention any combination of the terms ‘rail’, ‘railway’, ‘station’, 

‘stop’, ‘service’, ‘ferry’ or ‘port’), and would therefore be missed in this selection. These 

stations were found across 31 country names, and consisted of 562 railway stations, 101 bus 

stations (stops and services also included) and six ferry ports. Canada, Norway and Spain 

recorded the highest number of these stations with 82, 80 and 71, respectively; and the 

United Kingdom recorded 62 of them (see Table 3.2). 

It was ultimately decided to keep these stations within the data itself as the number of 

bookings associated with them was small relative to the global number of bookings. 

Additionally, some bookings used stations in their transfer routings, and with no clear airport 

nearby to transfer the bookings to, this added a level of complexity as there was no clear way 

of inferring routes via these stations. 

UK airports 

The complementary data to OAG data set, listing all airport codes and accompanying country 

names, recorded 167 airports in the UK. However, 61 were railway stations, bus stops or ferry 

terminals (Table 3.2). From the final 106 unique airport names, three airports had duplicated 

IATA codes: Bristol (three codes in total), Cardiff (two codes) and Exeter (two codes). 

However, each of these airports only had one valid IATA code attached to routings. The 

locations of UK airports present in the data is shown in Figure 3.11.  
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Increased connectivity 

When working with the data for the global analysis (chapter 6), it became apparent that in 

2014 there was a sudden increase in number of airport connections (degree) present in the 

data (Figure 3.12). This was true for both the in degree (number of direct connections on 

inbound leg) and out degree (number of direct connections on departing leg). This is likely to 

be artificial, as such a large increase over a short period of time (one month) is unlikely to be 

caused by a large amount of additional airports or bookings being included in the data. It is 

likely that this rise in connectivity may be a result of a change in data collection methods. 

However, this was neither confirmed by the company, or detailed in the collection methods 

provided by them (OAG, 2017). Any analysis done using this data may be partially wrong 

given that the period prior to 2014 may be an underestimate of the total number of bookings, 

or that the period from 2014 onward may be an overestimate of the data. No adjustments 

could be made accordingly as it was not clear which were the correct values to use (pre or 

post 2014).  
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Discussion 

The author described and presented the OAG Traffic Analyser data set, using a number of 

methods with the intention of validating the internal consistency of the data and identifying 

missing information and trends. Although several aspects of the collection methods were 

unclear, the data showed clear seasonal patterns with the most bookings recorded between 

July and September every year. 

OAG data allowed for an initial understanding of the global airline network, as it was possible 

to determine seasonal trends of the ten busiest airports, but there was no information on 

passenger demographics. From the Traffic Analyser data set, it was clear that the number of 

connecting bookings (Bcon) globally was much smaller than the number of departing (Bdep) and 

arriving (Barr) bookings, but that each airport had its own associated travel patterns and 

played its own role in the global network. For example, airports like ATL and CLT were 

primarily used for connections whereas PEK had very few connections but a large number of 

departing and arriving bookings. The ten busiest airports showed seasonal trends that were 

not in agreement with the global average annual trends, such as having the largest number 

of bookings between April to June rather than July to September, and the fewest bookings in 

October to December rather than January to March. This may be an artefact of the network: 

as the number of passengers increases, so does the number of air routes available, allowing 

passengers to avoid busier airports (Kraft and Havlíková, 2016).  

Although the data set gave some understanding of the airline network, a number of issues 

were encountered. First of all, the data included railway and bus stations as well as ferry 

terminals, with their own IATA codes. Given their locations within routings (as connecting 

points) and that it was not possible to assign these bookings to an actual airport code, these 

stations were left in the routings. The company’s data description (OAG, 2017; OAG, 2016c) 

provided little information on their data collection methods and did not state the inclusion 

of these stations as part of their data. 

Additionally, through exploration of airport connectivity it became apparent that there was 

an increase in connectivity from 2014 onward. The cause of this change was likely to be a 

change in methodology for the company’s data collection; however, this was not confirmed 

by the company or their data collection method descriptions. Such an important change in 

connectivity is likely to impact any analysis done using this data. This is another example of 
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the importance of understanding and describing one’s data to determine whether it is fit for 

the task required. 

As with all data sets, having a good understanding of one’s data set before any analysis is 

done, is important to ensure the correct results are reached (Emanuelson and Egenvall, 

2014). As third-party data were not collected for the same specific research question, 

researchers have no or little control over its collection methods and quality, and therefore 

need to critically assess its usefulness prior to use. This evaluation of usefulness needs to be 

determined for the research project in question (Emanuelson and Egenvall, 2014). 

Although the OAG data is historic at the time of writing, the use of such data may provide 

insights to understand the future spread of outbreaks through air travel.  
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Chapter 4 – Airline data validation  
	

Preamble 

As well as having a good understanding of the data used, researchers should be encouraged 

to validate third hand data against independent and comparable data sets. As far as the 

author is aware, such an analysis has not yet been reported, and therefore unlikely to have 

been undertaken. This analysis allowed for an understanding of what OAG means when using 

the term ‘bookings’ and whether this differs from passenger numbers. 
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Abstract 

Mathematical modellers are known to use commercial airline data sets in models that help 

inform governmental policies. However, their reporting has previously been shown to be 

insufficient for replication by other research groups, and is understood not to have been 

validated to determine whether any biases or anomalies are present within. A detailed 

description of the data set was undertaken in the previous chapter, and the aim of this 

chapter was to validate the OAG data against independent data sets and determine how 

many passengers were considered for each OAG booking. 

Four independent yet comparable and open access data sets were acquired and described in 

depth before being used to validate the OAG data. These were from the US Department of 

Transport (USDoT), Port Authorities of New York and New Jersey (PANYNJ), Civil Aviation 

Authority (CAA) and the Office for National Statistics. Several comparisons were done, 

including temporal, ratios and mixed effects regression analyses.  

All data sets showed the same seasonal patterns, with most travel seen between July and 

September, and the least seen between January and March. When directly comparing the 

data sets against each other, the TravelPac and USDoT matched closely with OAG, whereas 

the CAA and PANYNJ did not match as well. When determining the number of passengers 

considered per booking, the TravelPac and USDoT both showed a value of around one 

passenger per booking, whereas the CAA and PANYNJ showed values ranging between one 

and three passengers per booking and above.  

With each data set used for any analysis, it is important for researchers to have a clear 

understanding of what the data represents, especially for expensive data and/or if the 

methods are not clearly detailed and easily available. Although there are a wide variety of 

data sets available to modellers, different data sets will represent airline travel in a different 

way that may not be what the researchers need or should use. Therefore, researchers should 

be encouraged to not only report the data they are using to allow accurate reproduction of 

their work, but they should also be encouraged to validate it, at least in part, against 

independent yet comparable data sets. 
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Introduction 

Researchers must know what the data they are intending to use represents, and what it 

contains, to avoid erroneous conclusions. Therefore, a comparison (or validation) of the 

whole or partial data set against another source should be done. However, complications 

may arise when undertaking this task and may only provide a partial degree of completeness 

and agreement between both data sets, especially if neither is thought to be a gold standard. 

Secondary data needs to be correct, however, the level of completeness varies with context 

(Emanuelson and Egenvall, 2014).  

As was highlighted in the systematic review, validation of the airline data used against a 

comparable and independent data set is not frequently performed. A large number of data 

sources (n=36 identified) have been used by research groups to build mathematical models 

that may in turn be used to inform policy makers about potential importation risks. Some of 

these sources are expensive to access and marketed as highly accurate (International Air 

Transport Association (IATA) and OAG data services, for example), but their collection 

methods are unclear due to commercial sensitivities. Open access data sets are available (US 

Department of Transport, UK Civil Aviation Authorities, for example) but have limitations. For 

example, data on passengers published by governments will be geographically restrained to 

that particular country. Furthermore, temporal resolutions vary between sources, such as 

monthly, quarterly or annually. Finally, data sources often have different and incompatible 

variables.  

There is currently no single data source representing airline passenger traffic that has been 

agreed upon by the mathematical modelling community as being the most representative or 

best to use. However, the implications of using different data sources can be significant; both 

for estimating the risk of disease importation and for correct policy planning. For example, 

during the West African Ebola (EBV) outbreak of 2013-15, the United States of America was 

not estimated as a country with a high risk of EBV importation according to some research 

groups (Bogoch et al., 2015). However, the USA saw the highest number of imported cases 

outside of West Africa (Elmahdawy et al., 2017). The data used for these analyses only 

considered direct flights between the West African countries (Liberia, Sierra Leone and 

Guinea) and the United States (Bogoch et al., 2015). Given that these were suspended during 

the outbreak (European Centre for Disease Prevention and Control, 2014), using indirect 

flights (routings with at least one stop) would have given a more accurate representation of 
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the risk of importing Ebola cases. This example highlights the need for consistency between 

research groups in terms of which data sets to use by the modelling community, and the 

importance of using accurate information. Additionally, researchers should make a clear 

description of the data type they are using clear to the reader (whether this is direct or 

indirect flights, passenger number or aircraft capacity estimates) as using different data types 

may lead to different conclusions from the models. 

This chapter aimed to compare open access data sets with the closed access and expensive 

Traffic Analyser data set downloaded from OAG between August 2014 and July 2015 

(thereafter referred to as OAG). This data set was described in the previous chapter, and will 

be directly compared against four independent and open access data sets, from various 

sources. This comparison serves as a data validation of the OAG data, and can be considered 

a first step in determining a commonly agreed data set for future work in infectious disease 

modelling. 
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Methods 

Describing open access data sets 

To assess how the OAG data compares to open access and independent measures of 

passenger traffic, it was directly compared to four open access data sets, described in Table 

4.1. Two of these data sets (Port Authorities of New York and New Jersey (PANYNJ) and the 

United States Department of Transport (USDoT)) represent United States airline passenger 

information, with varying levels of detail, whereas the Civil Aviation Authorities (CAA) and 

Office for National Statistics represent airline patterns relevant to the United Kingdom (UK). 

These two countries were chosen as the United States represents a large portion (22% of 

global passengers carried) of global airline traffic (The World Bank, 2017) and the UK is central 

to this thesis. The full OAG data was stratified and/or aggregated appropriately to permit a 

direct comparison with each data set in turn (Table 4.1).  
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Port	Authorities	of	New	York	and	New	Jersey	(PANYNJ)	

Two data sets were downloaded from the PANYNJ website: ‘monthly domestic’ and ‘monthly 

international’ passenger numbers, leaving from specific airports, but with no defined 

destination. International passenger numbers were available from three airports: John F 

Kennedy International (JFK), La Guardia (LGA) and Newark Liberty International (EWR) 

Airports.  The domestic passenger data also included a fourth airport, Stewart International 

(SWF) Airport. No detail was given regarding the passenger’s final destination, any stops in 

their journey or where their trip originates from (point of origin), which may be different to 

the departing airport. 

Therefore, the equivalent OAG subset was selected as bookings departing from the same 

airports (JFK, LGA, EWR and SWF), and the arrival country, categorised as ‘USA’ or other. If 

the arrival country was selected as ‘USA’, the data were used for the domestic data 

comparison; if the destination country was not the USA, the data were used for the 

international data comparison. 

	

United	States	Department	of	Transport	(USDoT)	

The data were downloaded from the “Origin and destination survey: Market” database, 

containing passenger numbers between a specified origin and destination, at a given annual 

quarter. This data represented a 10% sample of the passengers interviewed at airports, but 

does not mention the number of interviewed passengers. The geographical extent of the 

data included the United States as well as some overseas territories (Table 4.1), however, no 

stop over or point of origin airports were recorded. The original data represented a 10% 

sample of total passengers in the USA and territories, and were inflated by a factor of ten to 

correspond to the OAG booking numbers. 

The equivalent OAG data subset was selected as bookings with routings within the USA and 

territories, without specifying a point of origin. The monthly data was then aggregated to 

match the quarterly time resolution of the American data set. 

	

Office	for	National	Statistics	(ONS,	UK)	

The Office for National Statistics (ONS) collects, analyses and publishes nation-wide statistics 

about the United Kingdom’s economy and population (Office for National Statistics, 2017). 

The International Passenger Survey (IPS) has been generated by the ONS since 1961, from 
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which the quarterly data is derived resulting in the TravelPac data set. The IPS data is derived 

from ongoing passenger surveys collected through face-to-face interviews with voluntary 

participants at various ports of entry into the UK, by various modes of transport: air, sea or 

road. The surveys only represent a small proportion of travellers (0.2% in 2009) travelling 

through specific airports (with more than 1 million passengers per year) therefore the 

numbers are inflated (by the ONS) using weightings to give national estimates and generate 

the TravelPac data set (Office for National Statistics, 2014).  

For the purposes of this analysis the data were first restricted to passengers travelling 

through airports only (‘air’), and a first comparison of the data was done without considering 

visitor’s country of residence. A second analysis was then done by separating UK from 

overseas residents. 

The OAG data was aggregated to a quarterly time series to match that of TravelPac. Both 

equivalent data sets (UK or overseas residents) were then compared for all full quarters 

available: Q2 2010 to Q1 2015. The OAG equivalent subset also separated into UK and 

overseas residents. Bookings representing UK residents were selected as routings with a 

point of origin in the UK, and the UK as the arriving country name, but an international 

departing country name. In contrast, bookings representing overseas residents were routings 

with point of origin anywhere outside the UK and with a departing country name other than 

the UK, but the UK as the destination country.  

	

Civil	Aviation	Authorities	(CAA)	

This data set represents the monthly number of passengers who travelled between airport 

pairs (one of which in the UK, the other international), between February 2010 and May 

2015. This number of passengers represented the flow of returning passengers between 

specified airport pairs and included indirect flights. However, the direction of passenger flow 

between these airport pairs was not specified. It was unclear how many passengers travelled 

from LHR to JFK and from JFK to LHR.  

The corresponding OAG data was selected by sub-setting routings departing from the UK and 

arriving internationally, as well as bookings arriving in the UK but departing from the same 

international airports, both with unknown points of origin. The OAG point of origin could not 

be specified as it was unclear from the CAA data whether or not these passengers were UK 

residents. These bookings were aggregated by month and collated. The airport names used 
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in these data did not match those of the OAG data and no IATA code was assigned to them. 

Airport names were first cleaned to match those of OAG. If some CAA airport names were 

not specific enough (e.g. “oil rigs”) or no OAG equivalent could be found (e.g. “Lyon(Bron)”) 

the passenger counts for the associated airport name were excluded from the data.  

Comparison and interpretation of independent and OAG data sets 

The OAG data were compared to several open access data sets in several ways. First, a 

temporal pattern comparison was undertaken at the finest temporal resolution available, 

monthly or quarterly. The total aggregated number of passengers per bookings per month or 

quarter was plotted against time. The PANYNJ data had the smallest geographic resolution, 

with four airports within 62 miles (100 km) of each other, therefore all airports time 

variations were included in the comparison. 

After aggregating the number of passenger or visits and bookings to the finest geographic 

resolution (airport or country) and not taking the temporal resolution into account, a direct 

comparison of the passenger flow was done. This calculation of passenger (or visits) per 

bookings ratio gave a first understanding of the number of passenger (or visitors) considered 

for each booking per airport or country.  

These passenger-per-booking ratios were then aggregated by month or quarter and plotted 

against time to determine any seasonal trends. Given the large amount of noise present in 

the data, the ratios for USDoT, TravelPac and CAA were restricted to values below 7 (USDoT 

and TravelPac) or 10 (CAA), and further restricted to only include specified airports. 

Finally, these aggregated ratios were plotted by month or quarter and separated by year. 

This allowed to determine any seasonal trends within each ratios and see whether the ratios 

are consistent across the year. 

For all data sets, except PANYNJ, a selection of countries and airports was also plotted for 

extra clarity. These were chosen as the ten busiest UK airports (CAA and USDoT), the ten 

countries most visited by UK residents or from which residents arrived from (TravelPac). 
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Regression analysis 

A random effects negative binomial model was developed to determine the average number 

of passengers (from open access data) per OAG booking and whether this varied between 

geographic resolution (airport or country level). It was assumed that the passenger number 

departing from each airport (!") was drawn from a negative binomial distribution (with mean 

#"  and dispersal parameter $), and the relationship modelled with departing passenger 

bookings (%") as a regression model with zero-intercept and a random slope for each 

departure airport (&"). The author assumed that the random slopes were normally 

distributed around zero with standard deviation '; the slope of the regression could be 

interpreted as an estimated mean number of passengers per booking. Specifically, 

!"~)*(#", $) 

log(#") = &"log(%") 

&"~)(0, '3). 

This model was run at both airport and country geographic resolutions, with only positive 

values used from the airports data set. All analyses were done using the lme4 package in R 

v3.4.1 (R Core Team, 2017). The 95% confidence intervals were not shown here as the author 

was only considering the point estimate of each distribution. 
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Results 

Correspondence of temporal patterns  

There were clear seasonal patterns in all data sets, visits or passenger numbers with peaks in 

the months of July and August or Q3, and troughs between the months of November and 

February or Q1, in agreement with the OAG data (Figure 4.2). The monthly data sets (PANYNJ 

and CAA) showed additional small peaks on or around December. All validation data sets 

showed larger numbers of passenger visits than their corresponding OAG counter-part, with 

varying proportions. 

For the PANYNJ airports, the overall variation in passenger numbers departing internationally 

from John F Kennedy International Airport (JFK) was greater than the corresponding number 

of OAG bookings (Figure 4.2 A). During the time period considered, the number of passengers 

departing (PANYNJ) from EWR closely resembled the number of OAG bookings departing 

from JFK. Regarding domestic departures (Figure 4.2 B), the number of passengers leaving 

EWR, JFK and La Guardia (LGA) was much larger than the number of OAG bookings leaving 

these same airports. Although the number of flights and bookings for EWR were on a much 

smaller scale, similar trends to the other airports could be seen. 

The USDoT (Figure 4.2 C) recorded more passengers within the USA and territories, than OAG 

bookings, with 2,224.2 million passengers and 2,217.4 million bookings. Interestingly, in the 

USDoT data comparison, the peaks of passenger and booking numbers were seen in Q2 (April 

to June) and not in Q3 (July to September) as was the case in all other data sets.  

The TravelPac data set (Figure 4.2 D) also showed larger numbers of visits than OAG 

bookings, with important inter-seasonal variations in the number of visits and bookings 

recorded (max visits= 23.8 million (2014 Q3), max bookings= 11.4 million (2014 Q3)).  

With regards to the CAA data set (Figure 4.2 E), the total passenger numbers between airport 

pairs was much larger than the equivalent OAG number of bookings. Additional smaller peaks 

were seen in the number of passengers in December of every year but were not discernible 

in the equivalent OAG bookings. 
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Direct comparison of passenger/visitor numbers against OAG bookings by 

geographic resolution 

OAG bookings were compared with the passenger or visit numbers from each other data set. 

Generally, similar patterns of OAG underestimation were evident in these comparisons, 

except for TravelPac and USDoT where the linear trends were in agreement with the OAG 

bookings (Figure 4.3).  

For the PANYNJ data, more passenger numbers (136.1 million) were reported than OAG 

bookings (59.0 million) and specific patterns were seen (Figure 4.3 A and B). For example, 

JFK was the main airport used for departing international flights, whereas EWR, JFK and LGA 

saw overlapping number of domestic passengers and bookings leaving each airport. 

Additionally, for both travel directions, the PANYNJ passenger numbers were larger than the 

corresponding OAG bookings for JFK and EWR. However, there was more agreement 

between the data sets regarding passengers departing internationally from La Guardia and 

Stewart International (SWF) airports. 

The USDoT data set also shows a good overall relationship between both data sets, with both 

data sets over and under estimating passenger numbers and bookings for varying time points 

and airports (Figure 4.3 C). The airports with the largest number of bookings and passengers 

were Los Angeles International (LAX) (82.6 million passengers and 81.3 million bookings), Las 

Vegas McCarren International (LAS) (74.0 million passengers and 74.6 million bookings) and 

Orlando International (MCO) (67.3 million passengers and 66.7 million bookings) airports. 

The TravelPac data set showed good agreement with its OAG equivalent bookings 

comparison data (Figure 4.3 D). It can be noted that the number of visits and bookings 

recorded for Spain from both data sets was much larger than those from any other country, 

with important variations ranging from 1.7 million to 5.1 million visits and 1.7 million and 4.8 

million bookings. The next most important countries in terms of visits and bookings were the 

USA (28.0 million visits and 26.7 million bookings), followed by Germany (19.4 million visits 

and 23.8 million bookings) and France (21.9 million visits and 19.1 million bookings).  

The direct comparison using CAA passenger numbers (Figure 4.3 E) showed the largest 

number of passengers travelled via London Heathrow, followed by London Gatwick and 

Manchester airports. Once again, the number of passengers recorded in the CAA data was 

larger than the equivalent OAG bookings, with 101.9 million passengers and 341.1 million 
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bookings for Heathrow, 60.1 million passengers and 155.1 million bookings for London 

Gatwick and 31.0 million passengers and 90.4 million bookings for Manchester airports. 

 

Passenger to booking ratios against time 

When comparing the passenger per bookings ratios against time the previously distinct 

seasonal trends were not as clear as previously (Figure 4.4).  

For the international PANYNJ airports (Figure 4.4 A1), JFK was seen to have a passenger per 

booking ratios ranging between 1.92 and 2.51 passengers per bookings, whereas EWR ranged 

between 2.32 and 2.99 passengers per booking and LGA between 0.75 and 1.65 passengers 

per booking. Overall, these ratios showed an increasing trend over time. For domestic flights 

(Figure 4.4 A2), lower ratios ranging between 1.86 and 2.63 were seen for LGA and 1.68 and 

2.11 for SWF, whereas JFK and EWR showed ratios ranging between 2.43 and 3.39, and 2.42 

and 4.01, respectively. The increasing trend seen in the international ratios was not always 

seen in the domestic ratios, with SWF and EWR showing decreasing trends.  

When considering the ratios for the other three data sets, seasonal trends were once again 

unclear, unless considering the busiest (most passengers and bookings) airports or countries. 

As either data set may have had zero or very few passengers, visits or bookings recorded for 

specific airports or countries, some ratios were therefore much larger than others (Figure 4.4 

B1, C1 and D1). The graphs shown here were therefore restricted to ratios smaller than 10 

(CAA) or 7 (TravelPac and USDoT) passengers per booking for clarity. 

For the USDoT total data set (Figure 4.4 B2), ratio values centred on a value of one passenger 

per booking, with no clear seasonal trend. However, when considering the ten busiest 

airports (those with the largest combined number of passengers and bookings), all values 

ranged between 0.83 and 1.15 passengers per booking. The ten busiest airports selected 

were: Los Angeles International (LAX), Las Vegas McCarren (LAS), Orlando International 

(MCO), O’Hare International (ORD), Denver International (DEN), Hartsfield–Jackson Atlanta 

International (ATL), San Francisco International (SFO), Logan International (BOS), La Guardia 

International (LGA) and Dallas-Fort Worth International (DFW) airports. A peak can be seen 

in Q4 of 2011 and a trough in Q1 of 2012. From 2011 onward, the ratios of passengers per 

booking dropped in Q1 and Q3 of each year. The airport with a consistently high ratio value 

was DEN (ranging between 1.01 and 1.15), whereas LGA airport had a consistently low range 
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of values (ranging between 0.86 and 1.05), in this selection. Generally, these selected airports 

showed similar patterns to each other, peaking in the same quarters. 

For the TravelPac data set (Figure 4.4 C1, C2), a large variation was seen for the ratio of visits 

per booking by country, with the majority of ratio centred around a value of one (mean of 

1.48). When looking at the ten most visited countries from the same data set, the ratios range 

between 0.66 and 1.68 visits per booking. The ten busiest countries (in terms of combined 

visits and bookings) were France, Germany, Greece, Italy, Netherlands, Poland, Portugal, 

Republic of Ireland, Spain and USA. Some seasonal trends were seen, especially in visits to 

France and Greece, where visitors to France peaked in Q1 of every year and visits to Greece 

peaked in Q3 of every year. When considering visits to Spain, which was the country with 

largest number of visits (Figure 4.3), the ratio ranged between 0.88 and 1.17 visits per 

booking. Additionally, the ratio values for some countries like Germany are always smaller 

than 0.90 visits per booking.  

When selecting the ten busiest UK airports from CAA (Figure 4.4 D2) (with the largest 

combined passenger and booking numbers), the results showed very similar ratio values to 

each other, varying between 1.53 and 3.84 passengers per booking. The ten busiest airports 

selected were: Heathrow (LHR), Gatwick (LGW), London Stansted (STN), Manchester (MAN), 

Luton (LTN), Birmingham (BHX), Bristol (BRS), Edinburgh (EDI), Liverpool (LPL) and East 

Midlands (EMA) airports.  LHR was seen to have the largest ratios of this selection 

(mean=3.35 passengers per booking), closely followed by Manchester (MAN) (mean=2.92 

passengers per booking), Birmingham (BHX) (mean=2.83 passengers per booking) and 

London Gatwick (LGW) (mean=2.57 passengers per booking) airports.  

	

Monthly aggregated passengers per booking ratio per year 

Some seasonal trends were apparent when aggregating each data set by month or quarter, 

peaking in July to August or Q3, except for the USDoT which peaked in Q2 (Figure 4.5).  

The aggregated ratio values for the PANYNJ data (Figure 4.5 A), showed a mean of 2.06 

passengers per booking for the international passengers ranging from 1.67 to 2.32 

(international), which was smaller than for the domestic ratios (mean =2.47 passengers per 

booking, ranging from 2.18 to 3.03). The seasonal trend was not clear for both subsets, 

however both showed lower ratio values for January and February than for the rest of the 
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year. For the international passengers, there was a general increasing trend with each year. 

When considering the domestic passengers, the ratio values were overall stable from 

February onward with a few spikes from June onward in certain years.   

From the USDoT monthly aggregated data (Figure 4.5 C), the seasonal patterns previously 

seen in Figure 4.4 were not seen here, with ratios peaking in Q2, except for 2012 (peak in 

Q4). For every year considered here, there was a trough in Q3, as previously seen. The 

average number of passengers per booking was 1.02 and ranged from 0.97 to 1.09.  

From the TravelPac aggregated ratios (Figure 4.5 D), a seasonal trend was also determined 

from these ratio values, with the highest average ratio values seen between July and 

September every year, contrary to the two data sets seen so far. This followed a slow rise 

between January-March and April-June. The average ratio values ranged between 0.96 and 

1.21 with an average of 1.06. 

A clear seasonal trend of monthly ratio values could be seen in the CAA data (Figure 4.5 E) 

with the majority of peaks between May and August every year. A sharp rise and drop in 

average ratio values was seen on either side of these months with an unusual drop in April 

2010. The average ratio values ranged between 1.10 and 1.22 passengers per booking with 

an average of 1.16. 

TravelPac and USDoT data don’t ask/consider whether passengers are travelling alone or 

with at least one other passenger, giving the understanding that there is one passenger per 

booking.  

	

Regression results 

When aggregating the data by geography, the negative binomial model showed a median 

random slope coefficient for all airports of 0.90 and centred around one passenger per 

booking, with an average of 6.73 (Figure 4.7 and Table 4.2). With regards to the country level 

model, the median slope coefficient was 0.82, with an average of 1.88. The average values 

for both data sets were heavily influenced by a number of outliers which had very large slope 

coefficients, such as the Concord airport, North Carolina in the United States (IATA code 

‘USA’) with a slope coefficient value of 2,913.30 (represented as the point with the highest 

slope coefficient value in Figure 4.7A) and Greenland with a slope coefficient value of 54.36. 

Additionally, the airport data was heavily influenced by the USDoT data as this represented 
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the majority of the observations (77.0%), whereas the CAA and PANYNJ data included fewer 

observations (19.0% and 3.9%, respectively). 

To better understand the range of values represented in Figure 4.7, the range of slope 

coefficient values were divided into quartiles and colour coded accordingly, prior to their 

associated airport code mapped (Figure 4.8). From these results, it was apparent that when 

considering airport data (Figure 4.7A), the slope coefficient values were centred around one 

passenger per booking, with variations seen when considering smaller airports, represented 

by the first and fourth quartile groups in Figure 4.8. However, larger airports such as Los 

Angeles International and Atlanta showed slope coefficients values closer one passenger per 

booking, with 0.91 and 0.90 passengers per booking respectively. The variations in slope 

coefficients were likely influenced by the difference in number of passengers and bookings 

recorded in the data sets. For example, for the Concord airport, the USDoT recorded 18,130 

passengers whereas only three were recorded in the equivalent OAG data. Regarding 

Greenland, the OAG data underestimated the number of bookings to 11, whereas TravelPac 

recorded 1,123.07 visits.  

The collection methods for each data set is likely to influence the slope coefficients, as the 

data from the Port Authorities of New York and New Jersey seemed to show the least 

dispersion (mean and median passenger per booking are both equal to 1.04) with values 

ranging between 0.53 and 1.36 (Table 4.2), even with the smallest number of observations. 

However, airports recorded in this data show slope coefficients centred around 2 passengers 

per booking, in contrast with data from the US Department of Transport for the same 

airports. 

On the other hand, data set like the TravelPac and US Department of Transport that have 

been collected through passenger interviews (10% of travellers are interviewed) and have 

been inflated to national numbers are more likely to be erroneous when inflating small 

numbers to national averages. This explains the large discrepancies seen when considering 

smaller airports in the network. Therefore, OAG can be considered as representing passenger 

numbers rather than bookings and can be taken for face value, even if validation is strongly 

encouraged.
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Table 4.2: Summary results of the negative binomial model by airports (total and by data source) and countries, with the number of observations included 
in each model and the mean of the observations within each quartile, as shown in Figure 4.7. 

   Slope coefficients 

Geography Data sets n  Mean  Median Min Max Quartile 1 
(mean) 

Quartile 2 
(mean) 

Quartile 3 
(mean) 

Quartile 4 
(mean) 

Countries TravelPac 1,474 1.88 0.82 0.12 54.36 0.49 0.72 1.03 5.27 

Airports 

Total  11,415 6.73 0.90 0.07 2,913.30 0.67 0.87 0.95 24.41 

PANYNJ 448 1.04 1.04 0.53 1.36 0.69 1.02 1.23 1.31 

CAA 2,173 1.32 0.93 0.24 10.47 0.61 0.84 1.04 2.85 

USDoT 8,794 7.39 0.97 0.08 3,088.09 0.71 0.94 1.01 26.87 
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Discussion 

The author compared the OAG data against four independent data sets to determine how 

comparable a commercial data set was with open access data. From this detailed comparison 

it was possible to determine some similarities and differences between the data sets in the 

hope of determining which data set matched the OAG subset closest. The author was also 

able to determine that one OAG booking represented on average about one passenger or 

visit. 

The global airline network had strong seasonal trends with all airports or countries showing 

most travel occurred on or around August, or Q3, and the least on or around February, or 

Q1. This is a strong reflection of the holiday periods from the northern hemisphere, where 

most travel (domestic or international) occurs over the summer holiday period, between July 

and August. Airline passengers travelling for tourism are motivated by the need to escape 

from home (Jönsson and Devonish, 2008). Destination weather and holiday availability also 

played important roles in the trip timing: as shown in the number of trips made to Western 

Europe during the summer months (June to September) by UK residents, which is double the 

number of trips made across the rest of the year (Tourism Intelligence International, 2010).  

Spain and France as destination countries accounted for the largest number of airline 

passengers in 2002 (28% of total trips from the UK), and 2004 (Tourism Intelligence 

International, 2010), and this is reflected in the TravelPac data. As discussed in Chapter 3, 

the USA was the non-EU country from which most international travel to the UK arrived from 

and accounted for 3.3 million visits in 2015 (Office for National Statistics, 2016; Tourism 

Intelligence International, 2010). 

Similarly to American business travel, business passengers travelling to or from the UK are 

more likely to travel alone (88% of UK residents travelling for business via Heathrow travel 

alone). These passengers are also more likely to travel to specific airports such as London City 

given its proximity to  London’s financial district (Civil Aviation Authorities, 2011). Although 

business travel accounts for a smaller percentage (10%) of purpose of travel than leisure 

(53%) (US Department of Transport - Bureau of Transportation Statistics, 2015) this purpose 

of travel may be influencing travel patterns, and transmission of pathogens. It has been 

shown that passengers travelling for leisure or business will face different infection risks. For 

example, business travellers have been reported as high risk for sexually transmitted diseases 

and vaccine preventable diseases (Chen et al., 2018), whereas passengers travelling for 
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tourism were at high risk of diarrhoeal disease (Gautret et al., 2012). Additionally, duration 

of stay will impact a passenger travelling for leisure’s risk of vector borne diseases and 

diagnosis upon return, with short stays associated with vector borne infection (malaria or 

dengue for example) or disease, whereas extended travel periods will be linked to 

tuberculosis infection (Gautret et al., 2012). 

When considering using airline passenger data, the importance of knowing what the data 

contains and its structure cannot be stressed enough. During the comparison between the 

open access data sets and OAG, some differences became apparent, as previously described. 

When comparing the inter-monthly variations, for all data sets there was more agreement 

with OAG during the start and end of the year than during the middle of the year, except for 

the USDoT where there was more agreement in July to September than April to June and 

October to December. These graphs showed that during the time periods with most 

passengers, visits or bookings, there was least agreement between the data sets.  

When directly comparing data sets against one another, some large variations could be seen 

in terms of temporal corresponding data and passengers per booking ratios, with some data 

sets showing more important variations than others. There was also a large amount of noise 

within the data themselves. For example, when considering the ratios of passengers per 

bookings, some airports datasets showed better agreement with OAG (USDoT for example) 

than others (CAA for example). However, for those data sets with many airports or countries 

included, a large amount of noise was present. From the negative binomial model, the overall 

data aggregation by geography was of roughly one airline passenger per booking with 

important variations present when considering smaller and isolated airports. Data collection 

methods are likely to play a role in these discrepancies as inflating survey samples to national 

averages when a small number of passenger travel may lead to over-estimated numbers of 

passengers travelling. However, passenger purpose of travel is also likely to be impactful, 

especially for large airports such as London Heathrow and New York John F Kennedy. Given 

these results, it was not deemed advisable to adjust the OAG data to reflect a preconceived 

understanding that bookings did not represent true passenger numbers. 

In conclusion, when using secondary data to model airline passenger movements, the USDoT 

and TravelPac are two open access data sets with the best agreement with OAG. Although 

these are freely accessible, they have a number of drawbacks, including the temporal 

resolution (quarterly rather than monthly) and geographic (Travelpac being in countries 

rather than airports; USDoT only considering US domestic travel). The author therefore 
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recommends undertaking one’s own comparison analysis against at least one open access 

data source before undertaking any modelling, to determine the completeness of the data 

and therefore how appropriate it is for the model considered. However, researchers must be 

aware of the variations present when directly comparing airports or countries to OAG. 

Indeed, the passenger numbers linked to some airports and countries have been over or 

under estimated by OAG, especially in remote locations such as Greenland and Sumburg 

(UK).  However, when undertaking a more appropriate comparison in terms of data size, by 

combining data from several airports, even from different sources, the overall number of 

passengers per booking averages to just below one. This can be rounded up to one passenger 

per booking to have a resulting integer, which is more realistic when considering that the 

data represents people.
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Chapter 5 – Region-specific risk of chikungunya and dengue 
infection among travellers returning to the United Kingdom 
	

Preamble 

Using a subset of the OAG airline data and unique laboratory confirmed anonymised patient 

data from Public Health England, it was possible to determine which countries posed the 

highest risk for airline passengers travelling from the United Kingdom. As far as the author is 

aware, this analysis had not previously been attempted for the United Kingdom regarding 

chikungunya and dengue specifically nor have studies focused on within-country specific risks 

for travellers compared to local populations.  
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Abstract 

Assessing the public health risks posed by international travel is an important aspect of 

planning for novel and emerging infectious diseases (NEID), as airline passengers play a key 

role in their large-scale spread. Here, the author estimated the relative risk of infection by 

two different vector-borne viral pathogens (chikungunya and dengue viruses) among 

travellers returning to the United Kingdom (UK), relative to the residents of the region visited. 

Information relating to returning UK travellers diagnosed with dengue or chikungunya was 

used in combination with contemporary passenger itinerary information. Incidence records 

for countries visited were gathered to estimate country-specific prevalence. The annual 

number of UK patients was modelled as a function of within origin-country prevalence and 

the number of passenger bookings returning from the country to the UK. Region-level effects 

were fitted to chikungunya and dengue data independently. 

After accounting for annual variation in country-specific prevalence, we found several 

regions where there was a significant difference in the risk of infection relative to the resident 

population. For both diseases, the relative risk of infection for UK travellers was lowest in the 

Upper South America compared to the local population. Other regions such as Africa Central 

(for dengue) and Asia South (for chikungunya) showed point estimates of relative risk 

suggesting UK visitors were at higher risk than residents. 

While effects resulting from systematic reporting biases cannot be excluded, regional-level 

similarities for two biologically distinct infections suggests our analysis may provide insight 

into which regions pose varying levels of risk. The author anticipates this information to be 

useful in parameterising future models of importation risks for vector-borne diseases carried 

by similar vectors.  
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Introduction 

Every year, vector borne diseases (VBD) cause one billion deaths globally and represent 17% 

of all infectious diseases cases internationally (World Health Organization, 2017g). Caused by 

blood-feeding arthropods (including mosquitoes, sand flies and ticks), VBDs affect both rich 

and poor populations (Centers for Disease Control and Prevention, 2014). Their geographical 

location and spread has previously been linked to trade, as shown with the international 

spread of Aedes albopictus mosquitoes, a direct result of the global tyre trade (Tatem et al., 

2006b). Airline travel has also been linked to the global spread of VBDs by transporting 

vectors (Tatem et al., 2006b), and infected humans, as was the case in the 2007 chikungunya 

outbreak in Italy, linked to the return of an infected traveller from India (Angelini R et al., 

2007).  

Two examples of VBDs are dengue and chikungunya fevers, which will be the main focus of 

this analysis because of their public health importance and risk of global spread. The dengue 

virus (family Flaviviridae, genus Flavivirus) is mainly transmitted by Aedes (Ae) aegypti 

mosquitoes, and also to a lesser extent Ae albopictus in the Americas and Europe (World 

Health Organization, 2014). Although dengue fever is the main cause of childhood 

hospitalisation in South East Asia, up to 70% of patients do not seek medical treatment, 

limiting the understanding of the true global burden (Stanaway, 2016). According to World 

Health Organization (2014), over 40% of the global population (2.5 billion people) lives in 

areas with a risk of dengue infection, mainly in tropical and urban areas. Dengue infections 

range from a febrile to haemorrhagic disease with a case fatality rate ranging from 3% to 12% 

(European Centre for Disease Prevention and Control, 2012). Following an incubation period 

of four to ten days, symptoms last for up to one week with a high fever, severe headache and 

nausea. No specific treatment was currently available at time of writing but a vaccine 

developed by Sanofi Pasteur was registered in early 2016 in several countries (World Health 

Organization, 2016a). 

Historically, chikungunya (family Togaviridae, genus Alphavirus) caused small outbreaks in 

rural communities in Africa and Asia. Cases of chikungunya fever have been recorded in 

Europe, most notably in Italy in 2007 (Rezza et al., 2007) and autochthonous transmissions 

have been recorded in Southern France (Grandadam et al., 2011). The geographical spread 

of chikungunya is similar to that of dengue, and the first local transmission in the Americas 

was reported in Saint Martin in late 2013, starting an outbreak affecting 44 countries (Furuya-
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Kanamori et al., 2016). An estimated 1.3 billion people live in at risk areas for chikungunya 

infection, with countries also reporting co-infections with dengue as both diseases are 

transmitted by the same vectors (Nsoesie, 2016; European Centre for Disease Prevention and 

Control, 2012). Following a three to seven day incubation period, symptoms ranging from 

mild/non-existent to severe illness with high fever and joint pain will appear, usually lasting 

for days (Public Health England, 2014). Although fatalities are rare, the patient’s quality of 

life can be impaired for months or years with the very young and elderly most at risk of 

complications (Pan American Health Organization, 2011; Nsoesie, 2016). 

Destination and purpose of travel, as well as behaviour while abroad play important roles in 

a traveller’s risk of infection (Vilkman et al., 2016). Tourists sleeping in accommodation with 

good hygiene and air conditioning, and having visited a travel clinic before travel are at lower 

risk of catching a VBD while travelling to endemic areas. Conversely, those traveling to visit 

friends and relatives (VFR) or backpacking are more likely to visit rural environments and 

therefore at greater risk of VBD (World Health Organization, 2012; World Health 

Organization, 2001). Travel health professionals often tailor their advice on protection 

measures based on the travel destination and disease epidemiology; this is in turn informed 

by World Health Organization (WHO) member states, obliged to alert the global community 

about potential health threats (Schlangenhauf, 2011).  

In May 2015, Zika virus, another VBD carried by Aedes mosquitoes, was identified in the 

Americas, specifically Brazil, for the first time. A causal link between Zika virus and 

neurological disorders such as microcephaly in new-borns and Guillain-Barré syndrome in 

adults has since been established (World Health Organization, 2016a). Zika rapidly spread 

throughout the American continent, but travellers have also transported Zika to 

geographically distant countries such as Cape Verde (Bogoch et al., 2016).  

The aim of this analysis was to determine whether UK travellers were at varying relative risk 

of VBD infection when travelling abroad compared to local populations in endemic areas, by 

bringing together patient travel data, airline passenger booking data and passenger duration 

of travel per country information. This analysis will focus on chikungunya and dengue and 

may also be applicable to Zika.  
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Methods 

Data on confirmed cases imported into the UK 

Information on dengue and chikungunya cases presenting to UK clinics with laboratory-

confirmed infection were provided by Public Health England (PHE). Case records were 

collected from the UK for both diseases. Case specific information included month of 

laboratory confirmed diagnosis, age group, sex, and recent international travel, including 

travel destination (countries and/or regions). The data contained information on cases with 

laboratory confirmed infection between January 2009 and December 2014 inclusive, 

overlapping the time period for which international airline traveller data was available. The 

case records were restricted to February 2010 to December 2014, to match the airline data, 

giving a total of 385 chikungunya and 1,562 dengue cases. Where the destination region 

name was provided but not the destination country (“Borneo” or “Caribbean”, for example), 

an appropriate region name was assigned. For the purposes of this analysis, ‘region’ will refer 

to a group of neighbouring countries, chosen at the discretion of the authors, allowing for 

model fitting (see below). Surveillance of chikungunya is passively done in the UK, so the 

travel history available is that reported by the point of care clinician (Public Health England, 

2015). After anonymization and cleaning the data, cases with missing or no recent 

international travel history were excluded from the analysis, as were cases without valid 

travel destination information for which no region could be assigned. Cases with multiple 

assigned destination regions were resampled, and randomly assigned to only one of the 

regions, multiple times, by bootstrapping. Thus, for each bootstrap sample of case data the 

region in which infection occurred was imputed for all cases. However, a number of cases 

(n=4 chikungunya and n=59 dengue) had travelled to countries belonging to more than one 

region and were therefore ignored in the analysis as these observations could not be fitted 

using the model described below. The model could only be run at the regional and annual 

level, as the limited number of observations available for each country and year did not allow 

us to fit a model at the country level and the endemic incidence data was only available at 

the annual level. This data set did not include duration of travel, so this information was 

imputed from the Office for National Statistics’ TravelPac dataset described in Chapter 4. The 

data were first restricted to only include “air” travellers who were “UK residents” returning 

from a trip abroad. The duration of travel was categorised as: “Nil stay”, “1-3 nights”, “4-13 

nights”, “14-27 nights”, “28-90 nights”, “3-6 months”, “6 months – year” and “Stay not 
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known”, therefore, the number of nights spent in each country and duration of travel were 

imputed using a uniform distribution. 

	

Traveller data 

Monthly airline booking data, from February 2010 to May 2015 inclusive, were extracted 

from the ‘Traffic Analyser’ database of OAG (OAG, 2016c) previously described. Only 

itineraries with a destination airport within the UK, an origin airport belonging to countries 

present in the cases data, and a point of origin airport within the UK were included. Thus, the 

traveller data represents the number of passenger bookings relating to return travel to the 

UK from international countries. Monthly bookings were aggregated to annual, country and 

regional levels before matching the region names from the traveller data to those in the case 

data regions. Finally, it was assumed that one booking represented one passenger. 

	

Incidence and population data  

For each country visited by cases, the annual population size, as well as the number of cases 

and deaths for both chikungunya and dengue was collected from a range of online open-data 

sources (Table 5.2). Records of annual indigenous incidence of dengue and chikungunya 

infection were collated from the World Health Organization’s regional office websites. If the 

data was unavailable from any WHO regional office websites, the author attempted to 

identify governmental data sources, where possible. A time restriction of data collected was 

assigned (2010 to 2014) to match the period of the case and airline data. Annual country 

population sizes between 2010 and 2014 was collated from the World Bank website or if 

unavailable, from official governmental data sources for that country. For this analysis, 

countries were grouped by geography into regions, to permit a greater number of 

observations per regions than would be available at the country level. Countries were 

grouped by the author according to their close geographic location and climate similarities. 

	

Statistical analysis 

Each country may be given a subscript	" and be allocated to a region #. We modelled the 

number of infected passengers ($%&) arriving into the UK from country " in year ' as a binomial 

random variable given the total number of airline bookings arriving ((%&) from country " in 

year ', where: 
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$%)&~+",-."/012%)&, (%&4	 Equation 1 

	

and 2%)& is the prevalence of infected individuals among the passengers, noting that this 

probability is region specific. Furthermore, as 2%)& is small it was assumed: 

2%)& = 1 − 8921−:) ∗ 	<%&4 Equation 2 

where <%& is the within-country prevalence of infection, and :)  is a region-specific parameter, 

which captures variation in surveillance accuracy, travel behaviour related to exposure risk, 

and other unobserved between-region heterogeneity. For a specific region we may drop the 

# subscript such that : therefore relates the prevalence of disease in travellers to that of the 

resident population of the given region: values of 1 indicate that disease prevalence in 

travellers is the same as that of the resident population. The corresponding likelihood 

function in this situation is given by: 

=(:; <, (, $) = 	A(:<%&)BCD A(1 − :<%&)ECDFBCD

%∈),&%∈),&

 Equation 3 

The approach taken here is knowingly an approximation of a complex system, and strikes a 

balance between data availability and model parsimony. Maximum likelihood estimates for 

: were obtained for each region using the Brent optimisation within R’s optim() routine (R 

Core Team, 2017), with asymptotic confidence intervals derived from the Hessian matrix.  

A second model was run to include the duration of travel for passengers to each country, 

imputed from TravelPac data. Only the year 2010 only was used, as this had the largest 

number of observations and we assumed that duration of travel stayed constant throughout 

each year and between years. As the incidence of both diseases was small, it was assumed:  

2%)&H
I = 1 − 892 J−:) ∗ 	<%& ∗ (

K)
365

)O Equation 4 

2%)&H
I was used as described previously to run the same model even when duration of travel 

was included, with K)  the duration of travel in days imputed from TravelPac data, <%& is the 

within-country prevalence of infection and :)  is a region-specific parameter. We assumed 

that the duration of travel per country did not change depending on the time of year as 

seasonality was not included in the model. Similarly, the likelihood function for the model 

including duration of travel was: 
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=I(:; <, (, $, K) = 	A(:<%&H)BCD A(1 − :<%&H)ECDFBCD

%∈),&%∈),&

 Equation 5 

With the Maximum likelihood (:) for each region were estimated using the same 

optimisation method described for Equation 3. 

Finally, the absolute risk per country was also calculated by dividing the number of imported 

cases from each country by the number of corresponding returning passengers.     

	

Results 

Data description 

Countries and regions visited 

From the 432 chikungunya cases recorded in the United Kingdom between February 2010 

and December 2014, 19 (4%) had no associated travel history and were excluded from the 

analysis. A further 30 (7%) had no destination, clear country or region stated, and were also 

excluded. An additional two cases were excluded as they had travelled to two distinct regions 

and did not fit into the regional model, therefore a total of 382 cases remained and were 

included in the model. Of the 1,941 dengue cases reported between February 2010 and 

December 2014, only one dengue case reported not having travelled, and 367 (19%) cases 

were recorded as “not stated” in the travel field, and therefore excluded. From the 1,573 

cases remaining, 19 reported a region name from which no country or region could be 

assigned (‘Latin America’ for example which is not politically recognised) and were also 

excluded. A total of 49 (3%) cases had travelled to countries belonging to more than one 

region, and did not fit the regional model so were also excluded, leaving 1,505 dengue cases 

included in the model. 

The total number of cases that travelled to each region was highlighted in Figure 5.1. Jamaica 

was the most visited country by chikungunya cases, with all visits (n=90, 24%) occurring in 

2014, and India (n=89, 23%) was the second most visited country by chikungunya cases, 

across all years available. For dengue, India and Thailand were the most visited countries with 

n=362 (24%) and n=361 (24%) cases, respectively. The majority of chikungunya cases had 

visited Caribbean countries (n=219, 57%). However, the majority of dengue cases (n=784, 

52%) travelled to South East Asia (especially Thailand), followed by South Asia (especially 
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India) (n=578, 48%). The UK saw a total of 23 dengue imported cases from Western Europe 

(specifically Madeira, Portugal), and only in 2012. 

There was an overall increasing and seasonal trend in the number of both chikungunya and 

dengue cases seen, with dengue cases peaking on or around August and chikungunya cases 

peaking around November each year (Figure 5.2 A). Although the number of chikungunya 

cases remained lower than those of dengue before 2014 (up to 19 chikungunya cases per 

month), a sharp rise can be seen from June 2014 onward (n=275 in 2014 alone compared to 

n=160 between 2010 and 2013), which was not seen in previous years. The total number of 

imported cases by month showed no strong correlation with the airline passenger numbers 

according to country and time series (Figure 5.2 A). 

The variation of age distribution of cases differed according to disease (Figure 5.2 B), with 

the majority of dengue cases recorded in the 20-24 age group (n=238, 15%) and the majority 

of chikungunya cases in the 35-39 age group (n=55, 14%). However, when breaking down 

each age group by sex, the majority of cases diagnosed with chikungunya virus were female 

(n=245, 58%) and between 55 and 59 years old (n=35). Fewer males were diagnosed with 

chikungunya (n=175, 42%). With regards to dengue cases, the majority were male (n=860, 

55%) and aged between 30 and 34 years old (n=113). Of the female cases (n=686) the 20 to 

24 age group was most represented (n=110). 
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Results from model fitting 

The model was run at an annual and regional level for each disease to determine the relative 

risk of travellers becoming infected within each region, compared to the local populations. 

By aggregating countries to the regional level, the model worked more effectively, by 

overcoming the problem of some countries having very few observations, and therefore the 

model not fitting (data not shown).  

When not considering duration of travel, travellers visiting the Caribbean were at a reduced 

relative risk of becoming infected with either disease compared to the local populations 

(Figure 5.3 A; coefficients in Table 5.1). Additionally, regions such as Upper South America, 

Central America and South East Asia also represented a reduced relative risk for UK travellers 

of becoming infected with dengue compared to the local populations (coefficients in Table 

5.1). Travellers to North America were at a significantly increased relative risk of chikungunya 

infection compared to the local population. Lastly, regions such as Central Africa, North 

America and Lower South America also posed a higher relative risk for UK visitors of 

becoming infected with dengue.   

In contrast, when duration of travel was included in the model, some variations were seen 

relative to the level of risk encountered by travellers compared to local populations (Figure 

5.3B, Table 5.1). When comparing the overall risks for each disease, the average risk of 

infection with chikungunya was estimated at 4.09e+03 and 1.18e+31 with and without 

considering duration of travel, respectively. When considering the risk of infection with 

dengue, the average risks were 21.86 and 2.034e+08 with and without considering duration 

of travel. These averages showed a protective effect when including duration of travel in the 

model. When considering global regions, passengers travelling to the same regions as earlier 

(Caribbean, Upper South America and Central America) also faced a reduced risk compared 

to local populations. On the other hand, for regions such as Southwest Pacific, Asia South and 

Asia South East, travellers were at increased risk of infection with chikungunya, whereas 

Africa central and Asia South were riskiest regarding dengue infection, compared to local 

populations. From this comparison, it was clear that including purpose of travel to the model 

had an impact on the level of risk faced by UK travellers compared to local populations. 

 Overall, the absolute risk for UK travellers was low (Figures 5.4 and 5.5), with visited country 

mean of 5.16e-05 (confidence intervals ranging between 4.92e-05 and 5.41e-05) and region 

mean of 5.17e-05 (confidence intervals of 4.62e-05 and 1.02e-04). Tonga (South West Pacific) 

posed the highest risk for chikungunya (0.0081, 95% CI 0.00021 and 0.044) whereas 
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Guadeloupe (Caribbean) posed the highest absolute risk for dengue (0.0045, 95% CI 0.0012 

and 0.011). It must be noted that the total number of airline bookings for each country over 

the time period considered was small (123 for Tonga and 891 for Guadeloupe) (Guadeloupe 

is a French region but was considered as a country for the purposes of this analysis). 

Variations were also seen between regions according to disease: the Caribbean posed the 

highest absolute risk for chikungunya but not for dengue (4.49e-04 for chikungunya with 95% 

CI 3.90e-04 and 5.13e-04; 8.68e-05 for dengue and 95% CI 7.50e-05 and 1.00e-04). On the other 

hand, South East Asia saw the highest absolute risk for dengue but not for chikungunya: 

1.13e-03 for dengue (95% CI 1.04e-04 and 1.24e-04) and 2.05e-05 (95% CI 1.38e-05 and 2.95e-05). 
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Table 5.1: Table of coefficient results (z in equation 2), standard error, absolute risk values and confidence intervals (95%) for each region, 
disease and whether duration of travel was included. The absolute risk was calculated as the number of imported cases divided by the number 
of returning travellers, for the given region. 
Note: four regions (Africa South (Chikungunya and Dengue) and Middle East (Dengue)) were included in the absolute risk calculations but in 
the relative risk, as their endemic prevalence could not be determined. 

	 	 No	duration	included	 Duration	included	 	

Region	name	 Virus	name	
Relative	
risk	 SE	 95%	CI	

Relative	
risk	 SE	 95%	CI	

Absolute	
risk	 95%	CI	

Africa:	Central	 Chikungunya	 2.83	 1.33	 1.62	–	4.92	 1.33	 5.28	 5.08e-02	–	3.46e+01	 4.43e-05	 1.63e-05	-	9.64e-05	

Asia:	South	 Chikungunya	 3.10	 1.12	 2.47	–	3.89	 2.84e+04	 1.13	 2.24e+04 – 3.60e+04 1.99e-05	 1.58e-05	–	2.49e-05	

Asia:	South	East	 Chikungunya	 1.27	 1.26	 8.02e-01	–	2.00	 7.85	 1.29	 4.77-12.90	 2.05e-05	 1.38e-05	–	2.95e-05	

Caribbean	 Chikungunya	 1.05	 1.07	 9.14e-01	–	1.21	 2.57	 1.07	 2.24	–	2.96	 4.49e-04	 3.90e-04	–	5.13e-04	

North	America	 Chikungunya	 8.28e+31	 1.42	 4.17e+31	–	1.64e+32	 1.50e+02	 452.60	 9.32e-04	–	2.40e+07	 3.10e-07	 7.86e-09	–	1.73e-06	
Southwest	

Pacific	 Chikungunya	 4.72	 1.41	 2.42	–	9.20	 40.56	 1.92	 1.13e+01	–	1.46e+02	 5.66e-06	 6.85e-07	–	2.04e-05	

Upper	South	
America	 Chikungunya	 1.86	 1.22	 1.26	–	2.73	 5.20	 1.41	 2.64	–	1.02e+01	 3.13e-04	 1.50e-04	–	5.76e-04	

Africa:	Central	 Dengue		 1.20e+02	 1.11	 9.71e+01	–	1.47e+02	 1.92e+02	 1.37	 1.04e+02	–	3.53e+02	 2.51e-05	 1.79e-05	–	3.44e-05	

Africa:	Western	 Dengue	 2.69	 1.07	 2.36	–	3.08	 7.69	 1.20	 5.37	–	1.10e+01	 2.09e-05	 1.49e-05	–	2.86e-05	

Asia:	North	East	 Dengue	 4.26	 1.44	 2.10	–	8.66	 2.32	 6.18	 6.54e-02	–	8.25e+01	 4.54e-06	 1.15e-07	–	2.53e-05	

Asia:	South	 Dengue	 1.23	 1.05	 1.12	–	1.34	 5.87	 1.05	 5.36	–	6.44	 7.75e-05	 7.07e-05	–	8.47e-05	

(Table 5.1 continues on next page) 
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(Table 5.1 continued) 

	 	 No	duration	included	 Duration	included	 	 	

Region	name	
Virus	
name	

Relative	
risk	 SE	 95%	CI	

Relative	
risk	 SE	 95%	CI	

Absolute	
risk	 95%	CI	

Asia:	South	East	 Dengue	 1.10	 1.04	 1.02	-	1.19	 2.27	 1.05	 2.09	-	2.48	 1.13e-04	 1.04e-04	-	1.24e-04	

Caribbean	 Dengue	 1.03	 1.07	 9.11e-01	-	1.17	 1.57	 1.08	 1.36	-	1.82	 8.68e-05	 7.50e-05	-	1.00e-04	

Central	America	 Dengue	 1.08	 1.10	 8.85e-01	-	1.31	 1.33	 1.20	 9.35e-01	-	1.89	 4.32e-05	 2.85e-05	-	6.29e-05	

Lower	South	America	 Dengue	 7.31e+03	 1.13	 5.77e+03	-	9.27e+03	 13.75	 2.27	 2.77	-	6.83e+01	 4.05e-05	 1.03e-06	-	2.26e-04	

North	America	 Dengue	 2.24e+09	 1.06	 2.00e+09	-	2.51e+09	 11.59	 2.29	 2.29	-	5.88e+01	 2.98e-07	 7.54e-09	-	1.66e-06	

Southwest	Pacific	 Dengue	 1.94	 1.08	 1.66	-	2.28	 1.26	 1.50	 5.71e-01	-	2.79	 1.10e-05	 4.77e-06	-	2.17e-05	

Upper	South	America	 Dengue	 1.04	 1.10	 8.61e-01	-	1.26	 1.25	 1.13	 9.84e-01	-	1.58	 1.04e-04	 8.03e-05	-	1.32e-04	
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Discussion 

The annual number of chikungunya and dengue cases imported into the United Kingdom for 

the period ranging 2010 to 2014 was modelled as a function of the number of travellers and 

the known prevalence of each disease in the visited regions.  

The results showed a seasonal and increasing trend in the number of detected cases 

imported in the UK from international travel. The largest number of imports occurred 

between August and November each year, whereas February saw the smallest number of 

imported cases. This trend reflects the seasonal patterns of both diseases in countries and 

regions in the Northern hemisphere (Johansson, 2015; San Martin et al., 2010). The 

importation trend does not closely follow the number of airline bookings returning to the UK. 

Additionally, the structure of the age pyramid showed that younger age groups were more 

affected by dengue whereas older age groups by chikungunya, with the exception of the 35-

39 year olds for chikungunya.  

Understanding the passenger’s demographic characteristics provides insights into their 

exposure risks. In the data shown here, there is a notable difference in the number of cases 

recorded for each disease when grouped by sex. Of the chikungunya cases, more females 

(58%) than males (42%) were diagnosed, whereas more male cases (55%) than female cases 

(44%) were diagnosed with dengue (with a small number of ‘unknown’ in this variable). 

Variations in the age groups affected by either disease were seen, with chikungunya affecting 

older generations (55-59 years old) and dengue younger generations (30-34 years).  

The patterns were broadly consistent between regional-scale relative risk (regional 

coefficients) of infection for both diseases, and a range of regional-level coefficients. Regions 

where UK travellers had a lower relative risk of infection compared to the local populations, 

without considering duration of travel, were the Caribbean for both diseases and Upper 

South America for dengue only. However, regions such as Africa Central and Lower South 

America posed a higher relative risk to UK travellers relative to Caribbean with point 

estimates of relative risk suggestive of UK travellers being at higher relative risk than the local 

populations for dengue. It is worth noting that without considering duration of travel, North 

America and Southwest Pacific countries were associated with an increased risk of 

chikungunya virus infection in travellers compared to the local population, relative to the 

Caribbean. It must be remembered that Chikungunya was not present in the Americas before 

late 2013 and therefore the local population was in a naïve state of immunity. However, UK 



152	| 	 C h a p t e r 	 5 	
	

passengers to South East Asia were likely to have been at a reduced risk due to their within-

country behaviour, affecting their exposure risk, which could not be modelled. The variations 

in disease reporting varied greatly by country and region and are likely to have influenced 

their relative risks.  

Although not present in the original data, the impact of duration of travel on relative risk was 

modelled using imputed third-party data from the UK’s Office for National Statistics. 

Including this data showed an overall protective effect by a factor of ten (1.60e+3 compared 

to 4.60e+30) for passengers to all regions, with variations when considering each region in 

turn. For example, duration of travel showed a protective effect on chikungunya infection for 

passengers travelling to North America and Africa Central, but the opposite was true for 

passengers travelling to Southwest Pacific and Asia South. Regarding dengue infections, 

considering duration of travel had a protective effect for passengers travelling to Lower South 

America and Southwest Pacific but the opposite effect for those travelling to the Caribbean 

and Asia South East. The reasoning behind these variations was unclear, especially as these 

pathogens are transmitted by the same vectors. It is likely that these variations are a result 

of within-country behaviour and how much information and information passengers receive 

prior to travel, impacting their behaviour and whether precautions were taken prior or during 

travel. 

The overall absolute risk encountered by UK passengers was low and in good agreement 

between diseases, except for a number of countries and regions, such as Guadeloupe and 

the Caribbean. In terms of airline bookings returning to the UK with chikungunya, the highest 

proportion returned from the Caribbean, especially the Guadeloupe, and those with dengue 

from South East Asia, especially Laos. However, the number of airline bookings to these 

regions and countries were relatively small. 

Even though the largest number of cases in the data was reported from the Caribbean and 

South East Asia for chikungunya and dengue respectively, UK passengers travelling to these 

two regions were at reduced relative risk of infection compared to local populations, 

according to our model, before including duration of travel. Once duration was included, the 

Caribbean remained a safe destination in terms of dengue infection whereas South East Asia 

was a risky destination for chikungunya. On the other hand, countries in Upper South 

America were visited less frequently by chikungunya cases but presented a higher relative 

risk for travellers. The trend reflects the introduction of chikungunya in the Americas in 

December 2013, starting a large outbreak which affected over 43 countries, and caused a 
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reported 1.4 million cases and 191 deaths (World Health Organization, 2017a). In the time 

period covered by this cases data set, a dengue outbreak was seen in the Portuguese island 

of Madeira in 2012, with a total of 23 known imported cases in the UK (European Centre for 

Disease Prevention and Control, 2013). Other large dengue outbreaks have not been 

recorded in Europe to this scale and/or during this time period. 

The model developed here shows a good agreement between the regions with known 

outbreaks between 2010 and 2014, and their relative risk posed to UK travellers, even with 

known limitations. Regions affected by dengue outbreaks over the time period considered 

included South East Asia, Pacific Islands, Central America as well as Florida (United States) 

and China (World Health Organization, 2016a). However, regional results showed very large 

confidence intervals, which may be a result of localised outbreaks occurring within the 

associated countries, or little information available from the endemic countries. Indeed, the 

island of Madeira (Portugal, Western Africa for the purposes of this analysis) and the Yunnan 

region (China, North East Asia) saw localised dengue outbreaks, affecting a small percentage 

of the populations respectively (World Health Organization, 2016a). North America is very 

likely to have been impacted by the outbreaks seen in the rest of the continent, also affecting 

the size of its confidence intervals. However, India (South Asia) reported a large number of 

cases of chikungunya between 2010 and 2014 (ranging between 12,700 and 20,400 cases per 

year), across the country (Government of India, 2015). Such numbers are likely to have an 

impact on the model regional results. The variation in relative risks between both diseases 

for some regions such as Asia South and Central America, is likely to be a result of the varying 

levels of reporting for either disease. Indeed, as previously mentioned, chikungunya 

reporting is done less frequently than dengue in many countries, making estimating the level 

of endemic disease difficult. Finally, the countries visited by zika cases diagnosed by PHE 

(2014 to 2016 included) overlap the regions visited by dengue and chikungunya cases, further 

strengthening the need to develop a model suitable for all three VBDs. 

Even if travellers are at reduced relative risk compared to local populations, personal 

protection must still be effectively taken to avoid illness. International travel advice providers 

such as NaTHNaC (travelhealthpro.org.uk) and the Centres for Disease Control and 

Prevention (wwwnc.cdc.gov/travel) both provide useful information to travellers regarding 

known countries at risk and prevention methods on a range of diseases that can be easily 

accessed. This information has implications in educating public health and point of care 

clinicians about pre-travel health advice, including information regarding personal protection 

methods, and post-travel infection treatment options in returning passengers. 
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Limitations 

A number of limitations were known to the author when analysing this data, regarding both 

the data and the model.  

Firstly, the relative risks of the two VBDs described here, at a specific travel destination may 

be difficult to determine, as the global burden of chikungunya and dengue can only be 

estimated based on the data freely available and are sometimes lacking in some countries 

where the exposure risk may be high (Nsoesie, 2016; World Health Organization, 2016a). 

Precisely determining the global burden of chikungunya is difficult given the varying levels of 

reporting provided by national and international health agencies (Nsoesie, 2016). These 

levels of reporting are also likely to change during the course of an epidemic, with suspected 

cases being reported at the start of an outbreak, followed by confirmed cases. This may give 

a false sense that cases numbers are decreasing when it is not the case. The model developed 

by Nsoesie (2016) suggests that 1.3 billion people live in areas at risk of chikungunya 

infection, whereas the WHO does not provide a global account of people living in at risk areas 

(Nsoesie, 2016). Even with such high numbers, chikungunya is an under-estimated and 

under-recognised problem globally, but especially in Africa, given the low mortality rates and 

misdiagnosis with dengue (Nsoesie, 2016). Although a potentially more severe disease given 

the possibility of haemorrhage from multiple dengue virus infections, dengue fever is also 

under-reported, and often misdiagnosed (Nsoesie, 2016). It is also estimated that 70% of 

dengue cases do not seek medical help when infected (Stanaway, 2016), and misdiagnosis 

may also contribute to under reporting (Nsoesie, 2016). Serological analyses would need to 

be done in countries with limited data availability to establish the true number of populations 

living in at-risk locations (Nsoesie, 2016), which may impact (positively or negatively) the 

model results. The endemic prevalence levels were calculated from the annual case numbers 

reported by each country, preventing any analysis of the seasonal and within-country 

variations. The absolute risk (returning cases among returning airline passenger bookings) is 

also likely to be underestimated given the potentially high number of asymptomatic cases as 

well as misdiagnosis by healthcare personnel. The original case data set only recorded known 

chikungunya and dengue cases in the United Kingdom, so travellers who were ill while abroad 

or who only experience mild (or asymptomatic) disease are unlikely to have been recorded. 

The case data were not refined enough to provide the within-country destinations visited. 

This is of importance when looking at countries such as China and the United States with 

important environmental and climatic variations between northern and southern within-

country regions. These variations determine vector habitat suitability and therefore potential 
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outbreaks, as was seen in the chikungunya outbreak in the Guangdong province of southern 

China in 2010 (Nsoesie, 2016). Passenger’s purpose of travel was not recorded in the data 

either but will impact a passenger’s behaviour and therefore relative risk within the visited 

country. However, it is difficult to determine the impact this variables would have with 

certainty without any additional data; it was therefore assumed that all travellers behave in 

the same manner within and between countries. Appropriate knowledge of infection risks in 

visited counties may influence travellers into taking personal precautions, such as wearing 

appropriate clothing, minimising time spent outdoors at high risk times, and using insect 

repellent (World Health Organization, 2012). Tourists are more likely to behave differently to 

the local population by choosing to sleep in air conditioned hotels and/or only frequent 

locations that reduce their risk of infection (World Health Organization, 2012; Schlangenhauf, 

2011). Therefore, understanding risk perceptions by traveller purpose of travel may help 

refine this analysis, as exposure risks are likely to change. 

Lastly, it was assumed that all cases recorded in the imported case data started their journey 

in the UK and became infected while abroad. The equivalent OAG airline data was therefore 

selected to match this returning leg of a round trip, originating and ending in the UK, but 

flying back from an international destination. This excludes cases diagnosed by the National 

Health Service but who were residents of another country (unknown number).   
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Chapter 6 – Understanding the possible origin of the next 
pandemic using airline travel patterns and healthcare 

development.  
	

Preamble 

There is an abundance of literature stating that weak healthcare systems are ideal settings 

for the emergence of an outbreak with slow within-country detection (Barber et al., 2017; 

Bonds et al., 2018; Elmahdawy et al., 2017; Moore et al., 2016). Although Bogoch et al. (2018) 

did relate the Madagascar healthcare system and the country’s global connectivity in the 

context of the plague outbreak, no work has yet attempted, to the author’s knowledge, to 

link national healthcare development and global connectivity to estimate the potential 

impact of such outbreaks for the global community. It is hoped that this novel approach will 

give new insights for future pandemic preparedness. 
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Abstract 

Pandemics may spread very rapidly around the world and can have significant costs 

associated to them, in terms of economic and health impacts. Early detection of an outbreak 

is key to its control and to limiting its further spread, both nationally and internationally. 

Given the significant level of global connectivity described in Chapter 3, an uncontrolled 

outbreak in one country may quickly reach other countries and develop into a pandemic. The 

aim of this chapter was to explore variation in potential country-level risk for novel outbreaks 

to go undetected and for the pathogen to spread internationally via air-passenger travel. 

The approach used in this chapter was to compare data regarding each country’s healthcare 

development against its global airline connectivity, assigning equal weights to each. It was 

originally thought that a single parameter could be used as a proxy for healthcare 

development; however, the use of two indices made up of multiple parameters was 

ultimately deemed to be more appropriate. Global connectivity was estimated by generating 

an information flow matrix from the global airline data set downloaded from OAG. A fictitious 

‘worst case scenario’ (WCS) country was assigned the best connectivity value of the network 

and the worst healthcare development score. Each country’s relative proximity to WCS was 

subsequently calculated and plotted according to each index value.  

The results indicate that India and Pakistan were the two closest countries to the WCS point 

for both indices, and were thereby postulated to pose the greatest risk to the global 

community. Additionally, countries that have recently seen the spread of outbreaks develop 

into pandemics (such as Brazil (Zika) and Mexico (H1N1), for example) were also identified as 

being relatively high potential threat to the global community. On the other hand, countries 

such as Monaco, Tuvalu and Slovenia were shown as posing the lowest risk. 

This analysis highlights the importance of considering a country’s connectivity as well as 

healthcare development when considering its potential impact in the spread of the next 

pandemic. In a world increasingly well connected, an outbreak in one country should be of 

concern for the global community. In order to reduce the global financial burden and reduce 

the mortality and morbidity, healthcare development and global connectivity should be 

considered together. This analysis highlights the potential risk posed to the global community 

of not detecting outbreaks early through strong healthcare systems. The international 

community could consider the potential benefits of additional support aimed towards those 

countries with the potential to cause the highest risk to the global community. 
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Introduction 

In the wake of the Zika pandemic and Ebola outbreak, airline travel and level of healthcare 

provided by each country, have been demonstrated to impact a country’s ability to contain 

outbreaks. The early detection and containment of an outbreak are of critical importance for 

the country’s population health, as well as for the global community, to prevent a potential 

pandemic (International Working Group on Financing Preparedness, 2017). The Sustainable 

Development Goals (SDGs) require countries to improve their quality and access to 

healthcare (goal 3) and meet specific targets by 2030 (United Nations, 2017), as these are 

important tools to preventing and controlling future outbreaks. If a system is ready (well 

established with appropriate facilities, equipment and trained staff), it may be more likely to 

detect an outbreak quickly with trained staff triggering the appropriate response systems 

(Bonds et al., 2018; Moore et al., 2016). Although access to quality healthcare has greatly 

improved globally since 1990, the gap between countries with good or poor healthcare 

access is widening. Countries offering the best quality and access to healthcare are found in 

Western Europe, especially in Scandinavia, whereas the poorest quality and access is 

provided in Sub Saharan Africa and Oceania, according to the Global Burden of Disease’s 

recent work (Barber et al., 2017).  

As described in previous chapters, the global airline network is growing at an accelerated 

pace, linking geographically distant countries (Glaesser et al., 2017). As well as the increasing 

number of passengers, airline travel is continuously getting quicker, with the first Perth 

(Australia) to London (UK) direct flight landing in March 2018, linking the two countries in 17 

hours (BBC, 2018). A non-negligible threat to global health today is the possibility of travelling 

to the other side of the world before becoming symptomatic, with passenger numbers and 

distances travelled both increasing rapidly (World Health Organization, 2018b). Infected 

passengers travelling within the airline network to epidemiologically suitable locations have 

the potential to propagate outbreaks through onward transmission (Tian et al., 2017). Airline 

travel is the main access route to some remote locations (Bobashev et al., 2008) and given 

the different exposure risks between local and visiting populations (Mier et al., 2017), this is 

the most likely means of distant international disease spread (Bobashev et al., 2008).  

Some countries’ airports are also increasingly being used as hubs (airports with a large 

number of connections to other airports) to reach other destinations where direct flights may 

be absent or rare (Wandelt and Sun, 2015). These country hubs include India, Singapore and 

Thailand, as the Asian air travel has seen a sharp growth in number of passengers and airports 
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since the 1980s (Tian et al., 2017). Although the overall network diameter is getting smaller 

(increasing number of flights and passengers to cross the entire network) (Huang et al., 

2013), as countries are increasingly well connected, some nations, especially island nations 

such as Papua New Guinea and Falkland Islands remain relatively hard to reach, and are 

therefore more distantly connected to the rest of the network (Guimera et al., 2005). 

A pandemic’s dissemination from its source strongly depends on the local connectivity of the 

source country and the time for an outbreak to arrive through the airline network is 

independent of disease characteristics (Lawyer, 2016). Within the airline network, a total of 

73 airports (2%) act as major hubs, with other airports acting as bridges between these hubs, 

peripheral airports (28%) and regional population centres. For example, following strong 

economic cooperation, the United Arab Emirates acts as a bridge between Europe and Asia, 

as well as between Asia and Africa (Wandelt and Sun, 2015). It must be noted that city size 

and their flight volumes are not closely related: large cities aren’t always the most connected 

or have the largest passenger volumes (Bobashev et al., 2008). However, a group of nodes 

(airports) can act as a clique by being well linked to each other, such that any node within a 

clique can be reached quickly in a few steps (Wandelt and Sun, 2015). Countries such as the 

United States and the United Kingdom, among others, are highly influential in terms of 

passenger transfers within the network, due to their population size and GDP (Wandelt and 

Sun, 2015).  

Pandemics are unpredictable (geographically and temporally) and very costly, both in terms 

of financial losses, fatalities and morbidity; therefore, investing in preparedness at the 

country level should be encouraged. A country’s pandemic preparedness (and response) 

relies heavily on the capacity of rapid detection and response to outbreaks. Accurate and 

timely detection by surveillance systems allows an outbreak to be identified quickly, with 

ongoing monitoring of cases assisting with the goal of avoiding important consequences both 

nationally and internationally, as was seen in the West African Ebola outbreak (International 

Working Group on Financing Preparedness, 2017). Although knowing or estimating the level 

of imported cases by travellers is important, it must also be noted that the risk may be 

underestimated if this is based on import notification alone (Lopez et al., 2016). The 2014 

West Africa Ebola outbreak is an example of the potential impact of an outbreak on an 

unstable healthcare system and vice versa (International Working Group on Financing 

Preparedness, 2017; Omoleke et al., 2016). Although Guinea, Liberia and Sierra Leone had 

achieved significant economic progress through post-conflict reconstruction, access to good 

quality healthcare was still limited. Prior to the outbreak, a total of 39 inter-continental flights 
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to and from these countries were operated weekly by major airlines, thus creating a 

potentially important risk of spreading the virus to the global community. This potential risk 

led to the suspension of flights to and from the region (Omoleke et al., 2016), even though 

this was not advised by the WHO (Nutall, 2014). It was additionally noted that most sub-

Saharan African countries did not have the capacities to contain the viral outbreak due to 

inadequate health facilities (Omoleke et al., 2016).  

Understanding the vulnerability of countries in the event of an outbreak has recently become 

a focus for some international groups, including the International Working Group on Financial 

Preparedness set up by the World Bank in November 2016, with the aim of identifying sectors 

which could help countries be more prepared for a pandemic (International Working Group 

on Financing Preparedness, 2017). Additionally, the WHO and World Bank have very recently 

co-created the Global Preparedness Monitoring Board with the goal of improving global 

preparedness (World health Organization, 2018e). Several groups have also developed 

pandemic preparedness indices to evaluate how vulnerable or resilient countries are to a 

potential pandemic (International Working Group on Financing Preparedness, 2017). In 

response to the Severe Acute Respiratory Syndrome (SARS) pandemic, the WHO updated its 

International Health Regulations (IHR) in 2005, requiring all member states to report in a 

timely manner any outbreak posing a possible international public health threat. However, 

few (64) countries had reported to WHO as having good surveillance systems in place, and 

48 would not be capable to cope with a significant outbreak. Early detection and reporting 

remains crucial for a quick and effective response, ultimately costing fewer lives 

(International Working Group on Financing Preparedness, 2017).  

The aim of this study was to further evaluate global preparedness by understanding how 

likely an outbreak would be to spread internationally when started from a given seed 

country. To do this, every country’s global connectivity was estimated using a global network 

analysis of airline passenger bookings and pandemic preparedness levels estimated using a 

range of infectious disease proxies and health system indices. 
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Methods 

Measure of global connectivity 

To determine the level of connectivity between countries, a network percolation model was 

developed using global airline bookings. The airline data used for this model was the Traffic 

Analyser data set from OAG, spanning February 2010 to May 2015, downloaded between 

August 2014 and July 2015. The data represents the number of monthly bookings for routings 

between international airports, including any stop overs aggregated by country, both 

domestically and internationally. The percolation model simulates the spread of 

‘information’ through a network, where country nodes exist in one of two states: empty or 

occupied. This model is analogous to an SI epidemic model, but should not be considered 

equivalent to a pandemic model as no within country transmission occurs, and the ‘force of 

infection’ represented by an occupied country remains constant over time. The probability 

that node ! with empty status becomes occupied, "#, is determined by the number of 

occupied nodes it is connected to, the rate of passenger flow along the network edges for a 

specific month, $, and a rate coefficient, % of value 1e-6 (arbitrary value): 

"#(') = 1 − exp	(−% 0 $#1
1∈3(4),678

) 

where 9 denotes other nodes, and  Ψ(t) is the set of occupied nodes at time '. This model 

was implemented as a discrete time, stochastic Markov process, where all countries (nodes) 

are empty at the start of a simulation apart from a designated node, the seed country. 

Simulations proceeded until at least 25% of all nodes had been occupied (arbitrary values), 

at which point the simulation time was recorded (end time, <). Simulations were performed 

1,000 times for each seed country (243 in total) and month combination (64 in total) in turn. 

A cap of 2,000 iterations was imposed (arbitrary value), though in practise < ≪ 2000. The 

mean and 2.5% and 97.5% percentiles of 	<@#,A = ∑ CD,E,FF
G

	 were calculated across K=1,000 

replicates as a summary of the connectivity associated with each seed country and each 

month of airline data. Further average across all months and consider the connectivity as a 

rate such that the connectivity H for country i was given by:  

H# =
IJ

∑ ∑ <#,A,KKA
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To calculate Figure 6.1 below the average across all countries was used and the connectivity 

was consider as a rate such that the connectivity by month for C the total number of countries 

is: 

H# =
IL

∑ ∑ <#,A,KK#
 

Additionally, to calculate Figure 6.2, the same method was used as for Figure 6.1 but month 

55 only.  

Understanding the level of healthcare provided 

Although the structure of a healthcare system is complicated, involving many governmental 

branches, private and international organizations, it was initially hoped to use a single 

indicator as a proxy of the level of healthcare provided within each country. However, very 

limited information was available regarding which factors would be best to use as proxies, so 

five published indicators were considered (Table 6.1). It was necessary for the indicators to 

be relatable to all countries and not be specific to a given region (for example, malaria related 

indicators could not be applied to all countries given the parasite’s geographic distribution) 

and to be indicators all countries measure routinely. Note that ‘regions’ in this context were 

defined as a group of neighbouring countries.  

The WHO published a list of World Health Statistics Indicators (World Health Organization, 

2015a), with a description of each indicator, from which the indicators used for this analysis 

were chosen. However, some drawbacks could be noted against the use of each one 

including the difficulty to dissociate the role of external funding from governmental. Each 

factor was used in turn to determine how likely a given country was to detect and control a 

novel infectious disease outbreak. All factors were plotted against each other and the 

Pearson correlation coefficients calculated, to determine possible associations between 

them (See Appendix, Table 2).  

No strong correlation could be found between these indicators, with the strongest 

correlation coefficient of 0.63 between life expectancy and measles vaccination (95% 

confidence intervals ranging between 0.54 and 0.70). The absence of correlation between 

indicators implied that the indicators affected different parts of the healthcare within each 

country. Such variation suggested that using a single indicator was not reasonable and 

therefore a combination of several indicators may be needed to be used instead. These 

findings were supported by Moore et al. (2016), who also found that healthcare systems 
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could not be adequately described by a single factor. Given the need for a more holistic 

understanding of healthcare systems, epidemic preparedness indices were used instead of a 

single factor. A very small number of indices could be identified to have been fully developed 

and with results freely available, namely the Rand Corporation’s Infections Disease 

Vulnerability Index and the Global Burden of Disease’s Healthcare and Quality Access Index, 

with more in the process of development (Global Health Security Index) or publication 

(Metabiota), at time of writing. Very little detail was available regarding methods or results 

from the two latter indices. Finally, the author was aware of the Joint External Evaluation 

(JEE), a WHO endorsed tool to determine country level preparedness. However, the number 

of countries taking part was too small to provide any insight into global preparedness 

(International Working Group on Financing Preparedness, 2017) and was therefore not used 

for this analysis. 

The indices used for this specific analysis were therefore, those developed by Rand 

Corporation and the Global Burden of Disease. Each index was based on different factors and 

therefore represented health in different ways, as described in Table 6.2. Note that, as very 

limited information was available on the Global Health Security Index, this was not included 

in the Table 6.2. Additionally, the Rand Corporation index will thereafter be referred to as 

the ‘Rand index’ and the Healthcare Access and Quality Index as the ‘GBD’ index. To make 

both index results comparable, the GBD scores were divided by a factor of 100.  

Although the preliminary results from both indices were very similar, their representation of 

healthcare systems were very different (Table 6.2), with the GBD index only considering 

diseases (both infectious and non) and the Rand index also considering governmental and 

demographic aspects of health. As it was unclear whether focusing on population health 

alone was a good manner of representing a country’s healthcare system or not, it was 

therefore not possible to justify the use of one index over the other. Therefore, both (Rand 

and GBD) were used in turn for this analysis. 
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Table	6.1:	Summary	of	the	indicators	(downloaded	from	the	World	Bank,	data.worldbank.org),	reasoning	and	drawbacks	for	each	indicator	used	as	a	
proxy	for	healthcare	development.	

Indicator	name	
Download	
date	 Reasoning	 Drawback	

Incidence	of	
tuberculosis	(per	
100,000	people)	

21st	February	
2018	

Provides	an	estimate	of	the	burden	of	Tuberculosis	infection	in	the	
population	and	the	challenge	for	control	programmes.	Given	the	
slow	progress	of	the	disease;	control	programmes	are	slower	in	
reducing	incidence	than	prevalence	and	mortality	(World	Health	
Organization;	2015b).	

External	funding	is	likely	to	have	a	large	
impact	on	certain	countries;	difficult	to	tell	
how	much.	

Antiretroviral	
therapy	coverage	
(%	of	people	living	
with	HIV)	

21st	February	
2018	

Allows	an	understanding	of	the	progress	made	to	provide	therapy	
to	all	infected	(especially	in	low-	and	middle-income	countries)	
(World	Health	Organization,	2015b).	

External	funding	is	likely	to	have	a	large	
impact	on	certain	countries;	difficult	to	tell	
how	much.	

Health	expenditure,	
total	(%	of	GDP)	

21st	February	
2018	

According	to	the	WHO,	in	order	for	a	country	healthcare	system	to	
prevent	infections,	it	must	have	a	well-functioning	system	
(World	Health	Organization,	2005).	

External	funding	is	likely	to	have	a	large	
impact	on	certain	countries;	difficult	to	tell	
how	much.	Difficult	to	dissociate	
governmental	from	out-of-pocket	funding.	

Immunization,	
measles	(%	of	
children	ages	12-23	
months)	

6th	March	2018	

According	to	the	WHO,	immunization	is	crucial	in	reducing	under-
five	mortality,	and	measles	vaccination	an	indicator	of	healthcare	
system	performance		
(World	Health	Organization,	2015b).	

External	funding	is	likely	to	have	a	large	
impact	on	certain	countries;	difficult	to	tell	
how	much.	
Some	developed	countries	(good	healthcare	
systems)	are	seeing	reduced	uptakes.	

Life	expectancy	at	
birth,	total	(years)	 6th	March	2018	

This	indicator	captures	both	infectious	and	non-infectious	causes	of	
morbidity	and	mortality	
(World	Health	Organization,	2015b).	

Does	not	only	depend	on	healthcare	system	
(for	example,	air	pollution,	war…)	
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Relative distance and regression analysis 

To determine whether the two indices provided similar results in terms of healthcare access, 

the country scores according to each index were plotted against one another, before 

performing a Bland-Altman analysis (analysis of measuring agreement between two 

quantitative measurements; Giavarina (2015)). The latter method plots the mean of results 

for both methodologies (here the healthcare index scores per country) against the difference 

in results. Note that the GBD index scores were divided by a factor of 100 for this analysis 

only, to make the results more readily comparable.  

To determine which countries might pose a higher risk for the global community, it was 

assumed that connectivity and the level of healthcare provided should be weighted evenly, 

and therefore the connectivity of each country was plotted against each healthcare index 

value. A point representing the ‘worst case scenario’ (WCS) showing the highest connectivity 

present in the data against a healthcare development index score of zero, was added to these 

plots. This point was, of course fictitious, but helped determine which countries were closest 

to such a scenario. The relative distance between each country and the WCS point was then 

calculated and represented using a radar plot, for each index. The equation used to calculate 

the relative distance of country i was: 

!"#$%&'"	)&*%$+,"- = 	/(1- − 0)5 +	(1 −
8-
8 )

5 

 

Where 8 is the fastest connectivity observed in all countries, 8-  is the connectivity for country 

i and 1-  is the preparedness index value. In order to calculate these relative distance values, 

both axes were adjusted to be on comparable scales; ranging between 0 and 1 for both 

indices. The relative distance of each country from the WCS point was recorded in Table 6.4, 

along with each index score and connectivity. 

To determine whether there was a relationship between each county’s connectivity and 

healthcare index, a simple linear regression analysis was first attempted. However, when 

plotting residuals it became clear that the relationship was not linear, therefore a second 

order polynomial model was developed, with the equation: 

1- = $9 + $:8- +	$58-5 + 	Ɛ 

With x= index score (GBD or Rand) for country i, 	θ= is the connectivity for country i, with 

parameters a and Ɛ an error coefficient. 
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Results 

The seasonality of the global connectivity (8) can be seen in Figure 6.1, with some similar 

seasonal patterns to the global airline network seen in previous chapters clearly evident: 

peaks occurring between July and September and troughs between January and March, with 

additional peaks and troughs were seen in the intervening seasons. However, the average 

seasonal variations in global connectivity are relatively small, ranging from 0.03 (month 1) to 

0.05 (month 55). 

As can be seen in Figure 6.1, month 55 was the month with the quickest connectivity, so was 

used to determine the 2.5 and 97.5% percentiles for each country, as a means of representing 

the worst-case scenario of an outbreak spreading internationally, shown in Figure 6.4. 

Overall, the majority of countries showed consistent connectivity values, especially those 

with high index scores, with some variations. Additionally, some island countries like Fiji and 

Iceland, showed large variations in connectivity. 

Overall, both healthcare indices showed similar results (correlation coefficient=0.90), with 

countries such as Somalia and the Central African Republic recorded as being some of the 

most vulnerable countries to the threat of an epidemic by both indices, whereas countries in 

Western Europe were most resilient (Table 6.3, Figure 6.2). The Rand index showed a large 

number of countries with healthcare scores of less than 0.50 (n=72, 38.5%) and the majority 

of these were in the Western/Central Africa region (n=24, 33%). The GBD index showed fewer 

countries with scores below 0.50 (n=47, 24%), with the majority of these (n=17, 36%) again 

in Western/Central Africa. 

However, when considering the Bland-Altman analysis (Figure 6.3), most disagreement 

(largest differences between index scores for each country) was seen in the countries with 

the smallest index scores, such as Somalia and Central African Republic. Most agreement 

(smallest differences) was seen in countries with high index scores, represented closer to the 

red line of no difference. The largest difference between index scores was seen in Mauritania 

(difference= -0.41).	
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Figure 6.5 A showed the range of index scores for each country, from 0 (Somalia) to 1 

(Norway). The USA was the country with the fastest connectivity (0.17 countries per time-

step), whereas Tuvalu was the slowest (0.00071 countries per time-step). From Figure 6.5 A, 

it could be seen that countries with the lowest index scores also tended to be poorly 

connected, and that the majority of these were in Africa. Additionally, a number of small 

island nations (such as Tuvalu, Tonga and Samoa) had an average-to-good healthcare score 

but poor connectivity. A number of European countries such as Iceland and Luxembourg had 

good healthcare index scores but low connectivity scores (index=0.98, connectivity=0.047 

and index=0.88, connectivity=0.049, respectively). Overall, Latin American countries 

(excluding Caribbean) and Middle Eastern countries had good healthcare and average 

connectivity, with some exceptions such as Honduras, which had a low healthcare score 

relative to other neighbouring countries (Table 6.5). The smaller islands of the Caribbean 

were not very well connected but had over average healthcare scores, except for Haiti, with 

poor healthcare and poor connectivity. On the other hand, Jamaica and especially the 

Dominican Republic had average healthcare and good connectivity. A group of six countries 

(France, Germany, Italy, Spain, United Kingdom and USA) were seen as having excellent 

connectivity and excellent healthcare. Countries such as India, Morocco, Egypt, Indonesia 

and the Dominican Republic were seen to have good connectivity but average healthcare 

scores, whereas Pakistan was seen to have a lower healthcare score than the latter countries.  

Regarding the Global Burden of Disease’s Healthcare Access and Quality Index, the smallest 

value was recorded in Central African Republic (29), and the highest in Andorra (95) although 

the latter was not represented in Figure 6.6A as this principality was not registered in the 

OAG data. Similar patterns and groupings of countries could be seen for both index scores 

(Figure 6.5 A and Figure 6.6 A), with African countries grouped together with low healthcare 

index scores and low connectivity, in direct opposition to Western European countries. 

Countries with good connectivity but average healthcare index scores or below were India, 

Philippines, Indonesia and Pakistan. Another grouping of countries could be seen with slightly 

above average healthcare and relatively good connectivity included the Dominican Republic, 

Viet Nam, Malaysia, Brazil, Egypt and Morocco.  

From Figures 6.5 B and 6.6 B, it became apparent that India was the closest to the Worst-

Case Scenario point, thereby potentially posing the greatest risk to the global community 

(according to this analysis), followed by either Pakistan (Rand Index) or Indonesia (GBD 

Index). When considering the regional variations (black stars), both indices agreed that South 

Asia posed the highest risk to the global community (distance to WCS= 0.71 (Rand) and 0.77 
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(GBD)) (Table 6.4). In contrast, South West Pacific posed the lowest risk, with distance to 

WCS values of 1.06 (Rand) and 1.05 (GBD). This results from both the lower than average 

connectivity and higher than average level of healthcare development of South West Pacific 

nations (Table 6.3 and 6.4). 

From the second order polynomial model (red line in Figures 6.5A and 6.6A), the associated 

Akaike Information Criterion (AIC) values were smaller for the linear model: -109.42 for the 

linear model and -113.95 for the polynomial model using the Rand index; -96.93 for the linear 

model and -106.43 for the polynomial model using the GBD index. 
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Discussion 

The aim of this study was to explore variations in the risk of international spread of an 

epidemic based on a composite score incorporating the given country’s global connectivity 

and level of healthcare development. The results suggest that certain countries such as India 

and Pakistan, are well connected but with low-to-average healthcare systems, and as such 

may have high potential risk for international spread should an outbreak start in these 

countries. On the other hand, countries like Monaco and Slovenia were more likely to detect 

an outbreak early due to their good healthcare systems, but also had low connectivity, 

thereby better able to control its international spread.  

The proxies initially considered to represent healthcare systems globally were all included in 

the World Health Organization’s 2015 Global Reference List of 100 Core Health Indicators 

(World Health Organization, 2015a), and it was first assumed that these proxies were closely 

connected to a country’s outbreak preparedness. However, each indicator had its flaws, such 

as the difficulty in determining the amount of foreign aid given for measles vaccination 

campaigns in resource poor countries (Gavi, 2017) from governmental vaccination 

campaigns, for example. Additionally, a country’s spending on healthcare as a percentage of 

its GDP may also include external funding from the private sector, which may or may not be 

recorded and reported, depending on the country (World Health Organization, 2015b). The 

use of a single indicator to represent a healthcare system was determined not to be 

representative enough of a healthcare system for our purposes, and as has been suggested 

in previous studies (Chan et al., 2013; Moore et al., 2016), multi-factorial indices were used 

there-after. The two indices used here provided freely available results describing 

international healthcare systems, using factors such as population, health, demographics and 

economics among others (International Working Group on Financing Preparedness, 2017). 

Although this analysis was primarily focused on the international spread of infectious 

diseases, having an accurate representation of a country’s healthcare system also included 

other factors such as demographics and economics. Therefore, it was difficult to determine 

which of the indices was the most appropriate to use. 

It is interesting to note that countries which have seen important outbreaks develop into 

pandemics in this century alone were identified among those having good connectivity but 

also, interestingly, above average healthcare index scores. Of note were: Brazil from which 

the Zika pandemic spread across the American continent in 2015; China (including Hong 
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Kong) from which the Severe Acute Respiratory Syndrome (SARS) outbreak spread globally 

in 2003, and Mexico from which the H1N1 Influenza A strain also spread globally in 2009. 

These examples give some confidence that our model is able to predict which countries pose 

an international risk; however, it is worrisome that other countries like India, Pakistan, the 

Philippines and Indonesia, are equally well connected but with less developed healthcare 

systems than the countries previously listed. It might be reasonably expected that if an 

outbreak were to spark in these countries, the pathogen may be undetected for an extended 

period of time and could readily spread internationally, with the potential to spark further 

outbreaks. Some regions of the world may have good healthcare systems but be poorly 

connected, such as South West Pacific islands, resulting in a reduced risk to the global 

community as a consequence. At the regional level, there was agreement between both 

indices that Southern Asian countries (such as India) pose a higher risk to the global 

community, whereas the South West Pacific countries pose the lowest risk. This is likely a 

direct result of the connectivity of these locations, as South Asia is better connected than 

South West Pacific.  

Whether a pathogen will spread internationally after initial importation and at what speed 

depends not only on the country of origin, but also on the epidemiological features of the 

pathogen. For example, vector borne pathogens will only spread into their imported 

destinations if the correct vectors are present (Tatem and Hay, 2007; Wilson, 1995). 

Additionally, the pathogen must be able to spread with relative ease within and between 

susceptible populations. Airborne pathogens, and especially those that are transmissible 

before the symptomatic phase, are particularly prone to global spread (Amesh et al., 2018; 

Wilson, 1995). Finally, it can be argued that the pathogen must reach a part of the population 

that is able to fly internationally and come into contact with those who are infectious. 

Civil unrest is known to impact a country’s infrastructure, including healthcare and 

transportation (Bonds et al., 2018). When considering where the next pandemic is most likely 

to spread from, having an understanding of the stability of a given country (political or 

otherwise) helps understand whether this risk is likely to change. The impact of war was seen 

in countries like Syria where the global connectivity was significantly reduced over the time 

period examined. The West African Ebola virus outbreak of 2014 showed the devastating 

impact an outbreak can have on a healthcare system and reverse hard-fought progress in a 

country’s development. In 2014, it was reported by countries to WHO that only one-third of 

countries globally were suitably prepared to detect and respond to a national public health 

emergency, with African countries being the least prepared (International Working Group on 
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Financing Preparedness, 2017). A good and trusted healthcare system should be able to 

detect and control a pathogen in a timely manner, but will also disseminate correct and 

appropriate information to the population, thereby reducing the level of fear associated with 

an outbreak that may lead to large population movements (International Working Group on 

Financing Preparedness, 2017). In our strongly connected world, an outbreak in one country 

has the potential to cause public health concern internationally (Brower, 2003). Therefore, 

understanding global connectivity and preparedness is crucial.  

Given the relatively large number of countries with poor-to-average healthcare but average-

to-good connectivity, such as India and Pakistan, improving surveillance systems to quickly 

detect an outbreak is crucial to help avoid future pandemics. These countries must be 

encouraged (and/or supported by the international community) to further develop their 

healthcare system and preparedness to cope with the possibility of an outbreak without 

generating an international public health concern (International Working Group on Financing 

Preparedness, 2017). In the event of a public health event of international concern, the global 

community must unite to help control the spread of the given pathogen, however, this 

emergency help may be detrimental to the future development of a country by reducing the 

system’s long term effectiveness and resilience (Harvard Global Health Institute, 2018). 

Therefore, international aid must be given in a manner that will encourage the development 

of a healthcare system, with staff training and infrastructure development (Bonds et al., 

2018).  

In May 2018, the WHO and World Bank co-created the Global Preparedness Monitoring 

Board in the hope of improving global preparedness for the next pandemic, by holding all 

actors accountable for the development and maintenance of adequate healthcare systems. 

Additionally, the Board is placed in an ideal position to keep global health at the top of the 

international agenda, rather than letting other international issues take precedence and 

therefore continuing the pattern of responding only during international emergencies  

(Harvard Global Health Institute, 2018; World health Organization, 2018e). It could be argued 

that this analysis may help provide the new Board with the initial information regarding 

which countries should receive international funding as a priority.  

Pandemics are known to be very costly. For example, the SARS outbreak of 2003 is estimated 

to have cost $52.2 billion to the global economy (International Working Group on Financing 

Preparedness, 2017). The most conservative models of future pandemic estimate the 

economic losses to be between 0.1 and 1.0% of the global GDP, which is relative to climate 



191	| 	 C h a p t e r 	 6 	
	

change and natural disasters (International Working Group on Financing Preparedness, 

2017). Countries such as the United Kingdom regard the threat of a future pandemic as very 

serious, with the potential of causing thousands of extra deaths and important economic 

losses (United Kingdom Government, 2017). Given uncertainty about the timing of the next 

pandemic, global preparedness is all the more essential to reduce potential costs 

(International Working Group on Financing Preparedness, 2017; Semenza et al., 2016b). 

There is an abundance of literature stating that weak healthcare systems are ideal settings 

for an outbreak to spark due to slow within-country detection (Barber et al., 2017; Bonds et 

al., 2018; Elmahdawy et al., 2017; Moore et al., 2016). However, how these countries are 

connected globally and the potential international spread of an epidemic (thus developing 

into a pandemic) is not often considered together. Although developing healthcare systems 

globally is of crucial importance (and strongly encouraged by the Sustainable Development 

Goals (United Nations, 2017)), it can be argued that considering each country’s pandemic 

spread potential must also be considered to prioritise and take early and adequate control 

measures and thereby prevent the further costs associated with a pandemic, both in terms 

of mortality, morbidity and economics. Given today’s global connectivity and the 

unpredictability of the location of the start of an outbreak, ensuring a level of preparedness 

at a global level is critical (International Working Group on Financing Preparedness, 2017).  

Although significant progress had been made globally in terms of access to and overall quality 

of healthcare provided by each country, the gap between countries with good and poor 

healthcare systems is widening. Some countries like Turkey, China and South Korea have 

improved their healthcare systems in a short period of time and now have good systems. 

Others such as Ethiopia, Peru and the Maldives have out-performed their expected rate of 

improvement (Barber et al., 2017).  

It is in the interest for the global community to invest in strong healthcare systems to prevent 

outbreaks from developing into pandemics, as these have a direct impact on economic 

growth (as seen in South Korea, and West Africa) and may overturn developmental progress 

already achieved (International Working Group on Financing Preparedness, 2017). Because 

a country is deemed vulnerable, that does not entail that an outbreak will start in that 

country or that it will fail in controlling it. But rather that control measures must be taken 

promptly, in a culturally sensitive manner and be adequately targeted given the pathogen 

and population (Moore et al., 2016). 
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Limitations 

A number of limitations were present in this analysis, including some relating to the index 

data available. Firstly, although a remarkable effort was made by the different groups to 

represent healthcare systems in the most accurate manner possible, there is always the 

possibility of bias and error that the author is not aware of, and that cannot be accounted 

for. Therefore, adding confidence intervals was not possible. Of the many factors included in 

each index, not many overlapped and which ones represent healthcare in a more accurate 

manner was unclear at time of writing. Even though there was a large overlap in the number 

of countries present in all data sets (global connectivity and both indices), a number were 

notably absent from various ones. The majority of those were small nations, such as Andorra 

and San Marino (missing from the airline data); however, the majority if not all of those 

missing from the indices were island nations, such as Aruba and Saint Kitts (missing from both 

indices). The absence of these nations may prove to be of importance if, like the Dominican 

Republic, they are well connected to the rest of the world but have a limited healthcare 

system. Additionally, these indices were done at the country level and did not consider 

within-country regions, which may have a significant impact on the results, especially for 

large countries like India. Only the Rand index included demographics in its factors, which is 

likely to also influence the location of the emergence of the next outbreak. Neither index 

used any measure of ecological changes within the country, such as level of deforestation, 

which have an important impact on the number of spill over events, from which outbreaks 

of zoonotic origin may spark (Jones et al., 2008). Finally, the speed at which a pandemic 

would spread globally varies according to the pathogen in question and how contagious it is. 

For example, respiratory pathogens are difficult to control given their modes of transmission, 

and RNA viruses have high replication and mutation rates (Amesh et al., 2018). Taking the 

pathogen type into account was partially considered by the GBD index, but not by the Rand 

index. Finally, this analysis only considered the airline spread of a pathogen, without 

considering other modes of transportation that cross international boundaries, such as sea 

and land travel. This could not be considered in the model as the only transportation data 

available to the author at the time was airline data.  
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Chapter 7 – Discussion and conclusion 
	

Preamble 

This final chapter summaries key findings of the thesis as well as their implications in terms 

of research and suggests possible future work.  
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Summary of findings 

In the 21st century alone, the global community has seen a number of outbreaks develop into 

pandemics, such as SARS (2003), Influenza A H1N1 (2009) or Zika virus (2016), each with an 

important cost, both in terms of lives lost (or impacted) and economics. With ever more 

airline passengers travelling today, modelling international travel is an important tool that is 

being increasingly used and referred to by policy makers. The aims of this thesis were to 

understand what the airline data represents in terms of global airline passenger movements 

and determine whether its use was appropriate to understand the international spread of 

human infectious diseases.  

From the systematic review it became apparent that expensive and closed-source data sets 

such as IATA and OAG were most often used by researchers to model the international 

spread of human infectious diseases. These data sets are sold (sometimes at a very high cost) 

by the commercial airline industry as highly accurate airline data between international 

airports (OAG, 2013). Access to this global representation of passengers comes with a license 

for a given length of time and user restrictions but shows limited geographical and temporal 

restrictions. However, the financial cost of these data sets may be a barrier for some research 

groups, making open access data a more suitable alternative. Examples of such data 

providers include the US Department of Transport and the UK’s Office for National Statistics. 

Although it should be noted that these are freely accessible data sets, they are geographically 

and temporally restricted; being only available for internal flights or at country level (rather 

than airport) travel or are usually only available at the quarterly temporal resolution (rather 

than monthly). Another issue is the lack of consensus regarding which data type (number of 

seats, passenger or flights for example) are reported by these data. This makes the potential 

aggregation of different data sets difficult (as they are not representing the same factors) 

and the comparison of models using them difficult as well. Open access data sets have the 

advantage of providing clear data collection methods (which is not always the case with 

closed source data) and can be used for validating a modelling group’s data prior to its use. 

This additional step of validating data (as defined in Chapter 2) was found to be infrequently 

performed by researchers yet should be encouraged. Data validation provides the researcher 

with a clear understanding of what the data represents and identifies any errors and/or 

trends it may contain, as well as providing the reader with confidence that the work 

presented is valuable and noteworthy. Another data quality check often overlooked by 

researchers was the detailed reporting of the data set name, date of download, date range 
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and any manipulation done to the data prior to use, such as grouping nearby airports under 

one label. As a result, a set of reporting guidelines containing all the fields required to make 

the use of a third-party data reproducible was generated (Figure 2.1B). It is hoped that this 

will be used by other research groups in the future. Finally, the majority of articles selected 

here focused on viruses and very few on other pathogens. Although viruses like Influenza are 

a known threat to the global community, bacteria (including antibiotic resistant ones) are 

also known to be carried internationally by people, including airline passengers, yet are 

seldom considered for modelling.  

The author conducted initial quality checks to understand what the OAG data represented in 

terms of passenger numbers and determine any potential trends and biases. It soon became 

apparent that the data showed a strong seasonality and that specific airports were shown to 

play specific roles. For example, ATL was predominantly used for connections whereas PEK 

was very few connections compared to the number of departing and arriving bookings. 

However, it was identified that OAG, sold as international airline data between airports (OAG, 

2013) also contained railway stations as well as bus and ferry terminals among the routings 

provided, each with their own IATA codes. As these could not be assigned to an airport, the 

codes were kept in the data but their presence recorded. Recording of these stations was 

only noted in Bobashev G. et al (2008) but had not been shared with the authors in any 

correspondence with the company. This highlights the importance of knowing one’s data as 

issues may not be reported but still be present when the data are bought at high cost. 

Additionally, by checking one’s data, any collection errors lay become apparent and may be 

addressed appropriately if possible, as was done here.  

The strong network seasonality seen in the previous chapter was linked to countries in the 

northern hemisphere, as this is where the majority of the global population resides. It was 

also noted that some countries are strongly connected to each other, such as Spain and the 

United Kingdom. These trends are likely to be influenced by passenger purpose of travel to 

these destinations, such as travelling for leisure to Spain from the UK, for example. When 

directly comparing open access data sets to OAG, a general overall agreement could be 

noted, with a large amount of noise and some discrepancies. When validating the OAG data 

against open access data sets to understand how many passengers were included in the OAG 

bookings, it was clear that in the aggregated airport level data that one booking represented 

roughly one passenger. However, when directly comparing airport level data, differences in 

how many passengers were included in each booking became apparent such that smaller 

airports and countries showed some discrepancies with OAG data. Because of this overall 
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agreement, it was decided not to adjust the data and continue the analyses with OAG 

bookings representing one passenger. 

The use of accurate airline data may provide important information regarding the 

international spread of human pathogens. For example, using returning airline passengers as 

a sentinel can help understand the changing epidemiology of disease in a given country 

(Fricker and Steffen, 2008; Lopez et al., 2016), as well as the risk in the passenger’s home 

country upon their return, as infected humans can transmit pathogens to local vectors 

(Angelini R et al., 2007). When comparing returning chikungunya and dengue cases with that 

of returning travellers, no clear link could be identified, suggesting that the risk of infection 

faced by travellers was not relative to the number of passengers but rather seasonal 

according to their destination. Additionally, the age pattern of the returning cases provides 

insights into their exposure risks that should be considered by point of care clinicians. 

However, this airline travel data along with endemic incidence, also allowed the author to 

understand the risks faced by passengers compared to local populations within visited 

countries and also when taking duration of travel into account. When travelling to a country 

with a known infectious disease risk, it can be assumed that a percentage of passengers 

would take necessary precautions, if the risk is known prior to travel. However, sentinel 

surveillance also allows medical professionals to treat returning passengers quicker by 

knowing which pathogen to suspect first when patients return from international travel, as 

well as informing future travellers. The within country risk of dengue and chikungunya varied 

with the destination, such that UK residents travelling to the Caribbean were at reduced risk 

of dengue or chikungunya infection compared to the local population. On the other hand, 

travellers to Lower South America faced a higher risk of contracting dengue compared to the 

local populations. However, when including duration of travel in the model, there was an 

overall protective effect for travellers compared to local populations, with some variations 

between regions. For example, travellers to the Caribbean still faced a reduced risk for 

dengue but faced an increased risk of chikungunya infection in Southwest Pacific, compared 

to local populations. However, considering the variations in passenger number to these 

regions, the absolute risk showed large discrepancies with the relative risk, with North 

America being the safest destination according to the absolute risk whereas South East Asia 

was the riskiest for dengue and the Caribbean for chikungunya when using the relative risk. 

Passenger purpose of travel could not be included in this analysis as it was absent from the 

original data, however, this is very likely plays an important role in the varying levels of risks 

faced by travellers compared to local populations. Although reporting of dengue and 
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especially chikungunya may not always be systematically done by countries and UK residents 

and doctors may not be aware of what infection they are faced with, this was the first 

attempt (that the author is aware of) of using sentinel data to understand within country 

risks faced by travellers. 

Finally, global pandemic preparedness was analysed by understanding how likely an outbreak 

would be to spread internationally when started from a given seed country. Understanding 

the level of the healthcare provided in each country was attained using two indices, both 

combining a number of factors such as level of disease in population (GBD) or politics as well 

as demography and education among others (Rand Index). It was determined early that using 

a single factor such as measles vaccination or GDP was not representative of an HCS. Using 

two different indices to determine the level of healthcare provided by each country and their 

global connectivity, it was determined that India was the country with the potential to cause 

the biggest threat to global populations, followed by either Indonesia (Global Burden of 

Disease’s Healthcare Quality Index) or Pakistan (Rand Corporation Index) depending on the 

index used. Additionally, the countries from which recent pandemics have spread (Brazil, 

China (including Hong Kong), Mexico and Saudi Arabia) showed some of the lowest risks for 

global pandemic spread. This is in contrast with the large amount of literature stating that 

countries with poor healthcare systems are more likely to see the development of an 

outbreak, which, with slow within-country detection has the potential to cause a pandemic. 

However, these groups do not also consider each country’s global connectivity, except for 

Bogoch, I. et al (2018). This analysis does not mean that a vulnerable country won’t be able 

to control an outbreak, but rather that there is a significant risk that it will generate a 

pandemic if an outbreak isn’t controlled early (Moore et al. 2016). Although access to 

healthcare has improved globally overall, the gap between countries providing good and 

poor healthcare is still widening, with the majority of HCS not ready to deal with a pandemic 

(International Working Group on Financing Preparedness, 2017). Additionally, civil unrest, 

humanitarian and natural disasters have a direct and significant impact on HCS (Bonds et al. 

2018). However, for an outbreak to develop into a pandemic the pathogen must be 

transmissible with relative ease and with minimal detection (for example, prior to the 

symptomatic phase), reach a population that can afford to fly internationally as well as 

coming into contact with potentially infectious people. If these events occur in a location 

with a vulnerable healthcare system and relatively good global connectivity, there is a high 

risk that an outbreak will reach other countries and potentially cause a public health event 

of international concern. Therefore, it is in every country’s interest to enhance their 
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pandemic preparedness, not only because it will cause fewer deaths in their country but also 

be financially cheaper to them and to the global community. In 2018, the WHO and World 

Bank co-created the Global Preparedness Monitoring Group to tackle this issue. This analysis 

has some limitations, including the absence of other modes of transport and the only use of 

historical data and the author was unaware of which index was best suited for this analysis. 

However, this was the first analysis of its kind at the global level. 

A brief summary of the key findings described above can be found in Box 7.1. 

 

Aims of thesis:  
• Understand what the airline data represents in terms of passenger movements and  

• Determine whether its use was appropriate to understand the international spread of human 

infectious diseases. 

 

Summary of key findings: 
• Chapter 2 showed that expensive data sets (IATA and OAG) were most often used to model the 

international spread of human infectious diseases and poor reporting of sources. 

• Validating data (as defined in Chapter 2) prior to use was infrequently performed but should be 

encouraged. 

• The author developed a reporting frame work outlining the minimum information to report when 

using third party data to make the work reproducible by others. 

• From Chapter 3 clear seasonal trends in travel: peaks in July-August, troughs in November, 

corresponding to their summer and winter months of the Northern hemisphere.  

• OAG was sold as international airline data between airports, yet also contained railway, bus and ferry 

stations and terminals. 

• The strong seasonality was driven by countries such as China and the United States. Passenger 

purpose of travel was also shown to play an important role in seasonality of travel. 

• In Chapter 4, a comparison of airport-level data combined from various data sets showed that OAG 

bookings represent 0.91 passenger per booking. Therefore, one passenger per booking ratio was 

used for the rest of this thesis. 

• Age and seasonality patterns can be seen in the imported cases of chikungunya and dengue from 

Chapter 5. 

• The airline travel data, along with endemic prevalence and duration of travel, showed that UK 

passengers were at reduced risk of becoming infected with dengue when visiting the Caribbean, than 

the local populations. On the other hand, passengers to South Asia were at highest risk of contracting 

chikungunya, compared to the local population. 

• Sentinel surveillance allows medical professionals to understand which potential pathogens patients 

returning from international travel may be infected with, as well as informing future travellers 

regarding the within-country risks. 

• From the global pandemic preparedness analysed in Chapter 6 it was determined that India, Pakistan 

and Indonesia are most likely to see the initial spread of a pandemic. 

• Two indices made up of several factors were used to describe HCS but no understanding of which 

one is best could be determined from this analysis alone. 

• There is an abundance of literature stating that poor healthcare systems lead to disease outbreaks, 

however the author was only aware of one group (at time of writing) who combined this information 

to international travel.  

 

Box 7.1: Overview of thesis aims and summary of key findings. 
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 Limitations	

The systematic literature review had the limitation of only including international travel 

articles, therefore, some relevant articles were knowingly excluded. As this thesis related to 

the international spread of infectious diseases, it was not deemed relevant to include articles 

relating to national travel patterns, even though these may impact the further international 

spread of a pathogen.  

Coding and data constraints have had an impact on the level of detail that could be attained 

for Chapters 5 and 6. The risks faced by airline passengers when travelling abroad (Chapter 

5) could only be modelled for the years 2010 to 2014 as the airline data used was restricted 

to those years. Therefore, it was not possible to consider the risk for Zika during the 2016 

pandemic, another mosquito borne virus carried by the same vectors as the chikungunya and 

dengue viruses, without access to the airline travel data contemporary to the outbreak. 

Additionally, the transmission seasonality for chikungunya and dengue could not be taken 

into consideration as the endemic prevalence in each visited country was only available at 

the annual level. Knowing the strong role played by seasonality in the transmission of these 

pathogens, this is a clear limitation to the analysis that could be addressed in future work. 

Additionally, the absence of duration and purpose of travel from the returning passenger 

data, have implications on the accuracy with which the author was able to model the within-

country risks. It was shown in the analysis that duration of travel impacts on the risks faced 

when travelling, however, this was imputed from an independent data source which may not 

be as accurate as if the information from the patient directly.  

When considering the level of healthcare development for each country (Chapter 6), two 

indices were used, made up of several individual factors representing several aspects of the 

healthcare system. A clear limitation of this analysis is the absence of temporal variation for 

each country. In fact, between 2010 and 2015, a number of countries are likely to have seen 

their healthcare system quality vary as a consequence of conflict (Syria for example), 

important health events (Ebola in West Africa for example) or other known or unknown 

causes. The lack of annual values for these indices is a clear limitation as this may provide 

important information on the varying levels of risk countries pose to the global community 

according to their concurrent level of HCS development. For example, it was shown in 

Chapter 6 that the connectivity of countries like Syria and West African countries significantly 

reduced during the conflict and the Ebola outbreak, respectively, however, according to this 

analysis, their healthcare system development stayed constant. This is unlikely to be true; 
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but, the exact extent of the variation generated by these events remains unclear. 

Additionally, this analysis only considers airline travel without considering land or sea travel, 

which is also likely to disseminate pathogens internationally. Finally, there was no breakdown 

of within-country regions which is problematic for countries such as India that are 

geographically large and may have varying baseline risks of developing an outbreak 

depending on the within-country region. 	

Implications of research 

Mathematical models using airline passenger data are increasingly used to inform public 

health policy (Basu and Andrews, 2013). However, a number of limitations considering their 

use and origin need to be considered by researchers and policy makers alike. Firstly, the 

validity of the airline data itself. As shown in Chapter 2, commercial airline data, such as IATA 

and OAG, is most frequently used by researchers, and it can be assumed that because these 

data come at a very high price, they are taken as the truth. Because researchers are not 

second guessing the data, or at least not reporting that they are, their validity is assumed not 

to be questioned. However, when doing some simple analyses for this thesis, it became clear 

that the OAG data were not perfect, namely because they included railway stations as 

‘connections’ in routings with recognised departing and arriving airport codes. This was not 

disclosed by the company and the routings could not be corrected as no airport code could 

not be attributed as a replacement for those railway stations. Additionally, the data were 

sold as airline ‘Adjusted.Bookings’ and ‘Unadjusted.Bookings’, with no indication from their 

documentation regarding the differences between the two, and what a booking represents 

in terms of passenger count. When asked in personal communications what the differences 

were between each type of booking and whether they could provide additional information 

regarding their collection methods, the company did not provide any additional details. 

However, they informed the author that the ‘Adjusted.Bookings’ were more accurate, which, 

when plotting against time, matched the author’s a priori knowledge of the seasonal trends 

of global travel. Therefore, this thesis has provided the first in-depth description of a closed-

source data set (the author is aware of), highlighting problems with the collection methods 

and with the data themselves. 

As well as not reporting what the data represent, detailed reporting of the data set names 

and sources used in models is infrequently communicated by researchers. While it is 

increasingly requested in other fields such as biological sciences (Nature, 2014), accurate 

reporting of third party data, such as airline data, does not seem to be held accountable to 
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the same reporting standards. With so many data sources available and with varying levels 

of quality, strongly encouraging a set of reporting standards, leading to reproducibility is in 

the interest of the field of research and the basis of scientific research. Additionally, the 

availability of a data set that the modelling community can agree upon using, providing 

accurate and detailed information about airline data would make the comparison of models 

more realistic. Until this is a reality, policy makers and journals relying or publishing these 

models (either to influence policy or to understand outbreak developments) should 

encourage researchers to report data according to the guidelines developed from this thesis 

and detailed in Figure 2.1B.  

Furthermore, providing a description and performing a validation of the airline data used for 

these models will give readers an insight into their accuracy. As many research groups are 

using commercial airline data, knowing their flaws may encourage them to validate them 

before use. At the time of writing, the author was unaware of any such data comparisons 

having previously been attempted or published, and one was therefore attempted with the 

aim of understanding how many passengers were included in each ‘Adjusted.Bookings’ from 

OAG. Using four open access and independent data sets, it became apparent that when 

considering single airports and countries there were some discrepancies between the open 

access data sets and OAG, especially when considering small airports. Similar discrepancies 

were apparent when considering countries. However, when open access data sets were 

aggregated together to the airport or country level, the overall ratio of passenger per booking 

was much closer to one. Nevertheless, the OAG data severely underestimated the number 

of passengers departing from airport code ‘USA’ (Concorde airport in the United States, 

USDoT data) and passengers departing from Greenland (UK ONS data). Chapter 4 aimed to 

provide the first validation of a commercial data set with open access data to determine the 

validity of the former. Additionally, it was determined that possible reasons behind these 

variations at the airport level of passengers per booking may also include a passenger’s 

purpose of travel: if travelling for work, the booking is more likely to only consider one 

passenger, whereas if travelling for leisure or to visit friends and relatives, a booking may 

consider multiple passengers. These variations may also reflect the choice of departure and 

destination airport for passengers, such that business passengers travelling between London 

and Europe are more likely to use London City airport due to its proximity to the financial 

district (Civil Aviation Authority, 2011), for example. 

To the author’s knowledge, this thesis showed the first attempt at using sentinel data to 

understand within-country risks of chikungunya and dengue faced by UK travellers. It was 
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determined that duration of travel within each country played an important role and overall 

protective effect in the level of risk encountered by the travellers. This analysis gives a first 

impression of the impact of duration of travel by country using aggregated data from another 

source collected for a different purpose (TravelPac data). Although the risk of contracting a 

VBD when travelling to affected regions is known to vary according to factors such as 

duration of travel and within country behaviour, little data was available regarding the 

within-country behaviours and therefore could not be included in the model. For example, 

passengers travelling to visit rural locations to visit relatives or for backpacking will face a 

different level of risk than passengers staying in air-conditioned hotel and spending their time 

in urban areas. However, there is little data available combining duration and purpose of 

travel with passenger numbers and demographics by country other than TravelPac, which is 

not very detailed in terms of passenger numbers as previously described. Having such 

detailed data freely available would be an asset to the field. In a time when the global 

population is increasingly well connected with airline travel, it can be hoped that the more 

information modellers have available to use to build their models, the more representative 

it will be. Indeed, this lack of information may have a detrimental effect when it comes to 

modelling within-country risks for varying diseases and potentially for the understanding of 

the spread of the next pandemic. In must also be remembered that knowledge of the risks 

faced by passengers according to their duration of travel and within-country behaviour will 

also have an impact on how travel clinics disseminate information and how clinicians treat 

returning passengers. 

Finally, using global airline connectivity and the level of healthcare development in each 

country could help understand which countries may pose a higher risk in the potential initial 

spread of a pandemic. Such an analysis had only been previously attempted at the national 

level in relation to the 2017 plague outbreak in Madagascar by Bogoch et al. (2018), but not 

at the global level. An abundance of literature states that countries with poor healthcare 

development are more likely to see the development of an outbreak (Barber et al., 2017; 

Bonds et al., 2018; Elmahdawy et al., 2017; Moore et al., 2016), however, this is not often 

considered in combination with their international airline connectivity, which is of 

importance when considering the spread of pandemics. The results from this analysis showed 

that a different set off countries pose a higher risk to the global community (India, Pakistan 

and Indonesia) than those with the poorest healthcare development (Central African 

Republic, Somalia and South Sudan) (Moore et al, 2016 and International Working Group on 

Financial Preparedness, 2017) or those which have recently seen the development of an 
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outbreak that developed into a pandemic (Mexico, Brazil and Saudi Arabia). Given the 

number of passengers who travel internationally every day, the global community should be 

encouraged to consider healthcare development and international travel together. This 

analysis has highlighted the fact that there are very few indices freely available to represent 

healthcare development and the factors used (for example, level of infectious diseases, 

education, politics…) were different in the two indices used here. As there does not seem to 

be a set of guidelines advising which factors may be more or less representative of healthcare 

development, the development of more indices using a range of factors but with comparable 

methods, would be helpful for the field and for future policy development at the 

international level. Additionally, understanding the impact of civil unrest and humanitarian 

crises by having a more detailed historical view at changes over time would be very useful to 

understand the potential future risks faced by the global community. 

Understanding which countries may pose a more significant international risk provides 

crucial information about where to (re-)direct international aid over a longer period of time, 

which is more advantageous to a country than short term investment. Such aid allows the 

development of the country’s infrastructure, thereby becoming more resilient to future 

disease outbreaks (Bonds et al., 2018; Harvard Global Health Institute, 2018; Moore et al., 

2016). By assisting in the strengthening of HCS of the most vulnerable countries, the global 

community will become a safer place. Additionally, by providing healthcare workers in the 

UK information about which countries pose varying risks to travellers will help them identify 

potential pathogens quicker when patients present to them and disseminate the correct 

information from travel clinics. 
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Future perspectives  

A number of projects could derive from this thesis, of which a few are described below. 

Firstly, a detailed direct comparison of the two data sources principally used by mathematical 

modellers, IATA and OAG, has not yet been reported, therefore it is still unclear whether one 

is better than the other. If this is the case, researchers and organisations relying on this data 

should be made aware and encouraged to use the most appropriate data set. Therefore, a 

continuation of this thesis would include undertaking such a comparison at the most refined 

level of detail possible, at least monthly airport data comparison. Although potentially very 

costly for the research group, it would help determine the differences between both data 

sets and whether one is indeed more favourable to use for infectious disease modelling than 

the other. This may also be of interest to the companies themselves if they wish for 

researchers to use their data for public health purposes. 

Another important follow on would be to generate an open access data base that combines 

airline travel information and demographic information, such as age group, sex, size of travel 

party, purpose of travel and within-country activities. Such information could result from a 

collaboration with social scientists to gain a detailed understanding of behaviours during 

travel. Although TravelPac does provide some of this information, gaining more detailed data 

is likely to require more in-depth or different interviews than the ones being undertaken by 

the ONS team. This data base would need to be as accurate as possible both geographically 

(at airport level) and temporally (at least monthly, although the daily and/or weekly 

variations may also provide key insights). Given that IATA and OAG are data sources 

generated by and for the airline industry, generating a database specifically for 

epidemiological purposes, is very likely to provide key insights into the development and 

geographical extent of a pandemic, thus providing more accurate and more reliable 

information for policy makers. Such a data base wold also allow researchers to use the same 

information, therefore making their work more comparable between them. However, the 

data base would need to be updated on a regular basis to keep the information relevant to 

outbreak scenarios, which may require cooperation from the airline data providers 

themselves. 

From the dengue and chikungunya analysis chapter, seasonality could not be considered due 

to the nature of the endemic levels of disease identified. A future piece of work could include 

this factor as seasonal transmission is known to be very important in the spread of these 

VBDs and will likely impact the relative risk for UK passengers in different regions of the 
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world. Additionally, adding within-country activities as a model parameter could provide 

additional insights into which behaviour pose more or less of a risk to UK travellers and in 

which countries. 

Understanding the impact of conflict and important events (such as natural disasters or 

severe outbreaks) on HCS over time would provide important additional information for 

international health policy makers. This would provide insights into which countries to target 

for long term development aid, to improve base levels of vaccination, sanitation and basic 

healthcare needs. Another perspective is the breakdown of the index scores by within-

country regions (for the highest risk countries to start off with, such as India, Pakistan and 

Indonesia) and seeing the geographical variations. Accomplishing this work would require 

access to detailed data relating to health, and recreating the work done in the indices, which 

was beyond the scope of this thesis.	Therefore, the creation of an open access database 

collating annual and sub-national data directly and indirectly relating the healthcare could 

provide key insights into the impact of unrest on healthcare, which country may pose varying 

threats and how these change over time. 

Finally, media reporting of an outbreak of international concern is likely to have an impact 

on its containment from the speed of the international response before it escalates to a 

pandemic. For example, during the 2014 West African Ebola outbreak, WHO and the global 

community were criticised for their slow response (BBC, 2014). Indeed, international aide 

and press coverage were slow and minimal until cases from Western countries were 

identified. On the other hand, when the Zika epidemic started to affect Brazil a few months 

before the 2016 Rio de Janeiro Olympic Games, the response was much faster, and news 

coverage more important. The significant variations in reporting between these outbreaks is 

thought provoking (Hayden, 2016) and merits a detailed analysis regarding the factors 

influencing these reports and the impact media reporting may have on the development of 

the outbreak and pandemic.  
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Table 6.2: Pearson correlation coefficient and confidence intervals for each factor used, to 
determine a single proxy for healthcare (Chapter 6). 
 Health 

expenditure 
HIV 
treatment 

Life 
expectancy 

Measles 
vaccination 

Tuberculosis 
incidence 

Health 
expenditure 

     

HIV 
treatment 

0.27  
(0.11, 0.40) 

    

Life 
expectancy 

0.40 
(0.28, 0.50) 

0.34 
(0.19, 0.47) 

   

Measles 
vaccination 

0.24 
(0.11, 0.35) 

0.35 
(0.20, 0.48) 

0.63 
(0.54, 0.70) 

  

Tuberculosis 
incidence 

-0.12 
(-0.25, 0.01) 

-0.12 
(0.28, 0.04) 

-0.66 
(-0.73, -0.57) 

-0.35 
(-0.46, -0.22) 

 

	

 
 

 

 


