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Abstract— One major accident of a nuclear power plant (NPP) 

is the loss of a coolant accident (LOCA) which is caused by a 

large break in an inlet header (IH) of a nuclear reactor. This 

work proposes a constraint-based random search algorithm for 

optimizing neural network (NN) architectures and ensemble 

construction in three stages for detecting the break size of an IH 

of a NPP. In stage one, a number of 2-hidden layer, 3-hidden 

layer and 4-hiddden layer network architectures are created 

using a proposed constraint satisfaction algorithm. Then, an 

optimised 2-hidden layer network, an optimised 3-hidden layer 

network and an optimised 4-hidden layer network are chosen 

from these architectures by training and testing them on a 

transient dataset of IHs and a linear interpolation dataset. In 

stage two, the optimised 2-hidden layer network, the optimised 

3-hidden layer network and the optimised 4-hidden layer 

network are trained and tested iteratively 200 times on the 

transient dataset to further improve their performance. In stage 

three, the optimised 2-hidden layer network, the optimised 3-

hidden layer network and the optimised 4-hidden layer network 

are combined into a neural network ensemble (NNE) using a 

weighted meaning approach. The results show that the NNE 

outperformed the individual optimised neural networks in 

detecting the break size of an IH.  
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I. INTRODUCTION 

Nuclear power plants (NPP) life management is 

concerned with monitoring the safety and the conditions of 

the components of a NPP and the maintenance of the NPP in 

order to extend its lifetime. It is crucial to regularly monitor 

the safety of the components of a NPP to detect as early as 

possible any serious anomalies which would potentially 

cause accidents. When an accident is predicted to occur or 

occurring, the plant operator must take necessary actions as 

quickly as possible to safeguard the NPP, which involves 

complex judgements, making trade-offs between demands 

and requires a lot of expertise to make critical decisions. It is 

commonly believed that timely and correct decisions in these 

situations could either prevent an event from developing into 

a severe accident or mitigate the undesired consequences of 

an accident. As NPPs become more advanced, their safety 

monitoring approaches grow considerably. Current 

approaches include nuclear reactor simulators, safety margin 

analysis [15], Probabilistic Safety Assessment (PSA) [15] 

and artificial intelligence (AI) methods such as neural 

networks [5-8]. Nuclear reactor simulators such as RELAP5-

3D [4] simulate the dynamics of a NPP in accidental 

scenarios and generate transient datasets of reactors. Safety 

margin analysis analyses the values of the safety parameters 

of a reactor and triggers an alert to the plant operator if the 

safety margin falls below a minimum safety margin. PSA 

computes the probability of occurrence of accidents based on 

the probabilities of the component failures which cause the 

accidents. These approaches are often used to together to 

safeguard NPPs. Na MG et al [1] generated transient data of 

IHs using MAAP4 code and trained neural networks on the 

transient data to detect LOCA in an advanced power reactor 

1400 (APR1400). Zio E et al [11] applied fuzzy similarity 

analysis approaches to detecting the failure modes of nuclear 

systems. Souza et al [12] developed a RBF network capable 

of online identifying the accidental dropping of the control 

rod at the reactor core of a pressurised water reactor. Wei X 

et al [13] developed self-organizing radial basis function 

(RBF) networks to predict fuel rod failure of nuclear reactors. 

Santhosh et al [3] trained a neural network on a transient 

dataset generated using RELAP5-3D to detect the size of a 

break, the location of the break in the PHT with the 

availability of the emergency core cooling system (ECCS) 

which automatically shuts down the reactor to prevent a 

subsequent accident. 

     Constraint satisfaction (CS) [16-18] is a well-established 

technique in AI. A constraint satisfaction problem (CSP) 

consists of a set of variables each of which is associated with 

a domain containing valid values of each variable and a set of 

constraints over the variables [18]. A solution to a CSP is a 

simultaneous assignment of a value to each of the variables 

while satisfying all the constraints over the variables. The 

computational complexity of a CSP is NP-hard. The 

efficiency of solving a CSP is critically affected by the size 
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of its search space. To improve the efficiency of solving a 

CSP, the CSP can be reduced to a simpler equivalent CSP 

with a smaller size of the search space by achieving the arc-

consistency of the CSP using the AC-3 algorithm [18]. CS 

has been successfully applied to different problems such as 

tasks scheduling and resource optimization. 

      The objective of this work is to propose a random search 

algorithm based on constraint satisfaction to optimize 

multilayer perceptron (MLP) architectures and to construct a 

neural network ensemble to identify break sizes of inlet 

headers (IHs) of a Pressurized Heavy Water Reactor (PHWR) 

[2, 3]. This paper is organized as follows. Section 2 describes 

the LOCA of a PHWR and the generation of a transient 

dataset using RELAP5-3D; Section 3 proposes the constraint-

based random search algorithm; Section 4 presents the results 

of applying the proposed methodology to LOCA detection; 

Section 5 discusses the results; conclusions and future work 

are presented in Section 6. 

II. LOSS OF COOLANT ACCIDENTS OF A PHWR 

This work used RELAP5-3D to simulate the dynamics 

of the parameters of a PHWR in LOCA scenarios and 

generate a transient dataset for training neural networks to 

detect the break sizes of the IHs during LOCA scenarios. A 

LOCA is caused by a large break of the IHs of the primary 

heat transport system (PHT) (Fig. 1) of a PHWR as follows. 

When large breaks of inlet headers of the PHT occur, the 

system depressurizes rapidly which causes coolant voiding 

into the reactor core. This coolant voiding into the core causes 

positive reactivity addition and consequent power rise. Then, 

the emergency core cooling system automatically shuts down 

the reactor to keep the NPP safe. When a break occurs, 

transient data such as the temperature and pressure of the IHs 

can be collected during a short time period to detect the size 

of the break using neural networks. The break size is defined 

as the percentage of the cross-sectional area of an IH. The 

break size is between 0% (no break) and 200% i.e. double  

                          Fig. 1: The PHT of a PHWR [2] 

cross-sectional areas of an IH (a complete rupture of the IH). 

It is infeasible to generate all possible break sizes. In this 

study, a transient dataset consisting of the 10 break sizes 0%, 

20%, 40%, 50%, 60%, 75%, 100%, 120%, 160% and 200% 

was generated using RELAP5-3D. The break sizes of 20% or 

greater are considered as large breaks. For each break size, 

the 37 signals used by Santhosh et al [3] were collected at 

various parts of the PHT over 60 seconds using RELAP5-3D 

under the assumption that this time duration is sufficient to 

identify LOCA. The 37 signals are measurements of the flow 

rate, the temperatures and the pressures of the various parts 

of the PHT. For each break size, the signals were measured 

at 541 time instants within a 60s duration. Each break size 

class of the transient dataset consists of 541 instances 

(observations) and 37 features (signals). The transient dataset 

is a 5410×38 matrix with the last column representing the 

break size (the target). 

III. THE CONSTRAINT-BASED RANDOM SEARCH ALGORITHM           

    The proposed algorithm consists of 3 stages (Fig. 2). In the 

1st stage, a number of 2-hidden layer, 3-hidden layer and 4-

hiddden layer network architectures are created using a 

proposed constraint satisfaction algorithm called random 

walk heuristic. Then, an optimised 2-hidden layer network, 

an optimised 3-hidden layer network and an optimised 4-

hidden layer network are chosen from these architectures by 

training and testing the architectures on the transient dataset 

and a linear interpolation dataset containing the break sizes 

not present in the transient dataset. Linear interpolation [9] is 

a method of constructing new data points within the range of 

a set of known data points by fitting straight lines using linear 

polynomials. The break sizes 2.5%, 5%, 7.5%, 10%, 

12.5%,…,195% and 197.5% which are missing in the 

transient dataset, are generated using linear interpolation. For 

each missing break size, 541 instances are generated giving a 

total of 38411 instances. The transient dataset and the dataset 

generated by linear interpolation are merged into a new 

dataset D containing 43821 instances. D is randomly split into 

a 50% training set, a 25% validation set and a 25% test set 

using the random sub-sampling with no replacement method 

[10].  

          
         Fig. 2: The constraint-based random search algorithm 
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Thereafter, the 2-hidden layer, 3-hidden layer and 4-hiddden 

layer network architectures are trained and tested to select an 

optimized 2-hidden layer architecture, an optimized 3-hidden 

layer architecture and an optimised 4-hidden layer 

architecture. The 37 inputs and the break size targets of the 

training set are rescaled to the interval [-1,1] using min-max 

normalization before training the neural networks. When 

testing the trained networks, the outputs of the networks for 

the test set are transformed back to the target break size range 

[0%, 200%] by inversing the min-max normalization 

calculation. The Levenberg-Marquardt algorithm [7, 8] of 

Matlab 2017b is used for networks training with the 

maximum epochs set to 1000 and the learning rate set to 

0.001.  

    In the 2nd stage, the optimised 2-hidden layer network, the 

optimised 3-hidden layer network and the optimised 4-hidden 

layer network are trained and tested iteratively 200 times on 

the transient dataset respectively to further improve their 

performance. In stage three, the optimised 2-hidden layer 

network, the optimised 3-hidden layer network and the 

optimised 4-hidden layer network are combined into a neural 

network ensemble (NNE) using a weighted meaning 

approach [19]. 

    The following performance measures are used to evaluate 

the performances of the neural networks in detecting LOCA: 

 The root mean square error (RMSE) of a break size k: 

𝑅𝑀𝑆𝐸𝐾  = √𝑀𝑆𝐸𝐾                   (1) 

and 

𝑀𝑆𝐸𝐾  = 
∑ (𝑂𝑖−𝑇𝑖)2𝑀

𝑖=1

𝑀
              (2) 

where M is the number of the patterns of break size k in  

the test set; i is the ith pattern of break size k in the test 

set; 𝑂𝑖  is the output of the network for the ith pattern; 𝑇𝑖   

is the break size target of the ith pattern. 

         𝑀𝑒𝑎𝑛 𝑅𝑀𝑆𝐸 =
∑ 𝑅𝑀𝑆𝐸𝐾𝐾

N
                  (3) 

where N is the number of the different break sizes in the  

test set; in this study, N=10 (10 break sizes). The RMSE of a 

break size measures the performance of a network in 

detecting that specific break size. The mean RMES measures 

the average performance of a network in detecting break 

sizes. 

 

A. Creating Neural Network Architectures using Constraint 

Satisfaction (Stage 1) 

    In [18], a CSP is defined as a triple (Z,D,C) where Z is a 

finite set of variables; D is the set of the domains of the 

variables and C is a set of constraints on subsets of the 

variables. A label is a variable-value pair which represents 

the assignment of the value to the variable. The label <x,v> 

denotes assigning the value v to the variable x.  

    Constraint satisfaction can be used to generate network 

architectures whose numbers of inputs, numbers of neurons 

of a hidden layer, and numbers of weights are bounded by 

user-specified upper and lower limits. The upper and lower      

limits can be specified based on the user´s prior knowledge  

about network architectures with high performances. Then,  

the problem of creating a 2-hidden layer architecture (H1,H2) 

can be modelled as a CSP CSP_MLP: 

 

CSP_MLP 

Variables: H1, H2; 

Domains of H1 and H2: 

D(H1)={mini_neu,mini_neu+1,…,max_neu}; 

D(H2)={mini_neu,mini_neu+1,…,max_neu}; 

Constraint 1 (C1): S×H1 + H1×H2 + H2 ≥ min_ws; 

Constraint 2 (C2): S×H1 + H1×H2 + H2 ≤ max_ws; 

Constraint 3 (C3): H1 > H2; 
 

where H1 is the number of the neurons of the 1st hidden layer; 

H2 is the number of the neurons of the 2nd hidden layer; 

min_ws and max_ws are the lower and the upper bounds on 

the number of weights of an architecture; S is the number of 

inputs; min_neu and max_neu are the minimum and the 

maximum number of neurons of a hidden layer. A CSP_MLP 

consists of H1, H2, D(H1), D(H2), C1, C2 and C3. C1 

constrains the number of the weights of an architecture to be 

at least min_ws; C2 constrains the number of the weights of 

an architecture to be at most max_ws. An assignment of 

values to H1 and H2 satisfying C1 and C2 is a solution of 

CSP_MLP. For example, with the settings: S=15, 

min_neurons=5, max_ neurons=40, ws_min=490 and 

ws_max=510, C1 becomes 15×H1+H1×H2+H2 ≥ 490 and 

C2 becomes 15×H1+H1×H2+H2 ≤ 510. A solution of 

CSP_MLP is the vector (21,8) which corresponds to a 

network architecture with 15 inputs, 21 neurons in the 1st 

hidden layer, 8 neurons in the 2nd hidden layer and 1 output 

neuron. To create a 3-hidden layer architecture (H1,H2, H3), 

a CSP_MLP2 is solved where H3 is the number of the 

neurons in the 3rd hidden layer: 

 
CSP_MLP2 

Variables: H1, H2, H3; 

Domains of H1, H2 and H3: 

D(H1)={mini_neu,mini_neu+1,…,max_neu}; 

D(H2)={mini_neu,mini_neu+1,…,max_neu}; 

D(H3)={mini_neu,mini_neu+1,…,max_neu}; 

Constraint 4 (C4): S×H1 + H1×H2 + H2×H3+H3 ≥ min_ws; 

Constraint 5 (C5): S×H1 + H1×H2 + H2×H3+H3 ≤ 

max_ws; 

 

    To create a 4-hidden layer architecture (H1,H2, H3, H4), 

a CSP_MLP3 is solved where H4 is the number of the 

neurons in the 4th hidden layer: 

 

CSP_MLP3 

Variables: H1, H2, H3, H4; 

Domains of H1, H2, H3 and H4: 

D(H1)={mini_neu,mini_neu+1,…,max_neu}; 

D(H2)={mini_neu,mini_neu+1,…,max_neu}; 

D(H3)={mini_neu,mini_neu+1,…,max_neu};  

D(H4)={mini_neu,mini_neu+1,…,max_neu}; 

Constraint 6 (C6): S×H1 + H1×H2 + H2×H3+H3×H4+H4 ≥                                                                                      

min_ws; 

Constraint 7 (C7): S×H1 + H1×H2 + H2×H3+H3×H4+H4 ≤ 

max_ws; 
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    A random walk heuristic (RWH) (Fig. 3) is proposed to 

find a solution to a CSP_MLP or CSP_MLP2 or CSP_MLP3. 

The search space of CSP_MLP can be represented as a tree 

where each node represents a variable with the root node at 

top of the tree; each branch represents an assignment of a 

value in the domain of a variable to that variable and each leaf 

(a bottom node) represents a solution candidate. To solve 

CSP_MLP, the RWH assigns a random value v1 to H1 and 

looks ahead whether this partial solution candidate (v1,H2) 

leads to a solution of CSP_MLP without both assigning a 

value v2 to H2 and checking the satisfiability of C1 and C2 

of the solution candidate (v1,v2). If (v1,H2) does not lead to 

a solution, a new value v’ is assigned to H1 repeatedly until 

a partial solution candidate (v’,H2) leads to a solution (v’,v2) 

(Fig. 4). 

 
Algorithm 1: Random walk heuristic 

Input: a CSP 

Output: S, a solution or Nil if no solution exists 

1. S← RWH(Z,{},D,C); /* CSP=(Z,D,C) */ 

2. Return S; 

 

RWH(Unlabelled, Compound_Label,D,C) 

1. If(Unlabelled=={}) 

Then return Compound_Label; 

2. Else 

3.      Pick a variable x from Unlabelled; 

4.      Randomly order the values in the domain of x; 

5. foreach(v∈D(x)) 

6. { 

7.   D’←AC-3(Compound_Label ∪{<x,v>},D,C); 

8.   empty_domain ← false; 

9.   foreach(d∈D’) 

10.   { 

11.    If(d=={}) 

12.    Then empty_domain←true; break; 

13.   } 

14.   If (empty_domain==false) 

15.   Then  

16.       Result←RWH(Unlabelled–{x},      

17.                 Compound_Label ∪{<x,v>}, D’,C);  

18.   If(result != Nil) 

19.   Then return result; 

20. } 

21. Return Nil; 

 
Fig. 3: Pseudocode of the random walk heuristic 

 

     In Fig. 4, the arrows indicate the order of traversal of the 

complete search space. When min_neu or min_neu+1 is 

assigned to H1, AC-3 reduces D(H2) to an emptyset; when 

min_neu+2 is assigned to H1, AC-3 reduces D(H2) to 

{max_neu-2, max_neu-1,max_neu} and a solution 

(min_neu+2,max_neu-2) is found by assigning max_neu-2 to 

H2. When a value is assigned to H1, a look-ahead operation 

is performed by calling the AC-3 algorithm [22] (step 7 of  

the RWH procedure) which reduces the CSP_MLP to a 

simpler CSP with smaller domain sizes for the variables. 

Redundant values of a variable are the values which violate 

the constraints on that variable. AC-3 maintains the arc-

consistency of a CSP by removing any redundant values from  
 

 

 

 

Fig. 4: The search space exploration of random walk heuristic for solving 
CSP_MLP. 

 

the domains of the variables of the CSP. An arc-consistent 

CSP is returned by AC-3. In [22], the arc-consistency of a 

CSP is defined as follows: 

 A variable X is arc-consistent with another variable Y 

if, for every value a in the domain of X there exists a 

value b in the domain of Y such that (a,b) satisfies all the 

constraints between X and Y. 

 A CSP is arc-consistent if every variable is arc-consistent 

with every other one. 

If AC-3 reduces the domain of H1 or that of H2 to an empty 

set, there is no compatible value in D(H1) or D(H2) which 

satisfies C1 and C2, so there is no solution to the CSP. The 

worst case computational complexity of AC-3 is O(𝑒𝑑3) [22] 

where e is the number of constraints and d is the size of the 

largest domain of the variables. In the worst case, AC-3 (step 

7 of RWH) is called d times for each variable. Therefore, the 

worst case computational complexity of Algorithm 1 is 

O(𝑒𝑑4𝑛) where n is the total number of variables in the CSP. 

To find an optimised 2-hidden layer architecture, a number of 

2-hidden layer architectures are generated by solving 

CSP_MLPs using the RWH which was implemented using 

the ECLiPSe constraint logic programming language [20]. To 

find an optimised 3-hidden layer architecture, a number of 3-

hidden layer architectures are generated by solving 

CSP_MLP2s. To find an optimised 4-hidden layer 

architecture, a number of 4-hidden layer architectures are 

generated by solving CSP_MLP3s.  

B. Optimizing the Weights of the Optimised Architectures 

by Iterative Training and Testing (Stage 2) 

   The optimised 2-hidden layer MLP is trained and tested 

iteratively K times on the transient dataset to further optimize 

the weights of the optimised 2-hidden layer MLP. The 

iterative training-testing procedure is illustrated in Figure 5. 

During each training-testing process, the weights of the 

network trained in the previous iteration are set as the initial 

weights of the current iteration before training begins. This 

would give faster training speed than setting the initial 

weights to random values because each training process starts 

at a minimum point on the error surface and stops at another 

 



minimum point in the local region of the minimum point of 

the last iteration. The optimised network among the K 

networks is obtained after K iterations of the training-testing 

process. The iterative training-testing procedure is applied to 

the optimised 3-hidden layer architecture and the optimised 

4-hidden layer architecture respectively to further optimize 

the weights of the architectures. 

 

Algorithm 2: Iterative training-testing procedure 

Input: a MLP, transient data, K (iterations)  

Output: optimised MLP 

1. net ← a MLP; 

2. optimised_net ← net; 

3. t ←1; 

4. for (t ≤ K) {   

5. Randomly split transient data into a 50% training set, a 25% 

validation set and a 25% test set; 

6. Set the initial weights of the training algorithm to the weights 

of net; 

7. net ← train(net,train_set,valid_set); 

8. mean_rmse ← test(net,test_set); 

9. If (mean_rmse < mean_rmse of optimised_net) 

10. Then optimised_net ← net; 

11. t←t+1; 

12. } 

13. Output optimised_net; 

 

  Fig. 5: The iterative training and testing procedure 

C. Creating a Neural Network Ensemble from the 

Optimised Networks (Stage 3) 

    The outputs of the optimised 2-hidden layer, 3-hidden 

layer and 4-hidden layer networks are combined together to 

make a NNE using the weighted mean approach [19] to make 

a prediction on unseen data. The output 𝐹(𝑥𝑖) of the 

ensemble for an unseen pattern 𝑥𝑖  is computed as the 

weighted sum of the models’ outputs: 

𝐹(𝑥𝑖) = ∑ 𝑤𝑗 ∙ 𝑓𝑗(𝑥𝑖)
𝑛
𝑗=1                       (4) 

where 𝑓𝑗(𝑥𝑖) is the output of model j; n is the number of 

models; each weight 𝑤𝑗is related to the mean RMSE of model 

j on the test set: 

𝑤𝑗 =
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑗

∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑘
𝑛
𝑘=1

         (5) 

 

where adjusted mean 𝑅𝑀𝑆𝐸𝑗 is determined by: 

 

adjusted_mean_𝑅𝑀𝑆𝐸𝑗= 1- average mean 𝑅𝑀𝑆𝐸𝑗       (6)   

 

where the average mean 𝑅𝑀𝑆𝐸𝑗is determined by: 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑚𝑒𝑎𝑛_𝑅𝑀𝑆𝐸𝑗 =  
𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑗

∑ 𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑘
𝑛
𝑘=1

                      (7)                                  

 

where mean 𝑅𝑀𝑆𝐸𝑗 is the mean RMSE of model j on the test 

set. 

IV. RESULTS 

A. The Optimised Network Architectures (Stage 1) 

   Our prior knowledge about network architectures with high 

performances in detecting LOCA of NPPs is that the 

maximum number of weights is less than N/2 where N is the 

size of the training set; the number S of inputs is 37; the 

number of neurons of each hidden layer is between 5 and 40. 

The parameters of CSP_MLP, CSP_MLP2 and CSP_MLP3 

are set based on our prior knowledge as follows: S=37, 

min_w=1500, max_w=1800, min_neu=5 and max_neu=40.  

One hundred 2-hidden layer architectures were created by 

solving 100 CSP_MLPs using the RWH. One hundred 3-

hidden layer architectures were created by solving 100 

CSP_MLP2s. One hundred 4-hidden layer architectures were 

created by solving 100 CSP_MLP3s. The optimised 2-hidden 

layer network architecture is the 56th network architecture 

with a mean RMSE of 2.0302 (Fig. 6). The optimised 3-

hidden layer network architecture is the 91st network 

architecture with a mean RMSE of 1.8865 (Fig. 7). The 

optimised 4-hidden layer network architecture is the 72nd 

network architecture with a mean RMSE of 2.0436 (Fig. 8). 

The 3 optimised network architectures are illustrated in Table 

I. 

 
Fig. 6: The mean RMSEs of the 100 2-hidden layer network architectures 

 
Fig. 7: The mean RMSEs of the 100 3-hidden layer network architectures 

 
Fig. 8: The mean RMSEs of the 100 4-hidden layer network architecture 



 
  TABLE I: The optimised network architectures 

 

B. Optimizing the Weights of the Optimised Network 

Architectures by Iterative Training and Testing (Stage 2) 

The optimised 2-layer network was trained and tested 
iteratively 200 times on the transient dataset to further 
improve its performance. The mean RMSEs of the 200 
networks are compared in Fig. 9. The mean RMSE of the 130th 
network is the smallest (0.3434) which is much smaller than 
that of the optimised 2-layer network (mean RMSE of 
2.0302). The optimised 3-layer network was trained and tested 
iteratively 200 times on the transient dataset to further 
improve its performance. The mean RMSEs of the 200 
networks are compared in Fig. 10. The mean RMSE of the 
96th network is the smallest (0.2098) which is much smaller 
than that of the optimised 3-layer network (mean RMSE of 
1.8865). The optimised 4-layer network was trained and tested 
iteratively 200 times on the transient dataset to further 
improve its performance. The mean RMSEs of the 200 
networks are compared in Fig. 11. The mean RMSE of the 
158th network is the smallest (0.2124) which is much smaller 
than that of the optimised 4-layer network (mean RMSE of 
2.0436).

 

Fig. 9: The mean RMSEs of the 200 2-hidden layer networks during 
iterative training-testing process. 

    
     Fig. 10: The mean RMSEs of the 200 3-hidden layer networks 

 
Fig. 11: The mean RMSEs of the 200 4-hidden layer networks during 

iterative training-testing process. 

C. Evaluating the Performance of the Neural Network 

Ensemble (Stage 3) 

    After the iterative training-testing process, outputs of the 

optimised 2-hidden layer network, the optimised 3-hidden 

layer network and the optimised 4-hidden layer network were 

combined into a NNE. The performance of the NNE was 

evaluated on a 25% subset of the transient dataset. The mean 

RMSE of the NNE is 0.1904. The RMSE of the NNE in 

detecting each break size is illustrated in Tables II and III. 

Therefore, the NNE has a better performance than the 

individual optimised neural networks in detecting break sizes 

(Table IV). 

 
TABLE II: The RMSE OF THE NNE IN DETECTING BREAK SIZES 

TABLE III: THE RMSE OF THE NNE IN DETECTING BREAK SIZES 

 TABLE IV: PERFORMANCE COMPARISON 

 

 

V. DISCUSSION 

The good performance of the proposed constraint-based 
random search algorithm is due to the following key aspects of 
the algorithm: 

1. A good diversity of neural network architectures of 

high performance are created using constraint 

satisfaction.  

2. Optimised 2-hidden layer, 3-hidden layer and 4-

hidden layer network architectures are selected by 

training and testing the generated network 

architectures on the transient dataset and a linear 

Optimised Network 

Architectures 

Architectures (inputs, hidden 

layers, output) 

2-hidden layer architecture 37,35,13,1 

3-hidden layer architecture 37,11,39,13,1 

4-hidden layer architecture 37,11,22,11,48,1 

Optimised Networks Mean RMSE 

2-hidden layer architecture 0.3434 

3-hidden layer architecture 0.2098 

4-hidden layer architecture 0.2124 

          NNE        0.1904 

Break 

Size 
 0% 20% 40% 50% 60% 

RMSE 0.0542 0.1023 0.0878 0.2084 0.1403 

Break 

Size 
 75% 100% 120% 160% 200% 

RMSE 0.1526 0.4054 0.1558 0.3115 0.2855 



interpolation dataset. 

3. The performance of the optimised neural network 

architectures are further improved by iterative 

training and testing the architectures on the transient 

dataset. 

4. The weighted mean approach is promising in 
combining the outputs of the optimised neural 

networks to create a NNE. 

VI. CONCLUSION 

    This work has proposed a constraint-based random 

search algorithm to optimize neural network architectures 

and construct a NNE for detecting LOCA of NPPs. The 

proposed approach has achieved a high performance in 

detecting LOCA of NPPs. The proposed approach is a 

suitable approach for regression problems of different 

domains. Constraint satisfaction is an effective approach to 

create neural network architectures of high performances 

based on the user’s prior knowledge about neural network 

architectures of high performances. Future work would be to 

extend the random walk heuristic to generate network 

architectures of higher diversity and to propose new 

combination strategies for constructing NNEs of higher 

performance.   
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