
StaTIX — Statistical Type Inference
on Linked Data

Artem Lutov∗, Soheil Roshankish†, Mourad Khayati∗ and Philippe Cudré-Mauroux∗
∗eXascale Infolab, University of Fribourg, Switzerland

Email: artem.lutov@unifr.ch, mourad.khayati@unifr.ch, pcm@unifr.ch
†University of Bern, Switzerland

Email: soheil.roshankish@students.unibe.ch

Abstract—Large knowledge bases typically contain data ad-
hering to various schemas with incomplete and/or noisy type
information. This seriously complicates further integration and
post-processing efforts, as type information is crucial in correctly
handling the data. In this paper, we introduce a novel statistical
type inference method, called StaTIX, to effectively infer instance
types in Linked Data sets in a fully unsupervised manner.
Our inference technique leverages a new hierarchical clustering
algorithm that is robust, highly effective, and scalable. We
introduce a novel approach to reduce the processing complexity
of the similarity matrix specifying the relations between various
instances in the knowledge base. This approach speeds up the
inference process while also improving the correctness of the
inferred types due to the noise attenuation in the input data.
We further optimize the clustering process by introducing a
dedicated hash function that speeds up the inference process
by orders of magnitude without negatively affecting its accuracy.
Finally, we describe a new technique to identify representative
clusters from the multi-scale output of our clustering algorithm
to further improve the accuracy of the inferred types. We
empirically evaluate our approach on several real-world datasets
and compare it to the state of the art. Our results show that
StaTIX is more efficient than existing methods (both in terms
of speed and memory consumption) as well as more effective.
StaTIX reduces the F1-score error of the predicted types by
about 40% on average compared to the state of the art and
improves the execution time by orders of magnitude.

Index Terms—statistical inference, semantic types, clustering,
LOD enrichment, history-independent hashing

I. INTRODUCTION

A significant fraction of the data available in knowledge
bases today are stored as Linked Open Data (LOD). Large
Linked Data projects such as the Linked Open Data Cloud 1

or DBpedia [1] are often collaborative and contain data that
has been extracted semi-automatically or that come from
different sources. Hence, Linked Data often does not have a
single maintainer or a strict unified schema for structuring
the instances and as such typically includes noisy and/or
incomplete data [2]. In particular, type information is often
missing [3], which is particularly problematic as types are
crucial for correctly handling many integration and post-
processing tasks such as semantic search [4], federated query

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement 683253/GraphInt) and in part by the Swiss
National Science Foundation under grant number CRSII2 147609.

1http://lod-cloud.net/

processing [5], linked data integration [6], or knowledge graph
partitioning [7].

In this paper, we propose a novel method, called StaTIX 2

(for Statistical Type Inference), for automatically inferring
instance types from Linked Data. Most methods in this context
use supervised learning that leverage large, pre-labeled training
sets (see the Related Work section). This can often turn out as
a severe limitation, as such pre-labeled data are difficult and
costly to acquire (or produce) for non-specialists or smaller
entities, and as new labels are required for every new domain
or dataset where type inference has to be applied. Our method
instead is unsupervised and fully automated, and can be readily
applied on any Linked Data source irrespective of its size or
content.

StaTIX performs link-based statistical type inference lever-
aging a dedicated clustering algorithm that significantly im-
proves type inference accuracy compared to the state of the
art. Our link-based type inference technique takes as input
weighted statistics from multiple attributes (properties) of each
instance and avoids the propagation of errors from isolated
erroneous axioms, similar to [8], which allows it to operate
on noisy data. In particular, we propose a novel approach
to simplify (reduce) the processing complexity of the simi-
larity matrix specifying the similarity between the instances.
This reduction technique can speedup the clustering process
by orders of magnitude, allowing to cluster larger datasets.
Moreover, it can improve the overall accuracy of the results
on noisy data. Also, we introduce a new optimization of the
clusters formation process, using a dedicated hash function
to speedup execution time by orders of magnitude without
negatively affecting the resulting accuracy. Finally, we propose
a novel technique to identify representative clusters from the
resulting hierarchy, which further improves the accuracy of the
type inference.

We perform an extensive empirical evaluation of our tech-
nique on real data and show that StaTIX significantly out-
performs other unsupervised type inference approaches in
terms of both effectiveness and efficiency. StaTIX reduces the
accuracy error by about 40% on average comparing to other
evaluated methods. In addition, StaTIX improves the execution

2https://github.com/eXascaleInfolab/StaTIX

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/196212534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

speed by orders of magnitude and consumes less memory than
the state of the art.

II. RELATED WORK

The classical way to perform type inference is the appli-
cation of logical reasoning, e.g., via RDFS/OWL entailment
regimes [9], [10]. The resulting accuracy is highly dependent
on the cleanliness and correctness of the statements in the
knowledge base, though a number of works have attempted
to reason on noisy semantic data [11]. Reasoning-based
techniques are generally speaking considered as not suitable
for cases where the knowledge base contains erroneous or
conflicting statements [8]. In addition, logical reasoning only
allows to infer information from the facts that are present in
the dataset; it is unsuited to infer types when most of the
rdf:type values are missing.

Several unsupervised type inference techniques have been
proposed in the literature. In [12] the authors introduce a
statistical method, which we refer to as SDA, to compare the
conformity of a dataset against its schema using statistical type
inference. The proposed technique is based on the concept
of probabilistic type profiles consisting of a set of properties
p and related probabilities α encoding the probability of an
instance having p as a property. In addition to the type profiles,
a profile is assigned to each class in the schema to assess the
completeness of the dataset and its conformity to the schema.
Paulheim et al. [8] proposed a link-based classification tech-
nique, called SDType, to infer missing types. SDType uses the
statistical distribution of each link from an instance to assign
types to instances. The statistical distribution is computed
using a weighted voting approach, where a distribution of
type votes is assigned to each link. The proposed technique
outputs the confidence of each instance-type pair. SDType
is implemented on top a relational database and achieves a
quasilinear runtime complexity with the number of statements
in the dataset. It is important to outline that SDType requires
some supporting database with ground-truth types (DBpedia is
used by default), whose types are then assigned to the target
dataset. Therefore, SDType aims solely at discovering types
that are present in the supporting dataset, even if those types
have very little statistical significance in the target dataset,
which conceptually differs from the semantics of the SDA
results.

Both SDA and SDType are directly related to our present
effort and are evaluated against our approach in the following.

A number of supervised techniques have been proposed
in this context as well. Klieger et al [13] proposed a super-
vised type inference technique called LHD 2.0 that extends
the Linked Hypernyms Dataset (LHD) framework to extract
types from DBpedia graphs. The proposed technique uses
a statistical type inference (STI) technique to leverage the
similarity between graphs by mapping classes appearing in one
source knowledge graph, namely DBpedia, to another target
knowledge graph, LHD. Together with the STI technique, the
authors introduce an ontology-aware fusion approach based
on hierarchical SVM to perform the assignment of instance

types. LHD 2.0 combines a lexico-syntactic pattern analysis
with supervised classification to assign the most probable types
to the terms in the input text. Zhang et al [14] introduced a
data mining type prediction technique for Linked Data. The
proposed technique is based on a text classification algorithm
and boils down to a three-step procedure. First, a maximum
entropy estimation is applied to find bags of words (BOW)
in an RDF graph. Then, a weighted virtual document of type
information (VDT) is computed. VDT consists of sub-BOW
of words from URI of object oi, sub-BOW of literals from
oi’s annotation properties and a sub-BOW of URIs of oi’s
properties related to/from other objects. Each sub-BOW is
represented using word frequencies. This technique requires
some a priori knowledge on the number of target clusters
and trains two classifiers to infer types. Bühmann et al. [15]
introduced a system called DL-Learner to perform inductive
learning on semantic web data. Their system provides an
OWL-based machine learning tool to solve supervised learning
tasks. It also supports knowledge engineers in constructing
knowledge and learning about the data they created. A major
component of this system is the induction process, which can
be applied to infer types in a knowledge graph. Melo et al. [16]
introduced a type prediction method called SLCN to tackle
type incompleteness in Semantic Web knowledge bases with
an ontology defining a type hierarchy. The authors formulate
the type prediction problem as a hierarchical multi classifica-
tion, where the class labels are types. The SLCN approach
is based on a local classifier per node and performs feature
selection, instance sampling, and class balancing. SLCN is
applicable to large-scale RDF datasets with high-dimensional
features. The aforementioned supervised techniques were not
designed to be applicable on cases where we do not expect
any prior information on the schemas and instance types (e.g.,
when we do not know the number of types a priori and do
not have any training set with corresponding labeled types),
which is the focus of this paper (see Section III-A for more
detail).

III. METHOD OVERVIEW

A. Problem Statement

We consider Linked Data statements specified as RDF
triples (s, p, o). Each triple is composed of three distinct
components: a subject (a URI or blank node), a predicate
(URI) and an object (a URI, blank node or literal). In the
following, we denote as an instance Vi all triples sharing
a given subject i. The predicates belonging to an instance
correspond to attributes having a literal, a URI or a blank node
as value. A special property defines the rdf:type of i, indicating
that i is an instance of the class specified by the property
value. Each instance may have multiple rdf:type properties,
i.e., may belong to multiple classes. Our objective is to
infer missing rdf:type values for all instances in the dataset
G, considering the following: a) the schema is incomplete;
hence, both rdf:type statements as well as class definitions
may be missing; b) classes can themselves be organized as to
create a hierarchy (e.g., through rdfs:subClassOf properties);

rdf:type rdf:type

Similarity matrix

Matrix
construction

Reduced matrix

Matrix
reduction

Clusters

Clustering
iteration

v1 v2

v3

v4
v5

v6

v7 v9

v8

StaTIX
output

v8

v8v8

Folding

Fig. 1. Unsupervised Type Inference Process in StaTIX, where frames denote forms of the processing data and applied actions are displayed with arrows.

c) the dataset may be noisy (hence, G may include incorrect
statements). In other words, we aim to induce types (rdf:type
values) for all instances, and classify each instance with
respect to the discovered types for realistic scenarios where
the data are both incomplete and noisy.

B. Unsupervised Statistical Type Inference

We now turn to a high-level description of our approach.
We focus on a technique that is fully unsupervised and does
not rely on any third-party knowledge base, and, therefore, can
be readily applied to any Linked Data without any preparation
or parameter tuning. The fundamental assumption behind our
approach is that the more properties the instances share, the
more likely they have the same types. Basically, we define the
similarity between instances by matching their properties and
then apply a dedicated clustering algorithm to infer the type
clusters as shown in Fig. 1.

Our type inference technique, StaTIX, takes a LOD dataset
as input, where some (or all) type information and class
definitions are missing. From this input dataset, a Similarity
Matrix capturing the similarity among the instances is con-
structed, as explained below in Section III-C. From there on,
the type inference process is iterative, as the Similarity Matrix
is reduced (see Section IV-A) and clustered (see Section IV-B)
iteratively to infer clusters of types.

At the end of each iteration, weights for the resulting clus-
ters as well as inter-cluster links are computed by aggregating
the weight of the nodes in each cluster and the respective
links (see folding on Fig. 1). The resulting (clustering) graph
forms a new Similarity Matrix and is used as a new input by
the next iteration of the clustering algorithm. The clustering
process terminates as soon as an iteration does not produce
any new cluster. Clusters produced by this process form a
hierarchy, where each level can be seen as representing the
input dataset at a given level of granularity [17]. Clusters on
the top (final) level of the hierarchy represent the inferred
instance types. Inferring subtypes in addition to the the coarse-
grained types requires considering the non-top level clusters,
which is described in Section IV-C and which improves the
accuracy of the type inference.

The computational complexity of StaTIX varies from O(m)
on sparse clustering graphs3 up to O(m

√
m
n) on dense noisy

3Note that a clustering graph corresponds to the similarity matrix formed
on the first iteration, which is typically much smaller than the input RDF
graph

graphs, where m is the number of links in the graph and n is
the number of nodes. The theoretical worst case corresponds to
an extremely dense graph with weights yielding an excessive
number of overlapping clusters and never occurs in practice
thanks to our reduction technique (see below Section IV-A).
The memory complexity of our approach depends on the same
factors, and varies from linear on sparse graphs to O(m · n)
on the same worst case. We show that our technique is both
space and time efficient in practice in Section V-C2.

C. Similarity Matrix Construction

The input of the clustering algorithm is a (clustering) graph,
which formally can be represented by a similarity matrix. The
matrix stores pairwise similarities between the instances in the
input (RDF) dataset. The similarities are computed like in [8]
by applying a similarity function on vectors representing the
set of properties attached to each instance. Both the property
vectors and the similarity function are described below.

1) Property Vectors: Each instance in the input dataset
is represented as a vector of its weighted properties. The
weight wi of property pi expresses the importance of the
property for the type inference and, intuitively, decreases for
frequently occurring properties: wi = 1√

freqi
,where freqi is

the number of occurrences of pi in the dataset. We introduce
the square root as the statistical distribution of links in real-
world networks is typically heavy tailed [18] and as we want
to take into account a large number of properties (beyond the
head of the distribution). This weighting function yields better
results than equal or frequency weighting in practice.

2) Similarity Function: Various functions, such as Cosine
or Jaccard, can be used to evaluate the similarity between the
property vectors. We use the cosine similarity as it is known
to be highly effective [19] and since it allows us to operate on
weighted properties.

IV. TYPE INFERENCE

We now turn to the core of our method. We describe
below the three main steps of our type inference pipeline:
Reduction of the Similarity Matrix (Section IV-A), Clustering
(Section IV-B), and Cluster Identification at Multiple Scales
(Section IV-C).

A. Weight-Preserving Reduction of the Similarity Matrix

Our novel similarity matrix reduction technique is applied
before each clustering iteration to reduce the cost of the

subsequent processing and to improve the accuracy of the
results thanks to the link denoising. The similarity matrix
can be seen as an input graph for the clustering consisting
of nodes (instances) and weighed links (pairwise similarities
between the instances). The number of links is in the worst
case equal to the squared number of nodes—which only occurs
when all pairs of instances share some property. However,
many links are insignificant in practice (as a given instance is
typically related to a subset of the graph only) and as such
can be omitted. Yet, carelessly removing lower-weight links
can negatively impact the clustering process in two ways:
a) a link connecting nodes A and B might be insignificant
for node A but significant for B, and b) the total weight of the
graph should stay constant in order not to affect the clustering
of the remaining nodes (that are not adjacent to the nodes
being reduced) when the global optimization function (e.g.,
modularity [20]) is applied. The following reduction approach
takes care of both cases.

Our reduction technique consists of two steps. First, we
identify insignificant links and then convert them to weights
of their respective nodes to retain the total weight of the input
graph. A link is considered as insignificant when it has no
impact on the clustering of its incident nodes, which is defined
by the optimization function of the clustering. In the scope of
this paper, we present a lightweight reduction approach, which
is independent from the optimization function and operates
on the link weights of the input graph directly. Our approach
is inspired by the empirical observation that clusters formed
by picking the minimum-weight link a node rarely maximize
the optimization function. Moreover, the higher the number of
links connected to a node, the lower the probability that the
minimum-weight link impacts cluster formation. Hence, two
key values should be taken into account when reducing the
graph: a) the minimal number of links a node should have
to be qualified for the reduction without negatively affecting
the clustering accuracy) and b) the maximal number of links
that can be reduced in a node to not (significantly) affect the
clustering.

The minimal number of links a node should have to be
eligible for the link reduction is defined formally considering
the following aspects.

• The performed reduction should not cause the formation
of disconnected clusters (not linked to any node outside of
the cluster). A cluster regroups together nodes with the most
relevant relations, which roughly corresponds to the heaviest
link weighs. Therefore, the non-reducible (head) links of
the node should include the heaviest links with at least two
distinct weights.

• A node link can be considered for the reduction only if its
weight is insignificant, i.e. the weight is closer to zero than
to the heaviest link weight of the node: wi <

wo

2 .

The reducible (tail) links of the node effectively consist of
at least one link. Therefore, a node being eligible for link
reduction includes at least two remaining links with distinct
weights and one lightweight link being reduced, which strictly

defines the hard threshold, lsmin ≥ 3. However, nodes having
only three and even four links often do not satisfy our outlined
restrictions. So, empirically we select lsmin = 5 considering
that the reduction for nodes having at most four links does
not yield any speedup for our applied clustering algorithm.
The actual number of reducible links is defined automatically
as follows for the nodes having at least lsmin links.

Algorithm 1 Weight-preserving Similarity Matrix Reduction
1: procedure REDUCEDENSITY(graph)
2: lsmin = 5
3: for node in graph where count(links(node)) ≥ lsmin

do . Identify reduction candidates
4: order(links(node))
5: els = end(links(node)); bls = begin(links(node))
6: ih = bls; wh = weight(ih); wc = wh
7: for i in range(2) do
8: while ++ih 6= els and wc ≤ weight(ih) do
9: wh += rankedWeigh(ih, node)

10: end while
11: wc = weight(ih)
12: end for
13: if ih == els then
14: continue
15: end if
16: - - ih; wtlmax = weight(bls) / 2
17: - - (it = els); wt = weight(it)
18: while it 6= ih and weight(it) < wtlmax do
19: while wt < wh and weight(it) < wtlmax and

it 6= ih do
20: wt += weight(- - it)
21: end while
22: if weight(it) < wtlmax and it 6= ih then
23: wh += rankedWeigh(ih++, node)
24: end if
25: end while
26: wc = weight(it)
27: while ++it 6= els and wc ≤ weight(it) do
28: end while
29: for ln in range(it, els) do
30: if marked(ln) then . Convert insignif. links
31: addWeight(srcNode(ln), weight(ln) / 2)
32: addWeight(dstNode(ln), weight(ln) / 2)
33: remove(graph, ln)
34: end if
35: mark(ln)
36: end for
37: end for
38: end procedure

Our reduction technique is outlined in Algorithm 1 and
illustrated in Fig. 2. First, we order the links of each node
by descending weight on line 4 of Algorithm 1. Then, we
initialize the head links of the node by accumulating all the
links having the two heaviest weights (lines 5-15). During the
head link weight accumulation, the rankedWeight function

Fig. 2. Node link weights and their accumulation from the tail to identify
reduction candidates.

(line 9) adopts an increasing ratio rwi ∈ (0, 1] starting from
the second heaviest link (i = 1): rwi = 2i

ndlsnum−2 , where
1 ≤ i < ndlsnum

2 and ndlsnum ≥ lsmin is the number
of links in the node. Afterwards, we iteratively aggregate the
reduction candidates in the tail and the remained links in the
head (lines 16-28) till a) the tail has a lower weight than the
head, b) the tail can be expanded with links not assigned to
the head and c) the weight of each tail link is less than a half
of the weight of the first head link wo

2 . Each iteration of the
aggregation results in the addition of a single Head Weight
bar and several Tail Weight bars until convergence as shown
in Fig. 2. The tail links being picked as reduction candidates
are marked on line 35 for each node in the graph. The links
marked from both of their incident nodes are identified as
insignificant and removed on lines 29-36 transferring their
weights to their respective nodes to retain the total weight
of the graph.

Through this reduction, the size of the respective similarity
matrix remains constant but the number of null values is
increased, providing opportunities for more efficient storage
and processing (only the non-null values are actually stored
and processed by our system). Moreover, the reduction im-
plicitly acts as a noise filtering step, which often improves
the accuracy of the subsequent clustering as we show in
Section V-C.

B. Clustering

We now turn to the unsupervised technique we use to
infer clusters of instances sharing similar types. The problem
definition that we consider imposes a number of requirements
to the clustering algorithm. First, as an instance may have
multiple types, we need an overlapping (also called fuzzy
or soft) clustering algorithm to allow instances to belong to
several clusters (i.e., types). Second, as types may also form
hierarchies, using a hierarchical (or multi-scale) clustering
technique would be desirable. Third, as we aim to infer types
for any dataset without any manual labeling or tuning, the
clustering algorithm should be parameter-free (without any
parameter to tune). Finally, as the input dataset might be
noisy, the clustering algorithm should be robust. In addition
to those criteria, the clustering technique should be efficient
and scalable; both its time and space complexity should be
lower than quadratic to be applicable to large datasets in
practice. We developed a dedicated clustering algorithm to
meet all those criteria. While a comprehensive presentation

of our clustering algorithm itself is out of the scope of this
paper, our implementation is available online as an open-
source library and we provide a high-level description of the
algorithm below.

We picked as the basis of our technique the Louvain
clustering algorithm [21], which is a well-known community
detection method to discover communities in large networks.
Louvain is a greedy optimization method that iteratively op-
timizes the modularity gain [20] of the resulting clusters.
Modularity gain (∆Q) is shown in (1) and provides fast
optimization of the modularity measure (Q) shown in (2).
Formally, ∆Q captures the difference in modularity when
merging two nodes #i and #j into the same cluster:

∆Qi,j =
1

2w

(
wi,j −

wiwj

w

)
(1)

Modularity (Q) [20] is a standard measure of clustering quality
that is equal to the difference between the density of the links
in the clusters and the expected density:

Q =
1

2w

∑
i,j

(
wi,j −

wiwj

2w

)
δ(Ci, Cj) (2)

where wi,j is the accumulated weight of the arcs (directed
links) between nodes #i and #j, wi is the accumulated
weight of all arcs of #i (weight of each link is taken in
each direction), w is the accumulated weight of all edges
(undirected links, half of the weight of all arcs) in the network,
Ci is the cluster to which #i is assigned, and Kronecker
delta δ(Ci, Cj) is a function, which is equal to 1 when
#i and #j belong to the same cluster (i.e., Ci = Cj),
and 0 otherwise. Besides being extremely fast, modularity
maximization under certain conditions is equivalent to the
provably correct but computationally expensive methods of
graph partitioning, spectral clustering and to the maximum
likelihood method applied to the stochastic block model [22],
[23]. The Louvain method is hierarchical, parameter-free, and
efficient but it does not support overlapping clusters and is
not robust. Hence, we modified the Louvain algorithm in the
following ways.

Support for overlaps: Overlaps occur when a node is shared
by several clusters and has an equally good value with each
of them in terms of the optimization function. To support
overlaps, we transform the original graph to represent such
cases explicitly in the network by decomposing the node into
(virtual) sub-nodes that can be processed independently in
different clusters. This weight-preserving transformation does
not influence the optimization function (as we ensure that
the global modularity value stays constant), and allows to
explicitly consider the fact that a single node can belong to
several clusters.

Robustness: Robustness implies stable results even if the input
data are shuffled or are subject to minor perturbations (e.g., in
the presence of noisy statements). Robust algorithms typically
leverage some form of consensus (e.g. majority voting) to infer
clusters by processing an input network multiple times and

varying either the parameters of the clustering, the optimiza-
tion function, or even the clustering algorithms in the meta-
algorithm (e.g. OSLOM [24]). To avoid the high computational
costs of such methods, we devised a new consensus approach
on top of Louvain. The basic idea behind our new consensus
approach is simple: to cluster a pair of adjacent nodes together,
we consider the (mutual) maximal modularity gain from each
of the nodes instead of the maximal modularity gain from any
of them. Thus, we apply a lightweight consensus approach,
which yields robust (due to the consensus [25]) and fine-
grained clusters at each level of the hierarchy.

Efficiency: A computationally heavy analysis has to be per-
formed to decide whether a single or multiple overlapping
clusters should be formed when a node has multiple clustering
candidates (i.e., neighbors having the same mutual maximal
value for the optimization function). This analysis includes the
identification of the minimal subset of clustering candidates
(of the origin node) being also clustering candidates between
each other. If such a subset exists, then a single solid cluster
is formed comprising inter-node relations. This analysis is
the most computationally expensive step in our clustering
process. However, there is a frequent special case, which can
be identified and processed extremely efficiently. In semantic
networks, a node often has multiple clustering candidates
and all of them are also clustering candidates between each
other. This case corresponds to a clear fine-grained subtype
of some actual type (note that existing noise in the input data
gets attenuated by the Similarity Matrix Reduction approach
described above).

To identify such special cases with a reasonable efficiency
(i.e. without having to order the clustering candidates and
then comparing ordered sets) Bloom, Quotient Filter or any
other (approximate) membership structures could be lever-
aged. However, we propose a different, much more efficient
approach, which is theoretically optimal and yields a linear
time complexity on the number of clustering candidates of
the node. Our approach is a new history-independent (i.e.,
independent of the input order) hash function, AggHash.
Generally, a history-independent hashing of a set can be
achieved by applying any standard hash function to each
item in the set with a subsequent commutative aggregate
operator, which maintains the distribution of the hash values
(e.g., xor for the uniform distribution). However, the resulting
hashing is required to minimize the number of collisions, since
each collision causes omission of the respective fine-grained
clusters and results in merging them into a single super cluster.
The latter requirement implies the application of some efficient
cryptographic hash function, which is at least an order of
magnitude slower than an effective non-cryptographic one.
Also, a non-cryptographic hash function typically results in
less uniform distributions of the hash values, which boosts
the number of collisions yielded by the aggregating xor. To
strike an ideal balance between accuracy and efficiency, we
designed a dedicated hash function, AggHash.

AggHash is a cache-friendly, history-independent and ag-

gregating hashing function for unordered sets. Being cache-
friendly and history-independent, AggHash is an order of mag-
nitude faster on CISC architectures than xor operations on
generic non-cryptographic hash functions (e.g., MurmurHash
from the C++ standard library). Given a set A of unique node
ids ai of size NA, AggHash is defined as:

AggHash(A)→ {{NA,

NA∑
i=1

ai,

NA∑
i=1

a2i }

| i = {1, . . . , NA} ∧ ai ∈ N0} (3)

The pseudo-code of AggHash is given in Algorithm 2. In
line 5, AggHash performs a correction of the input values
to prevent collisions. This correction increments each input
value by the square root of the maximal estimated input
value (the largest possible node id in the input graph). The
intuition behind this transformation is the introduction of a
lower bound for the partial values of the aggregating fields,
since the probability of a collision drops quadratically with
the increase of the smallest hashed value. The experiments
we performed confirmed that this correction does not yield
any collision on all datasets we processed. In lines 8-9,
AggHash uses the addition operator (which is commutative),
yielding an input nodes order-invariant result, i.e. performing
a history-independent hashing for the clustering candidates
(clscands) of the node.

C. Representative Clusters Identification at Multiple Scales

We propose a new technique to identify representative
clusters at multiple scales. We call a cluster representative if
it is likely to represent an actual type, which happens only
with a fraction of all clusters in the resulting hierarchy. The
representative clusters include a) the top level of the resulting
hierarchy, which corresponds to coarse-grained types, and
b) some clusters on the lower levels (smaller scales), which
correspond to fine-grained subtypes. The intuition behind our
selection technique is explained below.

Algorithm 2 AggHash Hashing
1: procedure HASHNODE(node)
2: if hashed(node) then
3: return
4: end if
5: nid = corr(id(node)) . Corrected node id
6: hash = {1, nid, nid · nid} . Init(num, sum, sum2)
7: for cnode in clscands(node) do
8: hash.num += 1; nid = corr(id(cnode))
9: hash.sum += nid; hash.sum2 += nid · nid

10: end for
11: node.hash = hash
12: for cnode in clscands(node) do
13: cnode.hash = hash
14: end for
15: end procedure

C1 C2

C21

C'2k

Fig. 3. C1, C2 and C21 are representative clusters at various scales, C′
2k-like

clusters are filtered out.

We illustrate our idea through an example. Fig. 3 depicts a
few clusters of nodes, where the similarity between the nodes
is represented by their spatial closeness (density). Cluster C2

consists of several sub-clusters (C21, C2k, . . .) produced at
lower levels of the hierarchy. Many sub-clusters, including
C ′2k, have a density (i.e., strength of the pairwise instance
similarity) lower than the average density of their super
cluster C2. Such a density variation is typical from real-world
networks because of the heavy tailed distributions of node
degrees and link weights [18], which result in a heavy-tailed
distribution of cluster size and densities. The sub-clusters
having a lower density than their super cluster typically do
not represent groups that are statistically significantly different
from their super cluster. Therefore, we select sub-clusters with
a higher density of nodes only, which are likely to represent
actual subtypes in the Linked Data.

In particular, we apply the following technique to retain only
the most representative clusters, i.e., the inferred subtypes.
Starting from the top level of the hierarchy, we evaluate the
density of each cluster as its weight divided by its number
of nodes. All sub-clusters having a density lower than their
direct super clusters or having a weight close to either a) 0
or b) the weight of their super cluster, are filtered out as
non-representative clusters. As a result, we end up with high-
density clusters only, which have distinct statistical properties
and are more likely to represent actual subtypes as we empir-
ically show in the following section.

V. EVALUATION

In this section, we first describe our experimental environ-
ment, including the evaluation metrics and datasets we used.
Then, we present and discuss our results. The evaluation was
performed on a Linux Ubuntu 16.04.3 LTS server with an
Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz (8 cores) and
32 GB RAM. Our evaluation framework (including all scripts
and datasets) is open-source and available online 4.

A. Metrics

We initially assume that some (or all) type labels might be
missing. We measure the accuracy of the resulting unlabeled
types, which are represented by clusters of instances, using
F1h (described below). In case some type labels are available,
we assign each label to the best-matching inferred cluster

4https://github.com/eXascaleInfolab/TInfES

using a weighted F1-score [26] as matching criterion. Note
that we assume that the labels might be missing and that the
total number of types is unknown.

We measure the efficiency of the algorithms by measuring
their runtime (in seconds) and their peak main memory con-
sumption (in MB).

1) F1h of Clusters: The average F1-score (F1a) is a
common metric to measure the accuracy of clustering tech-
niques [27], [28]. F1a is defined as the average of the weighted
F1-score [26] of the best matching ground-truth cluster to the
inferred cluster and the F1-score of the best matching inferred
cluster to the ground-truth cluster. Formally, given the ground-
truth clustering C ′ consisting of clusters c′i ∈ C ′ and inferred
clusters ci ∈ C:

F1a(C ′, C) =
1

2
(FC′,C + FC,C′), (4)

where

FX,Y =
1

|X|
∑
xi∈X

F1(xi, g(xi, Y)),

g(x, Y) = {argmaxy F1(x, y) | y ∈ Y }, (5)

where F1(x, y) is the F1-score for the respective clusters (sub-
sets of the nodes V of the input graph G(V,E) represented by
the similarity matrix). This definition unfortunately yields non-
indicative values of F1a ∈ [0, 0.5] for very large numbers of
clusters, since the intentionally generated clusters representing
all permutations of the nodes yield F1a > 0.5 (F1C′,C =
1, F1C,C′ → 0). To address this issue, we use the harmonic
mean instead, defining the harmonic F1-score (F1h) as:

F1h(C ′, C) =
2FC′,CFC,C′

FC′,C + FC,C′
. (6)

F1h ≤ F1a since the harmonic mean cannot be larger than
the arithmetic mean.

2) Weighted F1-score of Labeled Types (LF1): The F1-
score together with Precision (P) and Recall (R) are a com-
monly used metrics for measuring the accuracy of labeled
types. The weighted F1-score of the labeled types (LF1)
represents the average F1-score of each labeled type (g(l, C))
weighted by the number of instances in the label (|l|):

LF1(C ′, C) =
1

|C ′|
∑
l∈C′

|l|
2Pl,g(l,C)Rl,g(l,C)

Pl,g(l,C) +Rl,g(l,C)
. (7)

Note that each label can be assigned to several inferred types,
that some inferred types might not have any assigned label,
and that some types might have multiple labels. Thus, LF1
measures the accuracy of only the labeled types, where F1h
measures the accuracy of all resulting types.

B. Datasets

We consider three distinct categories of real-world Linked
Open Data (LOD) datasets from various domains to evaluate
and ensure a wide applicability of our unsupervised type
inference. It is worth outlining that a variety of data relations
exist besides the distinct categories in the selected datasets.

TABLE I
EVALUATION DATASETS.

Dataset Triples Types Nodes Links Density

museum 1418 84 178 7143 0.453
soccerplayer 2654 172 272 11008 0.299
country 2273 65 453 22176 0.217
politician 3783 200 523 32977 0.242
film 6334 5 1303 822557 0.970
mixen 10128 475 1426 244408 0.241
gendrgene 5651 7 532 140888 0.997
lsr 56507 11 5767 7621860 0.458
bauhist 9022 2 861 186460 0.504
schools 15347 3 2256 847320 0.333
histmunic 119151 14 12132 73380691 0.997

Each dataset contains multiple types, some datasets contain
extremely diverse granularity of types while the granularity
varies only slightly in others. Some of the types may contain
a single instance even, which makes them statistically indistin-
guishable from noise. Instance types can be fully or partially
overlapping with other types and some instances may not be
attached to any type at all. The first category of datasets are
samples of DBpedia used for the SDA evaluation [29]. This
category is extended with mixen, representing the union of
the samples of the category datasets belonging to the English
DBpedia. The second category are biomedical datasets 5 while
the third category are open government datasets 6. Some
statistics about each dataset are listed in Table I. The link
density of the input graph is evaluated as the number of
links (edges) divided by the maximal possible number of links
(nodes · (nodes− 1)/2).

Note that not all those datasets define ground-truth types for
all their instances. In case the ground-truth is missing for a
given instance, we simply discard the instance when evaluating
the F1 score.

C. Results and Discussion

We compare both the effectiveness and the efficiency of our
method against two state of the art unsupervised statistical type
inference methods: SDA [12] and SDType [8]. Additionally,
we evaluate the impact of each proposed technique; StaTIX-
rm-m-f denotes the final results below, where rm stands
for similarity matrix reduction, m for representative clusters
identification, and f for fast clusters formation using AggHash.
Since one of our main objectives is unsupervised type infer-
ence without any manual tuning, the algorithms we evaluate
are executed without any modification or parameters tuning.
The latter is important for SDType, which is the only algorithm
we evaluate requiring a supporting dataset. Moreover, SDType
being tuned by default for DBpedia, it only considers incoming
links for types discovery, while StaTIX and SDA consider all
available links. However, in order to not penalize SDType for
types present in DBpedia but missing in the ground-truth, we
discard such cases from the SDType results.

5http://download.bio2rdf.org
6https://opendata.swiss/en/dataset/, https://data.gov.uk/dataset/schools2

Fig. 4. Accuracy of the unsupervised statistical type inference algorithms
by F1h measure.

Fig. 5. Impact of the similarity matrix reduction technique on StaTIX
accuracy by F1h measure.

1) Effectiveness: Effectiveness results (in terms of F1h
score) are shown in Fig. 4. Our approach outperforms SDA
reducing the F1h error by 37% on average. On the last
dataset, histmunic, the results are absent for SDA as it throws
a Java heap space error after 30 hours of evaluation. SDA
yields noticeably more accurate result than StaTIX does on
a single dataset (gendrgene) only, which has a ground-truth
with heavily overlapping clusters of significantly varying sizes.
Both StaTIX and SDA inferred the same number of types
in this case, but StaTIX resolved overlaps more strictly by
pruning some types that were correctly retained by SDA.
However, SDA has a relatively large variance in accuracy,
which can be explained by the parameterized clustering al-
gorithm (DBSCAN) used for the inference having default
parameter values. In particular, SDA fails to detect large types
with relatively weak relations between member instances, i.e.
coarse-grained clusters of medium density, in half of the
evaluated datasets. On the contrary, StaTIX yields a good
accuracy with only small deviations from the ground-truth for
all datasets independently of their size or density, thanks to
our dedicated clustering algorithm.

The impact of our techniques on accuracy is shown in
Fig. 5, where StaTIX-rm-m-f and StaTIX-rm-m are displayed
with a single bar since the resulting clusters are exactly
the same (AggHash does not affect the structure of the

TABLE II
ACCURACY OF THE LABELED TYPES BY THE WEIGHTED F1-SCORE, THE POSITIVE IMPACT OF THE PROPOSED TECHNIQUES IS OUTLINED IN BOLD.

StaTIX StaTIX-rm StaTIX-rm-m[-f] SDA SDType

Dataset F1 F1 F1 P R F1 P R F1 P R

museum 0.866 0.866 0.866 1.000 0.763 0.539 0.380 0.927 0.209 0.120 0.785
soccerplayer 0.789 0.789 0.789 1.000 0.652 0.695 0.574 0.882 0.447 0.339 0.657
country 0.840 0.840 0.840 1.000 0.725 0.632 0.478 0.930 0.249 0.155 0.634
politician 0.732 0.732 0.756 0.982 0.615 0.704 0.590 0.874 0.471 0.403 0.568
film 1.000 1.000 1.000 1.000 1.000 0.839 0.722 1.000 0.435 0.278 1.000
mixen 0.505 0.723 0.751 0.869 0.662 0.559 0.412 0.873 0.378 0.360 0.398
gendrgene 0.806 0.806 0.806 0.757 0.861 0.889 0.987 0.809
lsr 0.912 0.990 0.990 1.000 0.981 0.998 0.996 0.999
bauhist 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
schools 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
histmunic 0.950 0.950 0.958 1.000 0.920

resulting clusters). Our similarity matrix reduction approach
significantly improves the accuracy on several datasets, which
can be explained by the denoising effect, and in particular
by filtering out a number of noisy properties that caused the
original clustering to get stuck on local optima. The technique
for representative clusters identification does not significantly
impact the accuracy in terms of F1h, but improves the F1-
score of the labeled types as shown in Table II. Most of
the representative clusters correspond to fine-grained ground-
truth labels, which otherwise are assigned to larger clusters
and negatively impact recall. However, not all statistically
representative clusters are present in the ground-truth, which
penalizes F1h. But even the statistically representative clusters
that are absent in the ground-truth can be useful as they can
help identify candidates for fine-grained types or outliers.

2) Efficiency: In terms of space efficiency StaTIX con-
sumes 1.5x-20x less memory than its competitors as shown in
Fig. 6. Memory consumption for SDType was not evaluated
for the datasets where it produced empty results. Note that
SDA throws a heap space error on the last dataset. StaTIX
consumes slightly more memory than SDA on the film dataset
only, which is the smallest dataset having a density of links
close to the theoretical maximum with a relatively small
variation in terms of the link weights. The memory overhead
itself is caused by the deferred garbage collection in the JVM

Fig. 6. Memory consumption of the unsupervised statistical type inference
algorithms.

of StaTIX resulting in the storage of two similarity matrices in
memory when the matrix is streamed to the underlying native
clustering library. Our similarity matrix reduction technique
speeds up subsequent clustering steps but does not affect the
peak memory consumption since the matrix is generated and
loaded in memory before being reduced. To execute StaTIX
on large LOD datasets, each column and row of the similarity
matrix could be stored as a memory-mapped file on an SSD
drive.

Fig. 7. Execution time of the unsupervised statistical type inference
algorithms.

Fig. 8. Impact of the similarity matrix reduction technique on StaTIX
execution time.

The execution time of the algorithms is shown in Fig. 7,

except for the cases where SDType produced empty results.
StaTIX and SDType are implemented as single-threaded appli-
cations, whereas SDA takes advantage of multiple CPU cores.
Nevertheless, StaTIX performs type inference for the largest
dataset (histmunic) within 150 seconds, while SDA spends
about 30 hours on up to 8 cores throwing an OutOfMemory-
Error exception in the end. In addition, we note that the type
inference of StaTIX takes 35 seconds only, while most of the
execution time is spent by StaTIX for I/O and RDF processing
(consuming several GBs of memory also). As shown in Fig. 8,
our similarity matrix reduction technique results in orders of
magnitude speedups on several input datasets (e.g., 40x on the
film dataset). Fast clusters formation by AggHash speeds up
execution on all remaining datasets by a similar magnitude.
Essentially, the execution time of StaTIX is bound by the I/O
throughput and RDF conversion.

In conclusion, we improve over the state of the art by
reducing the accuracy error by 40% on average and by
reducing the execution time by up to three orders of magnitude
on the evaluated datasets while requiring considerably less
memory.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new statistical type inference
method, called StaTIX, to infer instance types in Linked
Data in a fully automatic manner without requiring any prior
knowledge about the dataset. Our method is based on a new
clustering technique, which infers (overlapping) types in a
robust and efficient manner. As part of our method, we also
presented novel techniques to a) reduce the similarity matrix
representing relationships between the instances, b) speed up
the clusters formation using a dedicated, history-independent
hash, AggHash, and c) identify representative clusters at
multiple scales. We empirically compared our approach on a
number of different datasets and showed that it is at the same
time considerably more efficient and orders of magnitude more
effective than state-of-the-art techniques.

In the future, we plan to extend StaTIX with addi-
tional semantic analysis leveraging both logical reasoning
and embedding techniques to better grasp the differences
and relationships between various instances. We also plan
to add support for automatically borrowing type labels from
third-party knowledge bases whenever available. In terms of
implementation-specific aspects, we plan to parallelize our
algorithm to take advantage of modern multi-core CPU ar-
chitectures.

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” The semantic web, pp.
722–735, 2007.

[2] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer,
“Quality assessment for linked data: A survey,” Semantic Web, vol. 7,
no. 1, pp. 63–93, 2016.

[3] H. Paulheim and C. Bizer, “Improving the quality of linked data using
statistical distributions,” IJSWIS, vol. 10, no. 2, pp. 63–86, 2014.

[4] A. Tonon, G. Demartini, and P. Cudré-Mauroux, “Combining inverted
indices and structured search for ad-hoc object retrieval,” in ACM SIGIR.
ACM, 2012.

[5] A. Nolle, M. W. Chekol, C. Meilicke, G. Nemirovski, and H. Stucken-
schmidt, “Automated fine-grained trust assessment in federated knowl-
edge bases,” in The Semantic Web – ISWC 2017, 2017, pp. 490–506.

[6] A. Dutta, C. Meilicke, and S. P. Ponzetto, “A probabilistic approach
for integrating heterogeneous knowledge sources,” in ESWC. Springer,
2014, pp. 286–301.

[7] J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, I. Er-
milov, S. Bin, N. Chakraborty, M. Saleem, A.-C. Ngonga Ngomo, and
H. Jabeen, “Distributed semantic analytics using the sansa stack,” in
ISWC, 2017, pp. 147–155.

[8] H. Paulheim and C. Bizer, “Type inference on noisy RDF data,” in The
Semantic Web - ISWC 2013, 2013, pp. 510–525.

[9] Z. Kaoudi, I. Miliaraki, and M. Koubarakis, “Rdfs reasoning and query
answering on top of dhts,” in ISWC, 2008, pp. 499–516.

[10] H. J. ter Horst, “Completeness, decidability and complexity of en-
tailment for rdf schema and a semantic extension involving the owl
vocabulary,” Web Semant., vol. 3, no. 2-3, pp. 79–115, oct 2005.

[11] Q. Ji, Z. Gao, and Z. Huang, “Reasoning with noisy semantic data,” in
8th Extended Semantic Web Conference, Part II, 2011, pp. 497–502.

[12] K. Kellou-Menouer and Z. Kedad, “Schema discovery in RDF data
sources,” in Conceptual Modeling, ER 2015, Stockholm, 2015, pp. 481–
495.

[13] T. Kliegr and O. Zamazal, “LHD 2.0: A text mining approach to typing
entities in knowledge graphs,” J. Web Sem., vol. 39, pp. 47–61, 2016.

[14] X. Zhang, E. Lin, and S. Pi, “Predicting object types in linked data by
text classification,” in CBD, 2017, pp. 391–396.

[15] L. Bühmann, J. Lehmann, and P. Westphal, “Dl-learner - A framework
for inductive learning on the semantic web,” J. Web Sem., vol. 39, pp.
15–24, 2016.

[16] A. Melo, H. Paulheim, and J. Völker, “Type prediction in rdf knowledge
bases using hierarchical multilabel classification,” in Web Intelligence,
Mining and Semantics, 2016, pp. 14:1–14:10.

[17] A. Lancichinetti, S. Fortunato1, and J. Kertész, “Detecting the overlap-
ping and hierarchical community structure in complex networks,” New
J. Phys., vol. 11, no. 3, 2009.

[18] A.-L. Barabási, Network science. Cambridge university press, 2016.
[19] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional similarity

with lessons learned from word embeddings,” Transactions of the
Association for Computational Linguistics, vol. 3, pp. 211–225, 2015.

[20] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113, 2004.

[21] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J Stat Mech., vol. 2008,
no. 10, p. P10008, oct 2008.

[22] M. E. J. Newman, “Spectral methods for network community detection
and graph partitioning,” Phys. Rev. E, vol. 88, no. 4, p. 042822, 2013.

[23] ——, “Community detection in networks: Modularity optimization and
maximum likelihood are equivalent,” CoRR, vol. abs/1606.02319, 2016.

[24] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex
networks,” Sci. Rep., vol. 2, 2012.

[25] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus clustering: a
resampling-based method for class discovery and visualization of gene
expression microarray data,” Machine learning, vol. 52, no. 1, pp. 91–
118, 2003.

[26] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, 1979.

[27] J. Yang and J. Leskovec, “Overlapping community detection at scale:
A nonnegative matrix factorization approach,” in WSDM ’13. ACM,
2013, pp. 587–596.

[28] A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey, “High quality,
scalable and parallel community detection for large real graphs,” in
WWW. ACM, 2014, pp. 225–236.

[29] K. Kellou-Menouer and Z. Kedad, “Evaluating the gap between an rdf
dataset and its schema,” in Advances in Conceptual Modeling. Springer,
2015, pp. 283–292.

