
A Constraint-based Random Search Algorithm for

Optimizing Neural Network Architectures and

Ensemble Construction in Detecting Loss of

Coolant Accidents in Nuclear Power Plants

David Tian

Leeds Beckett University

Leeds, UK
D.Tian@leedsbeckett.ac.uk

T.V. Santhosh

Bhabha Atomic Research Centre

Mumbai, India
 santutv@barc.gov.in

Jiamei Deng

Leeds Beckett University

Leeds, UK
J.Deng@leedsbeckett.ac.uk

Gopika Vinod
Bhabha Atomic Research Centre

Mumbai, India
 vgopika@barc.gov.in

Abstract— One major accident of a nuclear power plant (NPP)

is the loss of a coolant accident (LOCA) which is caused by a

large break in an inlet header (IH) of a nuclear reactor. This

work proposes a constraint-based random search algorithm for

optimizing neural network (NN) architectures and ensemble

construction in three stages for detecting the break size of an IH

of a NPP. In stage one, a number of 2-hidden layer, 3-hidden

layer and 4-hiddden layer network architectures are created

using a proposed constraint satisfaction algorithm. Then, an

optimised 2-hidden layer network, an optimised 3-hidden layer

network and an optimised 4-hidden layer network are chosen

from these architectures by training and testing them on a

transient dataset of IHs and a linear interpolation dataset. In

stage two, the optimised 2-hidden layer network, the optimised

3-hidden layer network and the optimised 4-hidden layer

network are trained and tested iteratively 200 times on the

transient dataset to further improve their performance. In stage

three, the optimised 2-hidden layer network, the optimised 3-

hidden layer network and the optimised 4-hidden layer network

are combined into a neural network ensemble (NNE) using a

weighted meaning approach. The results show that the NNE

outperformed the individual optimised neural networks in

detecting the break size of an IH.

Keywords—Neural Networks, Constraint Satisfaction, Neural

Network Ensemble, Loss of Coolant Accidents, Linear

Interpolation

I. INTRODUCTION

Nuclear power plants (NPP) life management is

concerned with monitoring the safety and the conditions of

the components of a NPP and the maintenance of the NPP in

order to extend its lifetime. It is crucial to regularly monitor

the safety of the components of a NPP to detect as early as

possible any serious anomalies which would potentially

cause accidents. When an accident is predicted to occur or

occurring, the plant operator must take necessary actions as

quickly as possible to safeguard the NPP, which involves

complex judgements, making trade-offs between demands

and requires a lot of expertise to make critical decisions. It is

commonly believed that timely and correct decisions in these

situations could either prevent an event from developing into

a severe accident or mitigate the undesired consequences of

an accident. As NPPs become more advanced, their safety

monitoring approaches grow considerably. Current

approaches include nuclear reactor simulators, safety margin

analysis [15], Probabilistic Safety Assessment (PSA) [15]

and artificial intelligence (AI) methods such as neural

networks [5-8]. Nuclear reactor simulators such as RELAP5-

3D [4] simulate the dynamics of a NPP in accidental

scenarios and generate transient datasets of reactors. Safety

margin analysis analyses the values of the safety parameters

of a reactor and triggers an alert to the plant operator if the

safety margin falls below a minimum safety margin. PSA

computes the probability of occurrence of accidents based on

the probabilities of the component failures which cause the

accidents. These approaches are often used to together to

safeguard NPPs. Na MG et al [1] generated transient data of

IHs using MAAP4 code and trained neural networks on the

transient data to detect LOCA in an advanced power reactor

1400 (APR1400). Zio E et al [11] applied fuzzy similarity

analysis approaches to detecting the failure modes of nuclear

systems. Souza et al [12] developed a RBF network capable

of online identifying the accidental dropping of the control

rod at the reactor core of a pressurised water reactor. Wei X

et al [13] developed self-organizing radial basis function

(RBF) networks to predict fuel rod failure of nuclear reactors.

Santhosh et al [3] trained a neural network on a transient

dataset generated using RELAP5-3D to detect the size of a

break, the location of the break in the PHT with the

availability of the emergency core cooling system (ECCS)

which automatically shuts down the reactor to prevent a

subsequent accident.

 Constraint satisfaction (CS) [16-18] is a well-established

technique in AI. A constraint satisfaction problem (CSP)

consists of a set of variables each of which is associated with

a domain containing valid values of each variable and a set of

constraints over the variables [18]. A solution to a CSP is a

simultaneous assignment of a value to each of the variables

while satisfying all the constraints over the variables. The

computational complexity of a CSP is NP-hard. The

efficiency of solving a CSP is critically affected by the size

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository

https://core.ac.uk/display/196213651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of its search space. To improve the efficiency of solving a

CSP, the CSP can be reduced to a simpler equivalent CSP

with a smaller size of the search space by achieving the arc-

consistency of the CSP using the AC-3 algorithm [18]. CS

has been successfully applied to different problems such as

tasks scheduling and resource optimization.

 The objective of this work is to propose a random search

algorithm based on constraint satisfaction to optimize

multilayer perceptron (MLP) architectures and to construct a

neural network ensemble to identify break sizes of inlet

headers (IHs) of a Pressurized Heavy Water Reactor (PHWR)

[2, 3]. This paper is organized as follows. Section 2 describes

the LOCA of a PHWR and the generation of a transient

dataset using RELAP5-3D; Section 3 proposes the constraint-

based random search algorithm; Section 4 presents the results

of applying the proposed methodology to LOCA detection;

Section 5 discusses the results; conclusions and future work

are presented in Section 6.

II. LOSS OF COOLANT ACCIDENTS OF A PHWR

This work used RELAP5-3D to simulate the dynamics

of the parameters of a PHWR in LOCA scenarios and

generate a transient dataset for training neural networks to

detect the break sizes of the IHs during LOCA scenarios. A

LOCA is caused by a large break of the IHs of the primary

heat transport system (PHT) (Fig. 1) of a PHWR as follows.

When large breaks of inlet headers of the PHT occur, the

system depressurizes rapidly which causes coolant voiding

into the reactor core. This coolant voiding into the core causes

positive reactivity addition and consequent power rise. Then,

the emergency core cooling system automatically shuts down

the reactor to keep the NPP safe. When a break occurs,

transient data such as the temperature and pressure of the IHs

can be collected during a short time period to detect the size

of the break using neural networks. The break size is defined

as the percentage of the cross-sectional area of an IH. The

break size is between 0% (no break) and 200% i.e. double

 Fig. 1: The PHT of a PHWR [2]

cross-sectional areas of an IH (a complete rupture of the IH).

It is infeasible to generate all possible break sizes. In this

study, a transient dataset consisting of the 10 break sizes 0%,

20%, 40%, 50%, 60%, 75%, 100%, 120%, 160% and 200%

was generated using RELAP5-3D. The break sizes of 20% or

greater are considered as large breaks. For each break size,

the 37 signals used by Santhosh et al [3] were collected at

various parts of the PHT over 60 seconds using RELAP5-3D

under the assumption that this time duration is sufficient to

identify LOCA. The 37 signals are measurements of the flow

rate, the temperatures and the pressures of the various parts

of the PHT. For each break size, the signals were measured

at 541 time instants within a 60s duration. Each break size

class of the transient dataset consists of 541 instances

(observations) and 37 features (signals). The transient dataset

is a 5410×38 matrix with the last column representing the

break size (the target).

III. THE CONSTRAINT-BASED RANDOM SEARCH ALGORITHM

 The proposed algorithm consists of 3 stages (Fig. 2). In the

1st stage, a number of 2-hidden layer, 3-hidden layer and 4-

hiddden layer network architectures are created using a

proposed constraint satisfaction algorithm called random

walk heuristic. Then, an optimised 2-hidden layer network,

an optimised 3-hidden layer network and an optimised 4-

hidden layer network are chosen from these architectures by

training and testing the architectures on the transient dataset

and a linear interpolation dataset containing the break sizes

not present in the transient dataset. Linear interpolation [9] is

a method of constructing new data points within the range of

a set of known data points by fitting straight lines using linear

polynomials. The break sizes 2.5%, 5%, 7.5%, 10%,

12.5%,…,195% and 197.5% which are missing in the

transient dataset, are generated using linear interpolation. For

each missing break size, 541 instances are generated giving a

total of 38411 instances. The transient dataset and the dataset

generated by linear interpolation are merged into a new

dataset D containing 43821 instances. D is randomly split into

a 50% training set, a 25% validation set and a 25% test set

using the random sub-sampling with no replacement method

[10].

 Fig. 2: The constraint-based random search algorithm

https://en.wikipedia.org/wiki/Linear_polynomial
https://en.wikipedia.org/wiki/Linear_polynomial

Thereafter, the 2-hidden layer, 3-hidden layer and 4-hiddden

layer network architectures are trained and tested to select an

optimized 2-hidden layer architecture, an optimized 3-hidden

layer architecture and an optimised 4-hidden layer

architecture. The 37 inputs and the break size targets of the

training set are rescaled to the interval [-1,1] using min-max

normalization before training the neural networks. When

testing the trained networks, the outputs of the networks for

the test set are transformed back to the target break size range

[0%, 200%] by inversing the min-max normalization

calculation. The Levenberg-Marquardt algorithm [7, 8] of

Matlab 2017b is used for networks training with the

maximum epochs set to 1000 and the learning rate set to

0.001.

 In the 2nd stage, the optimised 2-hidden layer network, the

optimised 3-hidden layer network and the optimised 4-hidden

layer network are trained and tested iteratively 200 times on

the transient dataset respectively to further improve their

performance. In stage three, the optimised 2-hidden layer

network, the optimised 3-hidden layer network and the

optimised 4-hidden layer network are combined into a neural

network ensemble (NNE) using a weighted meaning

approach [19].

 The following performance measures are used to evaluate

the performances of the neural networks in detecting LOCA:

 The root mean square error (RMSE) of a break size k:

𝑅𝑀𝑆𝐸𝐾 = √𝑀𝑆𝐸𝐾 (1)

and

𝑀𝑆𝐸𝐾 =
∑ (𝑂𝑖−𝑇𝑖)2𝑀

𝑖=1

𝑀
 (2)

where M is the number of the patterns of break size k in

the test set; i is the ith pattern of break size k in the test

set; 𝑂𝑖 is the output of the network for the ith pattern; 𝑇𝑖

is the break size target of the ith pattern.

 𝑀𝑒𝑎𝑛 𝑅𝑀𝑆𝐸 =
∑ 𝑅𝑀𝑆𝐸𝐾𝐾

N
 (3)

where N is the number of the different break sizes in the

test set; in this study, N=10 (10 break sizes). The RMSE of a

break size measures the performance of a network in

detecting that specific break size. The mean RMES measures

the average performance of a network in detecting break

sizes.

A. Creating Neural Network Architectures using Constraint

Satisfaction (Stage 1)

 In [18], a CSP is defined as a triple (Z,D,C) where Z is a

finite set of variables; D is the set of the domains of the

variables and C is a set of constraints on subsets of the

variables. A label is a variable-value pair which represents

the assignment of the value to the variable. The label <x,v>

denotes assigning the value v to the variable x.

 Constraint satisfaction can be used to generate network

architectures whose numbers of inputs, numbers of neurons

of a hidden layer, and numbers of weights are bounded by

user-specified upper and lower limits. The upper and lower

limits can be specified based on the user´s prior knowledge

about network architectures with high performances. Then,

the problem of creating a 2-hidden layer architecture (H1,H2)

can be modelled as a CSP CSP_MLP:

CSP_MLP

Variables: H1, H2;

Domains of H1 and H2:

D(H1)={mini_neu,mini_neu+1,…,max_neu};

D(H2)={mini_neu,mini_neu+1,…,max_neu};

Constraint 1 (C1): S×H1 + H1×H2 + H2 ≥ min_ws;

Constraint 2 (C2): S×H1 + H1×H2 + H2 ≤ max_ws;

Constraint 3 (C3): H1 > H2;

where H1 is the number of the neurons of the 1st hidden layer;

H2 is the number of the neurons of the 2nd hidden layer;

min_ws and max_ws are the lower and the upper bounds on

the number of weights of an architecture; S is the number of

inputs; min_neu and max_neu are the minimum and the

maximum number of neurons of a hidden layer. A CSP_MLP

consists of H1, H2, D(H1), D(H2), C1, C2 and C3. C1

constrains the number of the weights of an architecture to be

at least min_ws; C2 constrains the number of the weights of

an architecture to be at most max_ws. An assignment of

values to H1 and H2 satisfying C1 and C2 is a solution of

CSP_MLP. For example, with the settings: S=15,

min_neurons=5, max_ neurons=40, ws_min=490 and

ws_max=510, C1 becomes 15×H1+H1×H2+H2 ≥ 490 and

C2 becomes 15×H1+H1×H2+H2 ≤ 510. A solution of

CSP_MLP is the vector (21,8) which corresponds to a

network architecture with 15 inputs, 21 neurons in the 1st

hidden layer, 8 neurons in the 2nd hidden layer and 1 output

neuron. To create a 3-hidden layer architecture (H1,H2, H3),

a CSP_MLP2 is solved where H3 is the number of the

neurons in the 3rd hidden layer:

CSP_MLP2

Variables: H1, H2, H3;

Domains of H1, H2 and H3:

D(H1)={mini_neu,mini_neu+1,…,max_neu};

D(H2)={mini_neu,mini_neu+1,…,max_neu};

D(H3)={mini_neu,mini_neu+1,…,max_neu};

Constraint 4 (C4): S×H1 + H1×H2 + H2×H3+H3 ≥ min_ws;

Constraint 5 (C5): S×H1 + H1×H2 + H2×H3+H3 ≤

max_ws;

 To create a 4-hidden layer architecture (H1,H2, H3, H4),

a CSP_MLP3 is solved where H4 is the number of the

neurons in the 4th hidden layer:

CSP_MLP3

Variables: H1, H2, H3, H4;

Domains of H1, H2, H3 and H4:

D(H1)={mini_neu,mini_neu+1,…,max_neu};

D(H2)={mini_neu,mini_neu+1,…,max_neu};

D(H3)={mini_neu,mini_neu+1,…,max_neu};

D(H4)={mini_neu,mini_neu+1,…,max_neu};

Constraint 6 (C6): S×H1 + H1×H2 + H2×H3+H3×H4+H4 ≥

min_ws;

Constraint 7 (C7): S×H1 + H1×H2 + H2×H3+H3×H4+H4 ≤

max_ws;

1

 A random walk heuristic (RWH) (Fig. 3) is proposed to

find a solution to a CSP_MLP or CSP_MLP2 or CSP_MLP3.

The search space of CSP_MLP can be represented as a tree

where each node represents a variable with the root node at

top of the tree; each branch represents an assignment of a

value in the domain of a variable to that variable and each leaf

(a bottom node) represents a solution candidate. To solve

CSP_MLP, the RWH assigns a random value v1 to H1 and

looks ahead whether this partial solution candidate (v1,H2)

leads to a solution of CSP_MLP without both assigning a

value v2 to H2 and checking the satisfiability of C1 and C2

of the solution candidate (v1,v2). If (v1,H2) does not lead to

a solution, a new value v’ is assigned to H1 repeatedly until

a partial solution candidate (v’,H2) leads to a solution (v’,v2)

(Fig. 4).

Algorithm 1: Random walk heuristic

Input: a CSP

Output: S, a solution or Nil if no solution exists

1. S← RWH(Z,{},D,C); /* CSP=(Z,D,C) */

2. Return S;

RWH(Unlabelled, Compound_Label,D,C)

1. If(Unlabelled=={})

Then return Compound_Label;

2. Else

3. Pick a variable x from Unlabelled;

4. Randomly order the values in the domain of x;

5. foreach(v∈D(x))

6. {

7. D’←AC-3(Compound_Label ∪{<x,v>},D,C);

8. empty_domain ← false;

9. foreach(d∈D’)

10. {

11. If(d=={})

12. Then empty_domain←true; break;

13. }

14. If (empty_domain==false)

15. Then

16. Result←RWH(Unlabelled–{x},

17. Compound_Label ∪{<x,v>}, D’,C);

18. If(result != Nil)

19. Then return result;

20. }

21. Return Nil;

Fig. 3: Pseudocode of the random walk heuristic

 In Fig. 4, the arrows indicate the order of traversal of the

complete search space. When min_neu or min_neu+1 is

assigned to H1, AC-3 reduces D(H2) to an emptyset; when

min_neu+2 is assigned to H1, AC-3 reduces D(H2) to

{max_neu-2, max_neu-1,max_neu} and a solution

(min_neu+2,max_neu-2) is found by assigning max_neu-2 to

H2. When a value is assigned to H1, a look-ahead operation

is performed by calling the AC-3 algorithm [22] (step 7 of

the RWH procedure) which reduces the CSP_MLP to a

simpler CSP with smaller domain sizes for the variables.

Redundant values of a variable are the values which violate

the constraints on that variable. AC-3 maintains the arc-

consistency of a CSP by removing any redundant values from

Fig. 4: The search space exploration of random walk heuristic for solving
CSP_MLP.

the domains of the variables of the CSP. An arc-consistent

CSP is returned by AC-3. In [22], the arc-consistency of a

CSP is defined as follows:

 A variable X is arc-consistent with another variable Y

if, for every value a in the domain of X there exists a

value b in the domain of Y such that (a,b) satisfies all the

constraints between X and Y.

 A CSP is arc-consistent if every variable is arc-consistent

with every other one.

If AC-3 reduces the domain of H1 or that of H2 to an empty

set, there is no compatible value in D(H1) or D(H2) which

satisfies C1 and C2, so there is no solution to the CSP. The

worst case computational complexity of AC-3 is O(𝑒𝑑3) [22]

where e is the number of constraints and d is the size of the

largest domain of the variables. In the worst case, AC-3 (step

7 of RWH) is called d times for each variable. Therefore, the

worst case computational complexity of Algorithm 1 is

O(𝑒𝑑4𝑛) where n is the total number of variables in the CSP.

To find an optimised 2-hidden layer architecture, a number of

2-hidden layer architectures are generated by solving

CSP_MLPs using the RWH which was implemented using

the ECLiPSe constraint logic programming language [20]. To

find an optimised 3-hidden layer architecture, a number of 3-

hidden layer architectures are generated by solving

CSP_MLP2s. To find an optimised 4-hidden layer

architecture, a number of 4-hidden layer architectures are

generated by solving CSP_MLP3s.

B. Optimizing the Weights of the Optimised Architectures

by Iterative Training and Testing (Stage 2)

 The optimised 2-hidden layer MLP is trained and tested

iteratively K times on the transient dataset to further optimize

the weights of the optimised 2-hidden layer MLP. The

iterative training-testing procedure is illustrated in Figure 5.

During each training-testing process, the weights of the

network trained in the previous iteration are set as the initial

weights of the current iteration before training begins. This

would give faster training speed than setting the initial

weights to random values because each training process starts

at a minimum point on the error surface and stops at another

minimum point in the local region of the minimum point of

the last iteration. The optimised network among the K

networks is obtained after K iterations of the training-testing

process. The iterative training-testing procedure is applied to

the optimised 3-hidden layer architecture and the optimised

4-hidden layer architecture respectively to further optimize

the weights of the architectures.

Algorithm 2: Iterative training-testing procedure

Input: a MLP, transient data, K (iterations)

Output: optimised MLP

1. net ← a MLP;

2. optimised_net ← net;

3. t ←1;

4. for (t ≤ K) {

5. Randomly split transient data into a 50% training set, a 25%

validation set and a 25% test set;

6. Set the initial weights of the training algorithm to the weights

of net;

7. net ← train(net,train_set,valid_set);

8. mean_rmse ← test(net,test_set);

9. If (mean_rmse < mean_rmse of optimised_net)

10. Then optimised_net ← net;

11. t←t+1;

12. }

13. Output optimised_net;

 Fig. 5: The iterative training and testing procedure

C. Creating a Neural Network Ensemble from the

Optimised Networks (Stage 3)

 The outputs of the optimised 2-hidden layer, 3-hidden

layer and 4-hidden layer networks are combined together to

make a NNE using the weighted mean approach [19] to make

a prediction on unseen data. The output 𝐹(𝑥𝑖) of the

ensemble for an unseen pattern 𝑥𝑖 is computed as the

weighted sum of the models’ outputs:

𝐹(𝑥𝑖) = ∑ 𝑤𝑗 ∙ 𝑓𝑗(𝑥𝑖)
𝑛
𝑗=1 (4)

where 𝑓𝑗(𝑥𝑖) is the output of model j; n is the number of

models; each weight 𝑤𝑗is related to the mean RMSE of model

j on the test set:

𝑤𝑗 =
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑗

∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑘
𝑛
𝑘=1

 (5)

where adjusted mean 𝑅𝑀𝑆𝐸𝑗 is determined by:

adjusted_mean_𝑅𝑀𝑆𝐸𝑗= 1- average mean 𝑅𝑀𝑆𝐸𝑗 (6)

where the average mean 𝑅𝑀𝑆𝐸𝑗is determined by:

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑚𝑒𝑎𝑛_𝑅𝑀𝑆𝐸𝑗 =
𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑗

∑ 𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑘
𝑛
𝑘=1

 (7)

where mean 𝑅𝑀𝑆𝐸𝑗 is the mean RMSE of model j on the test

set.

IV. RESULTS

A. The Optimised Network Architectures (Stage 1)

 Our prior knowledge about network architectures with high

performances in detecting LOCA of NPPs is that the

maximum number of weights is less than N/2 where N is the

size of the training set; the number S of inputs is 37; the

number of neurons of each hidden layer is between 5 and 40.

The parameters of CSP_MLP, CSP_MLP2 and CSP_MLP3

are set based on our prior knowledge as follows: S=37,

min_w=1500, max_w=1800, min_neu=5 and max_neu=40.

One hundred 2-hidden layer architectures were created by

solving 100 CSP_MLPs using the RWH. One hundred 3-

hidden layer architectures were created by solving 100

CSP_MLP2s. One hundred 4-hidden layer architectures were

created by solving 100 CSP_MLP3s. The optimised 2-hidden

layer network architecture is the 56th network architecture

with a mean RMSE of 2.0302 (Fig. 6). The optimised 3-

hidden layer network architecture is the 91st network

architecture with a mean RMSE of 1.8865 (Fig. 7). The

optimised 4-hidden layer network architecture is the 72nd

network architecture with a mean RMSE of 2.0436 (Fig. 8).

The 3 optimised network architectures are illustrated in Table

I.

Fig. 6: The mean RMSEs of the 100 2-hidden layer network architectures

Fig. 7: The mean RMSEs of the 100 3-hidden layer network architectures

Fig. 8: The mean RMSEs of the 100 4-hidden layer network architecture

 TABLE I: The optimised network architectures

B. Optimizing the Weights of the Optimised Network

Architectures by Iterative Training and Testing (Stage 2)

The optimised 2-layer network was trained and tested
iteratively 200 times on the transient dataset to further
improve its performance. The mean RMSEs of the 200
networks are compared in Fig. 9. The mean RMSE of the 130th
network is the smallest (0.3434) which is much smaller than
that of the optimised 2-layer network (mean RMSE of
2.0302). The optimised 3-layer network was trained and tested
iteratively 200 times on the transient dataset to further
improve its performance. The mean RMSEs of the 200
networks are compared in Fig. 10. The mean RMSE of the
96th network is the smallest (0.2098) which is much smaller
than that of the optimised 3-layer network (mean RMSE of
1.8865). The optimised 4-layer network was trained and tested
iteratively 200 times on the transient dataset to further
improve its performance. The mean RMSEs of the 200
networks are compared in Fig. 11. The mean RMSE of the
158th network is the smallest (0.2124) which is much smaller
than that of the optimised 4-layer network (mean RMSE of
2.0436).

Fig. 9: The mean RMSEs of the 200 2-hidden layer networks during
iterative training-testing process.

 Fig. 10: The mean RMSEs of the 200 3-hidden layer networks

Fig. 11: The mean RMSEs of the 200 4-hidden layer networks during

iterative training-testing process.

C. Evaluating the Performance of the Neural Network

Ensemble (Stage 3)

 After the iterative training-testing process, outputs of the

optimised 2-hidden layer network, the optimised 3-hidden

layer network and the optimised 4-hidden layer network were

combined into a NNE. The performance of the NNE was

evaluated on a 25% subset of the transient dataset. The mean

RMSE of the NNE is 0.1904. The RMSE of the NNE in

detecting each break size is illustrated in Tables II and III.

Therefore, the NNE has a better performance than the

individual optimised neural networks in detecting break sizes

(Table IV).

TABLE II: The RMSE OF THE NNE IN DETECTING BREAK SIZES

TABLE III: THE RMSE OF THE NNE IN DETECTING BREAK SIZES

 TABLE IV: PERFORMANCE COMPARISON

V. DISCUSSION

The good performance of the proposed constraint-based
random search algorithm is due to the following key aspects of
the algorithm:

1. A good diversity of neural network architectures of

high performance are created using constraint

satisfaction.

2. Optimised 2-hidden layer, 3-hidden layer and 4-

hidden layer network architectures are selected by

training and testing the generated network

architectures on the transient dataset and a linear

Optimised Network

Architectures

Architectures (inputs, hidden

layers, output)

2-hidden layer architecture 37,35,13,1

3-hidden layer architecture 37,11,39,13,1

4-hidden layer architecture 37,11,22,11,48,1

Optimised Networks Mean RMSE

2-hidden layer architecture 0.3434

3-hidden layer architecture 0.2098

4-hidden layer architecture 0.2124

 NNE 0.1904

Break

Size
 0% 20% 40% 50% 60%

RMSE 0.0542 0.1023 0.0878 0.2084 0.1403

Break

Size
 75% 100% 120% 160% 200%

RMSE 0.1526 0.4054 0.1558 0.3115 0.2855

interpolation dataset.

3. The performance of the optimised neural network

architectures are further improved by iterative

training and testing the architectures on the transient

dataset.

4. The weighted mean approach is promising in
combining the outputs of the optimised neural

networks to create a NNE.

VI. CONCLUSION

 This work has proposed a constraint-based random

search algorithm to optimize neural network architectures

and construct a NNE for detecting LOCA of NPPs. The

proposed approach has achieved a high performance in

detecting LOCA of NPPs. The proposed approach is a

suitable approach for regression problems of different

domains. Constraint satisfaction is an effective approach to

create neural network architectures of high performances

based on the user’s prior knowledge about neural network

architectures of high performances. Future work would be to

extend the random walk heuristic to generate network

architectures of higher diversity and to propose new

combination strategies for constructing NNEs of higher

performance.

 ACKNOWLEDGMENT

The authors would like to thank The Engineering and

Physical Sciences Research Council (EPSRC) for their

financial support under the grant number of EP/M018717/1.

REFERENCES

[1] Na MG et al (2004) Estimation of Break Location and Size for Loss of

Coolant Accidents using Neural Networks. Nuclear Engineering and

Design 232:289-300

[2] Le HV (2002) Large LOCA analysis of Indian Pressurized Heavy

Water Reactor – 220 MWe. Nuclear Science and Technology 1:12-17

[3] Santhosh T.V. et al (2011) A Diagnostic System for Identifying
Accident Conditions in a Nuclear Reactor. Nuclear Engineering and

Design 241:177-184

[4] The RELAP5-3D Code Development Team (2014) RELAP5-3D Code

Manual Volume V: User's Guidelines, INL-EXT-98-00834, Revision

4.2, Idaho National Laboratory, USA

[5] Barlett EB and Uhrig RE (1992) Nuclear power plant status diagnostics

using an artificial neural network. Nuclear Technology 97:272-281

[6] Guo Z, Uhrig RE (1992) Use of artificial neural networks to analyse

nuclear power plant performance. Nuclear Technology 99:36-42

[7] Bishop CM (1995) Neural networks for pattern recognition. Oxford

university press, New York, USA

[8] Bishop CM (2006) Pattern Recognition and Machine Learning.

Springer, Singapore

[9] Hazewinkel M (2001) Linear interpolation. In: Hazewinkel M (ed)

Encyclopedia of Mathematics. Springer, Netherlands

[10] Han J, Kamber M, Pei J (2011) Data Mining: Concepts and Techniques

(3rd edition). Morgan Kaufmann Publishers, San Francisco, CA, USA

[11] Zio E, Maio FD, Stasi M (2010) A data-driven approach for predicting

failure scenarios in nuclear systems. Annals of Nuclear Energy

37(4):482–491

[12] Souza TJ, Medeiros JA, Gonçalves AC (2017) Identification model of

an accidental drop of a control rod in PWR reactors using thermocouple

readings and radial basis function neural networks. Annals of Nuclear

Energy, 103:204-211

[13] Wei X, Wan J, Zhao F (2016) Prediction Study on PCI Failure of

Reactor Fuel Based on a Radial Basis Function Neural

Network. Science and Technology of Nuclear Installations 2016:1-6

[14] Maio F et al (2017) Safety margin sensitivity analysis for model

selection in nuclear power plant probabilistic safety assessment.

Reliability Engineering and System Safety 162:122–138

[15] Back J et al (2017) Prediction and uncertainty analysis of power

peaking factor by cascaded fuzzy neural networks. Annuals of Nuclear

Energy 110:989-994

[16] Krzysztof Apt. Principles of Constraint Programming. Cambridge

University Press, 2003.

[17] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers

Inc., 2003.

[18] Edward Tsang. Foundations of Constraint Satisfaction. Academic

Press, 1993.

[19] Soares et al. Comparison of a genetic algorithm and simulated

annealing for automatic neural network ensemble

development. Neurocomputing. 121 (December 2013), 498-511.

[20] ECLiPSe Constraint Logic Programming website.

http://eclipseclp.org/index.html, 2018

http://www.encyclopediaofmath.org/index.php?title=p/l059330
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics

	I. Introduction
	II. Loss of Coolant Accidents of a PHWR
	III. The Constraint-based Random Search Algorithm
	A. Creating Neural Network Architectures using Constraint Satisfaction (Stage 1)
	B. Optimizing the Weights of the Optimised Architectures by Iterative Training and Testing (Stage 2)
	C. Creating a Neural Network Ensemble from the Optimised Networks (Stage 3)

	IV. Results
	A. The Optimised Network Architectures (Stage 1)
	B. Optimizing the Weights of the Optimised Network Architectures by Iterative Training and Testing (Stage 2)
	C. Evaluating the Performance of the Neural Network Ensemble (Stage 3)

	TABLE IV: performance comparison
	V. discussion
	VI. conclusion
	Acknowledgment
	References

