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EXECUTIVE SUMMARY 

Particulate air pollution in the form of fine (PM2.5) and ultrafine (PM0.1) particles has 

become a global concern, especially in urban areas with high population and vehicular traffic. 

Considerable research has been carried out to understand the underlying processes that impact 

particulate pollution, but most studies have been conducted in warmer regions such as California. 

The Fairbanks North Star Borough (FNSB) in Interior Alaska provides an interesting example of 

a relatively small- to mid-sized northern locality (population ~100,000) with persistent air quality 

issues and extremely cold climatic conditions for a major part of the year. Since December 2009, 

the FNSB has been designated a nonattainment region by the U.S. Environmental Protection 

Agency for the federal PM2.5 standard. As part of their remediation efforts, the borough and state 

have undertaken increased monitoring by using an on-roadway monitoring vehicle (sniffer vehicle) 

and stationary near-roadway sites for air quality measurements beyond what is required for 

regulatory compliance. The goal of this project was to analyze the data collected by the borough’s 

mobile monitoring vehicle (years 2012–15) to shed light on the PM2.5 issues faced by the FNSB. 

Ultrafine particle (UFP) concentration levels were measured at four road weather information 

system (RWIS) sites in the FNSB region, and PM2.5, traffic data, and weather data were collected 

at those locations.  

In the first part of the study with mobile monitoring, data were categorized in nine different 

groups based on their mean and standard deviation values to determine the spatiotemporal 

distribution of PM2.5. This novel way of grouping data allows identification of locations with 

consistently poor and consistently better air quality, by going beyond the simple analyses of means 

and accounting for variability and standard deviation in the data. In addition to hotspot 

identification, analysis found that average on-roadway PM2.5 concentrations are higher in North 

Pole (27.2 µg/m3) than in Fairbanks (12.9 µg/m3), and that average concentrations are higher in 
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the background stationary monitoring data (29.4 µg/m3) than in the mobile monitoring data (20.0 

µg/m3) for the study period. Not surprisingly, significant negative correlations (R2=0.49 for 

Fairbanks and R2=0.31 for North Pole) were found between temperature and PM2.5. Temporal 

distribution of the data suggests that PM2.5 levels increase gradually in the months of October and 

November, peak during the months of December, January, and February, and quickly plummet 

from March onwards. 

In the latter part of the study, data on UFP measurements were collected at each of the 

RWIS sites in the FNSB for four days between March 1 and 18, 2017, for five continuous hours 

each day. Among other parameters, PM2.5 concentrations, temperature, relative humidity, wind 

speed, and traffic volume data were collected. Data were analyzed to develop correlations between 

UFPs and other parameters, to compare data from this study with other studies, and to determine 

current roadside UFP concentration levels in Interior Alaska. Fairbanks roadside locations showed 

higher mean UFP counts (41,700 particles/cm3) than in North Pole (22,100 particles/cm3). 

Similarly, Fairbanks roadside locations showed higher PM2.5 concentrations and traffic counts (6.3 

µg/m3; 15 vehicles/min) than in North Pole (4.6 µg/m3; 10 vehicles/min), both being well below 

the on-roadway and background PM2.5 concentrations estimated in the first part of this report. 

Multilinear predictive models were developed for estimation of UFPs and PM2.5 based on weather 

and traffic parameters. This first study of UFPs in Alaska improves our understanding of near-

roadway UFPs in cold regions.  
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CHAPTER 1.0 BACKGROUND AND LITERATURE REVIEW 

1.1 Introduction 

In urban areas, road traffic is one of the main sources of particulate matter (PM) in the 

atmosphere. Exposure to PM can have harmful effects on human health. A better understanding of 

traffic-related PM would give us more opportunity to research health risks related to PM. Size 

distribution of PM is also important because different-sized particles have different effects on 

human health. Since strategies for removing particulates from the environment are often based on 

particulate size, better knowledge of size distribution could help select more appropriate strategies 

for a specific environment.   

1.2 Particulate Matter 

It is well-established that airborne PM has adverse impacts on human health, making it an 

important subject of research. Particulate matter is commonly classified according to three modes: 

ultrafine (nucleation mode, diameter less than 0.1 μm), fine (mainly accumulation mode, diameter 

between 0 and 2.5 μm), and coarse (diameter between 2.5 and 10 μm) (Taiwo et al. 2014). 

Generally, fine and ultrafine PM is formed and released from high-temperature processes such as 

vehicular exhaust, oil and coal combustion, biomass burning, industrial processes, and chemical 

reactions in the atmosphere (Harrison et al. 2003). Coarse particles evolve from attrition processes, 

including mechanical abrasion of crustal material and re-suspension of road and soil dust, sea 

spray, volcanic eruptions, and brake and tire wear from vehicles (Allen et al. 2001). 

The U.S. Environmental Protection Agency (EPA) includes PM in its list of Criteria Air 

Pollutants, considering its impact on public and human health. Under the National Ambient Air 

Quality Standards (NAAQS), the EPA has established safe ambient levels for PM, which are 35 
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μg/m3 (24 hr average) and 150 μg/m3 (24 hr average) for PM2.5 and PM10, respectively. There is 

no standard yet for PM0.1, and regulations are still under consideration (Kumar et al. 2014).  

1.3 Particulate Matter in the Fairbanks North Star Borough  

In the last decade or so, Fairbanks, Alaska, has experienced some of the highest measured 

PM concentrations in the United States. The topography of Fairbanks contributes to temperature 

inversions and low mixing height. The city is surrounded on three sides by hills, which results in 

the entrapment of air pollution for days, sometimes weeks. Fairbanks also has low wintertime 

temperatures. The combination of topography and low air temperatures forms a perfect recipe for 

poor air quality. Since 2006, Fairbanks has frequently exceeded the federal PM2.5 standard, and in 

2009, Fairbanks was declared a nonattainment area. Prior to being designated a nonattainment area 

for PM2.5, Fairbanks faced many air pollution-related problems, for example, nonattainment of the 

carbon monoxide standard for many years, although the city overcame this problem in 2004. The 

Fairbanks North Star Borough (FNSB) has initiated programs to identify specific sources of PM2.5 

in ambient air, and established monitoring sites for collecting hourly PM2.5 concentrations.  

1.4 Roadside Particulate Matter 

Vehicular traffic emissions have three components: (1) vehicle exhaust; (2) emissions from 

brake, tire, and road wear; and (3) re-suspension from wheel-generated turbulence (Amato et al. 

2013). The latter two components are considered non-exhaust emissions. 

1.4.1 Exhaust emissions 

Exhaust emissions from motor vehicles, also referred to as “tail pipe emissions,” contain 

fine and ultrafine particles (UFPs) because motor vehicles produce carbonaceous aerosols (Pant 

and Harrison 2013), and emission happens at high temperature through the tail pipe. Engine age, 

type, and maintenance play a role in the variation of PM emissions from motor vehicles (Pant and 
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Harrison 2013). In addition, type and condition of the engine, fuel composition and additives, 

operating conditions, and emission control devices cause variation in PM emission (Amato et al. 

2013). Studies show that PM emission varies in vehicles with different fuel systems; for example, 

diesel vehicles emit a greater mass of PM and a larger number of UFPs than gasoline vehicles emit 

(Rose et al. 2006). Most research and resulting policy have focused on exhaust emission. As a 

result of improved engine operations and controlled tail pipe emissions, a huge reduction of PM 

has occurred over the past 30 years (Allen et al. 2006), but other vehicle-related sources are less 

studied.  

1.4.1 Non-exhaust emissions 

Non-exhaust emissions mainly contribute to coarse particles (PM2.5-10). Even though PM 

from exhaust emissions are reduced, a zero emission vehicle still can produce PM from tire wear, 

road wear, brake wear, and re-suspended road dust (Allen et al. 2006, Pant and Harrison 2013). 

Rexeis and Hausberger (2009) have estimated that PM concentration due to non-exhaust emissions 

will amount to 90% of total PM by the end of this decade. Non-exhaust emissions are becoming 

more important, and further research is needed to improve our understanding of PM sources and 

constituents.  

1.4.1.1 Tire wear 

The rolling shear forces between tire tread and the road surface are the main cause of tire 

wear particles (Rogge et al. 1993). Tire use predominantly produces coarse (PM2.5-10) particles. 

Tire debris enters the atmosphere due to turbulence caused by wind speed and traffic density within 

the air column above the street. The settling velocity of that debris varies based on the PM size 

(Rogge et al. 1993). Microscopic analysis shows that tire wear particles generally elongate on 

rough surfaces (Gunawardana et al. 2012). For example, tires wear more on asphalt pavements 

than on concrete pavements. Tire tread is also a potential source of airborne particles because tire 
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tread contains natural rubber copolymers such as styrene-butadiene rubber and polyisoprene 

rubber, and zinc (Zn) (Pant and Harrison 2013). Tire type impacts the magnitude of emissions too. 

Hussein et al. (2008) have reported that studded tires cause more emissions than summer and 

friction tires (winter tires). 

1.4.1.2 Brake wear 

Brake wear refers to abrasion between brake lining material and brake discs. Grinding and 

condensation of brake pad materials are responsible for coarse-range and fine-range particle 

emissions, respectively. Garg et al. (2000) have reported that the condensation of brake pad 

materials releases PM directly into the atmosphere and is a source of trace metal concentration. 

Each daily rush hour is a potential time for release of high brake-wear-related emissions because 

at that time, people operate vehicles in stop-and-go mode (Grieshop et al. 2006). Freeway exit sites 

contribute higher brake wear emissions than do other types of roadside sites (Abu-Allaban et al. 

2003). 

1.4.1.3 Road dust 

Road dust is composed of coarse-sized particles from traffic, wood burning, industrial 

emissions, and other sources (Kupiainen et al., 2005). It is hard to tell whether road dust is crustal, 

re-suspended, or direct emission because of the spatial and temporal variation of its composition. 

Researchers have discussed re-suspended dust more than any other type of road dust. Various 

factors associated with traffic, road, and meteorological parameters influence the amount of re-

suspended road dust. Etyemezian et al. (2003) found that season and roadway travel speed 

significantly affect emission amounts. Heavy traffic shows a strong correlation with re-suspension 

of road dust (Thorpe et al. 2007). People think that precipitation reduces re-suspended dust from 

the road, but research does not support that notion. Street washing experiments conducted in Spain 

have not proven effective in controlling PM re-suspension (Karanasiou et al. 2012). 
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1.5 Spatial Variation of Particulate Matter 

Three common approaches are used in measurement and quantification of spatial variation 

of PM in urban areas: (1) measurements as a function of distance from a major road; (2) 

measurements at a major road as well as at side streets; and (3) measurement at specific and 

predefined locations within a city (Morawska et al. 2008). 

1.5.1 Particle concentration and distance from the road 

Several studies have been done on the effect of distance from the road on particle 

concentration, and these studies have generally followed the same procedures and considered the 

same areas, i.e., undisturbed by barriers like buildings or hills and showing the same shape of the 

dispersion function. Changes to size distribution and particle number were the main concentration 

of the studies; however, a few studies tried to correlate particle concentration with pollutants 

emitted from vehicles. As a result, all of these studies show that concentration of PM decreases 

with distance from the road, up to a certain point, around 300 m, after which concentration and 

size distribution levels reach the local background (Hitchins et al. 2000, Zhu et al. 2002).  

On-road and roadside particle concentrations range between 104 and 106 particles cm-3 and 

show correlation with vehicle flow characteristics. The higher speed of a vehicle contributes to 

greater particle concentration and smaller particle size. But less variation was observed in particle 

volume compared with particle number size distributions (Kittelson et al. 2004). Virtanen et al. 

(2006) showed that total concentrations at roadsides are dominated by nucleation mode particles 

and increase with higher traffic rates, and that the effect of traffic rate is stronger on particles 

smaller than 63 nm than on larger particles. Harrison et al. (1999) reported that, on the road, 

significant numbers of particles are in the 3–7 nm size range, with a mode below 10 nm, and are 

attributable to homogeneous nucleation processes.  
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1.5.2 On-road and urban background concentration 

A number of studies monitored the concentration of particle characteristics in urban sites 

located at various orientations in relation to urban traffic, or from mobile laboratories around the 

city. Most commonly, the aims of such studies were to compare the differences between local 

hotspots and urban background locations, rather than to provide a comprehensive characterization 

of the relationship between the concentrations and the distance from a particular street or traffic 

flow. Particle size distribution is much more stable at background urban sites, where it is likely to 

be unimodal; closer to traffic, particle size distribution is multimodal and changes rapidly 

(Harrison et al. 1999, Morawska et al. 2004). Near traffic, the nanometer fraction of UFPs 

dominates the total particle number concentrations, and their contribution decreases with distance 

from traffic (Kittelson et al. 2004). 

1.5.3 Particle concentration in different environments 

Studies show that different environments contribute to different particle concentration 

levels. Studies have been done on the environment of eight categories: on-road, roadside (with 

different distance from the road), road tunnel, street canyon, urban, urban background, rural, and 

clean background (Morawska et al. 2008). Figure 1.1 represents a comparison of mean and median 

concentrations for different environments. 

 
Figure 1.1 Number concentrations of particles at different locations (Ref.: Morawska et al. 2008). 
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1.6 Factors Affecting PM Concentrations 

Wind speed, temperature, and relative humidity are the most important factors affecting 

PM, and are briefly discussed below.  

1.6.1 Wind speed 

Wind speed is responsible for dispersion and dilution, and thus causes atmospheric mixing. 

Wind also causes re-suspension of particles. Studies found a direct correlation of UFPs with wind. 

Charron and Harrison (2003) found that when the relationship between larger particle 

concentration and wind speed is U-shaped, UFP concentration decreases. Since wind speed 

increases the coagulation rate, causing better air mixing and particle loss due to deposition, 

Hussein et al. (2005) presented UFP concentration by a decreasing exponential function of wind 

speed. Hussein et al. (2005) found a linear decreasing trend with wind speed and provided an 

explanation that, in summertime, mixing of aerosol particles occurs within a bigger volume so the 

changes of particle concentration with wind speed are smaller. Also, road traffic may cause mixing 

despite otherwise static conditions.  

1.6.2 Temperature 

Temperature plays an important role in variation of particle number concentration. 

Especially in wintertime, people burn wood to keep their houses and buildings warm, producing 

particles most likely to be ultrafine. Charron and Harrison (2003) found that particles in the size 

range of 11–30 nm in a roadside environment peaked during the early morning, showing an inverse 

association with air temperature. On the other hand, Kim et al. (2002) showed that during the 

warmer months, some increase in particles smaller than 100 nm occurs in the afternoon, linked to 

an increase in temperature. However, most of the literature suggests an inverse relation of 

temperature with particle number concentration. Olivares et al. (2007) found that when the 

temperature decreased from +15°C to -15°C, the particle number more than doubled, and they 
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mentioned that variation was pronounced with particles smaller than 40 nm, while variation of 

particles larger than 100 nm was not so statistically significant. 

1.6.3 Relative humidity 

Relative humidity shows a daily anti-correlation with temperature, but a positive 

correlation with ambient particle concentration. Condensation of volatile compounds onto pre-

existing aerosol changes the particle size, and thus changes particle numbers. Also, studies show 

that nucleation mode particles are largely influenced by relative humidity. Hussein et al. (2005) 

found that in southern Finland the high number concentration of particles larger than 100 nm 

during warmer summer temperatures was partly due to the growth of aerosol particles in the 

presence of condensable vapors emitted from the surrounding boreal forest.  

1.6.4 Temperature inversion 

A temperature inversion, which is a mix of several meteorological conditions, that 

exacerbate poor air quality by trapping accumulated pollutants in the atmosphere closer to the 

ground. In this condition, the air is stable, little vertical mixing occurs, and wind speed is lower; 

thus, pollution concentration increases. For example, Janhaïl et al. (2006) showed that morning 

temperature inversions in Goteborg, Sweden, resulted in significantly elevated concentrations of 

traffic-related pollutants, including UFPs, but there was no impact of inversion on PM10 

concentrations.  

1.6.5 Precipitation 

In general, precipitation has a washout effect on the environment, which ultimately helps 

remove particles from the atmosphere. Charron and Harrison (2003) found an opposite effect in 

relation to particles below 150 nm, with an increase of particle numbers during rain with >0.4 mm 

raindrops. In addition, the highest particle numbers were measured just 1 hour after a rain event. 
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The possible explanation for this phenomenon is an effect of reduced temperature during 

precipitation events.  

1.7 Chemical Composition of Particulate Matter 

Atmospheric PM is made up of diverse chemical substances including water-soluble ions, 

trace metals, and organic compounds (Taiwo et al. 2014). Water-soluble ions constitute a 

significant portion of PM mass (Yin and Harrison 2008) and therefore play an important role in 

aerosol chemistry. Sulfate and nitrate are formed mainly from the oxidation of SO2 and NOx. 

Sodium, magnesium, and chloride are the main components of sea spray; potassium arises from 

biomass burning or soil, and Ca from construction, soil, and steelworks emissions (Oravisjärvi et 

al. 2003, Pandolfi et al. 2010). Several anthropogenic, geogenic, and biogenic activities are 

responsible for emissions of trace metals to the atmospheric environment and hence play important 

roles in determining size distributions (Allen et al. 2001). Each source has a characteristic size 

distribution reflective of its source. Here, the only chemical composition of traffic-related PM will 

be discussed.  

1.7.1 Exhaust particles 

Exhaust particles contain submicron-sized primary particles and micrometric secondary 

particles (S-N-organics) formed in the atmosphere by condensation of gaseous compounds on 

existing nuclei (Amato et al. 2013). Elemental carbon, adsorbed organic material, inorganic salts, 

and traces of metallic compounds are the main components of gasoline- and diesel-originated 

exhaust particles, although particles emitted from engines operated with gasoline and diesel are 

different from each other by size and chemical composition.  

Diesel engines contribute more fine and ultrafine particles than gasoline engines in both 

mass basis and number basis concentration (Rose et al. 2006). Gasoline engines release a higher 
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fraction of organic carbon (OC), while diesel engines emit more elemental carbon (EC) (Watson 

1994, Weingartner et al. 1997). Zhu et al. (2010) reported that PM2.5 emissions from diesel and 

gasoline vehicles are rich in different fractions of EC and OC. Vehicles are also a major source of 

n-alkanes, and diesel engines are known to emit more n-alkanes than gasoline engines emit (Rogge 

et al. 1993)  

Studies show that elemental markers used for vehicular emissions include copper (Cu), 

manganese (Mn), iron (Fe), zinc (Zn), barium (Ba), tin (Sn), nickel (Ni), molybdenum (Mo), and 

antimony (Sb) (Birmili et al. 2013, Lough et al. 2004). Metals can be emitted from various exhaust-

related sources including fuel and lubricant combustion, catalytic converters, particulate filters, 

and engine corrosion (Lough et al. 2004), but many appear to arise from non-exhaust sources. 

Nickel (Ni) and vanadium (V) have been reported present in emissions due to oil combustion (Pey 

et al. 2010). 

1.7.2 Non-exhaust emission 

Non-exhaust emissions come from tire wear, brake wear, road wear, and road dust, as 

discussed earlier. Different types of PM can have different chemical compositions. 

1.7.2.1 Tire wear 

Minimal research has been done on the chemical composition of tire wear. Rogge et al. 

(1993), who presented some of the most detailed information on tire tread debris, suggested 

benzothiazole as a possible tracer for tire wear products in the atmosphere, although this 

conclusion was drawn from analyses of only one tire. More recently, Kumata et al. (1997) 

suggested that 2-(4-morpholinyl) benzothiazole, an impurity found in vulcanizing agents used in 

tire manufacturing, may have potential use as a molecular marker for tire abrasion products. In a 

later study, Kumata et al. (2002) reported the presence of benzothiazole compounds in street 

runoff, concluding that tire wear and contaminated road dust are the likely source. 
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Hildemann et al. (1991) detected several metals at substantial concentrations. Aluminium 

(Al), calcium (Ca), Cu, Fe, titanium (Ti), and Zn were particularly prevalent. However, the 

dynamometer tests were performed on tires from a vehicle driven for 7200 miles on normal roads, 

so contamination of the tire tread with road dust may have affected concentrations. Adachi and 

Tainosho (2004) reported the presence of other metals in tire wear debris that may contribute 

substantially to airborne metal loadings, including manganese (Mn), Fe, cobalt (Co), Ni, Cu, 

cadmium (Cd), and lead (Pb). Camatini et al. (2001) identified rubber particles from tire wear 

experiments in the laboratory by the presence of sulfur (S) and Zn using SEM-EDX analysis. 

1.7.2.2 Brake wear 

Modern brake lining materials are composites of many ingredients including chemicals. 

Particle emissions from the braking process vary in chemical composition. Several studies have 

been done to determine the metal content of brake linings and wear particles. Metals such as Fe, 

Cu, Pb, and Zn are ubiquitous and have been repeatedly reported in high concentrations in brake 

lining materials. Hildemann et al. (1991) found brake dust particles predominantly composed of 

Fe compounds, silicon compounds, organics, magnesium (Mg), and barium (Ba). In a more 

comprehensive assessment performed by Garg et al. (2000), Fe, Cu, Sb, and Ba were found to be 

most abundant.  

1.7.2.3 Road dust 

Particles emitting from a wide variety of sources deposit on the road surface. Exhaust 

particles, de-icing salt, and biogenic and geogenic materials may all be carried from nearby 

locations and deposited on the ground. These deposited materials or particles are referred to as 

road dust. The diversity of sources is so huge that Miguel et al. (1999) reported at least 20 different 

road dust sources from which the presence of allergens has been derived. Deposited materials are 

re-suspended through the abrasion of traffic and cause PM emissions. Typically, road composition 



14 

is dominated by elements and compounds associated with crustal materials. Therefore, local 

geology can have an effect on the composition of road dust, varying with location. Variation with 

season can also be pronounced, especially in regions where road salting procedures and studded 

tire use is common in winter months (Schauer et al. 2006). Analysis of road dust samples 

conducted by Hildemann et al. (1991) in Pasadena reported the composition as 27% SiO2, 11% 

Al2O3, 9% Fe2O3, 4% Ca, and 17% organics. Etyemezian et al. (2003) reported organic carbon as 

an important constituent of many soil and road dust samples as are Ca and Fe.  

1.8 Impacts of PM on Human Health 

The World Health Organization estimates that PM air pollution contributes to 

approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality 

worldwide (Anderson and Thundiyil 2012). However, many studies show that the relationship is 

deeper and far more complicated than originally thought. Ultrafine particles (PM0.1) especially can 

have more adverse effects on human health than coarse and fine particles (Russell and Brunekreef 

2009). Ultrafine particles easily penetrate deep into the respiratory system and reach a large surface 

area, which increases their reactivity, leading to adverse health effects (Betha et al. 2014). People 

subjected to long-term exposure to PM have significantly more cardiovascular incidents and a 

higher mortality rate.  

1.8.1 Exposure to PM 

Being able to understand the sources of PM does not mean a similar understanding is 

available for how individuals (or even populations) are exposed. An individual’s exposure may 

not be similar to ambient measurements and the corresponding emissions, since people move from 

one environment to another and spend a lot of time in buildings and vehicles (Russell and 
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Brunekreef 2009). In general, exposure means concentrations experienced in an environment over 

time (Morawska et al. 2008) 

1.8.2 Exposure to ultrafine particles  

Few studies have investigated human exposure to UFPs. In winter, people spend a lot of 

time on roadways traveling to or from work, and UFPs are strongly associated with traffic-related 

emissions. A roadside study by Kaur et al. (2006) showed that various modes of transport resulted 

in different exposures, with average personal UFP count exposure (104 particles cm-3) of 4.61 

(walking), 8.40 (cycling), 9.50 (bus), 3.68 (car), and 10.81 (taxi). Gouriou et al. (2004) found that 

particle concentrations in exposed car passengers may present high peaks, up to 106 particles cm-

3.  

1.8.3 Health effects 

Particulate matter is associated with a wide variety of cardiovascular and respiratory health 

issues, with responses to exposure being both acute (e.g., increased hospital admittances for 

respiratory disease or premature mortality from cardiovascular disease) and chronic (reduced 

longevity in cities with higher PM levels). There are also indications of reproductive and 

developmental effects.  

1.8.3.1 Cardiovascular effects 

Studies suggest that PM significantly affects the cardiovascular system. Research on this 

topic has focused on both the long-term effects of PM exposure and the acute effects of increases 

in ambient PM on cardiovascular mortality. Brook et al. (2010) found that for any increase in 

mortality caused by PM, two-thirds of the effect was accounted for by cardiovascular diseases.  

As for short-term effects, time-series studies estimate that a 10 µg/m3 increase in mean 24-

hour PM2.5 concentration increases relative risk (RR) by 0.4% to 1% for daily cardiovascular 

mortality (Pope and Dockery 2006). Short-term PM exposure is also associated with triggering 
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myocardial infarction (MI). Peters et al. (2001) reported on a study of 772 Boston area patients 

with MI; elevated concentrations of PM2.5 increased the risk of MI within a few hours and one day 

after exposure. 

Many studies have been conducted through the years to understand the long-term exposure 

effect of PM. One of the well-known studies is the “Harvard Six Cities study,” a cohort study, 

published in 1993, that followed 8111 patients for 16–18 years. The study showed a 29% (95% 

CI, 8–47%) increase in mortality rate for the most polluted cities compared with the least polluted 

cities (Dockery et al., 1993). Particulate pollution was associated with lung cancer and 

cardiopulmonary disease. Pope et al. (1995) conducted a cohort study of 552,000 patients in 151 

areas and found a 17% increase in all-cause mortality and a 31% increase in cardiopulmonary 

mortality between the most polluted and the least polluted cities.  

1.8.3.2 Respiratory effects 

While much of the interest in PM has focused on the cardiovascular system, many studies 

evaluated the association between PM exposure and respiratory illness. Researchers have 

evaluated endpoints including respiratory symptoms, medication use, lung function, health-care 

utilization, and mortality (Anderson and Thundiyil 2012). Studies suggest that PM levels may 

affect lung function and development. Gauderman et al. (2004), who followed 1759 patients over 

8 years, found that children who lived in communities with the highest PM concentrations were 

five times more likely to have low FEV1(forced expiratory volume in 1 second), an assessment of 

the normality of lung function, than those in communities with the lowest PM concentrations. 

Studies also found that children with better lung function were susceptible to asthma when exposed 

to higher levels of PM2.5 (Islam et al. 2007).  

Several studies have demonstrated an association in adults between respiratory 

hospitalization and ambient PM (Medina-Ramon et al. 2006). Even with short-term exposure, 
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effects are stronger for stronger patients (Arena et al. 2006). Peng et al. (2009) found in their study 

of 12 million Medicare enrollees in 108 counties a significant increase in respiratory 

hospitalizations with increasing PM2.5 levels in the eastern U.S., suggesting that morbidity may be 

related to specific chemical constituents of PM, which differ across the nation since they did not 

find a consistent effect of PM in the western U.S. 
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CHAPTER 2.0 WINTERTIME ON-ROADWAY PM2.5 MOBILE MONITORING  
IN FAIRBANKS AND NORTH POLE, ALASKA 

2.1 Introduction 

Airborne particulate matter (PM) contributes to increasing mortality rates from respiratory and 

cardiovascular disease (Brunekreef and Holgate 2002). With an aerodynamic diameter of less than or 

equal to 2.5 microns, PM2.5 has a tremendous effect on human health, visibility, and climate condition, 

making it an important subject of research and study (Wang and Ogawa 2015), and with urbanization 

and industrialization, PM2.5 pollution has become a global concern. Many studies have been done in 

major cities in the U.S. and Europe regarding PM concentrations and associated health effects 

(Dockery et al. 1993, Katsouyanni et al. 2001, Le Tertre 2002). Research indicates that cities with 

large populations and traffic volume continuously show higher concentrations of PM2.5 (Huang et al. 

2015, Pant et al. 2015). However, many cities with small populations can still show higher 

concentrations of PM2.5 due to reasons such as topography and extreme weather conditions. The city 

of Fairbanks, Alaska, with a population of only 31,644 (U.S. Census Bureau, 2017) is one of those 

locations. 

In the case of the Fairbanks North Star Borough (FNSB), which includes the cities of 

Fairbanks and North Pole, topography contributes to extreme temperature inversions and low mixing 

height during peak winter days, typically during the months of November through February. 

Naturally, cold winter periods are also associated with higher residential heating emissions, along 

with inversions and low temperatures that trap particulates close to the ground. During this period, 

Fairbanks experiences poor air quality for days, sometimes weeks (Ward et al. 2012a). Because it 

exceeded the federal PM2.5 24-hour National Ambient Air Quality Standard, the FNSB was designated 

a PM2.5 nonattainment area in 2009 (Leelasakultum and Molders 2011). Since 2009, several air quality 

monitoring and control programs have been initiated by the FNSB in partnership with the Alaska 
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Department of Environmental Conservation and the U.S. EPA. One such program is the on-roadway 

mobile monitoring of PM2.5 concentration levels in commercial and residential areas during the winter 

months, typically October to March. The mobile monitoring vehicle makes one to two trips almost 

every day to monitor adverse air quality hotspots within the FNSB. This method provides wider 

spatial and temporal coverage than what is possible by regulatory mandated monitoring, and the PM2.5 

data obtained supplements the background data collected by the stationary air quality monitors for 

regulatory purposes.  

There are several reports in the literature wherein data obtained from stationary air quality 

monitoring stations are used to estimate the spatial distribution of PM2.5 concentrations (Blanchard et 

al. 2014, Zhao et al. 2014, Tunno et al. 2017). These studies generally use a small number of fixed 

locations to represent the spatial variability of the whole study area. For a smaller area this procedure 

may be representative, but for larger cities where monitoring stations are sparsely distributed, it may 

be problematic. In several recent studies, mobile monitoring is being used for particulate data 

collection, in part because of the availability of inexpensive mobile monitoring devices. Most of these 

studies collect mass concentrations of PM2.5 and focus on the chemical composition and size 

distribution of PM (Kozawa et al. 2012, Westerdahl et al. 2005), or on understanding human exposure 

to PM2.5 (Panis et al. 2010); but few, if any, have considered mobile monitoring data to determine the 

spatial variation of PM2.5 (Table 2.1).  

In this work, a new method is developed to broadly understand the spatiotemporal variability 

of PM2.5 concentrations by focusing on the study area, more specifically the sampling route driven 

by the mobile monitoring vehicle. The total route was divided into many small segments to 

precisely understand place-to-place variation of PM2.5 concentrations. 
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Table 2.1 Summary of studies related to spatial distribution of PM2.5 using mobile monitoring data 

Reference Sampling  
Year Location Pollutants Measured Sampling 

Duration 
Tran et al. 2012 2008–2009 Fairbanks, AK PM2.5 N/A 

Weijers et al. 2004 1999–2000 Amsterdam, 
Netherlands 

UFP, PM2.5 3 days 

Poppel et al. 2013 2010 Flanders, Belgium UFP, PM2.5, BC 10 days 

Zwack et al. 2011 2007 Brooklyn, NY PM2.5, UFP, PAHs ~50 hours 

Patton et al. 2014 2009–2012 Boston, MA PM2.5, NO, NOx, CO, 
BC, pPAH  

340–1124 
hours 

Pirjola et al. 2006 2003–2004 Helsinki, Finland PM2.5, PM10, UFP, CO, 
NO, NOx 

N/A 

Larson et al. 2007 2004–2005 Vancouver, B.C. PM2.5, levoglucosan N/A 

 

2.2 Data and Methods 

2.2.1 Mobile monitoring vehicle 

The raw PM2.5 data were collected by the FNSB Air Quality Division using a mobile 

monitoring vehicle (MMV). The MMV is equipped with an aerosol monitor (personal DataRAMTM 

pDR-1500; Thermo Fisher Scientific, Waltham, MA) and a GPS (Garmin Ltd.) to measure the PM2.5 

concentrations and the vehicle position, respectively. The aerosol monitor was set inside the vehicle 

with an ambient air inlet probe located above the vehicle, approximately 2.5 m above the roadway. 

Sample air was drawn into the aerosol monitor at a rate of 1.52 L/min during the measurement. The 

MMV was driven on predetermined routes in Fairbanks and North Pole, shown in Figure 2.1, typically 

from October to March, for two to three hours each day. This study considers data from three 

consecutive winter seasons (October 2012 to March 2013, October 2013 to February 2014, and 

October 2014 to March 2015) for a total of 210 days. Though there was a fair amount of commonality 

in the routes driven by the vehicle between years, some variation in spatial coverage does exist. The 

raw data obtained consist of latitude, longitude, timestamp, and PM2.5 concentration at 2-second 

resolution. Figure 2.1 shows the merged routes for the three sampling seasons of the data. 
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Figure 2.1 Study area showing sampling route of the mobile monitoring vehicle and the stationary monitoring 
sites in the nonattainment area of the Fairbanks North Star Borough 

2.2.2 Vehicle route 

The MMV was not driven the same route consistently in every month of the sampling periods. 

It was necessary for the analysis to cover all routes used by the MMV during a sampling period, to 

not ignore any potential hotspots. Using ArcGIS (ver. 10.3.1, Esri, Redlands, CA), a single 

comprehensive route was created by considering and merging all different routes covered by the 

MMV over the three-year sampling period. The types of roads with corresponding length were arterial 

(58.32 km), local (26.13 km), major (44.08 km), and minor (39.98 km) for the city of Fairbanks.  

2.2.3 Route segmentation 

MMV measurements are all instantaneous data at varied spatial locations. In order to assess 

the variability of PM2.5 with time at given location (on the route), the comprehensive Fairbanks and 

North Pole route (shown in Figure 2.1) was divided into 1137 segments of varied lengths. In ArcGIS, 
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initially the route was divided so that each segment was of equal length. In doing so, 773 segments of 

equal length (213 m) were created. A majority of those segments were further divided and spatially 

discontinuous, although during the spatial analysis they were considered a single entity. As a result, 

the spatial distribution of the data would not be accurate. To rectify this problem, segmentation was 

accomplished by focusing on the continuity of each segment. Each PM2.5 data point was joined to one 

of the segments based on location. After that, each segment was assigned the average of all coinciding 

PM2.5 readings for each respective day. Additionally, the monthly and annual mean and standard 

deviation of PM2.5 were calculated for each segment.  

2.2.4 Categorization 

For monthly data, all segments were divided into nine categories based on three levels each 

for the mean and standard deviation of the PM2.5 data. Both the mean and standard deviation of PM2.5 

data were divided into three levels by considering the 25th and 75th percentile values of the PM2.5 data 

as the cutoff points. Values less than or equal to the 25th percentile were considered low, between the 

25th and 75th percentiles, medium, and above the 75th percentile, high. A similar approach was used 

for the yearly average PM2.5 data. Table 2.2 lists those nine categories along with the ranges for 

monthly and yearly means for the two cities. Each of the nine categories represents a unique air quality 

condition. For instance, low mean with low standard deviation (LM-LSD) represents consistently 

good air quality condition. On the other hand, high mean with low standard deviation (HM-LSD) 

denotes consistently poor air quality condition. Furthermore, high mean with medium standard 

deviation (HM-MSD) and high mean with high standard deviation (HM-HSD) can be considered poor 

air quality conditions of chronic and episodic concern, respectively. 
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Table 2.2 Categorization schemes of the road segments based on the mean and standard deviation of the PM2.5 concentration 

Category Category 
Name Description Area 

Monthly Values Yearly Values 
Mean Standard 

Deviation 
Mean Standard 

Deviation 

1 LM-LSD Low Mean – Low Standard 
Deviation 

Fairbanks 0–6.5 0–4.1 0–8.4 0–2.1 
North Pole 0–10.6 0–4.6 0–19.1 0–11.6 

2 LM-MSD Low Mean – Medium Standard 
Deviation 

Fairbanks 0–6.5 4.1–11 0–8.4 2.1–6.2 
North Pole 0–10.6 4.6–23.9 0–19.1 11.6–33.9 

3 LM-HSD Low Mean – High Standard 
Deviation 

Fairbanks 0–6.50 >11 0–8.4 >6.2 
North Pole 0–10.6 >23.9 0–19.1 >33.9 

4 MM-LSD Medium Mean – Low Standard 
Deviation 

Fairbanks 6.5–16.5 0–4.1 8.4–16.2 0–2.1 
North Pole 10.6–42.3 0–4.6 19.1–44.8 0–11.6 

5 MM-MSD Medium Mean – Medium 
Standard Deviation 

Fairbanks 6.5–16.5 4.1–11 8.4–16.2 2.1–6.2 
North Pole 10.6–42.3 4.6–23.9 19.1–44.8 11.6–33.9 

6 MM-HSD Medium Mean – High Standard 
Deviation 

Fairbanks 6.5–16.5 >11 8.4–16.2 >6.2 
North Pole 10.6–42.3 >23.9 19.1–44.8 >33.9 

7 HM-LSD High Mean – Low Standard 
Deviation 

Fairbanks >16.5 0–4.1 >16.1 0–2.1 
North Pole >42.27 0–4.6 >44.8 0–11.6 

8 HM-MSD High Mean – Medium Standard 
Deviation 

Fairbanks >16.5 4.1–11 >16.2 2.1–6.2 
North Pole >42.27 4.6–23.9 >44.8 11.6–33.9 

9 HM-HSD High Mean –  High Standard 
Deviation 

Fairbanks >16.5 >11 >16.2 >6.2 
North Pole >42.27 >23.9 >44.8 >33.9 
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2.2.5 Other data 

Publicly available 24-hour average temperature data were obtained from the Fairbanks 

International Airport station and the Eielson Air Force Base station, both of which are proximal to the 

sampling route of the MMV (Weather Underground 2017). For the spatial analysis, publicly available 

shapefiles representing roads and streets in the borough were obtained from the FNSB Geographic 

Information System (GIS 2017). Mobile monitoring data were also compared with the stationary 

monitoring data in order to investigate the correlations between roadside and background 

concentrations of PM2.5. Two stationary monitoring sites, NCORE in Fairbanks and the fire station in 

North Pole, were considered sources of stationary data. These data are publicly available from the 

EPA website (U.S. EPA 2017) with a 24-hour resolution. Table 2.3 shows all the data used in this 

study. 

Table 2.3 Summary of raw data used 

Data Name Data Type Resolution/Accuracy Source 
Mobile PM2.5 Spatial 2 sec/± 40 (m) FNSB 

Stationary PM2.5 Tabular 24 hr EPA 

Temperature Tabular 24 hr Weather Underground 
Road layer Spatial 

 
FNSB GIS 

 

2.3 Results 

2.3.1 Spatial distribution of PM2.5 concentrations 

2.3.1.1 Fairbanks, Alaska 

Figure 2.2a represents the spatial variation of average PM2.5 concentrations over Fairbanks for 

the entire three-year study period. The first observation is that air quality in the eastern and 

southwestern parts of the study area is undoubtedly worse than in other parts of the study area. The 

northern and northwestern regions exhibit minimum PM2.5 levels, and the central region shows 

medium levels. The second observation is that higher concentrations of roadside PM2.5 were measured 
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on streets near residential areas, where street density seems higher. The least concentrations were 

measured on highways. 

A separate analysis of yearly PM2.5 averages (Figure 2.3) indicated a similar trend in spatial 

distribution. For year-to-year variation in mean PM2.5 concentrations, however, there is statistically 

significant evidence that the mean values of PM2.5 are different for each year (p-value<0.05, 

ANOVA). The mean values of PM2.5 for the 2012–13, 2013–14, and 2014–15 seasons are 13.27 

µg/m3, 16.49 µg/m3
, and 12.19 µg/m3

,
 respectively. Although the 2013–14 period shows a higher 

mean PM2.5 value, it contains five months of data (October 2013 to February 2014), while the other 

two years contain six months of data (October to March). Improved air quality in the month of March, 

owing to favorable meteorological conditions, may be a contributor to lower seasonal averages for 

the 2012–2013 and 2014–2015 seasons. Considering this, it would be insightful to consider monthly 

variability of PM2.5 concentrations in the dataset. 

The monthly averages of PM2.5 data presented in Figure 2.4 reveal that the overall trend of 

monthly variations in PM2.5 concentration was similar each year of the study period. At the beginning 

of wintertime in October, air quality in Fairbanks starts to deteriorate and reaches its worse condition 

in the middle of winter, around December to January, and improves at the end of the season, around 

March. It seems that meteorological conditions play an important role in this.  

For 2012–13, the lowest monthly mean concentration of PM2.5 (9.2 µg/m3), as well as the 

highest monthly mean temperature, was found in October. The mean concentration of PM2.5 increased 

from October to December, along with a drop in mean temperature. The PM concentration suddenly 

dropped in January, then increased through March. In this period, mean temperature values showed 

an inverse relation with the value of PM2.5. 
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(a) 

 
(b) 
Figure 2.2 Spatial distribution of PM2.5 concentration in (a) Fairbanks and (b) North Pole for the time period 
2012–2015 (winter months only) 
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Figure 2.3 Yearly average concentrations of PM2.5 in the study area 
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Figure 2.4 Monthly mean PM2.5 concentration in Fairbanks. The numbers below each map represent the 
consecutive monthly average of PM2.5, the monthly average temperature, and the number of days the MMV 
was driven during that month. 

Table 2.4 presents mean PM2.5 concentrations in one of the nine categories for every month 

during the three-year sampling period and the percentage of the mobile monitoring route in each 

category. For this allocation, each road segment was attributed to each of the nine categories based 

on mean PM2.5 values over that segment. This approach is helpful in classifying the sampling area 

based on air quality.  

2012–13 study year. During 2012–13, the percentage of road segments in the LM-LSD 

category (suggesting consistently good air quality) was highest in October (29.2%) and lowest in 

November (4.9%). Figure 2.4 shows that during this time most of the segments were on the Parks 

Highway, Mitchell Expressway, and College Road. On the other hand, the percentage of road 

segments associated with HM-LSD deviation was very low during this period, with the highest value 

in March (4.2%) and the lowest value in October (0.8%). This implies that not many areas experience 

consistently poor air quality, and that hotspots are episodic and shifting, which is further supported 

by a high percentage of segment length in HM-HSD category (6.3–23.9% in 2012–13). As for the 

categories with medium values of mean PM2.5 concentration (6.5–16.5 µg/m3), most of the segments 

in this sampling area are in those categories and most of them (30.5–56.8%) are in category 5 (MM-
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MSD). Figure 2.4 indicates that central and downtown Fairbanks represent the segments in this 

category.  

2013–2014 study year: As evident in Figure 2.4, during 2013–14, the monthly mean of PM2.5 

concentration was highest in February (22.5 µg/m3) and lowest in December (9.1 µg/m3). The month 

of December had the lowest mean value of PM2.5 and the lowest monthly mean temperature for this 

study year. As for the temporal trends of PM2.5 concentration, starting from October, the mean 

concentrations decreased through December and increased through February. The highest mean value 

of PM2.5 was measured in February, and the MMV was driven more days in February than in other 

months in this time period. In addition, the MMV was driven on more route segments than in other 

months, which suggests that in February more area was included in the data collection process. Figure 

2.4 depicts the central region of the study area, which experienced episodic poor air quality conditions 

in February. The road segments associated with this condition were mainly Airport Way, Johansen 

Expressway, Peger Road, and the roads in the downtown area. 

Table 2.4b shows that in October most of the segments were in category 1 (38.8%), which 

helps in understanding the lower mean value of PM2.5 concentrations in this month. From October to 

January, the number of segments associated with category 1 decreased and then increased in February, 

implying that the percentage of the area associated with consistently good air quality was higher in 

October and then dropped through January. Figure 2.4 indicates that segments of College Road, the 

Mitchell Expressway, and the Parks Highway primarily belong in this category. However, the 

percentage of segments in category 7, which describes air quality as consistently poor, increased from 

October to February. A similar trend of change can be seen for category 9, with the highest value of 

percentage of segments in February (31.3%). 

2014–15 study years. For the period 2014–2015 with respect to Figure 2.4, the highest 

monthly concentration of PM2.5 was 16.9 µg/m3 and the lowest was 2.94 µg/m3, observed in January 
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and March, respectively. While monthly mean PM2.5 concentration increased from October to January 

and then decreased through March, monthly mean temperature showed the opposite trend in change. 

As with the past two years, the central region of the study area exhibited an episodic plunge in air 

quality, which happened in January for this time period (Figure 2.4). Furthermore, as with the previous 

two years, the eastern and western parts of the study area were noted to have consistently high mean 

concentrations of PM2.5 this year (2014–15).  

In Table 2.4c it can be seen that the segments associated with category 1 and category 2 had 

the highest percentages, 32% and 61.7%, respectively, in March, which indicates an overall low mean 

PM2.5 concentration in this month. Segments associated with category 9 also had a high percentage 

(37.7%) in January, which suggests an episodic condition of poor air quality this month. 
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Table 2.4 Monthly comparison of segments associated with each level of air pollution for (a) October 2012–March 2013  
(b) October 2013–February 2014 (c) October 2014–March 2015 for the city of Fairbanks 

 
(a) 

 
(b) 

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

1 29.2 3.3 4.9 4.7 7.5 5.6 16.5 4.5 8.6 4.4 13.5 4.6
2 14.7 5.4 2.7 5.9 0.3 5.9 7.0 5.6 9.4 5.2 1.1 5.6
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 11.8 10.9 4.1 9.4 10.9 9.6 4.5 9.3 9.0 10.2 10.6 9.1
5 30.5 8.8 52.7 11.7 44.5 12.4 56.8 10.3 46.6 11.2 42.4 12.0
6 5.2 13.6 6.4 13.5 1.8 14.7 7.0 14.0 7.8 14.1 8.0 14.7
7 0.8 29.9 2.4 31.9 0.9 23.2 1.5 21.7 1.9 21.6 4.2 31.2
8 0.4 27.2 4.2 20.4 10.2 19.6 0.3 18.3 3.1 27.9 4.0 21.7
9 7.3 33.4 22.7 24.3 23.9 25.8 6.3 22.2 13.6 26.6 16.1 25.0

Medium 
mean

High 
mean

March, 2013October, 2012 November, 2012 December, 2012 January, 2013 February, 2013
Low 
mean

Category 

1 38.8 4.5 25.7 4.0 25.6 4.7 1.5 3.6 6.1 5.3
2 5.7 5.1 8.8 5.6 6.7 5.6 3.2 4.8 0.9 6.1
3 0.1 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 15.0 8.5 8.5 9.0 8.4 7.8 6.7 11.1 7.0 10.1
5 25.7 9.3 40.3 9.0 45.4 9.1 32.5 12.0 16.1 12.5
6 4.9 13.5 6.2 12.2 5.6 13.7 7.3 14.7 1.0 12.9
7 1.4 25.9 1.2 31.7 2.0 27.4 3.6 30.3 10.3 29.6
8 1.6 28.8 2.4 20.8 0.9 21.7 10.4 24.5 27.2 21.5
9 6.8 34.4 7.0 27.7 5.5 22.8 34.8 26.3 31.3 33.0

Category 

Medium 
mean

High 
mean

Low 
mean

October, 2013 November, 2013 December, 2013 January, 2014 February, 2014 March, 2014

No Data
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(c) 

1 24.5 3.4 12.0 3.7 4.6 4.0 6.8 3.8 4.1 4.8 32.0 1.3
2 24.4 5.3 6.3 5.3 6.1 5.1 2.0 5.7 1.2 5.6 61.7 3.3
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 5.5
4 3.7 9.4 1.7 9.6 2.8 8.4 4.7 10.6 6.4 9.4 1.1 9.1
5 35.7 8.5 44.3 12.2 48.4 11.6 30.2 11.4 47.6 12.3 0.5 8.2
6 8.8 12.7 8.6 13.9 12.4 13.8 13.6 14.3 5.2 12.6 2.3 8.9
7 0.3 21.9 1.2 28.9 3.4 27.0 2.1 31.5 2.5 30.9 0.0 0.0
8 0.0 0.0 5.5 18.3 1.2 25.7 2.9 22.1 7.9 19.0 0.0 0.0
9 2.6 21.7 20.3 24.2 21.0 22.9 37.7 24.5 25.2 25.4 0.0 0.0

Low 
mean

Medium 
mean

High 
mean

Category March, 2015October, 2014 November, 2014 December, 2014 January, 2015 February, 2015
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2.3.1.2 North Pole, Alaska 

Figure 2.2b represents the spatial distribution of three years (2012–15) of aggregated average 

PM2.5 concentrations in the North Pole study area. It is evident here that the southeastern part of the 

study area, which is close to the North Pole fire station, has the poorest air quality; the western part, 

which includes the Richardson Highway and part of Badger Road, is least polluted. In Figure 2.3, the 

spatial distribution of yearly average PM2.5 data suggests similar trends and results.  

Looking at monthly averages for finer temporal resolution (Figure 2.5), we found that PM2.5 

concentrations increased from October to January and decreased from January to March. The lowest 

value of mean PM2.5 concentration was found in March; the highest was found in January. The 

southeastern side of the study area shows chronically poor air quality. In this region, the monthly 

mean PM2.5 usually exceeded 42.27 µg/m3 from November to January. Not unexpectedly, during the 

study period, monthly mean temperature showed an inverse correlation with monthly mean PM2.5 

concentrations. 

2012–13 study year. Table 2.5a shows that segments from category 2 (LM-MSD) were highest 

(44.1%) in percentage in March and lowest (1.2%) in December, implying that for most of the area, 

the air quality was good in March. In each month, most of the segments were in category 5 (MM-

MSD), except for October and March. In January, after category 5, the second highest value of the 

percentage of segments (16.2%) belonged to category 9 (HM-HSD) with a mean PM2.5 of 74.6 µg/m3. 

This was also the highest category 9 share over the entire year, indicating that January experienced 

frequent episodic instances of poor air quality. It is clear from the map (Figure 2.5) that the 

southeastern side of the study area accounted for these episodic conditions. 
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Figure 2.5 Month-to-month variation in mean PM2.5 concentration in North Pole. The text, written below 
each map, represents consecutively the monthly average of PM2.5 concentration, the monthly average 

temperature, and the number of days the MMV was driven. 

2013–14 study year. Figure 2.5 shows that the highest concentration of monthly PM2.5 was 

found in January and the lowest in October. The southeastern side of the study area had a chronic 

situation of poor air quality from December to February and an episodic situation in January. During 

this year, most of the segments (27.4–63.5%) were in category 5 (MS-MSD) except for January 

(21.5%). The highest percentage of segments associated with category 9 (HM-HSD) were again found 

in January (34.8%) followed by February, which suggests the episodic condition of high PM2.5 

concentration in these two months. The percentage of segments associated with category 1 (LM-LSD) 

were highest in October (23.1%), gradually decreased through December (5.1%), and then increased 

by February (22.5%). 
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2014–15 study year. It can be seen in Figure 2.5 that the highest value of monthly mean PM2.5 

concentration was found in December (56.8 µg/m3) followed by January (54.4 µg/m3) and the lowest 

was found in March (6.7 µg/m3). Similar to the previous two years, the southeastern side of the study 

area exhibited higher concentrations of PM2.5 during 2014–15, with especially chronic poor air quality 

from November to February. The northern and eastern regions of the study area only showed episodic 

conditions of poor air quality. As for temperature, the monthly mean value dropped from October to 

January and rose from January to March. With reference to Table 2.5c, the highest percentage of 

segments associated with category 9 (HM-HSD) was found in December (21.9%) followed by 

January (21.2%). These values suggest episodic conditions of poor air quality in the study region 

during these months. Conversely, many segments in the study area showed consistent air quality. 
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Table 2.5 Monthly comparison of segments associated with each level of air pollution for (a) October 2012–March 2013  
(b) October 2013–February 2014 (c) October 2014–March 2015 for the city of North Pole 

 
(a) 

 
(b) 

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

Percentage 
of segment 

length 

Mean 
PM2.5 

(µg/m3)

1 6.0 2.1 3.3 3.7 2.1 4.8 1.5 3.4 5.7 3.1 17.0 2.8
2 42.2 7.4 3.1 6.0 1.2 6.9 5.3 7.6 14.0 7.7 44.1 6.7
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 3.2 23.8 2.7 26.6 16.3 22.8 4.5 25.6 1.8 25.7 0.8 18.7
5 41.1 15.1 48.8 23.1 52.6 27.8 44.8 22.7 36.8 16.5 27.2 15.9
6 7.1 24.8 19.2 35.6 3.4 35.4 12.8 30.5 29.6 27.2 8.9 24.9
7 0.2 50.8 3.2 70.1 3.1 58.2 6.0 63.6 2.1 68.7 0.5 53.7
8 0.0 0.0 4.5 70.0 11.4 58.5 8.9 59.9 2.8 89.3 0.9 56.0
9 0.2 46.3 15.3 55.7 9.8 59.7 16.2 74.6 7.1 73.6 0.5 47.5

March, 2013October, 2012 November, 2012 December, 2012 January, 2013 February, 2013Category 
Low 
mean

Medium 
mean

High 
mean

1 23.1 3.5 8.9 2.9 5.1 3.8 19.8 1.3 22.5 3.2
2 33.0 7.4 28.3 7.9 6.4 8.4 2.4 6.4 4.6 8.2
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 3.2 21.2 2.3 26.1 5.5 25.1 1.6 21.3 1.0 18.5
5 34.2 16.0 54.4 17.0 63.5 21.9 21.5 24.0 27.4 20.7
6 4.3 27.9 4.6 30.2 10.0 35.0 15.5 36.2 22.6 33.9
7 1.4 74.7 0.9 54.3 1.6 63.0 3.2 89.5 1.5 88.6
8 0.4 65.6 0.5 60.6 1.9 69.1 1.8 106.2 1.4 86.8
9 0.4 51.9 0.0 0.0 5.9 577.4 34.1 61.6 19.1 61.8

October, 2013 November, 2013 December, 2013 January, 2014 February, 2014 March, 2014

No Data

Category 
Low 
mean

Medium 
mean

High 
mean
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(c) 

 

1 36.4 3.3 39.8 0.3 3.5 5.9 4.1 4.7 6.7 2.7 40.6 3.1
2 16.9 7.9 4.5 5.5 0.4 8.0 2.1 6.7 2.0 7.4 41.7 6.0
3 0.0 0.0 0.1 7.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 7.3 15.9 0.6 30.1 9.4 28.4 10.9 22.8 13.2 23.5 0.7 23.4
5 23.8 15.7 16.3 25.4 20.5 26.1 19.9 26.2 29.2 24.0 14.8 14.4
6 12.5 28.3 11.5 34.2 8.8 35.4 13.3 34.4 12.2 34.2 2.1 20.8
7 0.0 0.0 1.1 76.8 16.0 77.0 7.9 102.1 7.4 63.2 0.0 0.0
8 0.1 172.4 3.0 62.7 19.5 92.4 20.5 91.6 11.6 81.7 0.0 0.0
9 3.0 56.9 23.1 64.7 21.9 71.7 21.2 71.5 17.6 70.6 0.0 0.0

Low 
mean

Medium 
mean

High 
mean

Category October, 2014 November, 2014 December, 2014 January, 2015 February, 2015 March, 2015
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2.3.2 Correlation between mobile and stationary monitoring data 

A box-plot comparison between mobile and stationary monitoring data is presented in Figure 

2.6. In Fairbanks, for the three years considered, the mean value of daily PM2.5 concentrations from 

the stationary monitoring site was always higher than the mean value from the mobile monitoring.  

Similarly, in North Pole, the mean PM2.5 values from MMV data were lower than the stationary data 

except for the 2014–2015 time-period. Furthermore, the mean values for both stationary and mobile 

monitoring of PM2.5 for North Pole were equal to or mostly higher than for Fairbanks.  

The stationary data shown in Figure 2.6 uses daily average (of the 24-hr data) while the mobile 

monitoring was done only during a part of the day. Since we know there are clear diurnal variations 

in hourly PM2.5 values there may be concerns that the differences between stationary and mobile 

PM2.5 in Figure 2.6 are due to data collected over different times of the day. To address that, we also 

considered (for December and January 2014; Figure 2.7) hourly data from stationary sites and only 

used temporally matched stationary site data (same hours as MMV was driven) for comparison with 

MMV data. As can be seen in Figure 2.7, similar trends hold true and PM2.5 values for stationary 

data are higher than those for MMV data. 
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Figure 2.6 Daily average concentration of PM2.5 data. Only the MMV operating days are considered. The 

box represents the 25th, 50th, and 75th percentiles; whiskers extend at most to 1.5 interquartile ranges 



42 

 
Figure 2.7 Average concentrations of hourly PM2.5 data. Only the MMV operating days (during the hours that 
the MMV was driven) are considered for MMV as well as stationary data. The boxes represents the 25th, 50th, 
and 75th percentiles; whiskers extend at most to 1.5 interquartile ranges. 

2.3.1 Correlation between temperature and PM2.5  

Figure 2.8 shows the correlation between daily average concentrations of stationary PM2.5 and 

temperature data in Fairbanks. The Pearson correlation coefficient value between temperature and 

PM2.5 data is -0.70. In every measured period, it is visible that whenever temperature decreased, the 

concentration of PM2.5 increased. More specifically, in the beginning (October of each year) and 

ending (March of each year except for the 2013/2014 season) of the winter season, when temperature 

was high, PM2.5 concentrations were low. At mid-winter (December to February), when the 

temperature dropped below -20°C, the PM2.5 concentration reached its highest level. Similarly, the 

North Pole stationary PM2.5 data shown in Figure 2.9 indicate a negative correlation with temperature 

data (Pearson correlation coefficient = -0.55). The regression models between temperature and PM2.5 
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concentrations, showed a negative correlation for both Fairbanks (R2 = 0.49, p-value <2.2e-16) and 

North Pole (R2=0.31, p-value <2.2e-16) data.  

 
(a) 

 

 
(b) 

 
(c) 

Figure 2.8 Daily average PM2.5 concentration from the stationary monitoring sites and temperature vs. time 
in Fairbanks for the measured periods in (a) 2012–2013, (b) 2013–2014, and (c) 2014–2015 
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(a) 

 
(b) 

 
(c) 

Figure 2.9 Daily average PM2.5 concentration from stationary monitoring sites and temperature vs. time in 
North Pole for the measured periods in (a) 2012–2013, (b) 2013–2014, and (c) 2014–2015 
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2.4 Discussion 

This work explores on-roadway air quality, which is important to understand since people 

spend a significant amount of time driving and have high potential for exposure to on-road PM. 

While the results show that yearly average concentrations of PM2.5 are higher in North Pole 

than in Fairbanks (for both mobile and stationary monitoring, Figure 2.6 and Figure 2.7), the PM2.5 

values for North Pole had a lower temperature correlation (-0.55) than Fairbanks (-0.70), indicating 

that factors beyond temperature may contribute to higher PM2.5 levels in North Pole. Also, for both 

Fairbanks and North Pole, daily average PM2.5 concentrations of stationary monitoring data 

(background concentrations) were higher than the PM2.5 concentrations from mobile monitoring (on-

road concentrations)—on average, 73.5% higher in Fairbanks and 39.2% higher in North Pole. 

Considering only time-matched stationary data, though, as in Figure 2.7, the difference may be lower; 

which needs more investigation. On-roadway concentrations closely reflect traffic-associated 

emissions and stationary concentrations reflect the background concentrations, since by design the 

stationary monitors are set up away from any major sources to capture the general background. This 

observation suggests that traffic-associated emissions may not be a major source of PM2.5 

concentrations, and that there are other contributing sources. If traffic was one of the major sources, 

the roadside concentrations of PM2.5 would be expected to be generally higher than the background 

stationary data.  

Various previous studies have considered the contribution of traffic to overall PM2.5, and some 

have compared that contribution with emissions from residential areas. For example, a nationwide 

source apportionment study (Thurston et al. 2011) that used 273 U.S. EPA chemical speciation 

monitoring network (CSN) sites for years 2000–2005 found motor vehicle traffic-generated PM2.5 to 

be a significant source, and highest in California. This study, however, excluded Alaska and Hawaii. 
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In another study (Janssen et al. 1997), PM2.5 concentration at street location was reported to be higher 

than the corresponding background location in Arnhem and Wageningen, Netherlands. 

These studies suggest that roads and locations close to or within residential areas have higher 

concentrations of PM2.5, and this is in line with findings from the PM2.5 source apportionment study 

for Fairbanks (Ward et al. 2012), which indicated that residential wood burning during the winter 

months accounts for 60–80% of PM2.5. Also, roads in residential areas typically have lower speed 

limits and less traffic volume. Therefore, one might expect less air movement and less mixing, in 

other words, more stagnant air in which the PM can accumulate. Wood and coal are regularly used as 

fuel for indoor heating in both Fairbanks and North Pole, and Fairbanks has two coal-fueled power 

plants, though secondary sulfates (produced from coal combustion and distillate fuel oil) exhibited 

much lower contributions (8–20%) in the model. Notably, the contribution from automobiles was 

found to be lower than 7%.  

A master route or a comprehensive route is constructed by combining all possible routes used 

by the MMV as sampling routes. This process was done separately for Fairbanks and North Pole. 

Both master routes are then divided into small segments to calculate the variation between two 

consecutive segments. Importantly, data were neither interpolated nor extrapolated to estimate PM2.5 

concentrations for areas where the MMV was not driven or samples were not collected. 

In one of the approaches currently used by the FNSB, daily PM2.5 concentration maps are 

developed for both Fairbanks and North Pole, applying the natural neighbor interpolation method on 

data collected by the MMV. The areas are divided into four categories of air quality based on EPA 

24-hour levels, namely “good” (represents PM2.5 concentrations 0–11 µg/m3), “moderate” (12–35 

µg/m3), “unhealthy for sensitive groups” (36–55 µg/m3), and “unhealthy” (56–150 µg/m3). Overall, 

this approach is questionable due to the use of spatially variable mobile monitoring data, as opposed 

to longer-term stationary data. While our approach utilizes the same MMV datasets, we chose to 
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represent only the actual roadway locations where the MMV was driven and PM2.5 data were collected 

in order to avoid extrapolations and associated errors.  

The Pearson correlations between temperature and daily average PM2.5 concentrations 

were -0.70 and -0.55 for Fairbanks and North Pole, respectively. Figure 2.8 and Figure 2.9 indicate 

the negative relationship between PM2.5 and temperature during the study period for both Fairbanks 

and North Pole. These correlations suggest a strong influence of temperature on PM2.5 concentrations. 

Tran and Mölders (2011) and Eliminir (2005) found similar trends in Fairbanks, Alaska, and Cairo, 

Egypt, respectively. Increased PM2.5 concentrations during colder temperatures are not unexpected, 

as colder temperatures warrant increased residential heating, and higher fuel combustion leads to 

higher particulate emissions. Additionally, vehicular emissions tend to rise with falling temperatures, 

as the associated events of idling vehicles and cold starts become more prevalent in winter. All of 

these factors affect the overall concentration of PM2.5. Conversely, in their study in Nagasaki, Japan, 

Wang and Ogawa (2015) found a positive correlation between temperature and PM2.5 concentration. 

Furthermore, Tai et al. (2010) reported a positive correlation between temperature and PM2.5 

throughout the U.S. 

Most studies that map regional PM focus on average concentrations, ignoring the variability 

in the data. Herein, we accounted for variability by creating categories using standard deviation such 

that the data on monthly average and yearly average concentrations of PM2.5 were divided into three 

categories based on standard deviation. The three categories for standard deviation are low standard 

deviation (LSD), medium standard deviation (MSD) and high standard deviation (HSD). The LSD 

category represents the values of standard deviation that ranged from the minimum to the 25th 

percentile; the MSD and HSD categories represent the 25th to 75th percentiles, and greater than the 

75th percentile, respectively. The average value of PM2.5 within the LSD category indicates a chronic 

situation, since the data have less variability. Low standard deviation regions could be used to identify 
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places that have consistently good and poor air quality. Data in the HSD category indicate abrupt and 

episodic values with high variability; thus, this category could be used to identify places that have 

acute episodic events of good/poor air quality. Overall, this is a novel approach that can lend new 

insight into air quality datasets.  

2.5 Conclusions  

The PM2.5 data from mobile (on-roadway) and stationary monitors, and temperature data were 

collected in Fairbanks for three consecutive winter seasons. Mobile monitoring data were used to 

obtain spatial distribution of on-road PM2.5 in Fairbanks and North Pole. To get spatio-temporal 

distribution of on-roadway PM2.5, monthly and yearly geospatial analyses were done. Based on the 

mean and standard deviation of PM2.5 values, nine different categories were established. The 

categories with good air quality were more frequent in the beginning of the winter season, while the 

categories with poor air quality were most frequent in the middle of the winter season. The analysis 

of stationary PM2.5 data showed a significant difference between stationary and mobile data, 

stationary data being generally higher. This result suggests that the background stationary 

concentrations were probably not a result of on-roadway vehicular emissions. Furthermore, 

temperature data were analyzed with stationary concentrations of PM2.5, which demonstrated that 

temperature had a negative correlation with PM2.5 for both Fairbanks and North Pole. 
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CHAPTER 3.0 MEASUREMENT OF ULTRAFINE PARTICULATES IN FAIRBANKS 
AND NORTH POLE, ALASKA 

3.1 Introduction 

Ultrafine particulates (UFPs, having aerodynamic diameter less than or equal to 0.1 µm) 

are ubiquitous in urban environments and can have significant health impacts (Aalto et al. 2005, 

Simon et al. 2017). Because of their small size, UFPs can penetrate deeper into human lungs and 

mix with the blood stream. In urban areas, the major sources of UFPs are traffic-associated 

emissions, industrial operations, and residential outputs (Abernethy et al. 2013).  

The UFPs that originate from vehicular emissions are often investigated by evaluating on-

roadway and roadside concentrations of UFPs (Simon et al. 2017, Zwack et al. 2011). Zhu et al. 

(2002) mentioned motor vehicles as the primary direct emission source of UFPs in the urban 

environment. Some of the highest concentrations were noted near highways and major roadways 

(Karner et al. 2010, Simon et al. 2017). Concentrations of UFPs can vary significantly based on 

proximity of the source, and the highest concentrations are often measured within 100 m of the 

source, decreasing gradually to background levels at locations farther than 300 m from the source 

(Abernethy et al. 2013). Since people often spend a considerable amount of time on the road, 

especially in urban areas, the potential for exposure to on-roadway UFPs is high, even inside the 

vehicle cabin. 

Recent studies indicate that UFPs can be more toxic than PM2.5 with the same chemical 

composition (Zhu et al. 2002); however, UFPs are not yet regulated by the EPA. The National 

Ambient Air Quality Standards (NAAQS), provided by the EPA (µg of particles per cm3 of air), 

include regulations for mass concentrations of PM2.5 and PM10 (particulate matter ≤ 0 µm). On a 

mass basis, UFPs are often overlooked due to their significantly lower mass concentrations 
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compared with PM2.5. When considered in terms of number concentrations (number of particles 

per cm3 of air), however, UFPs represent 80% of the particles in an urban area (Zhu et al. 2002).  

In December 2009, the Fairbanks North Star Borough (FNSB) was declared in 

nonattainment by the U.S. EPA for PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm). 

In April 2017, the FNSB was re-classified as a serious nonattainment area. During winter months, 

the level of particulate concentrations increases due to local wood burning for heating and to 

extremely low temperatures that result in temperature inversions and entrapment of pollutants near 

the ground for days (Ward et al. 2012a), a condition further exacerbated by the valley-like 

topography of the FNSB area. Most of the limited air quality studies related to PM2.5 in the FNSB 

focus on evaluation of PM2.5 sources and influences of weather parameters on PM2.5 concentrations 

(Tran and Mölders 2011, Ward et al. 2012a). To our knowledge, there are no reported data on UFP 

concentrations for Interior Alaska, and in general, most research studies that measure traffic-

related UFPs in the United States are conducted primarily in warm weather regions. The goal of 

the research reported in this chapter was to determine the ranges of traffic-related UFP data in 

Interior Alaska, as well as investigate correlations between UFPs and PM2.5.  

3.2 Materials and Methods 

3.2.1 Study area and sampling locations  

Study Area. Ultrafine particulate monitoring was done at roadside locations in Fairbanks 

and North Pole, two cities in Interior Alaska within the FNSB. The city of Fairbanks spans an area 

of 84.7 km2, of which 11% is classified residential and 5% and 4% are classified commercial and 

industrial, respectively (GIS 2017). The city of North Pole spans an area of 10.43 km2, of which 

approximately 27% is classified residential and 8% and 18% are classified commercial and 

industrial, respectively (GIS 2017). Four sampling locations were selected: two in Fairbanks and 

two near North Pole, though technically outside the city limits of North Pole but were considered 
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representing North Pole in the analyses here. All four sites are part of the Alaska Department of 

Transportation and Public Facilities (ADOT&PF)-maintained Road Weather Information System 

(RWIS) sites, which were already monitoring weather/meteorological (temperature, wind speed, 

relative humidity) and other air quality parameters (CO, SO2 and PM2.5) (Figure 3.1). The air 

quality monitors were deployed and operated primarily by the Alaska Department of 

Environmental Conservation (ADEC). The ADOT&PF uses the RWIS sites to provide real-time 

road conditions and weather information by deploying video cameras and other sensors. 

 
Figure 3.1 RWIS sites with air quality monitors in the FNSB 

Sampling Locations. Station 1 is located beside the intersection point of Airport Way and 

Cowles Street in Fairbanks (LAT: 64.836836, LONG: -147.739594, z: 158 m). This site is located 

at the middle of small residential, commercial, and recreational areas. The main infrastructure near 

this station consists of Lathrop High School (located approximately 300 yards from the sampling 

location), Noel Wien Public Library, and the Shoppers Forum Mall. Students from Lathrop High 

School regularly use this intersection for crossing the road. Station 2 (Lathrop St.) is located at 
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the tee section between Lathrop Street and 21st Avenue (LAT: 64.828386, LONG: -147.74473, z: 

158 m). The average annual daily traffic on Lathrop Street in 2017 was 6744 vpd (vehicles per 

day). This location is surrounded mostly by residential houses and recreational facilities. The 

monitoring station is positioned right beside the parking lot of the Big Dipper Ice Arena; Fairbanks 

Memorial Hospital is nearby. Station 3 (East Badger) is one of the two RWIS sites on Badger 

Road, near Alvira ave. in North Pole. This site is in the middle of a residential area (LAT: 64.772, 

LONG: -147.353088, z: 175 m). The average annual daily traffic on Badger Road close to this 

station in 2017 was 7683 vpd. The speed limit for this road is 50 mph. Station 4 (West Badger) is 

located on Badger Road, where Old Richardson Highway meets Badger Road, on the right side of 

the Richardson Highway entering ramp (LAT: 64.809943, LONG: -147.573772, z: 167 m). The 

average annual daily traffic on this section of Badger Road in 2017 was 11,733 vpd. In addition to 

the sites just described, measurements were conducted at three background locations (away from 

a major roadway), mostly within residential areas. These locations were, on average, 100 m away 

from city roads, namely Farmers Loop Road, Fairbanks Street, and College Road.  

3.2.2 Data collection 

A hand-held condensation particle counter (CPC) (Model 3007, TSI Inc.) was used to 

measure UFP number concentrations (Figure 3.2). This portable instrument is widely used to 

measure UFP concentrations in roadside mobile monitoring studies (e.g., Knibbs et al. [2009], 

Fruin et al. [2008]). According to the CPC manufacturer, the particle size measurement range is 

0.01 µm (50% efficiency) to >1.0 µm, with +-20% accuracy and <9 s response time for 95% 

response (TSI Inc. 2012). For this study, the sampling interval of the CPC was set to 1 second, and 

prior to each use, the CPC was checked for zero count. 
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Figure 3.2 Handling of ultrafine particle counter during data collection process: (a) Condensation particle 
counter (CPC), Model 3007, TSI Inc.; (b) CPC housed in a cooler along with the temperature data logger 

and a 12V light bulb to keep the inside warm; (c) Measuring ultrafine particle concentration at RWIS 
station 

The sampling period was March 3, 2017, to March 18, 2017. Data were collected at each 

of the four locations for four days, and each day for five hours. Table 3.1 presents the sampling 

time and corresponding locations in detail. During this sampling period, average ambient air 

temperatures were around -20°C. The CPC, however, does not operate below 10°C; thus, it was 

housed in a custom-designed temperature-controlled chamber during outdoor sampling (details on 

the temperature-controlled chamber are provided in Appendix A). A temperature data logger was 

used to monitor the temperature inside the chamber. The average temperature in the chamber 

measured between 16°C and 20°C during the sampling period.  
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Table 3.1 Detailed schedule of data collection of ultrafine particulate matter 

Date (2017) Start Time Duration Stations 
3-Mar 5:13 PM 5 Hours Lathrop St. and 21st Ave. 
4-Mar 9:14 AM 5 Hours Badger Rd. and Elvira Ave. 
5-Mar 10:56 AM 5 Hours Airport Way and Cowles St. 
5-Mar 4:45 PM 5 Hours Lathrop St. and 21st Ave. 
11-Mar 2:19 PM 5 Hours Badger Rd. and Elvira Ave. 
12-Mar 10:42 AM 5 Hours Lathrop St. and 21st Ave. 
12-Mar 4:28 PM 5 Hours Airport Way and Cowles St. 
13-Mar 11:18 AM 5 Hours Badger Rd. and Elvira Ave. 
14-Mar 10:56 AM 5 Hours Airport Way and Cowles St. 
15-Mar 9:22 AM 5 Hours Lathrop St. and 21st Ave. 
15-Mar 3:34 PM 5 Hours Badger Rd. and Old Richardson Hwy. 
16-Mar 7:15 AM 5 Hours Badger Rd. and Old Richardson Hwy. 
17-Mar 12:12 PM 5 Hours Badger Rd. and Old Richardson Hwy. 
17-Mar 6:02 PM 5 Hours Airport Way and Cowles St. 
18-Mar 9:54 AM 5 Hours Badger Rd. and Old Richardson Hwy. 
18-Mar 3:37 PM 5 Hours Badger Rd. and Elvira Ave. 

 

Each of the selected RWIS sites included an AQM60 (Aeroqual Limited, New Zealand) 

air monitoring station, operated and maintained by ADEC (Figure 3.3). The PM2.5 data were 

measured using a nephelometer housed in the AQM60 air monitoring station. The monitor is 

optimized and manufacturer-calibrated for use in low-temperature conditions. Specifically, the 

PM2.5 nephelometer in AQM60 can measure in the range of 0–2000 µg/m3, with a resolution of 

0.01 µg/m3 and an accuracy of <± (2 µg/m3 + 5% of reading). According to ADEC, the internal 

temperature of AQM60 was set at 15°C. Throughout the sampling duration, the temperature was 

stable, between 14°C and 16°C. When the outside temperature starts to rise, however, so does the 

AQM internal temperature. 
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Figure 3.3 RWIS site equipped with AQM60 air quality monitor  

(rectangular box outlined in red) with other road weather monitoring devices 

By matching the period of UFP data collection, synchronized traffic counts and 

meteorological parameters (wind speed, temperature, and relative humidity (RH)) were obtained 

from the RWIS monitoring sites. Table 3.2 shows all the parameters collected at each station, with 

corresponding time resolution.  

Table 3.2 Resolution of the overall collected data 

Stations Data 

Station 1: Airport Way and Cowles St. UFP (1-s); PM2.5, RH, TEMP (5-min); Traffic 
Volume (1-min); Wind Speed (10-min) 

Station 2: Lathrop St. and 21st Ave. UFP (1-s); PM2.5, RH, TEMP (5-min) 

Station 3: Badger Rd. and Elvira Ave. UFP (1-s); PM2.5, RH, TEMP (2-min); Traffic 
Volume (1-min); Wind Speed (10-min) 

Station 4: Badger Rd. & Old Richardson Hwy. UFP (1-s); PM2.5, RH, TEMP (2-min); Traffic 
Volume (1-min); Wind Speed (15-min) 
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3.2.3 UFP data correction 

The concentration range for the CPC is 0–100,000 particles/cm3, but the measured 

concentrations often exceeded this range at different sampling stations. The data with higher 

concentrations (than the recommended range) may be erroneous due to particle coincidence 

effects. To correct such data, Westerdahl et al. (2005) developed and recommended the use of the 

following relationship: 

y = 38456e0.00001x for x > 100,000 particles/ cm3  

where x is the UFP concentration measured by the CPC and y is the corrected or actual 

concentration of UFP. No correction was made for the CPC data below 100,000 particles/cm3.  

3.2.4 Data preparation and statistical analysis 

Referring to Table 3.2, the time resolutions were different for different variables. Before 

we performed any statistical analysis, it was necessary to align all the variables on the same scale 

and with the same time stamps. Thus, the data were scaled to 1-min resolution, and later, data were 

arranged in 5-min. 10-min, and 15-min resolution scale.  

After getting the raw data of all the variables with different resolutions (Table 3.2), the 

resolution was modified to 1-min, 5-min, 10-min, and 15-min for UFP concentrations, and other 

variables were synchronized with those resolutions. For each resolution, the mean traffic count, 

mean weather parameters (wind speed, temperature and relative humidity [RH]) and several 

percentiles (10th, 25th, 50th, 75th, and 90th percentiles), mean and standard deviation of UFP number 

concentrations were calculated. For exploratory data analysis, summary statistics of the data were 

computed, and the data were plotted as boxplots to visually depict the data and detect any outliers. 

We used Q-Q plots to select a suitable transformation for the response variable (i.e., the UFP 

number concentrations, Figure 3.4) to normalize the data. After trying different transformation 

functions, we found that log-transformation was suitable for the UFP data. Statistical analyses for 
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the raw data and processed data were done using R software, version 3.4.1 (R development Core 

Team, Vienna, AT, 2009).  

 
Figure 3.4 Q-Q plots of UFP number concentrations (1 min average data) and log transformed data 

3.2.5 Predictor variable selection 

A three-step method was employed to select optimal predictive variables. 

Step 1: In Step 1, correlation analysis and scatter plots were generated to rule out variables 

that are irrelevant. If the correlation coeffient of the variables with the log-transformed UFP 

concentrations was less than 0.05 and the scatter plots did not show any clear pattern, the variable 

was not considered a potential predictor variable. The variables thus selected were considered for 

Step 2. 

Step 2: In Step 2, multicolinearity of independent variables was assessed. Variance 

inflation factors (VIFs) were used to avoid multicollinearity. A value of VIF less than 10 was 

considered an indication of weakly correlated variables, and a value of VIF greater than 10 was 

considered a highly correlated variable. Up to this step all the selected variables (wind speed, 

traffic count, temperature, relative humidty, location, and PM2.5) were found eligible for modeling. 

Step 3: In Step 3, the selected predictor variables from Step 2 were further assessed by 

iteratively using a backward-selection approach. In R, the drop1() function and F-test were used 

in the process, and the variables with p values ≥0.05 were left out of the model.  
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3.2.6 Multilinear regression modeling  

For multiple linear regression with predictor variables, we used the ordinary least-squares 

method to fit the model. The stats package of R is used in this regard. The equation for the linear 

regression is: 

Y= β0 + β1X1 + β2X2 + ………… + βnXn + ε       (1) 

where Y is the response variables and X1, X2, ……. Xn are the predictor variables, β0 is the model 

intercept, β1, β2, …… βn are the linear coefficient for the respective predictor variables, and ε is 

the normal random error term (ε ~ N (0, σ2)).  

3.2.7 Regression diagnostics 

Preliminary model validation and evaluation were carried out using various methods. The 

model fit was assessed by plotting fitted (or modeled) versus observed data values. The normality 

of the predictor variables was assessed via histograms or Q-Q plot residuals. For homogeneity, 

standardized residuals were plotted against fitted values to check if the spread was random and 

equally spread everywhere. The independence of different predictor variables was assessed by 

plotting residuals versus predictors in the model, to check if the residuals were uniformly spread. 

Models were also checked for influential observations (e.g., Cook’s distance function; Cook’s 

distance values <0.5 are acceptable). 

In addition to these evaluations, model performance was assessed by training the models 

with a random 75% subset of the data set and by testing model predictions against the 25% of UFP 

measurements not used for model building. This process was repeated 10 times, and the results 

were averaged (2-fold, 10-repeat cross-validation) (Max and Kuhn 2008). The cross-validated R2 

(CV-R2) was obtained after fitting linear regression models between CV-predicted and observed 

values.  
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3.3 Results 

Roadside Particulate Concentrations. The average roadside UFP number and mass 

concentrations of PM2.5 were 31,891 cm-3 and 5.3 µg/m3, respectively. Summary statistics of one-

minute averaged concentrations of all the variables collected during the sampling period are 

provided in Table 3.3. 

Table 3.3 Summary statistics of the data 

Statistics 
UFP Conc. 

(#/cm3) 
PM2.5 

(µg/m3) 
Temp. 
(°C) 

RH  
(%) 

Wind 
Speed 
(m/s) 

Traffic 
Volume 

Minimum 422.90 0.00 -21.61 21.20 0.00 0.00 
1st Quartile 9741.80 2.21 -10.03 28.52 0.45 7.00 
Median 23282.20 3.27 -5.82 33.60 0.89 10.00 
Mean 31891.80 5.33 -6.65 34.90 1.05 11.69 
3rd Quartile 41099.70 5.71 -2.65 39.60 1.34 15.00 
Maximum 618634.80 117.75 4.00 61.40 4.47 43.00 

 

Data distributions of UFP concentrations (Figure 3.5) show that UFP number 

concentrations were higher for stations at Cowles and Lathrop (in Fairbanks) than for those at 

Badger East and Badger West (proximal to North Pole); though it must be noted that the data were 

collected at different times of the day (Table 3.1) which could introduce variability as there are 

known diurnal variations in particulate matter. Station-wise, the highest mean concentrations of 

UFP (41,684 #/cm3) were observed at Station 1, near the traffic signal between Airport Way and 

Cowles Street. Owing to the traffic signal, it is expected that Station 1 would experience frequent 

vehicle stops/starts and vehicle idling. Vehicles do not usually stop at the other stations; thus, 

higher UFP concentrations at Station 1 could, in part, be attributed to traffic signal-related 

vehicular emissions. Lowest average UFP concentrations (13,400 #/cm3) were measured at Station 

3 (Badger East).  
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Figure 3.5 Distribution of UFP measurements at different locations at the four stations in Fairbanks and 
North Pole. Boxes represent 25th, 50th, and 75th percentiles; whiskers extend at most to 1.5 interquartile 

ranges. Red point depicts mean value 

Interestingly, the distribution of roadside PM2.5 data shows the same trend of distribution 

as UFP concentrations (Figure 3.6). Roadside PM2.5 concentrations were higher for the stations in 

Fairbanks than those near North Pole, which indicates a probable correlation (Pearson coefficient 

= 0.23) between roadside ultrafine and PM2.5 concentrations. Again, however, caution should be 

exercised in comparing values across stations as the data were collected at different times of the 

day and the differences in particle counts could potentially be an artifact of diurnal particulate 

matter variability. Furthermore, like UFP concentrations, the highest mean PM2.5 value (7.8 µg/m3) 

was observed at Station 1; the lowest was observed at Station 3.  

PM2.5 concentrations at monitoring stations from previous years. The distribution of 

PM2.5 data from two winter seasons, 2015–16 and 2016–17, is shown in Figure 3.7. Station 3 

showed the highest ranges of PM2.5 concentration in both seasons: 0–103 µg/m3 in 2015–16 and 

0–90 µg/m3 in 2016–17. Overall, stations in North Pole showed higher PM2.5 concentrations than 

stations in Fairbanks. Data collected in March 2017 showed a higher concentration of PM2.5 

(Figure 3.6) at Station 1 (Cowles) relative to other stations, but when data were averaged for the 
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whole season, Station 1 showed a lower concentration of PM2.5 relative to other stations. Note that 

the PM2.5 means are higher for the annual averages.  

 
Figure 3.6 Distribution of PM2.5 concentrations at different locations in Fairbanks and North Pole. Box 
represents 25th, 50th, and 75th percentiles; whiskers extend at most to 1.5 interquartile ranges. Red dots 

denote mean value 

 
Figure 3.7 Distribution of PM2.5 concentrations in two different years (2015–16 and 2016–17) 

Data distribution of other variables. Figure 3.8 shows the data distribution of 

meteorological parameters (temperature, wind speed, and relative humidity) and traffic count 
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during the sampling period (3–18 March 2017; Table 3.3). Data show very low wind speeds 

measured at the sampling locations, with 71% of the wind speed observations <1 m/s and 89% <2 

m/s. The highest average traffic counts (15/min) were found at Station 1 (Cowles), and the lowest 

average traffic counts (8/min) were found at Station 4 (Badger West). The lowest temperature (-

21.6°C) was recorded at Station 2, and the lowest relative humidity (21.2%) was measured at 

Station 4, while the highest temperature (4°C) and relative humidity (61.4%) were measured at 

Station 3. Data show that 90% of the temperature measurements were below 0°C.  

 
Figure 3.8 Distribution of meteorological parameters and traffic count at different locations in Fairbanks 

and North Pole. Box represents 25th, 50th, and 75th percentiles; whiskers extend at most to 1.5 interquartile 
ranges. Red point illustrates mean value 

UFP Modeling Results. Multiple linear regression (MLR) models were fitted using 1-min, 

5-min, 10-min, and, 15-min time resolution UFP data; log-transformed percentiles (10th, 25th, 50th, 
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75th, and 90th percentiles), mean and standard deviation of the UFP number concentrations were 

used as dependent variables and thus seven models were developed for each time resolution. 

Weather parameters (temperature, wind speed, and relative humidity) and location were the most 

important predictors for UFP. Table 3.4 lists the models, including the linear coefficients and p-

values for each predictor variable and the model R-square value for each model. Model results for 

the 1-min resolved UFP data in Table 3.4(a) show that wind speed, relative humidity, and location 

were significant in all seven models. Traffic count was not significant in any of the models. While 

PM2.5 was significant for higher percentile models (75th and 90th), it was not significant for lower 

percentiles models (10th and 25th) and the 50th percentile model. Models show that all the weather 

parameters were negatively correlated with the response variables in each case but one, where 

wind speed was positively correlated in the standard deviation model. The R2 value of these models 

ranged from 0.18 to 0.41, with the highest R2 for the10th percentile model and the lowest R2 for the 

standard deviation model. The value of R2 continuously dropped for higher percentile models. 

Furthermore, the R2 value of the mean model (0.28) was close to the R2 value of the 50th percentile 

model. Location was also a significant predictor in the seven models. Location was treated as a 

categorical variable in the model with two factors: North Pole (Location@NP in Table 3.4) and 

Fairbanks. North Pole includes Stations 3 and 4; Fairbanks includes Stations 1 and 2. Model results 

present the coefficient of North Pole relative to Fairbanks. Thus, in the models, negative coefficient 

values for North Pole suggest that UFP concentrations are higher for the stations in Fairbanks than 

those near North Pole.   
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Table 3.4 Results of the models for log-transformed UFP concentrations. Data resolution: (a) 1-min (b) 5-min (c) 10-min (d) 15-min 

 
(a) 

 
(b) 

linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value

Intercept 4.810 2.00E-16 4.609 2.00E-16 4.663 2.00E-16 4.759 2.00E-16 4.875 2.00E-16 5.016 2.00E-16 4.734 2.00E-16
PM2.5 0.003 0.0214 - - - - - - 0.004 0.0027 0.005 0.00127 0.010 2.90E-08
Traffic count - - - - - - - - - - - - - -
Wind speed -0.147 2.00E-16 -0.257 2.00E-16 -0.230 2.00E-16 -0.187 2.00E-16 -0.131 2.00E-16 -0.091 2.00E-16 0.077 2.19E-07
Temperature -0.023 2.00E-16 -0.032 2.00E-16 -0.030 2.00E-16 -0.028 2.00E-16 -0.022 2.00E-16 -0.019 2.00E-16 - -
Relative Humidity -0.008 1.79E-10 -0.005 4.15E-05 -0.006 1.80E-06 -0.007 1.48E-08 -0.009 3.53E-12 -0.011 2.23E-16 -0.032 2.00E-16
Location @ NP -0.451 2.00E-16 -0.465 2.00E-16 -0.450 2.00E-16 -0.439 2.00E-16 -0.428 2.00E-16 -0.449 2.00E-16 -0.482 2.00E-16
R2

90th Percentile
Model parameters

Standard deviation

0.28 0.406 0.37 0.306 0.242 0.208 0.18

25th Percentile10th PercentileMean 50th Percentile 75th Percentile

linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value

Intercept 4.865 2.00E-16 4.386 2.00E-16 4.612 2.00E-16 4.724 2.00E-16 4.886 2.00E-16 5.112 2.00E-16 5.102 2.00E-16
PM2.5 - - - - - - - - - - 0.007 0.01921 0.013 0.00052
Traffic count - - - - - - - - - - - - - -
Wind speed -0.120 1.46E-09 -0.287 2.00E-16 -0.256 2.00E-16 -0.195 2.00E-16 -0.124 1.23E-09 -0.053 0.0131 0.100 4.90E-04
Temperature -0.023 1.28E-11 -0.033 2.00E-16 -0.033 2.00E-16 -0.029 3.43E-16 -0.023 2.76E-11 -0.014 0.00025 - -
Relative Humidity -0.008 0.000558 - - -0.006 0.0316 -0.007 0.00562 -0.008 0.0007 -0.012 4.97E-06 -0.031 2.00E-16
Location @ NP -0.438 2.00E-16 -0.482 2.00E-16 -0.473 2.00E-16 -0.429 2.00E-16 -0.407 2.00E-16 -0.395 2.00E-16 -0.472 1.55E-14
R2

Model parameters
Mean 10th Percentile 25th Percentile 50th Percentile 90th Percentile Standard deviation

0.295 0.484 0.445 0.369 0.271 0.212 0.24

75th Percentile
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(c) 

 
(d) 

- indicates not used in the model due to lack of statistical insignificant.  

linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value

Intercept 4.885 2.00E-16 4.392 2.00E-16 4.425 2.00E-16 4.732 2.00E-16 4.918 2.00E-16 4.961 2.00E-16 4.685 2.00E-16
PM2.5 - - - - - - - - - - 0.020 8.93E-06 0.022 0.00014
Traffic count - - - - - - - - - - - - 0.021 0.0314
Wind speed -0.107 5.87E-05 -0.273 2.00E-16 -0.225 5.99E-14 -0.178 8.56E-10 -0.117 2.96E-05 - - - -
Temperature -0.022 1.29E-06 -0.034 4.89E-11 -0.032 6.91E-11 -0.029 1.48E-09 -0.023 9.21E-07 - - - -
Relative Humidity -0.009 0.0081 - - - - -0.007 0.0549 -0.009 9.08E-03 -0.009 0.0061 -0.024 8.41E-06
Location @ NP -0.432 1.81E-13 -0.540 3.16E-16 -0.508 1.40E-15 -0.477 2.67E-14 -0.421 4.31E-12 -0.325 1.56E-07 -0.248 0.00757
R2

90th Percentile Standard deviation

0.303 0.499 0.464 0.397 0.293 0.207 0.255

Model parameters
Mean 10th Percentile 25th Percentile 50th Percentile 75th Percentile

linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value linear 
coefficient

p- value

Intercept 4.550 2.00E-16 0.638 2.00E-16 4.433 2.00E-16 4.520 2.00E-16 4.933 2.00E-16 4.946 2.00E-16 5.215 2.00E-16
PM2.5 0.022 8.86E-05 - - - - - - - - 0.027 4.03E-07 0.025 0.00034
Traffic count - - - - - - - - - - - - - -
Wind speed -0.072 0.0267 -0.033 2.61E-12 -0.246 3.81E-11 -0.180 1.37E-07 -0.118 0.00039 - - - -
Temperature - - -0.004 2.70E-07 -0.031 2.53E-07 -0.026 5.77E-06 -0.020 0.00029 - - - -
Relative Humidity - - - - - - - - -0.008 0.03802 -0.009 0.018 -0.030 8.46E-09
Location @ NP -0.374 2.99E-07 -0.058 8.31E-09 -0.503 5.13E-10 -0.458 1.66E-09 -0.440 5.44E-09 -0.339 7.98E-06 -0.356 0.00037
R2

90th Percentile Standard deviation

0.327 0.486 0.486 0.418 0.311 0.286 0.25

Model parameters
Mean 10th Percentile 25th Percentile 50th Percentile 75th Percentile
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Similar to the seven models in Table 3.4(a), more MLR models were fitted using 5-min, 

10-min, and 15-min resolution data, seven models from each category (21 in total). Model outputs 

for 5-min resolution data are presented in Table 3.4(b). As with 1-min resolution models, weather 

parameters were significant in all the models except temperature and relative humidity, which were 

not significant in the standard deviation model and the 10th percentile model, respectively. Again, 

traffic count was not found statistically significant in any of these models. PM2.5 was only 

significant in the 90th percentile and standard deviation models, and showed a positive correlation 

with response variables. Relative to 1-min resolution data, 5-min data increased the model R2 by 

5%, 19%, 20%, 21%, 12%, 2%, and 33% in the mean, 10th, 25th, 50th, 75th, 90th percentiles and 

standard deviation models, respectively. The 10th percentile models showed the highest R2 value, 

and the 90th percentile models showed the lowest R2 value. Location was found to be a significant 

predictor in these models, with negative correlations at the North Pole locations. 

Table 3.4(c) lists the results of MLR models using 10-min resolution data. Here, traffic 

count was found significant in the standard deviation model. Among weather parameters, wind 

speed and temperature were significant in all the models except the 90th percentile and standard 

deviation models. On the other hand, relative humidity was significant in all but the 10th and 25th 

percentile models. Similar to the 5-min resolutions models, PM2.5 was only significant in the 90th 

percentile and standard deviation models. Relative to 5-min data, 10-data increased the model R2 

value by 3%, 3%, 4%, 8%, 8% and 6% in the mean, 10th, 25th, 50th, and 75th percentiles and 

standard deviation models, respectively, and decreased the R2 value by 2% in the 90th percentile 

model. These values indicate that the rate of increment of R2 values was higher when resolution 

increased from 1 min to 5 min than when resolution increased from 5 min to 10 min. However, 

similar to 5-min models, the highest R2 value was found in the 10th percentile model and the lowest 

R2 value was found in the 90th percentile model. 
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Models with 15-min resolution data are presented in Table 3.4(d). The R2 value of most of 

the models increased, except for the 10th percentile and standard deviation models—3% and 2%—

which decreased respectively relative to the 10-min models. However, the number of predictor 

variables changed in those models. For example, relative humidity was only significant in the 75th 

and 90th percentiles and standard deviation models; PM2.5 was significant in the mean, 90th 

percentile, and standard deviation models; temperature was not significant in the mean models and 

(along with wind speed) in the 90th percentile and standard deviation models.  

Overall, among all the predictor variables, location was the important and statistically 

significant predictor in all 28 models, while traffic count was significant in only one model, where 

standard deviation was used as a response variable and 10-min resolution data were used (Table 

3.4[c]). Meteorological predictors were also significant in the models, but were not consistent in 

all the models. 

Additional UFP models. Four additional MLR models were fitted using only the mean 

value of 1-min resolution of the log transformed UFP concentrations. A summary of these models 

is listed in Table 3.5. These models were fitted to investigate other predictor variables, and they 

were compared using R2 values. Additionally, traffic count data were no longer used in these 

models, since they were insignificant in previous UFP models. Days of the week (weekdays and 

weekend are considered as the factor of this categorical variable), distance of the monitoring 

stations from Fairbanks International Airport (FAI), and the local power plant in Fairbanks (PP; 

Aurora Energy LLC) were used as the new predictor variables. Distances from two locations were 

not used in the same model because their inclusion led to high levels of collinearity among them.  

Model results show that the R2 value of Models 1 and 2 are 0.34 and 0.33, resepectively. 

The R2 value in Model 2 decreased when PM2.5 was not included, and relative humidity was found 

insignificant in the model. Thus, it seems that wind speed, temperature, location, and sampling 
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days are the important predictors in the models. Note that all the predictors except PM2.5 show a 

negative correlation with Log(UFP).  

In Models 3 and 4, FAI and PP distances were added, respectively. The R2 value increased 

by 35% and 32% in Models 3 and 4, respectively, as compared with Model 1, indicating that this 

approach might be able to help explain the ultrafine concentrations in the study area. But this was 

just a preliminary evaluation and more comprehensive work would be needed to draw clear 

conclusions. For example, other major sources (e.g. UAF power plant, Eielson Air Force Base 

power plant; and other air fields) will need to be included in the analyses and the results compared 

with other on-the-ground measurements. It was interesting to note that after adding these distance 

predictors in the model, PM2.5 and temparature were no longer significant in the model, and the 

correlation of relative humidity and location with the response variable changed from negative to 

positive. Furthermore, adding these variables in the model decreased the wind speed coefficient 

and increased the coefficient of day of week. 

PM2.5 Modeling Results. Table 3.6 summarizes all of the models in which PM2.5 was used 

as the response variable. The raw PM2.5 data were transformed to (PM2.5+5)-1.25 to make the data 

normally distributed. Comparing Models 1 and 2, adding UFP as a predictor variable increased the 

model R2 by 10%, but day of week (weekday vs. weekend) was found to be insignificant in the 

model, with the non-inclusion of UFPs. The R2 value further increased by 9% in Model 3 compared 

with Model 1 after including traffic count in the model, which was also significant in the model 

(p<0.05). The R2 values in Models 3 and 4 increased by 16% after including PP distance and FAI 

distance, respectively. Again, however, the analyses including the distances needs more work to 

draw any significant conclusions. 
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Table 3.5 Summary of UFP models where Log (UFP) is the response variable 

 
a-': data are not included in the model. 
-':   variable was not significant in the model 
 

Table 3.6 Summary of the PM2.5 models where (PM2.5+5)-1.25 is the response variable 

 
a-': data are not included in the model. 
-':   variable was not significant in the model

linear coefficient P-value linear coefficient P-value linear coefficient P-value linear coefficient P-value
Intercept 4.6771 2.00E-16 4.6642 2.00E-16 4.3970 2.00E-16 4.1100 2.00E-16
PM2.5 0.0062 4.00E-10 - - - -
Wind speed (m/s) -0.1704 2.00E-16 -0.1792 2.00E-16 -0.1865 2.00E-16 -0.1920 2.00E-16
Temperature (°C) -0.0152 2.00E-16 -0.0164 2.00E-16 - - - -
RH (%) -0.0016 0.0295 - - 0.0207 2.00E-16 0.0205 2.00E-16
Location @NP -0.3822 2.00E-16 -0.3883 2.00E-16 0.4742 2.00E-16 0.4093 2.00E-16
Day @weekend -0.1948 2.00E-16 -0.2099 2.00E-16 -0.1202 2.00E-16 -0.1003 4.31E-14
FAI airport distance (m) -6.59E-05 2.00E-16
Power plant distance (m) -6.36E-05 2.00E-16
R2 0.3407 0.3346 0.4611 0.4504

a-

a- a- a-
a- a- a-

UFP model 1 UFP model 2 UFP model 3 UFP model 4

linear 
coefficient

P-value linear 
coefficient

P-value linear 
coefficient

P-value linear 
coefficient

P-value linear 
coefficient

P-value linear 
coefficient

P-value

Intercept 0.0789 0.00 0.0699 0.00 0.0532 2.00E-16 0.04 2.00E-16 0.1043 2.00E-16 0.0870 2.00E-16
UFP 0.0000 2.00E-16 0.0000 2.00E-16 0.0000 1.11E-05 0.0000 1.11E-05
Wind speed (m/s) 0.0083 2.00E-16 0.0100 2.00E-16 0.0073 2.00E-16 0.0086 2.00E-16 0.0080 2.00E-16 0.0080 2.00E-16
Temperature (°C) 0.0022 2.00E-16 0.0023 2.00E-16 0.0032 2.00E-16 0.0035 2.00E-16 0.0022 2.00E-16 0.0022 2.00E-16
RH (%) 0.0002 4.35E-06 0.0002 2.46E-06 0.0010 2.00E-16 0.0010 2.00E-16 -0.0009 2.00E-16 -0.0009 2.00E-16
Location @NP -0.0018 0.00746 0.0015 0.0178 0.0062 5.45E-08 0.0101 2.00E-16 -0.0378 2.00E-16 -0.0383 2.00E-16
Day @weekend -0.0022 0.00226 - - -0.0077 3.68E-16 -0.0083 2.00E-16 -0.0119 2.00E-16 -0.0119 2.00E-16
FAI airport distance (m) 3.38E-06 2.00E-16
Power plant distance (m) 3.29E-06 2.00E-16
Traffic count/minute 2E-04 0.0231 2E-04 0.0176 2.05E-04 0.0085 2.05E-04 0.0085
R2

PM2.5 model 1 PM2.5 model 2 PM2.5 model 3 PM2.5 model 4 PM2.5 model 5 PM2.5 model 6

a- a-

a- a- a- a- a-

0.485 0.4559 0.5626 0.5626

a- a- a- a-

0.4425 0.402

a-
a- a-
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All the predictor variables were found to be significant in predicting (PM2.5+5)-1.25. 

Additionally, weather parameters, traffic count, and distance were found to be positively correlated 

with the transformed response variable, which ultimately suggests an inverse correlation between 

PM2.5 concentrations and the predictor variables. In contrast, weekend factor showed a negative 

coefficient in the models, and relative humidity showed a negative coefficient only when distance 

was used in the model as the predictor variable. 

3.4 Discussion 

UFP Comparisons. To put the UFP measurements in context, UFP levels measured were 

compared against various global measurements, especially since there were no known previous 

measurements of UFP in the study area.  

Compared with larger cities—e.g., Los Angeles—the UFP levels observed in Fairbanks 

and North Pole are relatively low. While data were collected at the roadside at approximately 3 m 

from the center of the road, Zhu et al. (2002) collected their data at 17 m from the center of the 

road (I-710, Los Angeles), and UFP concentrations in their study were 5–10 times higher than in 

this study. However, it should be mentioned that Zhu et al. (2002) collected data in the fall, while 

we collected data in the winter. 

In a recent study in the metropolitan Los Angeles area, Li et al. (2013) found the average 

on-road UFP concentrations (35,010 particles/cm3) very similar to this study, although the current 

study represents roadside particulate data. Li et al. (2013) collected their data in the month of 

March, though average temperature and weather conditions during March are significantly 

different in Los Angeles compared with Interior Alaska. Furthermore, UFP concentrations in the 

current study were found in agreement with near-roadway UFP concentrations from other 

locations—e.g., Minneapolis (Hankey and Marshall 2015), Basel (Ragettli et al. 2014), and New 

York (Zwack et al. 2011). 
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Meteorological predictors. Temperature, wind speed, and relative humidity were strong 

predictors in both the UFP and PM2.5 models. Overall, most of the models showed that log(UFP) 

and PM2.5 increase with linear decrease in those parameters. While most studies are in agreement 

with the negative wind speed correlation with UFPs and PM2.5, temperature has been shown to 

have a positive correlation (Zwack et al. 2011, Li et al. 2013). A possible explanation for this 

apparently anomalous finding is that most studies reported in the literature collected data in the 

summertime, when particulates are formed through photochemical conversion and air temperature 

plays an important role (Li et al. 2013). Similar to the current study, though, Patton et al. (2014) 

found a negative correlation between temperature and UFPs, and they collected their data between 

September and August in Somerville, Massachusetts. In another study in three Canadian cities 

(Toronto, Vancouver, and Montreal), Weichenthal et al. (2014) showed that wind speed and 

temperature are in negative correlation with in-vehicle PM2.5 and UFP.  

Traffic Predictor. One of the predictors that we expected to have physical interpretability 

in the model was traffic count, but in the UFP models, traffic count was not found to be a significant 

predictor. In previous similar studies, however, traffic count showed a negative correlation with 

UFPs (Zwack et al. 2011, Patton et al. 2014). For PM2.5 models, increasing traffic counts were 

significantly associated with decreasing PM2.5 concentrations, which is opposite of what Zwack et 

al. (2011) found in their study.  

Multiple factors could explain these findings. Sampling occurred only for five hours at a 

sampling station on a sampling day, leading to a narrow range of traffic count. Moreover, traffic 

count may not be a good predictor to interpret vehicular emissions in the model. Vehicle speed 

can be a possible predictor in that case. Since data were collected using stationary monitoring 

devices, slow moving vehicles may contribute a higher number of UFPs and PM2.5 concentrations 

than faster moving vehicles. Higher pollutant concentrations at Station 1 indicate that as well.  
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Model Comparisons. For the UFP mean model, the R2 was found to be 0.28. Zwack et al. 

(2011) found a similar R2 value (0.24) in their study in Brooklyn, New York. However, they found 

traffic count to be significant in their model, probably because they collected their data via mobile 

monitoring (carried monitoring devices on walking routes), while this study used stationary data 

in the models.  

Results of the model indicate that, overall, the value of R2 increased as the resolution of 

data decreased from 1 min to 15 min. Furthermore, higher R2 values were consistent with the model 

where the 10th and 25th percentiles of log-transformed UFP concentrations were used as the 

response variable. This result indicates that UFP concentration values lower than the 25th percentile 

are better explained by the predictor variables than the mean values or values higher than the 75th 

and 90th percentiles.  

Limitations. This study has some limiting factors that could influence the interpretability 

and generalizability of the findings. First, data were collected only in the winter months. It would 

have been ideal to sample each of the four seasons, at various times of the day, to fully understand 

the correlation between weather parameters and air pollution. Second, the sampling period 

involved low wind conditions, skewed data, which may have influenced the model. Third, data 

were collected at four fixed locations. Most of the studies related to near-roadway UFPs and PM2.5 

involved on-road mobile monitoring to interpret traffic-related UFPs and PM2.5 (Zwack et al. 2011, 

Li et al. 2013, Weichenthal et al. 2014, Weichenthal et al. 2016, Patton et al. 2014). Thus, to fully 

characterize the traffic and air quality relationship, on-road mobile monitoring would have been 

an ideal solution. Fourth, previous regression modeling studies showed that traffic speed and wind 

direction are highly significant in the model for predicting UFPs (Patton et al. 2014, Simon et al. 

2017, Li et al. 2013). However, these variables, which were not recorded in the current study, 

could have helped develop more robust models. It seems reasonable to conclude that the models 
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presented here are location- and weather-sensitive and not immediately transferable to other 

locations in the U.S. (or elsewhere), and even only applicable for winter months.  

Despite these limitations, this study provides key insights on UFP concentration levels in 

Fairbanks and North Pole, and could inform future exposure studies and public policy decisions. 

Furthermore, this study can be considered an initial approach using regression modeling. These 

models can be used as reference for studies on particulate matter air quality in the Fairbanks North 

Star Borough, as well for other cities with similar cold weather conditions. 

3.5 Conclusions 

Roadside number concentrations of ultrafine particles (UFPs) were collected for the first time at 

four RWIS monitoring stations in Fairbanks and North Pole, Alaska. Descriptive statistical 

analyses of UFPs are presented, and the data are compared with similar studies conducted at other 

locations globally. To do the MLR modeling analysis, we collected data for other predictor 

variables and incorporated them in the models to investigate statistical correlations with UFPs. A 

variety of statistical models consistently found significant correlations between UFPs and weather 

parameters. Traffic count did not show significant correlation with UFPs. Similar to UFP models, 

PM2.5 models were generated. These models showed high correlation with weather parameters and 

traffic count. Overall, this work provides useful information about roadside particulate air 

pollutants in a cold climate region, which can be used as a basis for hotspot identification, 

improved monitoring, as well as for future studies investigating health risks associated with 

roadside air pollutants.  
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