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Abstract 

Uveal melanoma (UM) is a highly aggressive cancer of the eye, in which nearly 50% of the patients die 

from liver metastasis. It is the most common type of primary eye cancer in adults. Chromosome and 

mutation status have been shown to correlate with the disease free survival. Loss of chromosome 3 and 

inactivating mutations in BAP1, which is located on chromosome 3, are strongly associated with ’ high 

risk’ tumors that metastasize early. Other genes often involved in UM are SF3B1 and EIF1AX, which are 

found to be mutated in intermediate- and low risk tumors, respectively. We developed a targeted 

sequencing method that can detect mutations in genes involved in UM and chromosomal anomalies in 

chromosome 1, 3 and 8. Whereas current UM-diagnostics involves several techniques for detection of 

copy number variations and somatic mutations, our targeted UM panel can detect losses and gains of 

chromosome 1, 3 and 8 and somatic mutations in the aforementioned genes in a single assay. By 

sequencing 27 formalin-fixed paraffin-embedded and 43 fresh UM-specimens, we show that mutations 

and chromosome-status can reliably be obtained using targeted next generation sequencing (NGS).  

 

Introduction 

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults with a worldwide 

annual incidence in Caucasians of 5-7 per million per year1. Despite successful treatment of the primary 

tumor, nearly 50% of the patients develop liver metastasis within 5 years. Once metastatic disease is 

diagnosed, survival is between 2 and 9 months2. Approximately 40% of UM patients develop metastases 

within 4 years, but dissemination can occur even up to 4 decades after diagnosis3. This demonstrates that 

the prognosis for UM patients can strongly vary between patients, and is dependent on a number of 

factors, including clinical and histological parameters, as well as the underlying genetic ‘make up’ of the 

tumor cells4. 

  

Chromosomal anomalies are often found in solid tumors, but previous work has shown that most of the 

chromosomal anomalies in UM are limited to chromosome 1, 3, 6 and 8. Some of these chromosomal 

variations correlated with metastasis, such as loss of chromosome 35. Monosomy 3 is observed in half of 
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the UM patients and is strongly associated with poor survival. It is thought to be an early event, since it is 

often accompanied by other chromosomal anomalies, such as gain of chromosome 8q6,7,8. Another 

common anomaly in metastasizing UM with monosomy 3 is loss of chromosome 1p9. Chromosome 6 

shows frequent rearrangements in both p- and q-arm in UM; yet, deletion of 6q or gain of 6p are not 

associated with metastatic disease10.  

 

UM are genetically well-characterized tumors. Recent research using genome-wide sequencing led to the 

discovery of several genetic alterations in UM, which correlate to a distinct survival pattern. Activating 

mutations in guanine-nucleotide binding protein- Q (GNAQ) and -alpha 11 (GNA11) were found in the 

majority of UM patients (93%), and are therefore thought to be initiating mutations9,10.11. Inactivating 

mutations in the BRCA-associated protein 1 (BAP1), located on chromosome 3p, were found in the early 

metastasizing patients14. Recently two other genes have been reported that play a role in UM biogenesis. 

Mutations in the eukaryotic translation initiation factor 1A (EIF1AX) were observed in non-metastasizing 

tumors15 and a hotspot mutation in the splicing factor 3 subunit 1 (SF3B1)-gene was detected in late 

metastasizing tumors16. Both of these genes are known to be mutually exclusive. 

 

Current clinical diagnostics for UM include several techniques, such as copy number analysis by single 

nucleotide polymorphism (SNP)-array17, multiplex ligation-dependent probe amplification (MLPA)18 or 

fluorescence in situ hybridisation (FISH)19, immunohistochemistry of the BAP1 protein20,21 and Sanger 

sequencing of EIF1AX, SF3B1 and BAP1. In some cases, whole genome sequencing (WGS) or whole exome 

sequencing (WES) is used to identify the somatic mutations present in the tumor. In this study we 

performed Ion Torrent next generation sequencing (NGS) with a custom made NGS panel on 70 UM to 

determine if targeted sequencing can be implemented in the routine UM-diagnostics. This panel has been 

designed specifically for UM, covering all major hotspot mutations in the five relevant UM-genes and 

several SNPs on chromosome 1, 3 and 8 to allow analysis of clinically relevant chromosomal anomalies.   

 

Methods 

 

UM samples 

Sixty-five UM samples were selected from our Rotterdam Ocular Melanoma Study Group (ROMS)-

database and 5 were external samples from patients who underwent enucleation for UM, received for 

diagnostics from the Liverpool Ocular Oncology Research Group (LOORG). Samples included in this study 

were diagnosed as UM, collected between 1988 and 2016, and include formalin-fixed paraffin-embedded 

(FFPE) and fresh specimens. A written informed consent was obtained before treatment, the study was 

performed according to the guidelines of the Declaration of Helsinki and was approved by the local ethics 

committee. 
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DNA extraction 

Targeted NGS was performed on DNA extracted from fresh- and FFPE samples. For all tumor samples, an 

ophthalmic pathologist reviewed and selected tumor areas with an estimated minimal tumor cell 

percentage of 85%. DNA isolation from fresh tissue was carried out using the QIAmp DNA mini kit 

(Qiagen, Hilden, Germany), according to the manufacturer’s instructions. For FFPE samples, depending on 

the size of the tumor, 2-6 5µm FFPE sections were deparaffinized and hematoxylin stained prior to 

isolation of the DNA. FFPE tumor tissue was microdissected by scraping the cells manually from 

hematoxylin-stained sections. DNA was then extracted by incubation of the tissues overnight at 56°C in 

lysis buffer (Promega, Madison, Wisconsin, USA), containing 5% Chelex (Bio-Rad, Berkley, California, USA) 

and Proteinase K (Qiagen). Proteinase K was inactivated by incubating the sample for 10 minutes at 95°C 

and cell debris was pelleted down together with the Chelex by centrifugation in a microcentrifuge at 

maximum speed. DNA concentrations were measured with the Quant-iT Picogreen assay kit 

(Thermofisher Scientific, Grand Island, New York, USA), as described by the manufacturer. All DNA 

samples were stored at -20°C. The DNAs provided by the LOORG had been extracted as previously 

described using the Qiagen DNeasy Blood and Tissue kit2. 

 

Targeted Next-Generation Sequencing 

A custom primer panel covering the five UM genes and several SNPs located on chromosomes 1, 3 and 8, 

was designed using Ion Ampliseq Designer 2.0 (ThermoFisher Scientific). This resulted in an 11.5 kb 

amplicon panel, containing 98 amplicons. Amplicons designed for GNAQ, GNA11, EIF1AX and SF3B1 

covered only the exons containing the known mutation hotspots. All exons  of the BAP1 gene were 

covered by amplicons. On chromosome 1 and 8, seventeen amplicons were designed to cover highly 

polymorphic regions in the entire chromosome (Supplementary table 1). These highly polymorphic 

regions with a global minor allele frequency of at least 45% were selected based on data found in the 

NCBI SNP database23. For chromosome 3 twenty-one amplicons were designed, due to the clinical 

relevance. The DNA input varied between 3 and 10 ng, depending on the amount of DNA available per 

sample. Library construction was performed using the AmpliSeq Library Kit 2.0. Next-Generation amplicon 

sequencing of the libraries was performed by semiconductor sequencing with the Ion Torrent Personal 

Genome Machine (PGM) (Thermofisher Scientific) on an Ion Chip, according to the manufacturer’s 

protocol.  

 

Mutation Analysis 

Raw Ion PGM sequence data was analysed using Torrent Suite Software V4.4.3 (Thermofisher Scientific) 

with Variant Caller v3.6 and Coverage Analysis plugins to identify variants and perform sequence coverage 
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analysis, respectively. 

Sanger sequencing 

DNA from 23 tumor samples was sequenced using the Sanger method to confirm results found by NGS. 

Selected regions of the genes of interest were amplified by polymerase chain reaction (PCR). 

Subsequently, sequencing of the PCR products and mutation analysis of GNAQ, GNA11, BAP1 and SF3B1 

and EIF1AX was done as reported previously13,16,20. Alignment of the sequence reads was done with 

reference sequence Hg19 from the Ensemble genome database. 

 

Immunohistochemical staining 

To detect loss of the BAP1 protein in tumors, immunohistochemical staining of BAP1 was performed on 

4μm FFPE sections of tumors. Staining was done by an automated immunohistochemistry staining system 

(Ventana Medical Systems Inc, Tucson, Arizona, USA) as described before20. BAP1 protein expression data 

were also available for the cases received from LOORG, which were stained as previously described24. 

Sections were evaluated by the ophthalmic pathologists in Rotterdam and Liverpool (RV and SEC, 

respectively).  

 

Copy number variation analysis 

Validation of the copy number status of the chromosomes was performed by SNP-array, MLPA and FISH 

analysis. Two hundred nanograms of fresh tumor DNA was used for the Illuminia 610Q SNP-array 

(Illumina, San Diego, California, US). Results were analyzed with Nexus Software (BioDiscovery, El 

Segundo, California, USA). One hundred nanograms of DNA from each FFPE UM was used for MLPA 

analysis of chromosomes 1p, 3, 6 and 8 as previously described20. FISH analysis was performed on 

directly fixed tumor material, with probes for chromosome 1, 3 and 8 as reported previously19 

 
Results 
 
Coverage of UM genes 

To detect mutations in the GNAQ-, GNA11-, EIF1AX-, SF3B1- and BAP1 gene, 43 amplicons were used to 

sequence these genes reliably. Samples with a minimum total read count of 40.000 were analyzed for 

mutations in the five UM genes. The total amount of read counts for fresh samples was on average 

slightly higher than those of FFPE samples (Fig.1a). Most of the amplicons covering the five UM genes 

consisted of 1 – 2% of the total read count, which corresponds to a minimum of 400 reads (Fig.1b). The 

median read count of all amplicons was 1,3%. Several amplicons obtained a coverage of less than 1% of 

the total read count, such as EIF1AX exon 1 and BAP1 exon 1 and 3. By adding extra amplicons in the 

primer mix for these areas, we compensated for these lower read counts.  
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Mutation analysis 

Seventy UM samples were sequenced with our targeted UM panel. DNA was isolated from fresh 

specimens (n=43) and from FFPE-material (n=27).  From all 70 samples sufficient DNA was extracted for 

sequencing. Forty-one percent of the samples harbored a GNAQ exon 5 p.Gln209Pro or p.Gln209Leu 

mutation, 3% a GNAQ exon 4 p.Arg183Gln mutation, 41% a GNA11 exon 5 p.Gln209Leu mutation, 1% a 

GNA11 exon 4 p.Arg183Cys mutation and in the remaining samples no mutations in either of these two 

genes were detected (Table 1). Mutations in the BAP1 gene were found in 41% of the cases, mutations in 

SF3B1 in 16% and EIF1AX in 20% of the samples (Supplementary Table 2). We validated the results in 40% 

of the samples by Sanger sequencing and identified no new mutations in either of these genes. The 

obtained results do not entirely overlap with the known mutation rate for UM, but those differences can 

be explained by the bias in our sample population. 

 

Detection of loss of BAP1 protein expression 

Absence of the BAP1 protein is often associated with monosomy 3 UM. The loss of nuclear BAP1 

expression can be immunohistochemically assessed, which is routinely performed in a diagnostic setting. 

UM samples were sequenced and analysed for BAP1 mutations. The results obtained from three samples 

are depicted in figure 2; one sample with a normal BAP1 expression and two samples with loss of BAP1 

expression.  HE staining indicated a high presence of tumor cells in all three samples (Fig. 2a). BAP1 

staining was positive for the upper sample and negative for both the middle and lower sample (Fig 2b). 

Ion Torrent sequencing of the BAP1 gene revealed no mutations in the top sample but did show a 5 

basepair deletion and insertion in exon 4 of BAP1 in the middle sample, resulting in a frameshift and a 

stop(p.Arg59Lysfs*12). The lower sample harboured a nonsense mutation in exon 6  (p.Glu136*) (Fig 2c), 

confirming the presence of BAP1 mutations in the IHC BAP1 negative tumors.  BAP1 IHC was carried out 

for 59 samples. In 8,4% of these cases the BAP1 IHC did not correspond to the mutation status and copy 

number of chromosome 3, found by Ion Torrent sequencing of the BAP1-gene (Supplementary table 2). 

However, for the majority of the samples the UM panel can correctly detect mutations corresponding to 

the observed loss of BAP1-expression. 

 

Copy number analysis 

SNP, MLPA and FISH analyses are commonly used to identify chromosomal changes in UM tissues. To 

determine whether the Ion Torrent UM Custom panel allows a reliable detection of allelic imbalances 

caused by (partial) losses and gains of chromosome 1, 3 and 8, we compared results obtained by FISH and 

SNP-array with the CNV results from our custom UM panel. SNP covering amplicons were evenly 

distributed over the entire chromosome (Fig.3a), which allowed us to observe partial aberrations as well. 

FISH results of the upper sample in figure 3 shows two signals for chromosome 3 (red signal) and the 

control FISH probe on chromosome 5 (green signal). The lower sample shows a loss of chromosome 3 (Fig. 
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3b). This was confirmed with the SNP array, where the Log R Ratio and B-allele frequency shows no loss of 

heterozygosity for chromosome 3 in the upper sample and monosomy 3 for the lower sample (Fig 3c). The 

same pattern of allelic distribution was seen with the Ion Torrent SNP-analysis of chromosome 3 (Fig. 3d). 

The B-allele frequencies for chromosome 1 and 8 were confirmed as well, as shown in supplementary 

figure 1. Across all samples we found that 52% showed monosomy 3, 30% loss of chromosome 1p and 

57% gain of chromosome 8q. These percentages overlapped with the percentages found by other CNV-

techniques, such as SNParray, MLPA and FISH analysis. (Supplementary table 3).  

 
 

Discussion 

UM is characterized by recurrent mutated genes and chromosomal anomalies. In this study we present a 

novel custom-designed NGS assay for UM, which can be used to predict UM patients’ prognoses based on 

mutation status and chromosome status of chromosome 1, 3 and 8. The assay can be conducted with 

using either freshly-isolated DNA or DNA obtained from FFPE material. This is the first study that 

establishes a method that can be used for UM diagnostics on both FFPE and fresh UM material. Our assay 

is cost-effective, since one method can replace several other techniques, such as FISH, SNP-array, BAP1 

IHC and Sanger sequencing. Other important advantages are the low amount of DNA (10 ng) necessary for 

sequencing and the small amplicon-size, which makes this technique suitable for degraded FFPE material. 

 

Prognostication of UM patients can be achieved by analyzing mutation status. Currently, this is usually 

performed by Sanger sequencing. Mutations in GNAQ, GNA11 and SF3B1 occur almost exclusively in 

hotspot locations, therefore only these locations have to be sequenced. Since mutations can occur 

throughout the entire BAP1 gene, large amounts of DNA are needed for sequencing of multiple exons. 

Whole exome-sequencing (WES) is a reliable and easy method to obtain mutation status as well. 

However, since only a few genes are involved in the oncogenesis of UM, many irrelevant reads will be 

produced. WES is less cost-effective for the diagnostic setting, compared to targeted Ion Torrent 

sequencing. 

 

Several regions of the human genome are difficult to cover with NGS. As shown in figure 1b, a few exons, 

such as BAP1 exon 1 and the first two exons of EIF1AX, show a relatively low read count. Due to this low 

read count, it is more difficult to detect mutations in this particular exon. These findings are not only 

observed in our targeted UM panel, but also in Whole Genome sequencing data of UM25,26.  Since exon 1 

of the BAP1 gene is located in the non-translated region, the effect of a mutation in this UTR region is not 

always clear. Another region, which is sensitive for sequencing errors is exon 1 of EIF1AX, caused by a 

pseudogene on chromosome 1. Amplicons covering only exon 1 may also produce reads derived from 

chromosome 1. By adding a second set of reads generated by a different amplicon for EIF1AX, we now 

cover not only exon 1 but also a part of the 3’UTR, which will obtain longer reads that can only be derived 
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from EIF1AX exon 1. 

 

Besides mutation status-analysis, our UM panel also provides information about the copy number status.  

Techniques such as FISH, MLPA and SNP-array can provide information about the chromosomal change of 

one or several chromosomes in the tumor in most cases, but these techniques also have their 

disadvantages. The probes used for FISH are specific for a certain region, i.e. FISH testing does not screen 

the entire chromosome. It is also a relatively laborious technique, which can take up to several days. 

Performing a SNP array requires less time, but the amount of DNA necessary (200 ng) is significantly 

higher than other techniques. Furthermore, standard SNP analysis is less successful on DNA extracted 

from FFPE tissue compared to -freshly obtained DNA. With our UM panel, we reliably detect CNVs by NGS 

of highly polymorphic SNPs. Since this assay requires less DNA than conventional SNP-arrays and less time 

than FISH, it is a promising method for routine UM diagnostics. The SNP analysis performed with this UM 

panel does not allow detection of polyploidy in UM samples. However, recently it has been shown that 

polyploidy in UM does not change the mutation prevalence, which means that detecting polyploidy in UM 

patients has little impact in this method since it does not affect the prognosis27. 

 

Our Ion Torrent UM panel is in the current state already suitable for implementation in UM 

prognostication, with the advantage that it can easily be expanded by adding the more recently 

discovered UM genes into our panel. Recently, it has been reported that a small percentage of the UM 

samples contain mutations in other spliceosome components, SR2F2 and U2AF1. It is thought that these 

tumors act in the same way as SF3B1 mutated tumors. Other rare alterations in UM tumors are mutations 

in PCLB4 and CYSTLR2, which are downstream targets of GNA11 and GNAQ and are thereby thought to be 

less suitable for prognostication28.  

 

In summary, we present a NGS-based assay that can readily be implemented as a diagnostic pathology 

application for UM. Mutation and CNV data can be obtained by one technique, which can establish a 

reliable diagnosis for UM patients. At present there is no successful treatment for metastasized UM; 

however, with the development of new therapies, identification of high-risk UM patients will be very 

important, particularly in adjuvant therapy trials. Our custom-designed UM panel will make a valuable 

contribution to the rapid stratification of UM patients.  
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Figure 1. Sequencing efficiency of FFPE and fresh UM specimens 

A) Boxplots showing the total read count for all fresh- (top plot) and FFPE samples (bottom plot) B) Percentage of total 

reads visualised for all amplicons covering the five UM-genes. Blue line indicates median for all amplicons and light blue 

area shows second- and third quartile. 

 
 
 
 
 
Table 1. Amplicon location and mutation rate for the five genes relevant in UM 

Gene Chromosome Exons Codons Mutation rate (%) 

GNA11 19 4, 5 183, 209 41 

GNAQ 9 4, 5 183, 209 49 

EIF1AX X 1, 2 4 – 44 21 

SF3B1 2 14 1873, 1874 16 

BAP1 3 1 - 17 1 - 730 43 
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Fig 2. Histopathological and genetic aspects of three uveal melanoma specimens 
A) HE-staining of three UM samples (200x) B) IHC staining of BAP1 protein showing strong nuclear BAP1 expression in the 
top sample and loss of BAP1 expression in middle and bottom sample (200x) C) From top to bottom: no mutation observed 
in the BAP1-gene,  a 5-basepair deletion and insertion in exon 4 resulting in a frameshift ((p.Arg59Lysfs*12) and a point 
mutation in exon 6 which changes a Glutamate into a STOP-codon (p.Glu136*) . 
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Fig 3. Copy number analysis of chromosome 3 
A) Visualisation of the evenly spread amplicons covering highly polymorphic SNPs on chromosome 1,3 and 8.  B) FISH of 
chromosome 5 (red) and chromosome 3 (green) shows no loss for chromosome 3 in the top sample and loss of 
chromosome 3 in the bottom sample C) Top SNP array visualises chromosome status for chromosome 1 to 8. Both Log R  
Ratio and B-allele frequency indicate disomy 3, whereas the SNP array for the bottom panel shows loss of chromosome 3 D) 
SNP analysis done by the targeted UM panel visualises the B-allele frequency for chromosome 3. Top SNP analysis shows 
heterozygosity for the SNPs, indicating disomy 3, while bottom sample shows no heterozygous variants indicating loss of 
heterozygosity of chromosome 3. 
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Supplementary table 1. List of the highly polymorphic SNPs covered by the UM panel  
 SNP-number Position (bp) 

Chromosome 1 rs7418256 4,084,304 
 rs7412149 9,579,964 
 rs12048851 16,382,718 
 rs10907287 18,497,478 
 rs6425861 34,372,503 
 rs639298 42,001,530 
 rs11209106 68,001,206 
 rs480304 82,123,485 
 rs10493903 98,900,818 
 rs17258467 120,323,058 
 rs1752380 151,347,746 
 rs3856201 163,736,341 
 rs10753786 169,288,770 
 rs2072040 175,096,333 
 rs138685314 188,228,295 
 rs6681013 215,154,797 
 rs592197 234,817,283 

Chromosome 3 rs1601368 10,829,535 
 rs1549356 21,528,837 
 rs7612272 28,816,226 
 rs7648156 34,497,918 
 rs1274960 39,192,542 
 rs267218 45,633,834 
 rs9311387 46,115,590 
 rs295449 47,375,955 
 rs3821659 54,987,923 
 rs2702143 55,738,509 
 rs9868630 56,012,096 
 rs62259027 57,747,389 
 rs9310190 70,420,837 
 rs12497448 86,741,603 
 rs1151334 102,257,506 
 rs3749299 111,673,147 
 rs4045771 121,962,478 
 rs975149 134,666,475 
 rs1004009 152,754,481 
 rs9866779 175,021,665 
 rs11717776 197,569,559 

Chromosome 8 rs2405488 2,141,263 
 rs4498602 10,180,242 
 rs17577614 15,470,729 
 rs13275706 19,327,151 
 rs6557699 23,602,610 
 rs1882928 31,023,822 
 rs10095600 36,911,156 
 rs4147426 47,909,945 
 rs10107875 60,526,565 
 rs6995640 68,904,187 
 rs2120410 79,844,006 
 rs13261311 87,705,504 
 rs4735258 94,935,937 
 rs4734993 108,686,209 
 rs2142250 117,093,062 
 rs6415522 131,905,690 
 rs7008457 145,536,593 



14 
 

Supplementary table 2. Mutation status, BAP1 IHC and chromosome 3 status of all 70 samples  

 s; validated by sanger sequencing      *; intronic mutation 
 
 

 Tissue 
GNAQ 
ex 4 

GNAQ 
ex 5 

GNA11 
ex 4 

GNA11 
ex 5 

EIF1AX 
ex 1/2 

SF3B1 
ex 14 BAP1 

BAP1 
IHC Monosomy 3 

UM-1 FFPE  ●ѕ   ●ѕ    +  
UM-2 FFPE  ●     ● - ● 
UM-3 FFPE  ●     ● +/-  
UM-4 FFPE    ●   ● ne ● 
UM-5 FFPE  ●     ● ne ● 

UM-6 FFPE  ●     ● ne ● 

UM-7 FFPE    ●  ●   ne  
UM-8 FFPE  ●   ●    ne  
UM-9 FFPE         + ● 

UM-10 FFPE    ●    + ● 
UM-11 FFPE    ●  ●   +  
UM-12 FFPE    ●  ●   +  
UM-13 FFPE    ●  ●   +  
UM-14 FFPE    ●     +  
UM-15 FFPE    ●     +  
UM-16 FFPE    ●     +  
UM-17 FFPE    ●   ●  - ● 

UM-18 FFPE  ●   ●    +  
UM-19 FFPE    ●   ● + ● 
UM-20 FFPE       ● - ● 
UM-21 FFPE    ●  ●   +  
UM-22 FFPE    ●  ●   +  
UM-23 FFPE  ●     ● - ● 
UM-24 FFPE    ●  ●   +  
UM-25 FFPE    ●ѕ   ●ѕ +/- ● 
UM-26 FFPE  ●ѕ       +  
UM-27 FFPE    ●ѕ   ●ѕ - ● 
UM-28 Fresh         Ne  
UM-29 Fresh  ●ѕ     ●ѕ* + ● 
UM-30 Fresh     ●    +  
UM-31 Fresh    ● ●    +  
UM-32 Fresh         +/-  
UM-33 Fresh  ●   ●    + ● 
UM-34 Fresh         +  
UM-35 Fresh    ●ѕ ●ѕ    +  
UM-36 Fresh  ●     ● - ● 
UM-37 Fresh  ●     ● Ne ● 
UM-38 Fresh    ●ѕ     Ne ● 
UM-39 Fresh    ●ѕ   ●ѕ + ● 
UM-40 Fresh  ●ѕ   ●ѕ    +  
UM-41 Fresh         +  
UM-42 Fresh    ●ѕ ●ѕ    +  
UM-43 Fresh    ● ●    +  
UM-44 Fresh  ●ѕ     ●ѕ Ne ● 
UM-45 Fresh  ●   ●    +  
UM-46 Fresh    ●     Ne ● 
UM-47 Fresh ●      ● +  
UM-48 Fresh   ●ѕ    ●ѕ - ● 
UM-49 Fresh ●      ● - ● 

UM-50 Fresh  ●ѕ       - ● 

UM-51 Fresh    ●ѕ   ●ѕ - ● 

UM-52 Fresh    ●ѕ   ●ѕ +  
UM-53 Fresh  ●ѕ    ●ѕ   +  
UM-54 Fresh  ●ѕ   ●ѕ    + ● 

UM-55 Fresh        + ● 

UM-56 Fresh  ●ѕ     ●ѕ - ● 

UM-57 Fresh    ●ѕ   ●ѕ - ● 

UM-58 Fresh  ●     ●  - ● 

UM-59 Fresh  ●ѕ     ●ѕ - ● 
UM-60 Fresh  ●ѕ       - ● 
UM-61 Fresh  ●ѕ   ●ѕ    +  
UM-62 Fresh    ●ѕ  ●ѕ   +  
UM-63 Fresh  ●ѕ   ●ѕ    +  
UM-64 Fresh  ●ѕ    ●ѕ   +  
UM-65 Fresh  ●ѕ     ●ѕ - ● 
UM-66 Fresh          ●     ● Ne ● 
UM-67 Fresh  ●ѕ     ●ѕ - ● 
UM-68 Fresh    ●ѕ  ●ѕ   +  
UM-69 Fresh         +  
UM 70 Fresh    ●   ● - ● 
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Supplementary Fig 1. Copy number analysis of chromosome 1 and 8 

A) SNP analysis indicates no loss of the entire chromosome 1 B) The absence of heterozygous variants in the B-allele 
frequency in the 1p arm of chromosome 1, indicates loss of 1p and normal 1q C) SNP analysis shows two copies of  
chromosome 8 D) Loss of the p-arm of chromosome 8 and allelic imbalance of the 8q arm. 
 
 
 
 
 
 
Supplementary table 3. Chromosome status of chromosome 1p, 3 and 8q determined by Iontorrent SNP 
assay or other CNV analysis techniques 

* SNParray, MLPA or FISH analysis 

 Loss of chromosome 1p Loss of chromosome 3 Gain of chromosome 8q 

Iontorrent SNP assay 30% (19/63) 52%  (33/63) 57% (36/63) 

Other* 33% (20/61) 48% (29/60) 61% (37/61) 


