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Abstract— Brain Computer Interface (BCI) may be the only 
way to communicate and control for disabled people. Someone’s 
intention can be decoded from their brainwaves during motor 
imagery action. This can be used to help them control their 
environment without making any physical movement. To decode 
someone’s intention from brainwaves during motor imagery 
activities, machine learning models trained on features extracted 
from the acquired EEG signals have been used. Although the 
technique has been successful, it has encountered several 
limitations and difficulties especially during feature extraction. 
Moreover, many current BCI systems rely on a large number of 
channels (e.g. 64) to capture spatial information which are 
necessary during training a machine learning model.  

In this study, Convolutional Neural Network (CNN) is used to 
decode five motor imagery intentions from EEG signals obtained 
from four subjects using 64 channels EEG device. A CNN model 
trained on raw EEG data managed to achieve a mean 
classification accuracy of 99.7%. Channel selection based on 
learned weights extracted from a trained CNN model has been 
performed with subsequent models trained on only two selected 
channels with higher weights attained a high accuracy (average 
of 98%) among three participants out of four. 
 
Index terms: Convolutional Neural Network (CNN), 
machine learning, Electroencephalography (EEG), brain-
computer interface (BCI), feature maps. 
 

I. INTRODUCTION 

Brain Computer Interface (BCI) is a direct communication 
pathway between human brain and an external device [1]. The 
development of a BCI system involves series of steps such as 
brain signal acquisition, preprocessing, feature extraction, 
classification, and the control interface implementation [2]. In 
recent years, BCI related researches especially in the field of 
healthcare/rehabilitation, have attracted a lot of attention in 
academia and industry. Some BCI decoding Brain Computer 
Interface (BCI) is a direct communication pathway between 
human brain and an external device [1]. The development of a 
BCI system involves series of steps such as brain signal 
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acquisition, preprocessing, feature extraction, classification, 
and the control interface implementation [2]. In recent years, 
BCI related researches especially in the field of 
healthcare/rehabilitation, have attracted a lot of attention in 
academia and industry. Some BCI decoding Machine learning 
have been widely used to perform classification of acquired 
EEG signal for BCI applications [6]. Wang et al. used machine 
learning algorithms including FLD (Fisher Linear 
Discriminant) and SVM (Support Vector Machine), to decode 
and classify motor imagination based on EEG signals to 
control a humanoid robot [7]. To perform classification using 
conventional machine learning algorithms, necessary features 
must be manually extracted from EEG recordings for training 
of the machine learning model, which is a challenging task to 
date. Factors such as motion artifacts [8], electrooculography 
noise [9], and electromyogram interference inherent in EEG 
recordings also makes it difficult to extract accurate and robust 
set of features in the conventional machine learning systems. 
In motor imaginary classification tasks, the imagined 
movement is often lost in this mixture of signals [10]. In 
addition, the choice of good discriminative features to train a 
conventional machine-learning model is time consuming, 
difficult and requires the knowledge of an expert, and if feature 
extraction process is not performed well it may result to low 
classification accuracy [11]. The performance of a BCI system 
using motor imagery is greatly depending on how features are 
extracted [12]. These limitations of the conventional machine 
learning based BCI systems, necessitate the need for an 
alternative approach to developing EEG driven BCI systems 
especially in the field of rehabilitation.  

Recent development in deep learning has offered a viable 
approach to extract features automatically through a deep layer 
of hidden units, which can address the drawbacks of 
conventional machine learning. Deep learning has been 
reported to have capabilities of detecting necessary features 
even in the presence of interferences/noise [13]. This makes it 
a promising technique for processing highly contaminated 
EEG recordings unlike the conventional machine learning 
approach. Furthermore, the recent possibility of running a pre-
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trained deep learning model on smart devices makes deep 
learning even more practical for real time application in real 
life.  

In this study, a Convolutional Neural Network (CNN) based 
model was used for decoding multiple classes of imagined 
upper limb movement on raw EEG signals obtained from 
transhumeral amputees. By examining the performance of the 
built CNN model across different window sizes, we 
investigated the possibility of applying deep-learning based 
model in real time application. Further, channels selection 
using CNN is being proposed. 

II. METHODS 

A. Subjects 

A total of four male transhumeral amputees aged 
41.50±7.05 years with mean residual limb of 25.50±4.20 cm 
as measured from the shoulder blade downwards participated 
in the study. The participants willingly gave permission for the 
publication of their photographs/data for scientific and 
educational purposes in a written approval. Before the 
experiment, the Institutional Review Board of Shenzhen 
Institutes of Advanced Technology, Chinese Academy of 
Sciences, China, approved all the protocols. 

B. Equipment setup and data acquisition 

 For the data collection, we used a commercial EEG 
recording system (EasyCap, Herrsching, Germany) that 
integrates the Neuroscan software (version 4.3). The 
acquisition system consists of 64 electrode channels made of 
Al -AgCl. The Al-AgCl electrodes were placed over the scalp 
of each subject with respect to the 10-20 system standard. 
Before the electrode placement, each subject’s hair was 
cleaned to ensure that high quality signals are obtained. Also, 
the impedance between each Al -AgCl electrode channel and 
the subject’s scalp was kept as low as 10 kΩ or even lower in 
some certain situation. After setting up the EEG acquisition 
system, the subjects were instructed to sit straight facing a 
computer screen where five different motor imagery (MI) 
tasks were displayed one after the other. The MI tasks are hand 
open (HO), hand close (HC), wrist supination (WS), wrist 
pronation (WP), and no motion (NM).  Each task was 
displayed for a period of approximately 5s on the screen. To 
minimize the occurrence of mental fatigue, that main affect 
EEG recordings, a rest period of about 5s was observed in 
between two consecutive tasks. To obtain sufficient amount of 
dataset needed to train, validate, and test the proposed CNN 
based model, each participant completed five trials. In each 
trial, each task was repeated ten times leading to a total of 50s 
data recordings per MI task in a trial. Fig. 1 shows the 
experiment setup. 

 

 
Fig. 1. Experimental settings for EEG recordings 

C. Data preprocessing 

For each subject’s data, a moving window (non-
overlapping) was used to slice the input data in time domain. 
Different window length  were used and tested to imitate 
the possibilities of using the CNN model in real time 
classification. The 64 widths were left to keep the number of 
channels; hence our data set was sliced, resulting into samples 
of dimension ( , 64), 2-D image like, were the width 
represents the spatial structure whilst the height represents the 
temporal structure [15]. Each sample was normalized using 
min-max normalization to keep zero mean and unit variance. 
80 % of the entire dataset per participant was used for training 
and 20% for testing.  
 

D. CNN architecture 

The CNN model used in the current study has two main 
parts, the feature extractor part and the trainable part. The 
feature extractor part contains multiple layers of convolution 
and pooling. The convolution layer is able to learn and extract 
features from the raw data automatically and the pooling layer 
is used for down sampling task. The trainable part contains 
fully connected multilayer perceptron, which perform 
classification based on the features extracted in the feature 
extractor part [16]. The CNN was trained, validated and tested 
with each participant’s data separately. The network had two 
convolutional layers, first layer with 32 filters and second 
layer with 64 filters. Each layer had filters size of (5, 5). These 
filters are aimed to capture different local spatial, spectral and 
temporal patterns features related to imagined motor activity 
[17]. ReLu activation function was applied after each 
convolution layer. Let  represent weight of filter k , 
werek = , … .  for first convolution layer and k = , … .6  
for second convolution layer. Let ���∗   denote a vector 
input with = ∗ 6 . W  is a hyper-parameter to be 
learned [18]. The feature map output in convolution layer two 
is: � � = ��                (1) � � = , … … 6  

 
max pooling was used after each convolution as it considered 
to improve network performance [17]. Fig.2 shows the 
architecture of the developed CNN model 



  

  

Fig.2. Architecture of the used CNN model for MI classification 
 

III.  RESULTS  

A. Classification Performance  

 An average classification accuracy of 99.7% was achieved 
with a 0.1s window. We also examined the performance of the 
CNN mode across different window sizes. 0.1 second and 1.0 
second windows are presented in Tables 1 and 2, respectively. 
It can be observed that the model maintained high 
classification accuracy for both windows with lower 
optimization speed as the window size increases. This is 
because larger windows contain more information for 
learning.   

Table 1. 0.1-Seconds window performance metric 
Participants P1 P2 P3 P4 
Accuracy  1.0 0.99 0.99 0.99 
Precision 1.0 1.0 0.99 1.0 
Recall 1.0 1.0 1.0 1.0 
F1_Score 1.0 1.0 0.99 1.0 

 

Table 2. 1-Second window performance metric 

Participants P1 P2 P3 P4 
Accuracy  1.0 0.99 0.99 1.0 
Precision 1.0 0.98 0.97 1.0 
Recall 1.0 0.99 1.0 0.99 
F1_Score 1.0 1.0 0.99 1.0 

 
The learning curves for 0.1 Second and 1 Second window 
sizes are shown in Fig. 3 and 4, respectively. 

 Fig 3. learning curve for 0.1 Second window 

 

 

 

 

 

  

 

 

Fig 4. learning curve for 1 Second window 

Table 3. Shows the performance of the conventional machine 
learning models as reported on the previous work on the same 
dataset [5], in which spectral domain features extracted from 
the EEG recordings in frequency domain were used to train 
conventional machine learning classifiers, the linear 
discriminant analysis (LDA), artificial neural network (ANN) 
and k-nearest neighbors (kNN). 

Table 3. Accuracies based on extracted features 

 LDA ANN KNN 

Av.accuracy (%) 97.81 96.44 96.92 
 

B. Channel reduction 

Channel selection were performed based on the weights 
learned by each channel. We extracted weights from the 
feature maps formed in the first convolution layer. The 
weights were calculated using the formula in (2).  stands 
for window length, which is 100 for this study  

     � = ∑ ,=��= ,               (2) 
Where ≤ < 6   and  0≤q<  
To perform channel reduction, the first twenty (20) channels 
with highest weights were selected for each participant. 
Reducing the number of channels up to two (2) in ascending 
order of the weights was performed and the performance of 
the models across all four participants was observed and 
recorded as seen in tables 3,4,5 and 6. More iterations are 
required to train a model with fewer channels because the 
models learn from less but significant channel information. 
The third participant reported phantom limb pain (PLP) 
during data collection. Amputee with PLP has worse motor 
control over their phantom hand [4]. 
 

Table 3. First Participant channel reduction 
Iteratio
ns 

Number of channels 
64 20 12 4 2 

300 0.99 1.0 0.97 0.95 0.86 
500 1.0 1.0 0.98 0.96 0.90 
2500 1.0 1.0 1.0 0.96 0.94 
5000 1.0 1.0 1.0 1.0 0.98 

 
 



  

Table 4. Second Participant channel reduction 

 
Table 5. Third participant channel reduction 

 
Table 6: Fourth participant channel reduction 

 

Conclusion  
In this study, we propose the use of convolution neural 
network for decoding of motor imaginary activities from raw 
EEG recordings as it avoids some of the drawbacks found in 
the conventional machine learning approaches. The size of the 
proposed CNN model is small and simple, with few 
parameters to learn. This makes it easy for a pre-trained model 
to be exported and embedded on smart devices for real time 
applications. Furthermore, as our model maintained high 
classification accuracy with fewer channels, the channel 
reduction demonstrated that it is possible to use fewer channel 
portable EEG devices which can reduce the cost of such 
device and still achieve high classification accuracy. Also, the 
method of channel selection can be used to locate the 
important/significant region on a human scalp for a particular 
activity hence save time during electrode placement for EEG 
devices. 
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Iteration Number of channels 
64 20 12 4 2 

300 1.0 0.99 0.98 0.66 0.47 
500 1.0 1.0 0.99 0.92 0.78 
2500 1.0 1.0 1.0 0.96 0.93 
5000 1.0 1.0 1.0 1.0 0.98 

Iteration Number of channels 
64 20 12 4 2 

300 0.99 0.98 0.95 0.69 0.44 
500 1.0 0.99 0.97 0.94 0.58 
2500 1.0 0.99 0.98 0.94 0.63 
5000 1.0 1.0 1.0 0.99 0.67 

Iterations Number of channels 
64 20 12 4 2 

300 0.99 0.98 0.95 0.69 0.62 
500 1.0 0.99 0.97 0.94 0.89 
2500 1.0 0.99 0.98 0.94 0.91 
5000 1.0 1.0 1.0 0.99 0.98 


