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Abstract 

 

Intrusive memories are a key symptom of posttraumatic stress disorder (PTSD). They emerge 

early after trauma exposure and are predictive for PTSD development. There is a high 

relevance in evaluating the neurobiological mechanisms of early stages of intrusive symptom 

development to provide a further understanding of PTSD. 

In the present study we explore structural differences in healthy young females preceding 

experimental trauma exposure and their relationship to early intrusive memory development 

using a traumatic film paradigm. With voxel-based morphometry we demonstrate that 

smaller insular volume was associated with an increased number of early intrusive film 

memories. Moreover, larger lingual gyrus/cerebellar and inferior frontal gyrus/precentral 

gyrus volumes were also related to an increased number of early intrusive film memories. 

Our results identify unique brain areas associated with early experimental trauma memory 

processing and highlight the necessity of evaluating early symptom stages relevant for 

personalized PTSD prevention and treatment. 
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1. Introduction 

Posttraumatic stress disorder (PTSD) is a psychiatric condition that develops after a traumatic 

event and is associated with intrusive and avoidant symptoms, increases in arousal, and 

negative alterations in cognition and mood (APA, 2013). Especially intrusive memories are 

of central importance in PTSD. They are perceived as highly disturbing and emerge already 

in early stages after trauma exposure. Most importantly, they are predictive for the 

development of PTSD (APA, 2013; Brewin, 2015; Elbert & Schauer, 2002; Michael, Ehlers, 

Halligan, & Clark, 2005). 

From a neurobiological perspective, PTSD is associated with alterations in brain function and 

structure. Functionally, altered activity has been mostly found in the amygdala, ventromedial 

prefrontal cortex, anterior cingulate cortex (ACC) and insula during trauma related stimuli 

(Pitman et al., 2012). Structurally, consistent evidence suggests that hippocampal volume is 

reduced in PTSD compared to healthy controls and traumatized subjects without PTSD (Karl 

et al., 2006; Kitayama, Vaccarino, Kutner, Weiss, & Bremner, 2005). In addition, reduced 

hippocampal volumes can be found bilaterally (Smith, 2005) and have been proposed to 

predict PTSD symptom severity (Pitman et al., 2012). Furthermore, volume reductions in the 

amygdala are associated with PTSD, specifically on the left side (Karl et al., 2006). Insula 

reductions of the surface area have been found after childhood maltreatment ((Kelly et al., 

2013). Most pertinent to our present study, reductions in the surface area of the insula 

predicted the later development of PTSD (Hu et al., 2018). Further structural alterations in 

PTSD patients’ samples are reported in the anterior cingulate cortex (ACC) (Kasai et al., 

2008; Kitayama, Quinn, & Bremner, 2006), the ventromedial prefrontal cortex (vmPFC) 

(Carrion, Weems, Richert, Hoffman, & Reiss, 2010), and the orbitofrontal cortex (Pitman et 

al., 2012; Sekiguchi et al., 2013).  
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Structural brain differences have been discussed both as a consequence of extreme stress 

damaging the brain (state), and also as a vulnerability factor (trait). Toxic effects can emerge 

on hippocampal cells due to glucocorticoids (Sapolsky, Uno, Rebert, & Finch, 1990) and 

stress in general (Bremner, 1999). Stress has the capacity of altering and reorganizing 

function and structure of several biological systems (Elbert & Schauer, 2014), the genome 

(Radtke et al., 2011), and the functional (Lanius et al., 2001; Lanius et al., 2004) and 

structural (Karl et al., 2006) integrity of the brain. Thus, structural brain alterations in PTSD 

patients could be viewed as a consequence of exposure to an extreme stressor followed by 

increases in persistent stress.  

At the same time, brain atrophies might also serve as a vulnerability factor for individual 

differences in PTSD development after exposure to extreme stress. For example, a smaller 

hippocampal volume in monozygotic twins was a predisposing factor for the development of 

combat associated PTSD (Gilbertson et al., 2002). Therefore, individual differences in brain 

structures in healthy subjects might be an important predisposition factor for later PTSD 

development. 

To further examine the relationship between brain structure and PTSD symptoms, here we 

investigate the association between intrusive memories and volume of specific brain areas in 

healthy subjects. We employed a highly controlled and well established setting of an 

experimental medicine model (Holmes & Bourne, 2008). Healthy subjects watched a trauma 

film after structural scan measurements, and symptoms of intrusions had to be reported in a 

diary across the following week. We conducted voxel-based morphometry (VBM) of whole 

brain magnetic resonance imaging (MRI) data as an unbiased approach on whole brain level 

to identify structural differences related to early intrusive symptoms.  

We used this study design specifically to focus on a very early time window after 

experimental trauma exposure, which is considered a sensitive time window where the first 
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highly intrusive symptoms emerge (Bremner, 2005). Evaluating this early phase is relevant to 

identify predictive variables to enable preventive and therapeutic measures in PTSD, 

especially for core symptoms. We hypothesize that intrusive symptoms during the earliest 

stages after experimental trauma exposure are associated with reduced volumes in the 

hippocampus, the amygdala and the insula as these regions are tightly linked to memory 

processing, fear conditioning, and intrusive memories (Dolan & Vuilleumier, 2003; Liberzon 

& Abelson, 2016; Osuch et al., 2001; Phelps et al., 2001).   
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2. Method 

2.1. Subjects 

Seventy-four healthy female subjects (mean age 23.4 years, range 18 - 36 years) went 

through a general screening on past medical and psychiatric disorders and were excluded 

depending on their medical record. The experience of a “real-life” traumatic event in the past 

was taken as an exclusion criterion. Additionally, subjects were screened for standard MRI 

compatibility. Subjects signed their written informed consent after the procedure of the study 

had been explained in detail. The study protocol was in line with the Declaration of Helsinki 

and approved by a local ethical review board. Subjects were reimbursed for their 

participation (CHF 25/h). 

 

2.2. Experimental procedure  

Subjects arrived at the imaging center, they were informed about the procedure and signed 

their informed consent. After entering the scanner, all subjects went through a structural T1 

scan and subsequently watched a trauma film. The high resolution structural T1 scan lasted 3 

min and 40 sec while the trauma film had a duration of 14 min. After the experiment, subjects 

received an intrusion diary with a detailed explanation for filling in the intrusion diary for the 

following seven days (Figure 1). 

Research on functional data using the trauma film paradigm has been published in previous 

work (Gvozdanovic, Stampfli, Seifritz, & Rasch, 2017).  

 

 

    -- insert figure 1 about here -- 
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2.3. Trauma film paradigm:  

Subjects watched a trauma film in accordance with the trauma film paradigm (Holmes & 

Bourne, 2008). The trauma film of this study displayed rape and further physical assault (film 

called “Irreversible”, (Noé, 2002)) and was associated with strong emotional and 

physiological reactions in previous research (Weidmann, Conradi, Groger, Fehm, & Fydrich, 

2009)  

After being originally developed in the 60s (Horowitz, 1969; Lazarus, 1964), the trauma film 

paradigm has been validated in over 70 studies only in recent years (James et al., 2016). The 

trauma film paradigm is per definition an experimental medicine model. Experimental 

medicine models try to model deviant mechanisms in non-patient samples in order to 

evaluate processes involved in the development of clinically relevant symptoms (James et al., 

2016). In this case, the experimental medicine model evaluates behavior in non-patient 

groups to examine factors resulting in PTSD (James et al., 2016). After a trauma film, i.e., an 

experimental trauma, reactions similar to trauma in real life have been systematically 

observed, including hallmark symptoms of PTSD. Changes in reactions can be found in 

physiological arousal, intrusive memories, negative cognitions and mood (APA, 2013; 

Butler, 1995; Holmes, Brewin, & Hennessy, 2004; James et al., 2016; Weidmann et al., 

2009). Symptoms emerging after an experimental trauma last solely for hours or days and 

diminish within one week (Holmes et al., 2004; James et al., 2016).  

In our study the traumatic film depicted a rape scene, displaying characteristics of witnessing 

a traumatic event. Diagnosis criteria for PTSD include both an immediate exposure to a 

traumatic event and also witnessing trauma (APA, 2013). To examine early PTSD-like 

symptoms, the trauma film paradigm is an ideal model to bridge the gap between non-clinical 

and clinical samples based on its strongly controllable setting (Clark & Mackay, 2015). 

 



 8 

 

 

2.4. Intrusion diary and questionnaires 

The intrusion diary had to be completed at home and consisted of a seven-day diary.  Subjects 

were instructed on how to complete the intrusion diary in detail after the scanning session. 

Intrusive memories that emerged had to be filled in the intrusion diary. Describing the content 

in detail, making notes on perceived vividness and distress, and writing down further intrusive 

characteristics for every single memory were part of the subjects’ daily task for seven days. In 

order to analyze the intrusion diaries, the sum of reported intrusions per week was used. Scoring 

criteria for the diagnosis of intrusions were ratings on distress, vividness and the sudden 

occurrence of the reported memories.  

Participants also filled in the following questionnaires: state trait anxiety inventory (STAI) for 

state and trait, Becks depression inventory (BDI), a questionnaire on the perception of the film 

including the following items: film perception in general, stress, vividness, anger, sadness, 

anxiety, disgust, helplessness, wakefulness, and concentration, resulting in a total score of the 

film perception questionnaire.   

 

2.5. MRI data acquisition 

Measurements were performed on a Philips Achieva 3.0 Tesla TX whole-body magnetic 

resonance scanner (Philips Healthcare, Best, The Netherlands), equipped with a thirty-two 

channel receive-only head coil array. High resolution structural 3D T1-weighted anatomical 

data were acquired via a 3D magnetization-prepared rapid gradient-echo sequence (MP-

RAGE) with the following parameters: voxel size = 1.0x1.0x1.0 mm3, time between two 

inversion pulses = 2170 ms, inversion time = 1000 ms, inter-echo delay = 9.3 ms, flip angle = 

8°, field of view = 240x240 mm2, 160 sagittal slices. The trauma film was displayed on MR-
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compatible video goggles (Resonance Technology, Northridge, USA). Moreover, 

headphones especially designed for MR measurements (MR confon GmbH, Magdeburg, 

Germany) were used by subjects during the film presentation.  

 

2.6. MRI data analyses for voxel-based morphometry (VBM)  

Standard image data preparation, preprocessing, and statistical analysis were performed using 

statistical parametric mapping SPM12 (www.fil.ion.ucl.ac.uk/spm) in Matlab 2017b. 

Structural data preprocessing included segmentation of the structural data into grey matter, 

white matter and CSF. An additional preprocessing step was performed using an MR bias 

correction. With the use of the Dartel algorithm (Ashburner, 2007) in SPM12 images were 

spatially normalized to standard Montreal Neurological Institute (MNI) space and voxels 

were resliced to a voxel resolution of 1,5 mm x 1,5 mm x 1,5 mm. Spatially normalized and 

segmented images were modulated with the Jacobian determinants from the transformation 

with the aim of adjusting for the resulting volume changes (Ridgway et al., 2008). Smoothing 

was done using a full width at half maximum Gaussian kernel (FWHM) of 4 mm. 

For statistical analyses on group level, multiple regression analyses were performed. As a 

regressor of interest the sum of individual intrusions reported in the intrusion diary during the 

subsequent week after the experiment was entered into the design matrix. In order to deal 

with individual differences in brain sizes, global normalization with respect to whole brain 

volume was taken into account and an overall grand mean scaling was computed. Statistical 

significance was set at pFWE.cluster < 0.05, with a cluster defining threshold (CDT) of p = 0.001 

for whole brain analyses (Eklund, Nichols, & Knutsson, 2016). 

Further region of interest (ROI) based VBM analyses were conducted in order to evaluate 

ROIs that were previously reported in PTSD (i.e. hippocampus, amygdala, vmPFC and 

orbitofrontal cortex) and were preprocessed using the above-mentioned preprocessing steps. 

http://www.fil.ion.ucl.ac.uk/spm)
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Masks were taken from predefined automatic anatomical labelling atlas (AAL, (Rolls, Joliot, 

& Tzourio-Mazoyer, 2015; Tzourio-Mazoyer et al., 2002) and were resliced to match the 

preprocessed Dartel images (1.5 mm x 1.5 mm x 1.5 mm). In order to also look at subject 

specific parcellations, we additionally preprocessed our images with VBM and used the CAT 

12 toolbox (Computational Anatomy Toolbox 12), implemented in SPM12. Images were 

segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) by 

using the default settings. Images were spatially normalized with DARTEL and smoothed 

with a FWHM of 4 mm. 

By multiplying the preprocessed structural images of each subject with the ROI masks, a 

calculation of the total ROI volume was made in milliliters.  The extracted data was then 

correlated with intrusive symptoms and questionnaires on the perception of the film in 

SPSS24 using Spearman correlations. 
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3. Results 

3.1. Behavioral Results:  

3.1.1. Anxiety and Intrusions  

The reported intrusion data contained a minimum intrusion of minintrusion = 0 and a maximum 

sum of maxintrusions = 13 during the week after exposure to the experimental-trauma film. 

Mean number of intrusions was μ = 3.23 and a standard deviation of SD = 2.74. 

The sample displayed no depressed symptoms and revealed trait anxiety under the cut-off 

point of clinically relevant anxiety symptoms during the experiment (Julian, 2011). As 

expected, anxiety level significantly increased due to the trauma film. Paired t tests between 

pre and post film STAI state measures revealed that there was a significant increase in 

anxiety after the experimental-trauma film compared to before the film (mean anxiety pre 

film μ = 36.71; mean post film anxiety μ = 46.81; t = -6.5; p < 0.001) (Table 1).  

At the end of the experiment, anxiety measures were still elevated and significantly increased 

compared to baseline anxiety (mean anxiety pre experiment μ = 36.71; mean anxiety post 

experiment μ = 40.48; t = -2.7; p < 0.01), see Table 1. Therefore, after the trauma film, 

participants reached a clinically relevant score (Julian, 2011). 

Moreover, Spearman correlations revealed that the higher the anxiety measured after the film, 

the higher the perceived subjective distress during the intrusions in the subsequent week (r = 

.261; p < 0.05). 

 

    -- insert table 1 about here-- 

 

3.2. Structural MRI Results: 

3.2.1. Whole-brain VBM: total grey matter volume 
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In general, there was no correlation between intrusions and extracted total grey matter 

volume (p > 0.1). 

3.2.2. Whole-brain VBM: Negative intrusion contrast 

Multiple regression analyses on a whole brain level using VBM revealed that the 

development of intrusive memories within one week after the experimental trauma was 

associated with smaller volumetry in the left insula and the left superior temporal lobe (Fpeak 

= 4.01), both pFWE.cluster < 0.05, CDT of p = 0.001, see Figure 2 and Table 2. Thus, more 

reported intrusions were associated with less insular volume. For the insula, we had strong a 

priori and directional hypothesis on smaller insula being associated with an increased number 

of intrusions. 

 

 

    -- insert figure 2 about here -- 

 

3.2.3. Whole-brain VBM: Positive intrusion contrast 

Intrusive memories analyzed from the diaries were positively associated with larger structural 

volumetry in left cerebellum, left lingual – and left fusiform gyrus (Fpeak = 5.32), with 

pFWE.cluster < 0.05, CDT of p = 0.001, see Figure 3 and Table 2. Moreover, increases in 

volumetry were found in the right precentral gyrus and the right inferior frontal operculum 

(Fpeak = 4.55), with pFWE.cluster < 0.05, CDT of p = 0.001. As these results were of an 

explanatory, bidirectional nature, we have adjusted our pFWE values for two sided tests, with a 

new p value threshold of pFWE < 0.025. Results reveal that larger volumetry in the lingual 

gyrus/cerebellum and inferior frontal gyrus/precentral gyrus is associated with more 

intrusions.  
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    --insert table 2 about here— 

 

 

    -- insert figure 3 about here -- 

 

3.2.4. Brain behavior correlates 

An additional questionnaire on the perception of the film (items: film perception in general, 

stress, vividness, anger, sadness, anxiety, disgust, helplessness, wakefulness and 

concentration) revealed that the total score on the perception of the film negatively correlated 

with our reported structural differences in the insula (r = -0.266, p < 0.05). This correlation 

was of the same directionality as the association between the insula and the intrusions. 

Moreover, the film perception also positively correlated with intrusions (r = 0.219; p < 0.05. 

Additional detailed analyses on the intrusions revealed that the insula (r = - 0.280), inferior 

frontal gyrus/precentral gyrus (r = 0.232), and lingual gyrus/cerebellum (r = 0.212) 

significantly correlated with subjective distress of the intrusions (p < 0.05). For vividness, 

only the insula (r = - 0.268) and inferior frontal gyrus/precentral gyrus (r = 0.239) were 

significantly correlated (p < 0.05). 

In order to control for age and anxiety, we entered these variables as a covariate to the data. 

Partial correlation analyses revealed that age and anxiety trait measured by the STAI did not 

have a significant effect on the correlation between intrusion and the insula, inferior frontal 

gyrus/precentral gyrus, and lingual gyrus/cerebellum (all, p < 0.05). 

 

 

3.2.5. VBM region of interest analyses (ROI). 
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In order to additionally evaluate structural regions of interest that were reported in PTSD 

patients, we separately calculated the volumes per individual for the hippocampus, amygdala, 

anterior cingulate cortex, and ventromedial prefrontal cortex and orbitofrontal cortex. We 

found no significant correlation between the structural ROIs reported in PTSD and early 

intrusive symptoms, all p > 0.1.   

Results on subject specific parcellations (CAT12) revealed no significant correlation between 

the hippocampus, amygdala, orbitofrontal cortex, medial prefrontal cortex, and the anterior 

cingulate cortex.  
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4. Discussion 

 

The present study evaluates structural differences associated with early intrusive memories. 

Structural T1 scans were acquired before experimental trauma exposure and healthy subjects 

had to fill in an intrusion diary during the subsequent week. Our results reveal that a higher 

number of early intrusive memories was associated with a smaller volume in the left insula. 

Moreover, larger volumes in the left lingual gyrus/cerebellum and right inferior frontal gyrus/ 

precentral gyrus were positively associated with the number of intrusions. We found no 

correlation between previously reported ROIs in PTSD and early traumatic memory 

processing. Overall, our results display specific structural brain volume changes that predict 

at an early stage the number of later intrusive memories.  

The smaller volume of the insula and its association with intrusive memories is consistent 

with previous data in PTSD patients, where inverse relationships between insular volume and 

PTSD symptoms were found (Chen et al., 2006; Hu et al., 2018; Kelly et al., 2013; Meng, 

2014; Perez et al., 2017). Also on a functional level, differences in insular activity have been 

associated with PTSD in general (Kolassa & Elbert, 2007; Pitman et al., 2012), and with the 

development of PTSD (Liberzon & Martis, 2006), and fear processing (Phelps et al., 2001). 

Importantly, functional differences in the insula have been associated with intrusive 

memories (Osuch et al., 2001). Meta analyses in healthy subjects revealed that the insula is 

functionally associated with emotional recall and emotional tasks with cognitive demands 

(Phan, Wager, Taylor, & Liberzon, 2002). Increased activity in the insula was also found 

during aversive conditioning in healthy subjects (Buchel, Morris, Dolan, & Friston, 1998; 

Marschner, Kalisch, Vervliet, Vansteenwegen, & Buchel, 2008).  

As we additionally found a significant correlation between structural differences in the insula 

and the perception of the film, we could conclude that the volumetric changes in the insula 
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are related to specific differences in traumatic memory and not only to memory processes in 

general. Functional changes in the insula have not been exclusively associated with PTSD 

patients, but were also found in other anxiety disorders (Pitman et al., 2012). The finding 

from our study might therefore indicate that the insula is associated with a general 

susceptibility for negative intrusive memories rather than a disorder-specific change in brain 

volume. 

Our further findings on a larger volume of the lingual gyrus/cerebellum/fusiform gyrus and 

its relation to intrusions highlights the importance of these regions in PTSD like symptoms. 

Altered grey matter volume in the lingual gyrus has been associated with chronic PTSD (Tan 

et al., 2013). In healthy subjects, the fusiform and the lingual gyrus have been associated with 

processing of uncertain cues (Zhang et al., 2016) and emotions (Fairhall & Ishai, 2007). 

Altered surface areas in the lingual and fusiform gyri have been associated with anxiety and 

depression symptomology (Couvy-Duchesne et al., 2018). Interestingly, while the cerebellum 

was previously mainly associated with planning and executing motor functions, this brain 

structure has recently been increasingly connected to neuropsychiatric symptoms (Buckner, 

2013). A recent study by  (Rabellino, Densmore, Theberge, McKinnon, & Lanius, 2018) on 

resting state functional connectivity in PTSD and its dissociative subtype found that different 

subregions of the cerebellum are of relevance in the psychopathology of PTSD. As the 

cerebellum is also involved in emotion regulation (Schutter & van Honk, 2009), a 

dysregulation of emotional memory processing due to an enlarged cerebellum might be 

fundamental for intrusive symptom development. In addition, on a structural level, the 

cerebellum has been repeatedly connected to PTSD. Specifically, enlargements of the 

cerebellum have been associated with combat related PTSD (Sussman, Pang, Jetly, Dunkley, 

& Taylor, 2016) and rape victims with PTSD (Sui et al., 2010). Childhood-trauma related 

pediatric PTSD has also been related to structural changes in the cerebellum (De Bellis & 
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Kuchibhatla, 2006). Thus, our findings support the notion that the cerebellum seems to be an 

underestimated region of relevance in traumatic memory processing, with effects occurring 

already at early symptom stages. 

The precentral gyrus, as also found in our results, is associated with motor functions 

(Semmes & Chow, 1955). Interestingly, the amydala is known for its projections to motor 

cortices including the precentral gyrus (Grezes, Valabregue, Gholipour, & Chevallier, 2014), 

a connection which has been associated with emotional modulations (Rizzo et al., 2018). 

Changes in functional connectivity between the precental gyrus and PTSD relevant regions 

have been reported in a trauma film group compared to a control film group during intrusive 

film picture presentation (Gvozdanovic et al., 2017). Thus, potentially due to the limbic-

motor interface properties of the precentral gyrus and its associated wide range brain 

connections (Rizzo et al., 2018), changes in the precentral gyrus seem to be of relevance in 

intrusive symptom development.  Our findings in the inferior frontal gyrus give indications 

for a potential malfunctioning of inhibition and altered salience processing, two potentially 

important factors in intrusion development. Activity in the inferior frontal gyrus has been 

associated with proactive inhibition in functional MRI research in PTSD patients (van Rooij 

et al., 2014).  In healthy participants it has been associated with detecting salient stimuli and 

response inhibition (Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010). 

In order to evaluate further specific structural ROIs reported in previous PTSD research, we 

also conducted volumetric ROI analyses. We found no significant difference between 

previously reported ROIs and early traumatic memory processing. This demonstrates that our 

reported whole brain VBM findings are unique to an early stage and that it is of high 

relevance to examine different stages after experimental trauma exposure to provide a 

detailed understanding of structural brain processes involved in PTSD.  
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Interestingly, we found no significant differences in hippocampal volume. A possible 

explanation might be that structural changes in the hippocampus are not specifically 

associated with early traumatic memory processing or alternatively that atrophies in 

hippocampal volumes are a consequence of extreme stress exposure rather than a 

predisposition factor. As the hippocampus is important for contextualization (Liberzon & 

Abelson, 2016), it might also be that the hippocampal volume is rather related to other PTSD 

symptom clusters that are primarily involved in putting traumatic memories in to context. 

Concerning the debate on whether structural differences in general emerge as a consequence 

of trauma or serve as a vulnerability factor, our results rather suggest that volumetric changes 

serve as a vulnerability factor for development of early intrusive symptoms and potentially of 

PTSD. However, this might only account for our reported structural regions in the insula, 

lingual gyrus/cerebellum and inferior frontal gyrus/precentral gyrus. Nevertheless, we have to 

emphasize that our study only entails correlational analyses of structural differences 

comparing the state before experimental trauma exposure with early intrusive memories 

development. 

It is also important to highlight that PTSD is a more complex disorder which cannot be 

entirely depicted by an experimental medicine model. The trauma film paradigm primarily 

focuses on early intrusive memory processing. Therefore, early differences in hippocampal 

volume might nevertheless be found in patient samples. A disadvantage of measuring only 

patient samples, however, is that a high comorbidity with other psychiatric disorders might be 

responsible for inconsistent findings (Eckart et al., 2012). 

Our reported findings could not have been related to previous traumatization which may be 

part of a building block effect (Neuner et al., 2004), as past traumatization was an exclusion 

criterion in our study. Exposure to childhood trauma is also essential for PTSD development 



 19 

(Teicher, 2010). We did not formally examine childhood trauma in detail through additional 

assessment of further questionnaires.  

A limitation to this study is that we have only measured intrusions during the subsequent 

week after experimental-trauma film exposure as according to the trauma film paradigm. 

Future research should also focus on intrusions at times beyond the first week. Moreover, 

further information concerning type and other characteristics of the intrusive memories 

should be additionally assessed in the diaries. 

As our sample of healthy subjects only included females, this further limits our findings. In 

PTSD patients, up to 50% of females develop a PTSD after sexual assault (Chivers-Wilson, 

2006). Moreover, female and male brain structures differ in both the insula, inferior frontal 

gyrus/precentral gyrus and lingual gyrus/cerebellum (Ruigrok et al., 2014). In this sense, the 

generalization of our findings might be further limited.  

As an additional limitation, only an experimental medicine model was deployed in healthy 

subjects, and the applied experimental trauma mainly includes characteristics of witnessing a 

trauma. We expect PTSD patient samples to display further and stronger structural 

differences associated with intrusive symptoms developed after “real” trauma exposure. 

Thus, our study has to be transferred to a sample with real life traumatized subjects to both 

replicate our current findings and to evaluate whether structural differences associated with 

early traumatic memory processing are of predictive value for PTSD development.   

In sum, within the complexity of previous findings our study provides evidence that the 

insula, the lingual gyrus/cerebellum and the inferior frontal gyrus/precentral gyrus are 

correlated with early intrusion development. These findings provide new insights in the 

relevance of structural differences in early intrusive symptoms and open opportunities for 

precise diagnosis, and for personalized treatment and prevention.  
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Table 1.  Mean sample scores on clinically relevant measures 

 BDI score: 

mean (SD) 

STAI Trait: 

mean (SD) 

STAI State 

baseline / pre film: 

mean (SD) 

STAI State post 

film: 

mean (SD) 

STAI State 

post experiment: 

mean (SD) 

Sample 5.7 (4.9) 37 (8.3) 36.9 (10.6) 46.9 (11.3) 40.5 (9.6) 
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Table 2. Clusters found during whole brain VBM analyses when looking at the negative and 

positive contrast of intrusions. 

 

 

Region 

No of 

Voxels 

Probability 

M N I t (peak) pFWE.voxel 

   X Y Z   

 

Negative intrusion contrast 

 

 

   

 

Left insula 

Left superior temporal lobe 

 

179 

 

56.42 % 

15.08 % 

 

 

-39 -27 -3 

 

 

4.01 

 

 

0.033 

 

 

Positive intrusion contrast 

 

 

   

 

Left lingual gyrus 

Left fusiform gyrus 

Left Cerebellum 

 

Right inferior frontal 

operculum 

Right precentral gyrus 

 

239 

 

 

 

207 

 

11.72 % 

5.44 % 

1.67 % 

 

 

90.34% 

 

5.80 % 

 

-16 -88 -21 

 

 

 

63 6 30 

5.32 

 

 

 

4.55 

0.007 

 

 

 

0.016 
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Figure1. Study design: Subjects went through structural scanning before watching a trauma 

film. During the subsequent week subjects had to fill in an intrusion diary while reporting on 

experienced intrusive memories.  
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Figure 2. Insula volume and intrusive symptoms: (A) Smaller volume of the insula / superior 

temporal gyrus predicts more intrusive symptoms in healthy subjects after trauma film 

exposure. This association is significant in the left insula / superior temporal gyrus (179 

voxels, peak at [-39 -27 -3]; pFWE.cluster < 0.05, CDT of p = 0.001), as revealed by a multiple 

regression analyses on whole brain level during VBM. Coronal and sagittal slices are shown 

at a threshold of pFWE.cluster  = 0.05, superimposed on a canonical normalized image of 

SPM12 (mean T1 image, avg152T1.nii). (B) Scatterplot of the negative association between 

the volume of the insula / superior temporal gyrus and intrusive symptoms reported during 

the subsequent week.  
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Figure 3. Volume of inferior frontal gyrus/precentral gyrus and the lingual gyrus/cerebellum 

and intrusive symptoms. (A) Volume in the inferior frontal operculum/ right precentral gyrus  

(207 voxels) and (B) left lingual gyrus/fusiform gyrus/ cerebellum  (239 voxels) positively 

predicted the sum of memory intrusions measured over seven days in healthy subjects after 

trauma film exposure (both pFWE.cluster < 0.05, CDT = 0.001). Coronal and sagittal slices are 

shown at a threshold of pFWE.cluster  = 0.05, superimposed on a canonical normalized image of 

SPM12 (mean T1 image, avg152T1.nii). The scatterplots show the positive associations 

between memory intrusions measured during seven days after film exposure and (C) volume 

in the right precentral gyrus / inferior frontal operculum and (D) left lingual 

gyrus/cerebellum / fusiform gyrus.  

 

 


