

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS DE CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

JOÃO PAULO KUBASZEWSKI CASTILHO

UM ALGORITMO DE RECOLORAÇÃO DE ARESTAS DE GRAFOS

JOÃO PAULO KUBASZEWSKI CASTILHO

UM ALGORITMO DE RECOLORAÇÃO DE ARESTAS DE GRAFOS

Trabalho de conclusão de curso apresentado como requisito para obtenção do grau de Bacharel em Ciência da Computação da Universidade Federal da Fronteira Sul.

Orientador Leandro Miranda Zatesko Co-orientadores: André Luiz Pires Guedes (UFPR) Renato Carmo (UFPR)

Castilho, João Paulo Kubaszewski

Um Algoritmo de Recoloração de Arestas de Grafos / João Paulo Kubaszewski Castilho. – 2018.

49 f.: il.

Orientador: Leandro Miranda Zatesko.

Coorientador: André Luiz Pires Guedes.

Trabalho de conclusão de curso (graduação) — Universidade Federal da Fronteira Sul, curso de Ciência da Computação, Chapecó, SC, 2018.

1. Coloração de arestas. 2. Índice cromático. 3. Grau de vértices. I. Zatesko, Leandro Miranda, orientador. II. Guedes, André Luiz Pires, coorientador. III. Universidade Federal da Fronteira Sul. IV. Título.

© 2018

Todos os direitos autorais reservados a João Paulo Kubaszewski Castilho. A reprodução de partes ou do todo deste trabalho só poderá ser feita mediante a citação da fonte.

E-mail: joao.pkc@gmail.com

JOÃO PAULO KUBASZEWSKI CASTILHO

UM ALGORITMO DE RECOLORAÇÃO DE ARESTAS DE GRAFOS

Trabalho de conclusão de curso apresentado como requisito para obtenção do grau de Bacharel em Ciência da Computação da Universidade Federal da Fronteira Sul.

Orientador: Leandro Miranda Zatesko

Co-orientadores: André Luiz Pires Guedes (UFPR) e Renato Carmo (UFPR)

Este trabalho de conclusão de curso foi defendido e aprovado pela banca avaliadora em: 7/12/2018.

BANCA AVALIADORA

Prof. Dr. Deandro Miranda Zatesko – UFFS

Prof. Dr. Emilio Wuerges - UFFS

Prof. Me. Adriano Sanick Padilha - UFFS

Prof. Dr. André Luiz Pires Guedes - UFPR

Prof. Dr. Renato Carmo - UFPR

AGRADECIMENTOS

Aos professores André Luiz Pires Guedes, Leandro Miranda Zetesko e Renato Carmo, por todos os conselhos, dicas e ensinamentos que me passaram durante todo o desenvolvimento deste trabalho.

Aos professores Emílio Wuerges e Adriano Sanick Padilha, por compor a banca e contribuir para o trabalho com dicas e ensinamentos.

À minha família, que durante toda a minha jornada na universidade sempre me deu apoio. Em especial à minha mãe, Eliane Kubaszewski, por abrir mão de tanta coisa para poder estar sempre ao meu lado, não importa qual a situação, e ao meu pai, Paulo Cleber Castilho, por todos os conselhos e por sempre me ouvir nas horas que precisei. À minha namorada, Vitória Almeida de Souza, por estar sempre ao meu lado dando conselhos e me motivando ainda mais a alcançar meus objetivos.

Aos meus amigos e colegas que contribuiram de alguma forma, com dicas, revisões e apoio para o desenvolvimento deste trabalho.

RESUMO

O problema de determinar o mínimo de cores necessárias para colorir todas as arestas de um grafo G, chamado de Problema da Classificação de Grafos, é um problema \mathcal{NP} -completo. Como enunciado pelo Teorema de Vizing, existem apenas duas classes que abrangem todos os grafos, o que implica que todo grafo G tem índice cromático (menor quantidade de cores necessárias pala colorir todas as arestas de G) Δ , em que é denominado Classe~1, ou $\Delta+1$, em que é denominado Classe~2. Para algumas classes de grafos foram encontrados algoritmos polinomiais para determinar o seu índice cromático. Este trabalho apresenta um estudo de um procedimento de tempo polinomial para construir uma Δ -aresta-coloração para as arestas dos grafos pertencentes à classe \mathscr{X} , que é a classe dos grafos cujos Δ -vértices (vértices com grau máximo) têm soma de grau local (a soma de grau local de um vértice u é a soma dos graus de todos os seus vizinhos) no máximo $\Delta^2-\Delta$. Por fim são apresentadas algumas propostas para trabalhos futuros que consistem em ampliar a classe \mathscr{X} .

Palavras-chave: Coloração de arestas. Índice cromático. Grau de vértices.

ABSTRACT

The problem to find the minimum of colors that are necessary to color all edges on a graph G, known as Classification Problem, is an \mathcal{NP} -complete problem. As stated by the Vizing's Theorem, we have only two classes for all graphs, that is, the chromatic index of G (the minimum number of colours needed to colour the edges of G) is either G, in that case G is Class 1, or G + 1, in that case G is Class 2. For some graph classes some polynomial algorithms had been found to determine its chromatic index. This work shows a study on a polynomial time recolouring procedure to construct a G-edge-colouring of graphs which belong to the class G, that is, the class of graphs whose majors (vertices of degree G) have local degree sum (the local degree sum of some vertex G is the sum of the degrees of all neighbors of G0) at most G1. We conclude showing some ideas for future works which consist of an extension of the class G2.

Keywords: Edge colouring. Chromatic index. Vertex degrees.

LISTA DE ILUSTRAÇÕES

Figura 1.1 – Um grafo em que cada vértice representa uma equipe de futebol, e	
cada aresta representa uma partida entre duas equipes	19
Figura 1.2 – Uma aresta-coloração para o grafo da Figura 1.1	20
Figura 1.3 – Duas arestas adjacentes em um grafo	20
Figura $1.4 - \text{Å}$ esquerda um grafo G e à direita o subgrafo de G induzido por	
$\{b,c,d,e\}$	21
Figura 1.5 – Uma (Δ + 1)-aresta-coloração para o grafo K_3	22
Figura 1.6 – À esquerda o Grafo P*, com $\Delta = n/3$, não pode ser colorido com Δ	
cores. À direita o Grafo de Petersen	23
Figura $1.7 - A$ classe ${\mathscr X}$ de grafos e as partições de acordo com o Teorema de	
Vizing e a propriedade dos subgrafos-sobrecarregados	24
Figura 2.1 – Uma n -aresta coloração para o K_n de acordo com a função $arphi_1$	27
Figura 3.1 – Um leque de recoloração completo. As linhas pontilhadas indicam	
as cores que faltam nos vértices e a linha tracejada representa a aresta	
a ser colorida pelo procedimento	29
Figura 3.2 – Um leque de recoloração completo após a primeira iteração e após	
finalizar o caimento das cores	30
Figura 3.3 – Não é possível continuar a construção do leque, pois a cor que falta	
em v_k já foi considerada anteriormente	30
Figura 3.4 – Uma ilustração do Caso 1 do Lema 3.3	31
Figura 3.5 – Uma ilustração do Caso 2 do Lema 3.3	31
Figura 4.1 – Leque de recoloração completo antes e depois do caimento das cores.	
A linha tracejada indica a aresta a ser colorida pelo procedimento e	
as cores faltantes nos vértices são representadas pelas linhas ponti-	
lhadas	34
Figura 4.2 – Uma ilustração do Item 2 do Lema 4.3	35
Figura 4.3 – Uma ilustração da prova do Lema 4.4	36
Figura 4.4 – Uma ilustração do Caso 2 do Lema 4.5	37
Figura 4.5 – Uma ilustração do Passo 1 do Lema 4.6	38
Figura 4.6 – Uma ilustração dos Passos 2 e 3 do Lema 4.6	39
Figura 4.7 – Uma ilustração do Passo 4 do Lema 4.6	40
Figura 4.8 – Situação do leque de recoloração após descolorir a aresta $v_j w_j \dots$	41
Figura 4.9 – Uma Δ -aresta-coloração para um grafo G com o conjunto $U=\{a,c,d\}$	
de Δ -vértices próprios ($\{c\}$) ou não-próprio justos ($\{a,d\}$). Perceba	
que U induz em um subgrafo de G acíclico	45

LISTA DE SÍMBOLOS

V, V(G)	conjunto de vértices de <i>G</i> (ver p. 19)
E, E(G)	conjunto de arestas de G (ver p. 19)
$N_G(u)$	conjunto de vizinhos do vértice u (ver p. 20)
$d_G(u)$	grau do vértice <i>u</i> (ver p. 20)
$\Delta, \Delta(G)$	grau máximo de G (ver p. 20)
Δ -vértice	vértice de G com grau Δ (ver p. 20)
G[U]	subgrafo de G induzido por U (ver p. 20)
$\Lambda[G]$	núcleo de G (ver p. 21)
K_n	grafo completo com <i>n</i> vértices (ver p. 21)
P_n	caminho com <i>n</i> vértices (ver p. 21)
C_n	ciclo com n vértices (ver p. 21)
\mathscr{C}	conjunto de cores utilizadas para colorir <i>G</i> (ver p. 21)
$\chi'(G)$	índice cromático de G (ver p. 21)
E_{φ,α_i}	conjunto de arestas em G que são coloridas com a cor α_i na coloração φ (classe de cor) (ver p. 21)
\mathcal{NP}	classe de problemas de decisão cujas instâncias positivas possuem um certificado de tamanho polinomial e podem ser verificadas em tempo polinomial (ver p. 22)
P^*	grafo obtido ao se retirar um vértice do grafo de Petersen (ver p. 23)
\mathscr{X}	família de grafos com todos os seus Δ -vértices estritamente não-próprios (ver p. 24)
$G[\alpha,\beta]$	subgrafo induzido por todas as arestas coloridas com α e β (ver p. 28)

SUMÁRIO

1	INTRODUÇÃO	19
1.1	GRAFOS	19
1.2	DEFINIÇÕES PRELIMINARES	20
1.3	COLORAÇÃO DE ARESTAS	21
1.4	O TEOREMA DE VIZING E A CONJECTURA DOS GRAFOS SOBRE-	
	CARREGADOS	22
1.5	APLICAÇÕES DA COLORAÇÃO DE ARESTAS NO MUNDO REAL .	23
1.6	CARACTERÍSTICAS DOS GRAFOS CONSIDERADOS NESTE TRA-	
	BALHO	23
1.7	ALGORITMO DE RECOLORAÇÃO DE ARESTAS	24
1.8	ESTRUTURA DO TEXTO	24
2	PRIMEIROS RESULTADOS EM COLORAÇÃO DE ARESTAS	27
2.1	COLORAÇÃO DE ARESTAS DE GRAFOS COMPLETOS	27
2.2	GRAFOS BIPARTIDOS	28
3	PROCEDIMENTO DE RECOLORAÇÃO DE VIZING	29
4	PROCEDIMENTO DE RECOLORAÇÃO ESTENDIDO	33
4.1	O PROCEDIMENTO DE RECOLORAÇÃO	33
4.2	RESULTADOS EXPLORADOS	44
5	CONCLUSÃO	47
	REFERÊNCIAS	49

1 INTRODUÇÃO

A teoria dos grafos pode ser aplicada em muitos cenários do mundo real. Torneios de futebol são um exemplo em que se pode aplicá-la. Considere um torneio em que cada grupo é composto por 4 times, *Time A, Time B, Time C* e *Time D*, e deseja-se organizar as partidas de modo que todas as equipes joguem contra todas, porém não pode haver dois jogos de uma mesma equipe em um mesmo dia. A Tabela 1.1 ilustra um possível escalonamento de confrontos para o torneio.

Tabela 1.1 – Partidas de um torneio de futebol

1° dia	2° dia	3° dia	
Time A X Time B	Time A X Time C	Time A X Time D	
Time C X Time D	Time B X Time D	Time B X Time C	

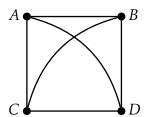
Para este exemplo são necessários no mínimo três dias para que todos os times joguem contra todos sem haver dois jogos de uma mesma equipe no mesmo dia. O problema apresentado é uma aplicação do escalonamento de confrontos no esporte (JANUARIO et al., 2016).

1.1 GRAFOS

Podemos modelar o problema do escalonamento de partidas de futebol usando um *grafo*, que é uma estrutura matemática composta por um conjunto de *vértices* e conexões entre eles, chamadas de *arestas*. Neste trabalho apenas grafos simples são considerados, ou seja, nenhuma aresta possui peso ou direção, nenhuma aresta conecta um vértice com ele mesmo, e para todo par de vértices há no máximo uma aresta.

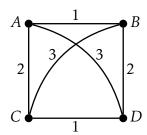
Mais formalmente, um grafo é um par G = (V, E) em que V e E representam, respectivamente, os conjuntos finitos de vértices e arestas de G. Cada elemento e de E é um conjunto $\{u,v\}$ (denotado por uv para simplificar) para dois vértices distintos u e v em V. Para o exemplo do escalonamento das partidas de futebol, pode-se representar os times como os vértices e as partidas como as arestas (ver Figura 1.1).

Figura 1.1 – Um grafo em que cada vértice representa uma equipe de futebol, e cada aresta representa uma partida entre duas equipes.



Uma das condições do escalonamento das partidas entre as equipes do torneio de futebol é que cada equipe não jogue mais de uma vez no mesmo dia, entretanto isso não é ilustrado pela Figura 1.1 (p. 19). Para resolver esse problema vamos associar a cada aresta uv um número i, que indica que a partida entre os times u e v ocorreu no i-ésimo dia (ver Figura 1.2). Desse modo, o problema de escalonar partidas de um

Figura 1.2 – Uma aresta-coloração para o grafo da Figura 1.1



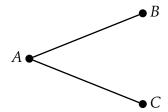
torneio pode ser visto como uma atribuição de números (ou cores) às arestas de um grafo sem que haja duas arestas incidindo sobre um mesmo vértice recebendo uma mesma cor (JANUARIO et al., 2016). O número de cores utilizadas para colorir as arestas representa também o número de dias que o torneio terá.

1.2 DEFINIÇÕES PRELIMINARES

O conjunto de vizinhos de um vértice u, denotado por $N_G(u)$, é o conjunto de vértices conectados a ele por uma aresta e o seu grau é $d_G(u) = |N_G(u)|$. O grau máximo de G, representado por $\Delta(G)$ (ou somente Δ quando livre de ambiguidade) é o maior dentre os graus de todos os vértices de G. Um vértice com grau Δ é chamado Δ -vértice de G.

Duas arestas são *adjacentes* se elas tem um vértice em comum, como mostra a Figura 1.3, em que as duas arestas incidem no vértice A.

Figura 1.3 – Duas arestas adjacentes em um grafo



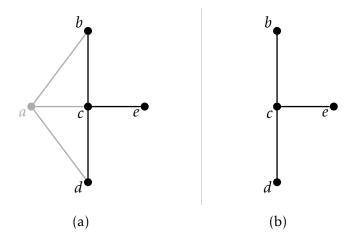
Um grafo H é um subgrafo de G se todo vértice em V(H) está em V(G) e toda aresta em E(H) está em E(G). Seja U = V(H). Dizemos que H é um subgrafo induzido de G, ou H é o subgrafo de G induzido por G[U], se para qualquer par de vértices G0 em G1, a aresta G2 está em G3 está em G4. Dizemos em G6 (ver Figura 1.4 na próxima página). Da mesma forma, seja G3 e toda em G4.

que H é o subgrafo induzido de G por F, também denotado por G[F], se $F \subseteq E(G)$ e $V(H) := \{u, v \in V(G) | uv \in F\}$. O subgrafo induzido por todos os Δ -vértices de G é o núcleo de G, representado por $\Lambda[G]$.

Seja *n* um inteiro positivo:

- K_n é um *grafo completo* com n vértices, ou seja, a aresta uv está definida para todo $u, v \in V(K_n), u \neq v$;
- P_n é um *caminho* com n vértices tal que $V(P_n) := \{u_0, ..., u_{n-1}\}$, em que a aresta $u_i u_{i+1}$ está definida para todo $i \in \{0, ..., n-2\}$ e os vérties u_0 e u_{n-1} são os vértices dos extremos, chamados de pontas do caminho;
- C_n é um *ciclo* com n vértices tal que $V(P_n) := \{u_0, ..., u_{n-1}\}$, de modo que a aresta $u_i u_{(i+1) \bmod n}$ está definida para todo $i \in \{0, ..., n-1\}$.

Figura 1.4 – À esquerda um grafo G e à direita o subgrafo de G induzido por $\{b, c, d, e\}$



1.3 COLORAÇÃO DE ARESTAS

Uma k-aresta-coloração para G é uma função $\varphi \colon E(G) \to \mathscr{C}$ em que $\varphi(e) \neq \varphi(f)$ para qualquer par de arestas adjacentes e e f. A menor quantidade de cores necessárias para construir uma k-aresta-coloração para G é o seu *índice cromático*, denotado por $\chi'(G)$.

O conjunto de arestas em G que são coloridas com a cor α_i , com $i \in \{0,...,k-1\}$, é chamado de *classe de cor* e é denotado por E_{φ,α_i} . Todo vértice em G é incidente a no máximo uma aresta de E_{φ,α_i} , ou seja, E_{φ,α_i} é um *emparelhamento* de G.

Como apenas uma aresta de cor α_i pode incidir em um vértice u (caso contrário teríamos duas arestas adjacentes com a mesma cor), são necessárias $d_G(u)$ cores para colorir todas as arestas que incidem em u. Como o grau máximo do grafo é Δ , são

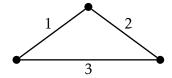
necessárias no mínimo Δ cores para colorir qualquer grafo G. A Figura 1.2 (p. 20) exibe uma coloração mínima para o grafo K_4 , que tem grau máximo igual a 3, a mesma quantidade de cores que utiliza para colori-lo, ou seja, $\chi'(K_4) = 3$.

1.4 O TEOREMA DE VIZING E A CONJECTURA DOS GRAFOS SOBRECARREGA-DOS

TEOREMA 1.1 (Teorema de Vizing (VIZING, 1964)). O índice cromático de um grafo G é no máximo $\Delta(G) + 1$.

Grafos que têm o seu índice cromátio igual ao seu grau máximo Δ são chamados de *Classe 1*, como o K_4 (Figura 1.2, p. 20). Por outro lado, grafos que não têm uma Δ -aresta-coloração possível são chamados de *Classe 2*, como o K_3 (Figura 1.5). Mesmo existindo duas classes que abrangem todos os grafos, decidir se um grafo é *Classe 1* é um problema \mathcal{NP} -completo (HOLYER, 1981).

Figura 1.5 – Uma (Δ + 1)-aresta-coloração para o grafo K_3



Considere um grafo G com n vértices e $\varphi\colon E(G)\to\mathscr C$ uma aresta-coloração para este grafo. Visto que E_{φ,α_i} é um emparelhamento, o número máximo de arestas que uma mesma cor pode colorir é $\lfloor n/2 \rfloor$. Como o grau máximo de G é Δ , precisa-se de pelo menos Δ cores para colori-lo. Mas se um grafo tem mais que $\Delta \times \lfloor n/2 \rfloor$ arestas é impossível colori-lo com Δ cores. Grafos com mais que $\Delta \times \lfloor n/2 \rfloor$ arestas são chamados de grafos sobrecarregados.

Apenas grafos de ordem ímpar podem ser sobrecarregados, pois grafos de ordem par tem no máximo $\Delta \times n/2$ arestas, ou seja, pode-se dizer que um grafo G é sobrecarregado se e somente se tem ordem ímpar e $\sum_{u \in V(G)} (\Delta - d_G(u)) \le \Delta - 2$ (NIESSEN, 1994).

Um Δ -subgrafo é um subgrafo de G com o mesmo grau máximo Δ de G. Um grafo é subgrafo-sobrecarregado (abreviado SO) se ele possui um Δ -subgrafo sobrecarregado. Ser SO é condição suficiente para G ser C (BEINEKE; WILSON, 1973).

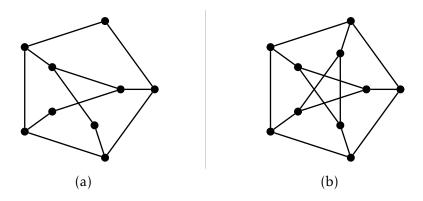
Conjectura 1.2 (Conjectura dos Grafos Sobrecarregados (CHETWYND; HILTON, 1984; 1986; HILTON; JOHNSON, 1987)). Um grafo G com n vértices e com $\Delta > n/3$ é Classe 2 se e somente se G é SO.

A Conjectura 1.2 é conhecida como Conjectura dos Grafos Sobrecarregados e enuncia que se um grafo com |V(G)| = n tem grau máximo maior que n/3, ser SO também

é uma condição necessária para G ser Classe~2. Se a Conjectura 1.2 for verdadeira, decidir se um grafo G com $\Delta(G) > n/3$ é Classe~1 pode ser feito em tempo polinomial, pois é possível decidir se um grafo é sobrecarregado e determinar a existência de um Δ -subgrafo sobrecarregado em tempo polinomial (PADBERG; RAO, 1982).

É possível encontrar exemplos de grafos não-SO que são Classe~2 e tem $\Delta = n/3$. Um exemplo é o P^* (Figura 1.6a), grafo obtido ao se retirar qualquer vértice do Grafo de~Petersen (Figura 1.6b).

Figura 1.6 – À esquerda o Grafo P*, com $\Delta = n/3$, não pode ser colorido com Δ cores. À direita o Grafo de Petersen.



1.5 APLICAÇÕES DA COLORAÇÃO DE ARESTAS NO MUNDO REAL

Muitas aplicações importantes no mundo real são encontradas para a coloração de arestas. Como visto no início deste capítulo, a coloração de arestas em grafos completos pode ser usada em cenários de escalonamento de competições no esporte (JANUARIO et al., 2016). Também pode ser aplicada em escalonamento de enlaces em redes de sensores (GANDHAM; DAWANDE; PRAKASH, 2005). Aplicações também são encontradas na atribuição de frequências de luz em pares de nodos conectados por fibra óptica (ERLEBACH; JANSEN, 2001).

1.6 CARACTERÍSTICAS DOS GRAFOS CONSIDERADOS NESTE TRABALHO

Um Δ -vértice é *próprio* de G se ele tem *soma de grau local* (soma dos graus de todos os seus vizinhos) pelo menos $\Delta^2 - \Delta + 2$. Todos os Δ -vértices em um grafo sobrecarregado são próprios, entretanto nem todo grafo com todos seus Δ -vértices próprios é um grafo sobrecarregado. Um exemplo disso é o *Grafo de Petersen* (Figura 1.6b). Se H é um Δ -subgrafo sobrecarregado de G, então todo Δ -vértice em H é Δ -vértice próprio tanto em H quanto em G (NIESSEN, 1994).

Um Δ -vértice é *não-próprio justo* se sua soma de grau local é exatamente Δ^2 – Δ + 1. Caso a soma de grau local do Δ -vértice seja no máximo Δ^2 – Δ , ele é chamado estritamente *não-próprio*.

Um grafo crítico é um grafo Classe 2 conexo que $\chi'(G - e) < \chi'(G)$ para todo $e \in E(G)$. Cada vértice em um grafo crítico é adjacente a pelo menos dois Δ -vértices (VIZING, 1965).

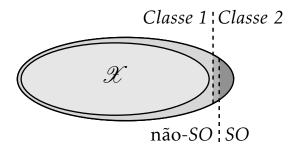
1.7 ALGORITMO DE RECOLORAÇÃO DE ARESTAS

Este trabalho tem como objetivo descrever um algoritmo que constrói, em tempo polinomial, uma coloração de arestas para um grafo que pertence à classe descrita pelo Teorema 1.3.

Teorema 1.3 (Zatesko et al. (2018)). Seja \mathscr{X} a classe de grafos com grau máximo Δ e com todos seus Δ -vértices estritamente não-próprios. Então,

- (i) todos os grafos em \mathcal{X} são Classe 1 (ver Figura 1.7);
- (ii) todo vértice de um grafo crítico é adjacente a pelo menos dois Δ -vértices com soma de grau local pelo menos $\Delta^2 \Delta + 1$.

Figura 1.7 – A classe $\mathscr X$ de grafos e as partições de acordo com o Teorema de Vizing e a propriedade dos subgrafos-sobrecarregados.



Fonte – Zatesko et al. (2018)

1.8 ESTRUTURA DO TEXTO

Este documento está organizado como segue: no Capítulo 2 é apresentado o primeiro resultado em coloração de arestas, relacionado a grafos completos, e o primeiro resultado de coloração de arestas para grafos bipartidos. No Capítulo 3 é descrito o leque de recoloração de Vizing, elemento-chave para demonstrar o Teorema 1.1. No Capítulo 4 é apresentado o procedimento de recoloração estendido, que é o algoritmo

utilizado para provar o Teorema 1.3. Por fim o Capítulo 5 traz a conclusão do estudo do algoritmo descrito neste documento, apresentando possíveis trabalhos futuros.

2 PRIMEIROS RESULTADOS EM COLORAÇÃO DE ARESTAS

Este capítulo apresenta dois dos primeiros resultados obtidos na área da coloração de arestas de grafos, que são relacionados aos grafos completos e aos grafos bipartidos.

2.1 COLORAÇÃO DE ARESTAS DE GRAFOS COMPLETOS

Esta seção apresenta o estado da arte da coloração de arestas para grafos completos. Os resultados aqui mostrados são exibidos por Behzad, Chartrand e Cooper Jr. (1967) e Stiebitz et al. (2012), mas já eram conhecidos anteriormente.

Теоrема 2.1. Seja K_n um grafo completo de ordem n, então:

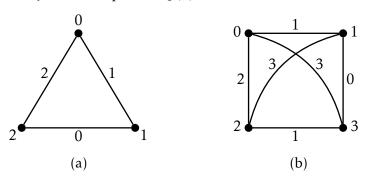
$$\chi'(K_n) = \begin{cases} n-1, & \text{se } n \notin par \\ n, & \text{se } n \notin impar. \end{cases}$$

Demonstração. Primeiramente vamos provar que conseguimos colorir todo K_n com n cores. Para isso damos rótulos aos vértices de modo que $V(K_n) = \{0,...,n-1\}$ e definimos a função $\varphi_1 \colon E(K_n) \to \{0,...,n-1\}$ como uma n-aresta-coloração para K_n (veja a Figura 2.1) de modo que

$$\varphi_1(uv) := (u+v) \bmod n$$
.

É possível gerar uma n-aresta coloração com essa função, pois sendo as arestas uv e uw em $E(K_n)$, se $\varphi_1(uv) = \varphi_1(uw)$, então v = w. Para mostrar isso, basta observar que se $u + v \equiv u + w \pmod{n}$, então v = w.

Figura 2.1 – Uma n-aresta coloração para o K_n de acordo com a função φ_1 . Para o K_3 (a) temos uma coloração ótima e para o K_4 (b), não.



Com isso sabemos que $\chi'(K_n) \le n$ independentemente de sua paridade. Para provar que K_n é *Classe 2* (o que implica que seu índice cromático é n) quando n é ímpar, basta observar que ele é um grafo sobrecarregado, pois $|E(K_n)| = n(n-1)/2$ e $\Delta(K_n) = n-1$, ou seja, para n ímpar temos $|E(K_n)| > \Delta \lfloor n/2 \rfloor$.

Se n é par desejamos construir uma aresta-coloração para o K_n com $\varphi_2 \colon E(K_n) \to \{0,...,n-2\}$. Para isso removemos o vértice com rótulo n-1 e todas as arestas que incidem nele. Isso nos deixará com o grafo K_{n-1} (claramente de ordem ímpar), portanto utilizamos a função φ_1 para construir uma (n-1)-aresta-coloração para K_{n-1} . Depois disso adicionamos o vértice removido e todas as suas arestas de modo que

$$\varphi_2((n-1)u) \coloneqq (2 \times u) \bmod (n-1).$$

Isso gera uma (n-1)-aresta-coloração válida para o K_n de ordem par, pois se $\varphi_2((n-1)u) = \varphi_2((n-1)v)$ com $u, v \in \{0, ..., n-2\}$, então u = v. Para mostrar isso, basta observar que $2 \times u \equiv 2 \times v \pmod{(n-1)}$, o que implica, como n-1 é impar, que u = v.

2.2 GRAFOS BIPARTIDOS

Esta seção mostra o primeiro resultado sobre coloração de arestas de grafos bipartidos, apresentado por Kőnig (1916).

Para o Teorema 2.2 considere que se uma cor α falta no vértice u, quer dizer que nenhuma aresta colorida com α incide em u. O subgrafo induzido por todas as arestas coloridas com as cores α e β é denotado por $G[\alpha, \beta]$. Perceba que cada componente em $G[\alpha, \beta]$ pode ser um caminho, quando cada vértice nas pontas desse caminho terá ou a cor α ou a cor β faltando, ou pode ser um ciclo, quando nenhum vértice na componente terá α ou β faltando.

Теоrема 2.2 (Teorema de Kőnig (Kőnig (1916) apud Stiebitz et al. (2012))). O índice cromático de qualquer grafo bipartido G é o seu grau máximo ($\chi'(G) = \Delta(G)$).

Demonstração. Seja G um grafo bipartido e φ : $E(G) \to \mathscr{C}$ uma Δ-aresta-coloração que construiremos uma aresta por vez.

Para cada aresta uv que desejamos colorir a cada vez, se a cor α falta em ambos u e v, podemos colori-la com α e partir para a próxima aresta. Senão, se a cor α falta no vértice u e a cor β falta no vértice v (com $\alpha \neq \beta$), então pegamos P como o caminho de $G[\alpha,\beta]$ ao qual u pertence. Como a cor α falta no vértice u, ele é uma das pontas do caminho P. A outra ponta desse caminho é qualquer outro vértice em $V(G)\setminus\{v\}$, pois como a cor que falta em v é β , para este ser a outra ponta, P tem que ser um caminho de comprimento par (com um número ímpar de vértices) e P+uv acarretaria em um ciclo ímpar em G, o que viola a propriedade de grafos bipartidos. Deste modo trocamos as cores no caminho P (todas as arestas coloridas com α passam a ser coloridas com β e vice-versa) e ambos α 0 e α 1 terão a cor α 2 faltando, portanto colorimos α 3 podemos ir à próxima aresta.

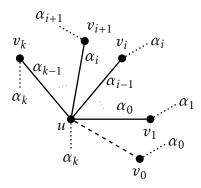
3 PROCEDIMENTO DE RECOLORAÇÃO DE VIZING

Para demonstrar o Teorema 1.1 (p. 22), Vizing propôs um procedimento de recoloração que constrói em tempo polinomial uma ($\Delta + 1$)-aresta-coloração para qualquer grafo G, colorindo uma aresta por vez. Este capítulo descreve esse procedimento através da Definição 3.1 e dos Lemas 3.2 e 3.3.

Para isso, G = (V, E) é um grafo parcialmente colorido pela função $\varphi \colon E \setminus \{uv\} \to \mathscr{C}$, que é uma $(\Delta + 1)$ -aresta-coloração para $G - \{uv\}$. A Definição 3.1 descreve o *leque de recoloração* de Vizing, ilustrado pela Figura 3.1, que é o elemento-chave para demonstração do procedimento.

Definição 3.1. Uma sequência $v_0,...,v_k$ é um leque de recoloração para a aresta uv se $v=v_0$ e, para todo $i\in\{0,...,k-1\}$, a cor $\alpha_i:=\varphi(uv_{i+1})$ falta no vértice v_i . O leque está completo se existe uma cor α_k que falta tanto no vértice u quanto no vértice v_k .

Figura 3.1 – Um leque de recoloração completo. As linhas pontilhadas indicam as cores que faltam nos vértices e a linha tracejada representa a aresta a ser colorida pelo procedimento.



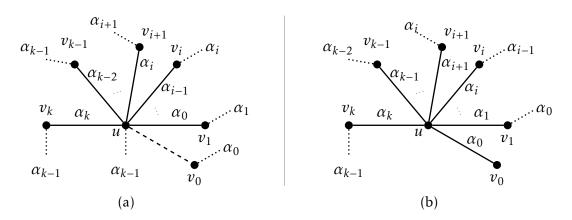
Lema 3.2. (VIZING, 1964) Se o leque de recoloração $v_0,...,v_k$ para uv está completo, então é possível colorir uv usando apenas as cores de \mathscr{C} .

Demonstração. Como a cor α_k falta em ambos u e v_k , é possível substituir a cor da aresta uv_k por α_k e isso deixará α_{k-1} faltando em u, v_k e v_{k-1} (ver Figura 3.2a na próxima página).

De forma análoga, para todo i iterando de k até 0, sempre o vértice v_i terá a cor α_i faltando, assim como o vértice u. Com isso é possível aplicar o *caimento das cores*, que consiste em colorir a aresta uv_i com a cor α_i , deixando α_{i-1} faltando em u para a próxima iteração. No final, a aresta uv será colorida com α_0 e finalizamos (ver Figura 3.2b na próxima página).

Lema 3.3. (VIZING, 1964) Se cada vértice do conjunto $N_G(u) \cup \{u\}$ tiver pelo menos uma cor de $\mathscr C$ faltante, então é possível colorir uv usando apenas as cores de $\mathscr C$.

Figura 3.2 – Um leque de recoloração completo após a primeira iteração e após finalizar o caimento das cores.

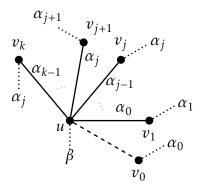


Demonstração. Primeiramente é importante observar que v_0 é um leque de recoloração, portanto se u e v_0 têm a cor β em comum faltando, aplicamos o Lema 3.2 e finalizamos.

Se isso não for possível, existe uma aresta e incidente em u que está colorida com a cor α_0 (cor que falta em v_0), caso contrário teríamos aplicado o Lema 3.2 anteriormente. Portanto chamamos o outro vértice ao qual e incide de v_1 e o inserimos no leque de recoloração. Se a cor α_1 que falta em v_1 também falta em u, podemos aplicar o Lema 3.2 e finalizar. Do contrário, seguimos com a construção, sempre atentando se podemos aplicar o caimento após cada vértice inserido.

Porém, se em algum momento toda cor faltando no vértice v_k for uma cor α_j para algum j < k (o que implica que a cor α_j já foi considerada no leque anteriormente), não podemos continuar o procedimento (ver Figura 3.3). Sabemos que uma

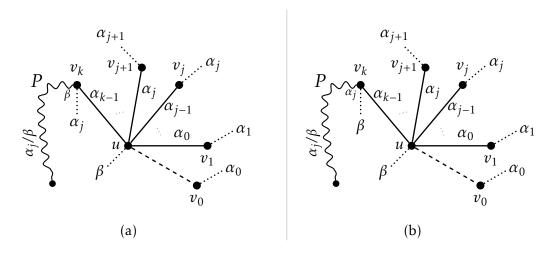
Figura 3.3 – Não é possível continuar a construção do leque, pois a cor que falta em v_k já foi considerada anteriormente.



aresta colorida com a cor β incide em todos os vértices no conjunto $\{v_1,...,v_k\}$, pois caso contrário teríamos aplicado o Lema 3.2 anteriormente. Desse modo, seja P a componente de $G[\alpha_j,\beta]$ à qual o vértice v_k pertence (certamente um caminho com v_k em uma das pontas, pois nenhuma aresta colorida com α_j incide em v_k). Temos três casos possíveis:

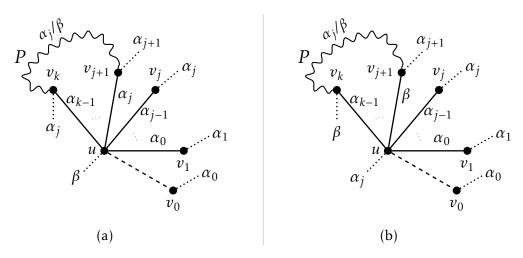
Caso 1. A outra ponta do caminho P não é nenhum vértice no conjunto $\{u, v_1, ..., v_k\}$ (ver Figura 3.4a). Deste modo, trocamos as cores das arestas da componente P (todas as arestas coloridas com α_j passam a ser coloridas com β e vice-versa). Pode-se notar que é possível realizar essa troca sem comprometer a coloração do grafo. Com esse passo, temos β faltando em u e em v_k (ver Figura 3.4b), portanto aplicamos o Lema 3.2 e finalizamos.

Figura 3.4 – Uma ilustração do Caso 1 do Lema 3.3



Caso 2. A outra ponta do caminho P é o vértice u, ou seja, P passa pelo vértice v_{j+1} e termina em u pela aresta uv_{j+1} , que está colorida com α_j (ver Figura 3.5a). Neste caso, trocamos as cores em P, que deixará α_j faltando em u, mesma cor que falta em v_j (ver Figura 3.5b). Agora podemos aplicar o Lema 3.2 para $v_0,...,v_j$ e finalizar.

Figura 3.5 – Uma ilustração do Caso 2 do Lema 3.3



Caso 3. A outra ponta do caminho $P \notin v_i$, para algum $i \in \{1,...,k\}$. Aqui aplicamos a troca de cores e com isso $u \in v_i$ terão a cor β faltando. Portanto, aplicamos o Lema 3.2 para $v_0,...,v_i$ e finalizamos.

Demonstração do Teorema 1.1 (p. 22). Nosso objetivo é colorir um grafo G com $\Delta+1$ cores, portanto temos $|\mathscr{C}|=\Delta+1$. Para isso vamos construir uma aresta-coloração $\varphi\colon E\backslash\{uv\}\to\mathscr{C}$ colorindo uma aresta por vez. O que se deve observar é que a quantidade de cores em \mathscr{C} é maior do que o grau de todos os vértices de G, ou seja, cada vértice terá ao menos uma cor faltante, portanto cada aresta uv considerada satisfará a condição do Lema 3.3.

4 PROCEDIMENTO DE RECOLORAÇÃO ESTENDIDO

Este capítulo apresenta uma extensão do procedimento de recoloração de Vizing, visto no Capítulo 3. Com a extensão apresentada, mostramos como construir uma Δ -aresta-coloração para um grafo que pertence à classe \mathscr{X} , descrita pelo Teorema 1.3 (p. 24). A Seção 4.1 apresenta o procedimento de recoloração de Vizing estendido, que servirá como base para provar os resultados obtidos por Zatesko et al. (2018) na Seção 4.2.

4.1 O PROCEDIMENTO DE RECOLORAÇÃO

O procedimento exibido no Capítulo 3 mostra que é possível colorir todas as arestas de um grafo G com $\Delta(G)+1$ cores. Entretanto, quando tentamos uma Δ -arestacoloração para G, utilizar um procedimento que constrói uma $(\Delta+1)$ -aresta-coloração pode não ser suficiente.

Para execução do procedimento, G = (V, E) é um grafo parcialmente colorido pela função $\varphi \colon E \setminus \{uv\} \to \mathscr{C}$, que é uma Δ -aresta-coloração para $G - \{uv\}$, em que uv é a aresta que desejamos colorir. A Definição 4.1 descreve o novo *leque de recoloração*, ilustrado pela Figura 4.1a na próxima página, que é utilizado para a execução do procedimento. Os Lemas 4.2–4.8 são resultados apresentados em Zatesko et al. (2018).

Definição 4.1 (Zatesko et al. (2018)). Uma sequência $v_0,...,v_k$ de vizinhos distintos de u em G é um leque de recoloração para uv se $v=v_0$ e, para todo $i\in\{0,...,k-1\}$, uma cor $\alpha_i:=\varphi(uv_{i+1})$ falta direta ou virtualmente em v_i . Se a cor α_i falta diretamente em v_i , então nenhuma aresta colorida com α_i incide em v_i , e se a cor α_i falta virtualmente em v_i , então i>0 e $\varphi(v_iw_i)=\alpha_i$ para algum $w_i\in N_G(v_i)\backslash\{v_{i-1}\}$ tal que a cor α_{i-1} falta diretamente em w_i . O leque está completo se uma cor α_k falta direta ou virtualmente no vértice v_k .

Lema 4.2. Se o leque de recoloração $v_0,...,v_k$ para uv está completo, então é possível colorir uv usando apenas as cores de \mathscr{C} .

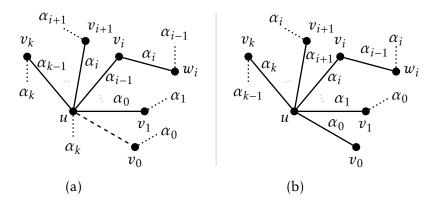
Demonstração. Para todo i iterando de k até 0, a cor α_i faltará diretamente em u e direta ou virtualmente em v_i . Para colorir uv o que se deve fazer em cada iteração é condicionado por dois casos:

- Caso 1. A cor α_i falta diretamente em v_i . Neste caso trocamos a cor da aresta uv_i (:= α_{i-1}) por α_i , o que deixará α_{i-1} faltando em u para a próxima iteração.
- Caso 2. A cor α_i falta virtualmente em v_i . Neste caso descolorimos temporariamente a aresta uv_i , o que deixará a cor α_{i-1} faltando diretamente em v_i . Pela Definição 4.1, a cor α_{i-1} também falta diretamente no vértice w_i , portanto trocamos

a cor da aresta $v_i w_i$ por α_{i-1} e obtemos a cor α_i faltando em v_i . Com isso podemos colorir uv_i com α_i e deixar a cor α_{i-1} faltando em u para a próxima iteração.

Ao final da última iteração, teremos uv colorida com a cor α_0 . Este processo é chamado de *caimento das cores* (ver Figura 4.1).

Figura 4.1 – Leque de recoloração completo antes e depois do caimento das cores. A linha tracejada indica a aresta a ser colorida pelo procedimento e as cores faltantes nos vértices são representadas pelas linhas pontilhadas.



Fonte – Zatesko et al. (2018)

Lema 4.3. Seja $v_0,...,v_k$ um leque de recoloração para uv, de modo que uma cor $\beta \in \mathscr{C}$ falta diretamente em u e uma cor $\alpha_k \in \mathscr{C} \setminus \{\beta,\alpha_0,...,\alpha_{k-1}\}$ falta direta ou virtualmente em v_k . Se

- 1. $u e v_k$ não estão na mesma componente de $G[\alpha_k, \beta]$, ou
- 2. $u e v_k$ estão na mesma componente de $G[\alpha_k, \beta]$, α_k falta virtualmente em v_k e o vértice u está mais perto de w_k do que de v_k na componente de $G[\alpha_k, \beta]$ à qual pertencem (ver Figura 4.2a na próxima página),

então é possível colorir G usando apenas as cores de C.

Demonstração. Caso aconteça o que é descrito pelo Item 1, seja X a componente $G[\alpha_k, \beta]$ à qual v_k pertence. Para resolver este caso, trocamos as cores na componente X, o que trará

- (i) β faltando diretamente em v_k para o caso em que α_k falta diretamente em v_k , ou
- (ii) β faltando virtualmente em v_k para o caso em que α_k falta virtualmente em v_k .

Perceba que se X é um ciclo (possível apenas quando α_k falta virtualmente em v_k), essa troca de cores terá o mesmo efeito. Após a troca, podemos aplicar o Lema 4.2 e finalizar.

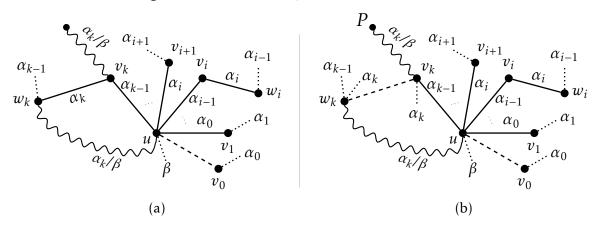


Figura 4.2 – Uma ilustração do Item 2 do Lema 4.3

Fonte – Adaptado de Zatesko et al. (2018)

Caso aconteça o que é descrito pelo Item 2, descolorimos temporariamente a aresta $v_k w_k$ e consideramos P como a componente de $G[\alpha_k, \beta]$ à qual v_k pertence. Como a aresta $v_k w_k$ foi descolorida, u não está em P e com isso voltamos ao Item 1 (ver Figura 4.2b), portanto trocamos as cores em P e aplicamos o Lema 4.2. Ao final temos a cor α_{k-1} faltando em v_k (devido ao caimento) e também em w_{k-1} , visto que, por definição, w_k é diferente de v_{k-1} . Consequentemente podemos colorir $v_k w_k$ com α_{k-1} e finalizar.

Lema 4.4. Seja $v_0,...,v_k$ um leque de recoloração para uv de modo que a aresta $v_{k-1}w_{k-1}$ é descolorida caso esteja definida. Se $\beta \in \mathscr{C}$ é uma cor faltando diretamente em $u, \alpha_k \in \mathscr{C}\setminus \{\beta,\alpha_0,...,\alpha_{k-1}\}$ é uma cor faltando virtualmente em v_k , o vértice w_k (por definição diferente de v_{k-1}) é vizinho de u, com $\varphi(uw_k) = \gamma$, de modo que $\gamma \in \mathscr{C}\setminus \{\beta,\alpha_0,...,\alpha_k\}$ e w_k não está na mesma componente de $G[\alpha_{k-1},\gamma]$ que v_{k-1} após trocar as cores na componente de $G[\alpha_{k-1},\beta]$ à qual w_k pertence, então é possível colorir uv usando apenas as cores de \mathscr{C} .

Demonstração. Antes de descolorir $v_{k-1}w_{k-1}$ no caso em que essa aresta esteja definida, checamos se $v_0,...,v_{k-1}$ satisfaz o Lema 4.3, pois se satisfizer basta aplicá-lo e finalizar.

Caso contrário, se estiver definida, a aresta $v_{k-1}w_{k-1}$ é descolorida. Trocamos as cores na componente P de $G[\alpha_{k-1},\beta]$ à qual w_k pertence. Como falta β em w_k , sabemos que P é um caminho com w_k em uma das pontas e também sabemos que u e v_{k-1} não estão em P, pois como o Lema 4.3 não é satisfeito para $v_0,...,v_{k-1}$, temos que u e v_{k-1} estão na mesma componente de $G[\alpha_{k-1},\beta]$ e também são pontas nesse caminho.

Com a troca de cores, obtemos β faltando em w_k , mesma cor que falta em u (ver Figura 4.3a na próxima página).

Seja X a componente de $G[\alpha_{k-1}, \gamma]$ à qual u, v_k e w_k pertencem. Perceba que com a troca de cores em P, a componente X pode ser um ciclo, mas o vértice v_{k-1} não está em X, pois assumimos por hipótese no enunciado deste lema. Também assumimos que

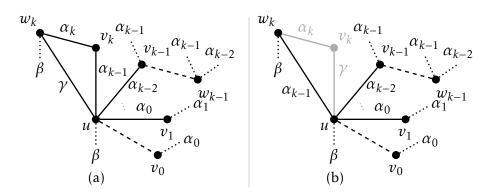


Figura 4.3 – Uma ilustração da prova do Lema 4.4

Fonte – Zatesko et al. (2018)

 γ é diferente de toda cor que já apareceu no leque.

Com uma troca de cores em X, podemos excluir v_k do leque de recoloração e $v_0,...,v_{k-1},w_k$ se torna um leque completo (ver Figura 4.3b). Com isso, podemos aplicar o Lema 4.2 e devido ao caimento, podemos colorir $v_{k-1}w_{k-1}$ (se estiver definido) com α_{k-2} e finalizar.

Até agora, nos Lemas 4.2–4.4, vimos os casos possíveis para quando v_k tem faltando, direta ou virtualmente, uma cor que não apareceu no leque ainda.

Os Lemas 4.5–4.7 demonstrarão casos possíveis para quando uma cor α_j falta direta ou virtualmente em v_k , com j < k (j também não pode ser k-1, pois por definição a cor da aresta uv_k é α_{j-1}). Se isso acontecer, então uv pode ser colorida usando apenas as cores de $\mathscr C$. A demonstração foi dividida em três casos:

- Caso 1. a cor α_{j+1} falta diretamente em v_{j+1} ou, para algum β faltando em u, os vértices w_{j+1} e v_k não estão na mesma componente de $G[\alpha_j, \beta]$;
- Caso 2. a cor α_{j+1} falta virtualmente em v_{j+1} , a aresta $v_{j+1}v_k$ está definida e na construção do leque v_k foi escolhido para ser w_{j+1} (possível pois falta α_j em v_k);
- Caso 3. a cor α_{j+1} falta virtualmente em v_{j+1} e w_{j+1} está na mesma componente de $G[\alpha_j, \beta]$ à qual v_k pertence, para todo $\beta \in \mathscr{C}$ faltante em u.

Perceba que no Caso 2, w_{j+1} e v_k também estão na mesma componente de $G[\alpha_j,\beta]$, como enuncia o Caso 3. Neste sentido, o Caso 2 é um caso particular do Caso 3.

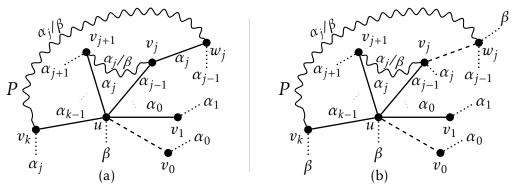
Lema 4.5. Seja α_j a cor que falta direta ou virtualmente em v_k com j < k. Se α_{j+1} falta diretamente em v_{j+1} ou se w_{j+1} e v_k não estão na mesma componente de $G[\alpha_j, \beta]$, então é possível colorir G usando apenas as cores de $\mathscr C$.

Demonstração. Primeiramente verificamos se o Lema 4.3 não é satisfeito para $v_0,...,v_j$. Em caso positivo, aplicamo-lo e finalizamos. Caso contrário, temos u, v_j e w_j (o último apenas no caso em que α_j falta virtualmente em v_j) na mesma componente de $G[\alpha_j, \beta]$, com β sendo uma cor que falta em u.

Se $v_k w_k$ estiver definida, descolorimos esta aresta e deixamos para colori-la novamente depois. Seja P a componente de $G[\alpha_j, \beta]$ à qual v_k pertence. Temos os dois casos possíveis:

- Caso 1. Os vértices u e v_j não estão em P. Neste caso, como assumimos por hipótese que w_{j+1} não está em P também, trocar as cores em P trará β faltando em v_k e $v_0,...,v_k$ torna-se um leque de recoloração completo, visto que a troca de cores não comprometerá $v_0,...,v_{j+1}$. Com isso podemos aplicar o Lema 4.2 para $v_0,...,v_k$, colorir v_kw_k com α_{k-1} se estiver definida e finalizar.
- Caso 2. Os vértices u e v_j estão em P. Neste caso α_j tem que faltar virtualmente em v_j e, para não satisfazer o Lema 4.3, o caminho tem que seguir a ordem dos vértices $u, v_{j+1}, ..., v_j, w_j, ..., v_k$ (ver Figura 4.4a). Descolorimos a aresta $v_j w_j$ e trocamos as cores na componente de $G[\alpha_j, \beta]$ à qual v_k pertence (ver Figura 4.4b). Ao fazer isto, temos um leque completo para $v_0, ..., v_k$, portanto aplicamos o Lema 4.2 e no final colorimos, se estiverem definidas, as arestas $v_k w_k$ com α_{k-1} e também $v_j w_j$ com α_{j-1} .

Figura 4.4 – Uma ilustração do Caso 2 do Lema 4.5



Fonte – Adaptado de Zatesko et al. (2018)

Lema 4.6. Seja $v_0,...,v_k$ um leque de recoloração para uv de forma que α_j falta virtualmente em v_k , com j < k. Se a cor α_{j+1} falta virtualmente em v_{j+1} e $w_{j+1} = v_k$, então é possível colorir G usando apenas as cores de \mathscr{C} .

Demonstração. Antes de aplicarmos o Lema 4.6, primeiro verificamos se o Lema 4.3 é satisfeito para $v_0,...,v_j$, pois caso isso aconteça, basta aplicá-lo e finalizar. Para o

Lema 4.3 não ser satisfeito para $v_0,...,v_j$, os vértices u e v_j têm que estar na mesma componente de $G[\alpha_j,\beta]$, e caso a aresta v_jw_j esteja definida, v_j tem que estar mais perto de u do que w_j na componente de $G[\alpha_j,\beta]$ à qual pertencem.

Também verificamos se o Lema 4.4 é satisfeito para $v_0,...,v_{j+1}$ e, em caso positivo, aplicamo-lo e finalizamos. Observe que $\varphi(uw_{j+1})(=\alpha_{k-1})\neq\alpha_i$ para todo $i\in\{0,...,j\}$. Isso quer dizer que α_{k-1} assume o papel do γ utilizado no Lema 4.4. Para este lema não ser satisfeito para $v_0,...,v_{j+1}$, sabemos que $v_k(=w_{j+1})$ e v_j estão na mesma componente de $G[\alpha_j,\alpha_{k-1}]$ (perceba que u também está nessa componente).

É impossível ter um caminho em $G[\alpha_j,\alpha_{k-1}]$ de v_k até v_{j+1} que não passe por u, pois isso caracterizaria um ciclo entre os vértices v_k e v_{j+1} , e também acarretaria em não ter como o vértice v_j não estar na componente de $G[\alpha_j,\alpha_{k-1}]$ à qual u pertence, o que seria uma contradição para o fato de que o Lema 4.4 não é satisfeito.

Se a aresta $v_j w_j$ está definida, descolorimo-la e deixamos para ser colorida mais tarde. Sabemos que a cor que falta em $u \in \beta$ e em $v_k \in \alpha_j$. Seja P a componente de $G[\alpha_j, \beta]$ à qual v_k pertence, nosso objetivo é deixar a mesma cor faltando em ambos os vértices $u \in v_k$.

Sabemos que P é um caminho, pois falta α_j em v_k , o que quer dizer que só sai uma aresta no vértice v_k de P, sendo impossível haver um ciclo. Também sabemos que u e v_j não estão em P, pois para isso acontecer a aresta v_jw_j tem que existir e estar colorida com α_j para fazer parte do caminho de u até v_k . Mas isso não acontece, pois se ela está definida, foi descolorida anteriormente.

A Figura 4.5a ilustra a situação atual do leque, que está pronto para iniciarmos os passos para conseguirmos aplicar o caimento.

 $v_{k} = \begin{pmatrix} \alpha_{j+1} & \alpha_{j} & \alpha_{j-1} & \alpha_{j} \\ \alpha_{j+1} & \alpha_{j+1} & \alpha_{j} & \alpha_{j-1} \\ \alpha_{j} & \alpha_{j-1} & \alpha_{j} & \alpha_{j-1} \\ \alpha_{j} & \alpha_{j} & \alpha_{j} & \alpha_{j} \\ \alpha_{j} & \alpha_{j} & \alpha_{j} & \alpha_{j-1} \\ \alpha_{j} & \alpha_{j} & \alpha_{j-1} & \alpha_{j} \\ \alpha_{j+1} & \alpha_{j+1} & \alpha_{j} & \alpha_{j-1} \\ \alpha_{j} & \alpha_{j-1} & \alpha_{j} & \alpha_{j} \\ \alpha_{j+1} & \alpha_{j+1} & \alpha_{j} & \alpha_{j-1} \\ \alpha_{j} & \alpha_{j-1} & \alpha_{j} \\ \alpha_{j} & \alpha_{j} & \alpha_{j} &$

Figura 4.5 – Uma ilustração do Passo 1 do Lema 4.6

Fonte – Zatesko et al. (2018)

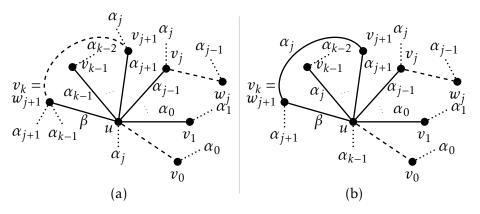
Passo 1. Trocamos as cores na componente P. Como u não está em P, temos β faltanto tanto em u quanto em v_k . Porém o leque não está completo, pois como $w_{j+1} = v_k$, ao aplicar a troca de cores não temos mais α_j faltando em w_{j+1} (ver Figura 4.5b).

Passo 2. Aplicamos o caimento até chegar em uv_{j+1} e agora não temos como resolver o problema da aresta $v_{j+1}w_{j+1}$. Portanto momentaneamente descolorimo-la, trazendo α_{j+1} faltanto em v_{j+1} e em $w_{j+1} (= v_k)$. Como começamos a aplicar o caimento, a cor que faltará em u nesse momento também é α_{j+1} e, portanto podemos colorir uv_{j+1} com α_{j+1} e teremos α_j faltanto em u e em v_j , mas não podemos aplicar o Lema 4.2 ainda, pois temos a aresta $v_{j+1}w_{j+1}$ descolorida.

Antes de seguirmos para o próximo passo, perceba que u e v_j não estão mais na mesma componente de $G[\alpha_{k-1},\alpha_j]$, pois o caminho entre eles partia pela aresta uv_k (antes $\varphi(uv_k) = \alpha_{k-1}$ e agora $\varphi(uv_k) = \beta$) ou pela aresta uv_{j+1} (antes $\varphi(uv_{j+1}) = \alpha_j$ e agora $\varphi(uv_{j+1}) = \alpha_{j+1}$).

O estado atual do leque é ilustrado pela Figura 4.6a.

Figura 4.6 – Uma ilustração dos Passos 2 e 3 do Lema 4.6



Fonte – Zatesko et al. (2018)

- Passo 3. Chamamos de Q a componente de $G[\alpha_{k-1},\alpha_j]$ à qual o vértice v_k pertence. Como as cores das arestas uv_k e uv_{j+1} mudaram ao aplicarmos o caimento, sabemos que v_{j+1} não está em Q. Com isso, podemos aplicar uma troca de cores na componente Q para obtermos α_j faltando tanto em $v_k(=w_{j+1})$ quanto em v_{j+1} . Assim podemos colorir a aresta $v_{j+1}w_{j+1}$ com α_j . No caso em que nem u e nem v_j são a outra ponta do caminho na componente Q, teremos α_j faltanto em ambos u e v_j , portanto podemos aplicar o Lema 4.2, colorir a aresta v_jw_j com α_{j-1} se ela estiver deifinida e finalizar. Entretanto, existe o caso em que um desses dois vértices é ponta do caminho de Q, o que faz com que α_j não falte mais em u ou em v_j (ver Figura 4.6b).
- Passo 4. Caso a outra ponta de Q seja u ou v_j , temos dois casos possíveis, onde em ambos cairemos em algum dos lemas anteriores e, se a aresta $v_j w_j$ estiver definida, poderemos colori-la com α_{j-1} .

Quando colorimos a aresta $v_{j+1}w_{j+1}$, o vértice $v_k(=w_{j+1})$ não é mais uma das pontas em Q, e isso pode fazer com que os vértices u e v_j fiquem na mesma componente de $G[\alpha_{k-1},\alpha_j]$. Com isso, seguem os dois possíveis casos:

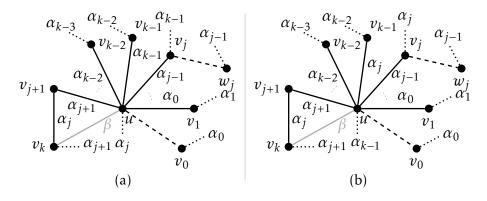
- i. Se u e α_j não estão na mesma componente de $G[\alpha_{k-1},\alpha_j]$, então basta trocar as cores nessa componente em que u ou v_j pertecem que teremos a mesma cor faltando em ambos os vértices. Com isso, $v_0,...,v_j$ se torna um leque completo, portanto basta aplicar o Lema 4.2 e finalizar.
- ii. Se u e α_j estão na mesma componente de $G[\alpha_{k-1}, \alpha_j]$, então podemos reorganizar os vértices na sequência do leque de forma a obtermos:

$$v_0, v_1, ..., v_j, v_{k-1}, v_{k-2}, ..., v_{j+2}, v_{j+1}$$

e temos um leque de recoloração em que o último vértice é v_{j+1} com as duas seguintes situações:

- (a) Quando a outra ponta de Q ao lado de v_k era v_j , quer dizer que teremos α_{k-1} faltando em v_j . Portanto, com o novo leque apresentado temos α_j faltando virtualmente em v_{j+1} , que é a mesma cor que falta em u e a configuração atual do leque satisfaz o Lema 4.2. Portanto, podemos aplicar o caimento e finalizar (ver Figura 4.7a).
- (b) Quando a outra ponta de Q ao lado de v_k é u, a cor α_j está faltando virtualmente em v_{j+1} e em outro vértice no leque (v_j) . Esse é exatamente o caso tratado pelo Lema 4.5 (ver Figura 4.7b), portanto podemos aplicá-lo e finalizar.

Figura 4.7 – Uma ilustração do Passo 4 do Lema 4.6



Fonte – Zatesko et al. (2018)

Lema 4.7. Seja $v_0,...,v_k$ um leque de recoloração para uv de modo que a cor α_j falta direta ou virtualmente em v_k , com j < k-1. Se α_{j+1} falta virtualemnte em v_{j+1} e o vértice w_{j+1}

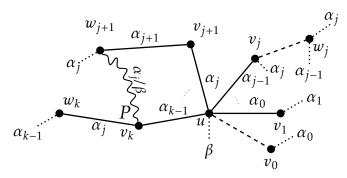
está na mesma componente de $G[\alpha_j, \beta]$ à qual v_k pertence, para todo $\beta \in \mathscr{C}$ que falta em u, então é possível colorir G usando apenas as cores de \mathscr{C} .

Demonstração. Primeiramente verificamos se $v_0,...,v_j$ não satisfaz o Lema 4.3. Em caso positivo, aplicamo-lo e podemos finalizar. Senão, se w_j estiver definido, descolorimos a aresta v_jw_j . Seja P a componente de $G[\alpha_j,\beta]$ à qual v_k pertence. Como a aresta v_jw_j foi descolorida e o Lema 4.3 não foi satisfeito para $v_0,...,v_j$, sabemos que u e v_j não estão em P.

Se, caso ao descolorirmos a aresta $v_j w_j$, o vértice w_{j+1} não pertença mais a componente de $G[\alpha_j, \beta]$ à qual v_k pertence, podemos aplicar o Lema 4.5 para $v_0, ..., v_k$ e finalizar.

A Figura 4.8 ilustra um dos possíveis estados atuais do leque de recoloração após as mudanças realizadas até agora.

Figura 4.8 – Situação do leque de recoloração após descolorir a aresta $v_i w_i$



Fonte – Adaptado de Zatesko et al. (2018)

Caso aconteça o que é ilustrado pela Figura 4.8, ou seja, v_k e w_{j+1} ainda pertençam a mesma componente de $G[\alpha_i, \beta]$, procedemos com os seguintes passos:

- Passo 1. Descolorimos a aresta $v_k w_k$ no caso em que w_k esteja definido. Seja P' a componente de $G[\alpha_j, \beta]$ à qual v_k pertence. Trocamos as cores em P' e agora temos β faltando diretamente em u e em v_k . Perceba que, como descolorimos $v_k w_k$, o vértice w_{j+1} pode não estar em P'. Se isso acontecer $v_0, ..., v_k$ é um leque de recoloração completo para uv, portanto aplicamos o Lema 4.2, colorimos $v_k w_k$ com α_{k-1} e finalizamos. Caso contrário, $v_0, ..., v_k$ não é mais um leque de recoloração para uv, pois como w_{j+1} também está em P, agora o falta β , e não mais α_j .
- Passo 2. Aplicamos o caimento até uv_{j+1} colorindo a aresta v_kw_k (caso esteja definida) com a cor α_{k-1} . Descolorimos a aresta $v_{j+1}w_{j+1}$ (colorida com α_{j+1}) e colorimos uv_{j+1} com α_{j+1} . Agora a cor α_j está faltando em u, v_j e v_{j+1} e a cor β está faltando em w_{j+1} .

Passo 3. Seja W o caminho de $G[\alpha_j, \beta]$ ao qual w_{j+1} pertence. Com o caimento, a aresta uv_k foi colorida com β , portanto u é a outra ponta de W e os vértices v_j e v_{j+1} não estão em W, pois também os falta a cor α_j , o que implica que eles são ponta de caminho, mas não de W. Com isso trocamos as cores na componente W, colorimos $v_{j+1}w_{j+1}$ com α_j e temos a cor β faltando em u e a cor α_j faltando em v_j , portanto a sequência

$$v_0, v_1, ..., v_j, v_k, v_{k-1}, ..., v_{j+2}, v_{j+1}$$

é agora um leque de recoloração que satisfaz as condições do Lema 4.5, com α_j faltando virtualmente em v_{j+1} . Deste modo, aplicamos o Lema 4.5, colorimos caso esteja definida a aresta $v_j w_j$ com α_{j+1} e finalizamos.

Lema 4.8. Se todos os Δ -vértices de G são estritamente não-próprios, então é possível colorir G usando apenas as cores de \mathscr{C} .

Demonstração. Nesta prova consideramos G' como o subgrafo de G induzido apenas pelas arestas já coloridas. Como uv não está em G', sabemos que u e $v_0(=v)$ não são Δ -vértices de G', portanto pelo menos uma cor de $\mathscr C$ faltará em ambos os vértices.

É preciso observar que v_0 por si só é um leque de recoloração para uv, portanto caso atenda a um dos Lemas 4.2–4.7 basta aplicá-lo e finalizar.

Enquanto um dos Lemas 4.2–4.7 não é satisfeito, continuamos com a construção do leque, de modo que apenas os Δ -vértices de G' podem ter uma cor faltando virtualmente. Se um vértice v_j , com j < k-1, tiver a cor α_{k-1} faltando, podemos organizar o leque na forma $v_0,...,v_j,v_k$, aplicar o Lema 4.2 e finalizar.

Se o leque de recoloração for máximo e não satisfizer alguns do Lemas 4.2–4.7, então v_k é um Δ -vértice de G' e

- (i) existe uma cor β que falta diretamente em u e em algum $y \in N_{G'}(v_k)$ ou
- (ii) nenhum vértice w, com $w \in N_{G'}(v_k) \setminus \{v_{k-1}\}$, tem a cor α_{k-1} faltando diretamente e nenhum vértice z, com $z \in N_{G'}(v_k) \setminus \{u\}$, tem a cor β faltando diretamente, para todo β que falta diretamente em u.

Caso aconteça o Item (i), se $y=v_{k-1}$, então beta falta tanto em u quanto em v_{k-1} , portanto aplicamos o Lema 4.2 para $v_0,...,v_{k-1}$ e finalizamos.

O único vizindo de v_k que pode ter α_{k-1} faltando é v_{k-1} , caso a aresta uv_{k-1} esteja definida, pois do contrário um dos Lemas 4.2–4.7 seria satisfeito ou o leque não seria máximo.

Para não satisfazer o Lema 4.3 para $v_0,...,v_{k-1}$, os vértices u e v_{k-1} têm que estar na mesma componente de $G'[\alpha_{k-1},\beta]$ e u tem que estar mais perto de v_{k-1} do que de w_{k-1} no caso em que w_{k-1} estiver definido. No que segue, seja P o caminho de $G'[\alpha_{k-1},\beta]$ ao qual u pertence. Se o Lema 4.3 não for satisfeito para $v_0,...,v_{k-1}$ temos:

- 1. O vértice y não está em P. Neste caso trocamos as cores em P, o que deixará a aresta uv_k colorida com a cor β, mesma cor que faltará em v_{k-1}. Como β é diferente de todas as cores já consideradas no leque, v₀,..., v_k ainda é um leque de recoloração, mas agora temos y assumindo o papel de w_k, pois a cor que faltava em y (= β) é a mesma cor da aresta uv_k. Independentemente se a cor da aresta v_ky já apareceu no leque ou não, caímos em um dos casos dos Lemas 4.2–4.7 ou o leque não é máximo, portanto seguimos com sua construção até que um dos lemas seja atendido.
- 2. O vértice y está em P. Neste caso as pontas do caminho P são u e y, visto que α_{k-1} tem que faltar virtualmente em v_{k-1} e, para não satisfazer o Lema 4.3, o caminho tem que seguir a ordem $u, v_k, ..., v_{k-1}, w_{k-1}, ..., y$, então:
 - a) Se a cor γ da aresta $v_k y$ já foi considerada no leque como algum α_j , com j < k-1, então primeiramente garantimos que $v_0,...,v_j$ não satisfaz o Lema 4.3. Se não satisfaz, descolorimos, se definida, a aresta $v_j w_j$ momentaneamente e trocamos as cores na componente de $G'[\gamma,\beta]$ à qual y pertence. Isso fará com que u fique mais perto de w_k do que de v_k , condição que satisfaz o Lema 4.3 para $v_0,...,v_{k-1}$, portanto o aplicamos e no final colorimos $v_j w_j$ (se estiver definida) com α_{j-1} .
 - b) Se a cor da aresta $v_k y \in \alpha_k \in \mathcal{C} \setminus \{\alpha_0, ..., \alpha_{k-1}, \beta\}$ então fazemos y ser o novo w_k , mas mesmo α_k não faltando virtualmente em v_k (pois a cor que falta diretamente em $y \in \beta$), ignoramos momentaneamente e seguimos com a construção do leque até que um dos Lemas 4.2–4.7 sejam atendidos e então aplicamos o caimento até a aresta uv_k . Neste momento verificamos se o Lema 4.3 ainda não é satisfeito para $v_0, ..., v_{k-1}$. Em caso negativo, descolorimos a aresta $v_{k-1}w_{k-1}$ e trocamos as cores no caminho de $G'[\alpha_{k-1}, \beta]$ ao qual v_k pertence (perceba que a outra ponta no caminho não pode ser v_{k-1}). Com essa troca v_k agora falta virtualmente em v_k , com a cor v_k (mesma cor da aresta v_k) faltando diretamente em v_k . Portanto seguimos com o caimento, colorindo no final a aresta $v_{k-1}w_{k-1}$ com v_k .

Caso aconteça o Item (ii) primeiramente observamos que como v_k é um Δ -vértice estritamente não próprio e a aresta uv não está em G', temos:

$$\sum_{y \in N_{G'}(v_k)} (\Delta - d_{G'}(y)) \ge \Delta + 1, \tag{4.1}$$

ou seja, v_k tem Δ vizinhos e ao fazermos o somatório de $\Delta - d_{G'}(y)$, com y iterando sobre todos os vizinhos de v_k , temos pelo menos Δ como resultado mais a aresta uv que não está em G' por não estar colorida.

Pelo princípio da casa dos pombos, deve haver pelo menos dois vizinhos y_1 e $y_2 \in N_{G'}(v_k)$ com a mesma cor γ faltando. A cor γ tem que ser diferente de α_{k-1} e β , pela hipótese do caso. É possível perceber que apenas um dos vértices $(y_1$ ou $y_2)$ pode estar na mesma componente de $G'[\gamma,\beta]$ à qual u pertence, pois tanto u, quanto y_1 e y_2 têm β ou γ faltando e os três são ponta no caminho de $G'[\gamma,\beta]$ ao qual pertencem. Com isso trocamos as cores na componente X de $G'[\gamma,\beta]$ escolhendo y_1 ou y_2 de modo que u não esteja em X. Se o y selecionado para ser ponta em X for v_j , para algum $j \in \{0,...,k-1\}$, então teremos β faltando em u e em v_j e, assim, $v_0,...,v_j$ será um leque de recoloração completo. Aplicamos o Lema 4.2 e finalizamos. Do contrário, β falta em um vértice y de v_k e com isso voltamos ao Item (i).

4.2 RESULTADOS EXPLORADOS

Os Lemas 4.2–4.8 juntos são a prova construtiva de que todos os grafos que têm os seus Δ -vértices com soma de grau local no máximo $\Delta^2 - \Delta$ são *Classe 1*. Portanto, com o procedimento de recoloração apresentado neste capítulo pode-se concluir o principal objetivo deste trabalho, que é provar o Teorema 1.3 (p. 24).

Demonstração do Teorema 1.3 (p. 24) (ZATESKO et al., 2018). Como $\mathscr C$ tem Δ cores é importante observar que todos os grafos que satisfazem o Lema 4.8 são *Classe 1*.

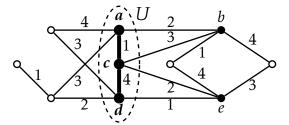
Para provar (i) que todo grafo $G \in \mathcal{X}$ é Classe 1, construímos uma Δ -arestacoloração para G aplicando o Lema 4.8 para cada aresta não colorida e finalizamos.

Para provar (ii) que todo vértice em um grafo crítico é adjacente a pelo menos dois Δ -vértices com soma de grau local pelo menos $\Delta^2 - \Delta + 1$, mostramos que se um vértice u é adjacente a no máximo um Δ -vértice próprio ou não-próprio justo (que tem soma de grau local pelo menos $\Delta^2 - \Delta + 1$) e G - u é $Classe\ 1$, então G também é $Classe\ 1$. Para observar isso, primeiro construímos uma Δ -aresta-coloração para G - u e então temos os dois possíveis casos:

- Caso 1. O vértice u é adjacente somente a não- Δ -vértices de G ou Δ -vértices estritamente não próprios. Neste caso, para cada aresta uv que desejamos colorir para construir uma coloração para G, aplicamos o Lema 4.8 e finalizamos com uma Δ -aresta-coloração para G.
- Caso 2. O vértice u tem no máximo um vizinho w que é Δ -vértice próprio ou não-próprio justo. Neste caso aplicamos o Lema 4.8 para colorir toda aresta uv com $v \in N_G(u)$, deixando uw para ser colorida por último e desse modo atenderemos sempre a condição do Lema 4.8, assim obtendo uma Δ -aresta-coloração para G.

Um resultado ainda mais abrangente foi apresentado por Zatesko et al. (2018) utilizando o mesmo procedimento de recoloração apresentado na Seção 4.1. Se um grafo G possui um conjunto U de Δ -vértices com soma de grau local de pelo menos $\Delta^2 - \Delta + 1$ e o subgrafo de G induzido por U é acíclico (ver Figura 4.9), então G também possui uma Δ -aresta-coloração possível.

Figura 4.9 – Uma Δ -aresta-coloração para um grafo G com o conjunto $U = \{a, c, d\}$ de Δ -vértices próprios ($\{c\}$) ou não-próprio justos ($\{a, d\}$). Perceba que U induz em um subgrafo de G acíclico.



Fonte – Adaptado de Zatesko et al. (2018)

Teorema 4.9 (Zatesko et al. (2018)). Seja X o conjunto de Δ -vértices estritamente nãopróprios de G. Se o subgrafo induzido por $V(\Lambda[G]-X)$ é acíclico, então G é Classe 1.

Demonstração. Para esta demonstração considere $U = V(\Lambda[G] - X)$. Perceba que G[U] é o subgrafo induzido por todos os Δ-vértices de G com soma de grau local pelo menos $\Delta^2 - \Delta + 1$.

Se $U=\emptyset$ então aplicamos o Lema 4.8 para toda aresta $uv \in E(G)$ e finalizamos. Do contrário, seja G':=G-E(G[U]). É fácil perceber que todos os Δ -vértices de G' são estritamente não-próprios. Desse modo aplicamos o Lema 4.8 para colorir todas as arestas de G' e agora falta colorir E(G[U]).

Para isso, como G[U] é um grafo acíclico, cada componente T de G[U] é uma árvore, portanto escolhemos um vértice $r \in T$ arbitrário para ser sua raíz. Seja $u \in T$, h(u) e pai(u) representam, respectivamente, a altura e o pai de u na árvore. Para cada $u \in T$ com h(u) variando de 1 até $\max h(u)$ desejamos colorir a aresta upai(u) e, para isso, G' é o subgrafo de G induzido pelas arestas coloridas até o momento. Cada G0 vértice G1 vizinho de G2 em G3 satisfaz:

- (i) w é um Δ -vértice estritamente não-próprio de G ou
- (ii) w está em V(G[U]), mas neste caso w = pai(u) ou u = pai(w). Em ambos os casos uw ainda não foi colorida, o que implica que u e w têm uma cor faltando e, se construirmos um leque de recoloração para upai(u), todos os Δ -vértices vizinhos de u no leque serão estritamente não-próprios.

Portanto aplicamos o Lema 4.8 para upai(u) e finalizamos.

5 CONCLUSÃO

Quando desejamos classificar um grafo G quanto ao seu índice cromático temos apenas duas possibilidades: G é Classe~1 se $\chi'(G) = \Delta$ ou G é Classe~2 se $\chi'(G) = \Delta + 1$. Entretanto, mesmo havendo apenas duas possibilidades de classificação, Holyer (1981) mostrou que decidir se G é Classe~1 é um problema \mathcal{NP} -completo.

Com os trabalhos de Chetwynd e Hilton (1984), Chetwynd e Hilton (1986) e Hilton e Johnson (1987) surge a Conjectura dos Grafos Sobrecarregados, em que se acredita que um grafo G com n vértices e com $\Delta > n/3$, ser SO é uma condição necessária para G ser Classe 2. Essa Conjectura abriu portas para uma série de pesquisas na área de coloração de arestas de grafos. Neste sentido o presente trabalho apresenta um estudo em um algoritmo desenvolvido por Zatesko et al. (2018) que constrói uma Δ -aresta-coloração para um grafo G com todos os seus Δ -vértices estritamente não-próprios em tempo polinomial.

A partir destes resultados, o trabalho de Zatesko et al. (2018) enuncia as Conjecturas 5.1 e 5.2 como possibilidades de continuação em busca de novos resultados a partir dos que foram obtidos até agora.

A Conjectura 5.1 mostra que talvez a classe $\mathscr X$ apresentada pelo Teorema 1.3 (p. 24) possa ser ampliada para todos os grafos cujo seus Δ -vértices têm soma de grau local de no máximo $\Delta^2 - \Delta + 1$.

Conjectura 5.1 (Zatesko et al. (2018)). Seja $\mathscr X$ a classe de grafos com grau máximo Δ e com todos seus Δ -vértices estritamente não-próprios ou não-próprios justos. Então,

- (i) todos os grafos em \mathscr{X} são Classe 1;
- (ii) todo vértice de um grafo crítico é adjacente a pelo menos dois Δ -vértices com soma de grau local pelo menos $\Delta^2 \Delta + 2$.

Em decorrência disso, a classe apresentada pelo Teorema 4.9 (p. 45) também pode ser ampliada, como mostra a Conjectura 5.2.

Conjectura 5.2 (Zatesko et al. (2018)). Seja $U \in V(G)$ o conjunto de Δ -vértices próprios de G. Se o subgrafo de G induzido por U resultar em um grafo acíclico, então G é Classe 1.

Outra sugestão para trabalhos futuros é a implementação do algortimo apresentado neste trabalho, realizando uma análise de desempenho e testes para diversos grafos que atendam as características exigidas pelo Teorema 1.3 (p. 24).

REFERÊNCIAS

BEHZAD, M.; CHARTRAND, G.; COOPER JR., J. K. The Color Numbers of Complete Graphs. J. London Math. Soc., v. 42, p. 226–228, 1 1967.

BEINEKE, L. W.; WILSON, R. J. On the edge-chromatic number of a graph. **Discrete Math.**, v. 5, p. 15–20, 1973.

CHETWYND, A. G.; HILTON, A. J. W. Star multigraphs with three vertices of maximum degree. **Math. Proc. Cambridge Philos. Soc.**, v. 100, p. 303–317, 1986.

_____. The chromatic index of graphs of even order with many edges. **J. Graph Theory**, v. 8, p. 463–470, 1984.

ERLEBACH, T.; JANSEN, K. The complexity of path coloring and call scheduling. **Theor. Comput. Sci.**, v. 255, n. 1–2, p. 33–50, 2001.

GANDHAM, S.; DAWANDE, M.; PRAKASH, R. Link scheduling in sensor networks: distributed edge coloring revisited. In: PROC. 24th INFOCOM. [S.l.: s.n.], 2005. p. 2492–2501.

HILTON, A. J. W.; JOHNSON, P. D. Graphs which are vertex-critical with respect to the edge-chromatic number. **Math. Proc. Cambridge Philos. Soc.**, v. 102, p. 103–112, 1987.

HOLYER, I. The \mathcal{NP} -completeness of edge-colouring. **SIAM J. Comput.**, v. 10, n. 4, p. 718–720, 1981.

JANUARIO, T.; URRUTIA, S.; RIBEIRO, C. C.; WERRA, D. Edge coloring: A natural model for sports scheduling. **Eur. J. Oper. Res**, v. 254, p. 1–8, 2016.

KŐNIG, D. Graphok és alkalmazásuk a determinánsok és a halmazok elméletére. **Math. Természettudományi Értesito**, v. 34, p. 104–119, 1916.

NIESSEN, T. How to find overfull subgraphs in graphs with large maximum degree. **Discrete Appl. Math.**, v. 51, p. 117–125, 1994.

PADBERG, M. W.; RAO, M. R. Odd minimum cut-sets and *b*-matching. **Math. Oper. Res.**, v. 7, p. 67–80, 1982.

STIEBITZ, M.; SCHEIDE, D.; TOFT, B.; FAVRHOLDT, L. M. Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture. [S.l.]: Wiley, 2012.

VIZING, V. G. Critical graphs with a given chromatic class (in Russian). **Diskret. Analiz.**, v. 5, p. 9–17, 1965.

_____. On an estimate of the chromatic class of a *p*-graph (in Russian). **Diskret. Analiz.**, v. 3, p. 25–30, 1964.

ZATESKO, L. M.; ZORZI, A.; CARMO, R.; GUEDES, A. L. P. **Edge-colouring Graphs** with Bounded Local Degree Sums. [S.l.: s.n.], 2018. Submitted to Discrete Appl. Math.