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Abstract 62 

The discovery of insecticidal activity in root-colonizing pseudomonads, best-known for their 63 

plant-beneficial effects, raised fundamental questions about the ecological relevance of insects as 64 

alternative hosts for these bacteria. Since soil bacteria are limited in their inherent abilities of 65 

dispersal, insects as vectors might be welcome vehicles to overcome large distances. Here, we 66 

report on the transmission of the root-colonizing, plant-beneficial and insecticidal bacterium 67 

Pseudomonas protegens CHA0 from root to root by the cabbage root fly, Delia radicum. 68 

Following ingestion by root-feeding D. radicum larvae, CHA0 persisted inside the insect host 69 

throughout different life stages, a phenomenon that could be observed also in three other insect 70 

species. Next, CHA0 was successfully transmitted to the roots of a new plant host by emerging 71 

flies. Because D. radicum is a major root pest on various cabbage crops, we further assessed the 72 

biocontrol potential against this insect species. In summary, this study investigated for the first 73 

time the interaction of P. protegens CHA0 and related strains with an insect present in their 74 

natural habitat - the rhizosphere. Our results suggest that fluorescent pseudomonads can use 75 

insects as hosts and vectors, which implies a greater ecological versatility of these bacteria than 76 

previously thought.  77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 
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Introduction 85 

 Every year worldwide crop production is facing major harvest losses due to plant 86 

pathogens and pest insects. Belowground attackers are especially difficult to tackle with 87 

chemical pesticides and adverse environmental effects of these products demand for alternative 88 

strategies such as the use of antagonistic organisms to control pest organisms, known as 89 

biological control. Root-colonizing bacteria of the Pseudomonas fluorescens group have been 90 

extensively studied for their beneficial effects on plants, e.g. the suppression of root diseases and 91 

the promotion of plant-growth (Haas and Défago, 2005). This research provides us on one hand 92 

with a profound knowledge on the interaction of these bacteria with the plant host and with 93 

antagonistic microbes in the soil (Vacheron et al., 2013) and on the other hand already led to 94 

several commercial products (Berg, 2009).  95 

 More recent studies revealed that the phylogenetically distinct Pseudomonas 96 

chlororaphis subgroup with the two representative species Pseudomonas chlororaphis and 97 

Pseudomonas protegens in addition harbors features to colonize insects as an alternative habitat 98 

(Flury et al., 2016; Kupferschmied et al., 2013; Rangel et al., 2016; Ruffner et al., 2015). Strains 99 

of the P. chlororaphis subgroup were found to exhibit oral activity against larvae of Lepidoptera 100 

(Flury et al., 2016; Rangel et al., 2016; Ruffner et al., 2013) as well as against Drosophila 101 

melanogaster (Olcott et al., 2010) and a P. chlororaphis toxin was found to be active against the 102 

western corn rootworm Diabrotica virgifera virgifera (Schellenberger et al., 2016). Several 103 

factors have been identified to contribute to insect pathogenicity: the Fit toxin, antimicrobial 104 

metabolites, secreted enzymes, lipopolysaccharide O antigen and the insecticidal protein 105 

IPD072Aa (Devi and Kothamasi, 2009; Flury et al., 2016; Flury et al., 2017; Jang et al., 2013; 106 

Keel, 2016; Kupferschmied et al., 2016; Loper et al., 2016; Olcott et al., 2010; Péchy-Tarr et al., 107 
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2008; Ruffner et al., 2013; Ruffner et al., 2015; Schellenberger et al., 2016). In-depth studies on 108 

the Fit toxin in the model strain P. protegens CHA0 revealed that the bacteria produce this 109 

insecticidal protein specifically in insects, but not on plant roots (Kupferschmied et al., 2014; 110 

Péchy-Tarr et al., 2013). Accordingly, the bacteria seem to sense their environment and regulate 111 

the production of specific compounds depending on the specific needs in the encountered habitat.  112 

 Although there is a growing body of evidence that insects represent an alternative host for 113 

P. chlororaphis subgroup bacteria, the ecology of their insect-associated lifestyle is still elusive. 114 

To date, oral insecticidal activity has been investigated only in model insects feeding on leaves 115 

(Flury et al., 2016; Flury et al., 2017; Kupferschmied et al., 2014; Rangel et al., 2016; Ruffner et 116 

al., 2013). However, P. protegens CHA0 and related strains of the P. chlororaphis subgroup 117 

were isolated from roots and their interaction with root-feeding insects is therefore of much 118 

greater ecological relevance. It is still unknown whether these bacteria are also pathogenic to soil 119 

insects and therefore have a potential as biocontrol organisms of root pests. Furthermore, the 120 

discovery that several plant-beneficial pseudomonads exhibit specific adaptions to a life in 121 

insects (Keel, 2016; Kupferschmied et al., 2013; Kupferschmied et al., 2014; Kupferschmied et 122 

al., 2016) raised the hypothesis that insects might represent attractive vectors to reach new plant 123 

hosts. Rhizobacteria are limited in their inherent dispersal abilities and may largely depend on 124 

passive transport, such as water flows, to overcome large distances. Alternatively, dispersal by 125 

means of a vector is a plausible manner of attaining new habitats. Insect-mediated dispersal has 126 

been described for several plant-pathogenic bacteria (Nadarasah and Stavrinides, 2011), but data 127 

on transmission of beneficial rhizobacteria to a new host plant is very scarce. Pseudomonas 128 

chlororaphis L11, an efficient root colonizer without known biocontrol activity, was found to be 129 

transmitted from plant to plant by the red-legged grasshopper, Melanoplus femurrubrum, as well 130 



 7

as by the southern corn rootworm, Diabrotica undecimpunctata susp. howardii (Snyder et al., 131 

1998; Snyder et al., 1999), but mainly when insect vectors were feeding on L11-infested foliage. 132 

P. protegens CHA0, in contrast, was not found to move to above ground plant parts (Iavicoli et 133 

al., 2003; Maurhofer et al., 1998). For the dispersal of a rhizobacterium, which is restricted to 134 

below-ground plant parts, an insect with a root-feeding larval and an above-ground flying adult 135 

stage would represent a suitable vector. A prerequisite for this kind of dispersal is persistence of 136 

the bacteria in the insect host and transstadial transmission from larva over pupa to the adult 137 

stage.  138 

 This study investigates for the first time the interaction of P. protegens CHA0 with a 139 

root-feeding pest insect, the cabbage fly Delia radicum. Their larvae feed on brassicaceous 140 

plants, pupate in the soil and emerging adults fly to a new host plant to deposit eggs. While all P. 141 

chlororaphis subgroup strains tested so far are to a high degree lethal to many lepidopteran 142 

insect species (Flury et al., 2016; Rangel et al., 2016), we found in the present study survival of 143 

D. radicum larvae to be affected by certain strains of the P. chlororaphis subgroup, but not by P. 144 

protegens CHA0. Nevertheless, CHA0 was able to persist in D. radicum throughout different 145 

life-stages and adult flies emerging from larvae that fed on CHA0 colonized roots transmitted the 146 

bacteria to the roots of new host plants. This provides the first direct evidence for the possibility 147 

of insect-mediated dispersal of P. protegens CHA0. Persistence of CHA0 throughout different 148 

life-stages seems to be a rather general phenomenon as it was observed in three further insect 149 

species, tested in this study. Overall our data indicate that indeed soil insects might be both, 150 

relevant alternative hosts and vectors for certain plant-beneficial rhizobacteria.  151 

 152 

 153 
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Materials and Methods 154 

Bacterial cultures 155 

 The bacteria used in this study are listed in Table 1. Strains with a constitutively 156 

expressed GFP tag were generated by means of the Tn7 delivery vectors pBK-miniTn7-gfp1 or 157 

pBKminiTn7-gfp2 (Kupferschmied et al., 2014). In the results and discussion sections we always 158 

use wild-type names of strains. Whether GFP-tagged variants were used is indicated in the 159 

materials and methods and in the figure legends. Generally, GFP-tagged strains did not differ in 160 

their activity from the respective wild-type strains. Bacteria were cultured in lysogeny broth 161 

(LB), supplemented with either kanamycin (25 μg/ml) or gentamicin (10 μg/ml) for GFP 162 

expressing strains, overnight at 24°C and 180 rpm. For the cauliflower experiments with D. 163 

radicum 200 µl of LB cultures were used to inoculate King’s B (KB) agar plates (King et al., 164 

1954) supplemented with gentamicin (10 μg ml-1). After one day, bacterial cultures were 165 

scrapped off the plates, suspended, washed twice in sterile ddH2O, and OD600 was adjusted to the 166 

desired concentration. In all other experiments, LB cultures were washed twice (once for radish 167 

experiments) in sterile 0.9% NaCl solution or water before adding cell suspensions adjusted to 168 

the desired concentration to diets or roots/radish, respectively.  169 

 170 

Radish experiment with D. radicum 171 

 D. radicum was reared as described by Razinger et al. (2014), but larvae were fed on 172 

turnip cabbage instead of rutabaga. Greens of organically grown radishes (Migros, Switzerland) 173 

were cut off about 0.5 cm above the bulbs. Those were then washed with tap water and 70% 174 

ethanol, dried with household paper and submerged for 10 min in a bacterial suspension of OD600 175 

of 0.47 or ddH2O as a control. Then the radishes were buried in pots (345x276x80 mm) 176 
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(Bachmann Plantec AG, Switzerland) filled with sterile quartz sand. Eight eggs of D. radicum 177 

were deposited on top of the sand and the pots covered with aluminium foil were incubated in a 178 

climate chamber (16-h day, 20°C, 210 μmol m-2 s-1; 8-h night cycle, 18°C) for four weeks. In 179 

experiment two only six eggs were added per radish, because radish bulbs were smaller. 180 

Developing pupae were harvested by washing the sand over a sieve. All pupae emerging from 181 

one pot were photographed together and pupal size was measured by means of an ImageJ macro. 182 

Two weeks later, flies emerging from pupae were quantified. Flies of the CHA0-gfp2 and control 183 

treatments were checked for presence of CHA0 by incubating entire flies each in 1 ml LB 184 

supplemented with chloramphenicol (13 μg ml-1), cycloheximide (100 μg ml-1) and gentamicin 185 

(10 μg ml-1) for two days. To verify the identity of the growing bacteria, they were checked for 186 

GFP expression under a Leica DM2500 microscope (Leica Microsystems CMS GmbH, Wetzlar, 187 

Germany). The experiment was conducted twice.  188 

 189 

Cauliflower experiment with D. radicum 190 

 Cauliflower plants (four trays each containing twelve pots, one plant per pot) were grown 191 

with and without P. protegens CHA0-gfp2 for three weeks as detailed in the Supplementary 192 

Methods. Then, five freshly hatched D. radicum larvae were added to each plant. Four weeks 193 

later, plant shoots were weighed and root systems were washed on a sieve to collect pupae as 194 

well as non-pupated larvae. The latter were directly extracted for bacteria monitoring. Bacterial 195 

root colonization was assessed as described in Supplementary Methods. Pupal size was measured 196 

as described for the radish experiments. Ten to twelve pupae per treatment were extracted to 197 

assess colonization by inoculant bacteria, three to four pupae were transferred to each of the 198 

transmission microcosms and the remaining pupae (44-56 per treatment) were observed to 199 
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determine hatching rates. The transmission microcosms were designed to test whether flies are 200 

transmitting CHA0 to the roots of a new host plant and are described in detail in the 201 

Supplementary Methods. Briefly, each transmission microcosm consisted of four rapeseed plants 202 

grown axenically on a sand-vermiculite substrate in closed plastic beakers. Three to four pupae 203 

that had emerged from control or P. protegens CHA0-gfp2 treatments were added separated from 204 

plants and substrate to each transmission microcosm. Nine days after flies had started to emerge 205 

and fly around inside the microcosms, roots of rapeseed plants were checked for colonization by 206 

P. protegens CHA0-gfp2 as described for cauliflower plants (Supplementary Methods). Roots of 207 

plants grown in the same beaker were pooled for analysis.  208 

 209 

Survival and colonization experiments with Plutella xylostella and Pieris brassicae  210 

 The experiments with P. xylostella were conducted as detailed in Flury et al. (2017) and 211 

are briefly described in the Supplementary Methods. P. brassicae larvae were reared at 25°C, 212 

60% relative humidity and a 16-h day, 8-h night cycle and fed with Brussels sprouts variety 213 

Topline F1. During the experiments larvae were kept individually in Petri dishes lined with a 214 

moisturized filter paper and were fed with a pellet of artificial diet (David and Gardiner, 1965) 215 

inoculated with 10 μl of suspension of P. protegens CHA0-gfp2 or CHA0 cells at an OD600 of 20 216 

or amended with sterile 0.9% NaCl solution (control). Larvae that did not consume the entire diet 217 

pellet were excluded from the experiment. After 24 h, larvae were transferred in groups of six 218 

into 720 ml Pint-sized BugDorms (BugDorm, Taiwan) and fed with cabbage until pupation. 24 -219 

32 larvae per treatment were used for monitoring mortality. Larvae and pupae were considered 220 

dead when they did not react to poking. Further individuals (alive, crippled and dead) of each 221 
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developmental stage were extracted as described below. The experiment was conducted three 222 

times. 223 

 224 

Assessment of bacterial colonization rates 225 

 To assess bacterial colonization rates, insects were surface sterilized (20 s 70% ethanol, 226 

20 s sterile ddH2O for P. xylostella and P. brassicae; 20 s 0.05% SDS, 20 s 70% ethanol, 20 s 227 

sterile ddH2O for D. radicum) and then homogenized in sterile 0.9% NaCl solution with a 228 

Polytron PT-DA 2112 blender (Kinematica, Littau, Switzerland). The resulting suspensions were 229 

serially diluted and plated onto KB agar plates supplemented with chloramphenicol (13 μg ml-1), 230 

cycloheximide (100 μg ml-1) and gentamicin (10 μg ml-1). For D. radicum plates were 231 

additionally supplemented with ampicillin (40 μg ml-1). GFP-expression of growing colonies was 232 

verified under the microscope (ex: 480/BP 40 nm, em: 527/BP 30 nm). 233 

 234 

Microscopy 235 

 Microscopic investigations and sample preparation of P. xylostella larvae are described in 236 

Supplementary Methods.  237 

 238 

Statistics  239 

 Data analysis was performed in RStudio version 0.98.1017 (http://www.rstudio.com) 240 

using R version 3.1.2. Data were tested for normal distribution (Shapiro-Wilk test) and 241 

homogeneity of variance and according to the results a Student’s t test or a Mann-Whitney U test 242 

(cauliflower experiments) or a Kruskal Wallis (radish experiment) was performed. For Pieris 243 

experiments, the Log-Rank test of the Survival package of R and a Chi-square test were used to 244 
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compare survival curves and numbers of dead and crippled individuals between treatments, 245 

respectively.  246 

 247 

 248 
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Results 249 

Minor effects of P. chlororaphis subgroup bacteria against the root pest D. radicum  250 

 To investigate for the first time how bacteria of the P. chlororaphis subgroup, known 251 

for their insecticidal activity against various leaf-feeding insects (Flury et al., 2017; Rangel et 252 

al., 2016; Ruffner et al., 2013), interact with an insect living in their natural habitat, the 253 

rhizosphere, we tested the oral activity of these bacteria to the cabbage fly D. radicum, an 254 

important root pest on brassicaceous crops.  255 

 In experiments with bacteria treated radish, aiming at comparing different bacterial 256 

strains, P. chlororaphis PCL1391 caused a significant reduction of the pupation rate and the 257 

pupal size compared to the control (Figure 1A, C). Moreover, in this experiment a reduction 258 

in pupal size was also observed for the strains P. protegens CHA0 and Pseudomonas sp. 259 

CMR12a. In experiment two only Pseudomonas sp. CMR12a caused a significant reduction 260 

in pupation rate and pupal size (Figure 1B, D).  261 

 In the cauliflower experiment, with larvae feeding on colonized roots, P. protegens 262 

CHA0 developed on average population sizes of 6.51 ± 0.59 and 5.92 ± 0.56 log10 cfu per g 263 

of root fresh-weight in the two experiments. In both experiments, no significant differences in 264 

pupation rate, pupal size and in the number of flies emerging from pupae could be detected 265 

between control and CHA0 treatments (Figure 2A, Supplementary Figure S1, Supplementary 266 

Figure S2A, B). Moreover, shoot weights from plants inoculated with CHA0 did not 267 

significantly differ from those of control plants (Supplementary Figure S2C, D). 268 

 Overall, some P. chlororaphis subgroup bacteria, particularly Pseudomonas sp. 269 

CMR12a and P. chlororaphis PCL1391, seem to affect the performance of Delia larvae 270 

leading to smaller and fewer pupae, but the effects are rather weak and variation is high.   271 

 272 

 273 
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Transstadial transmission of P. protegens CHA0 in D. radicum 274 

 In a previous study, we reported that certain strains of the P. fluorescens group that 275 

are not causing fatal infections are still able to persist inside larvae of the cotton leafworm 276 

Spodoptera littoralis (Flury et al., 2016). We were wondering whether, although no effect on 277 

survival of D. radicum larvae was observed in the present study, P. protegens CHA0 is able 278 

to colonize the larvae and to persist inside the insect throughout different life stages. 279 

Extraction of Delia larvae and pupae from the two cauliflower experiments showed that they 280 

indeed were colonized by CHA0 (Figure 2B, Figure 3) at average levels of 2.7 log10 and 3.8 281 

log10 cfu per insect. No CHA0 was detected in insects from the control treatment. In contrast 282 

to results on larvae and pupae, our method of mixing the flies and plating serial dilutions 283 

generally revealed no P. protegens CHA0 associated with adult flies whether these were 284 

surface-sterilized or not. However, a few flies that emerged from CHA0 treated roots showed 285 

developmental defects, most obviously malformations of the wings (Figure 2C). Three 286 

crippled flies were extracted and remarkably two of them were colonized by CHA0 (Figure 287 

2B, Figure 3). Since healthy looking flies from the cauliflower experiments were able to 288 

transmit CHA0 to a new host plant (see results below), they must have carried the bacteria 289 

although we did not detect them with our extraction method. Therefore, we assessed larger 290 

amounts of Delia flies for presence of CHA0 by a second method. Entire flies emerging from 291 

control and CHA0 treatments of radish experiments were simply put in selective liquid 292 

medium without prior surface disinfestation and the medium was then checked for growth of 293 

CHA0. This qualitative approach revealed that in one experiment 76% (n=21) and in the 294 

other experiment 53% (n=30) of healthy flies were carrying CHA0. No CHA0 was detected 295 

on flies from the control treatment.  296 
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 In summary, we provide first evidence that P. protegens CHA0 when ingested by 297 

larvae can be transstadially transmitted not only to the pupal stage, but even to the adult 298 

stage. 299 

 300 

P. protegens CHA0 can be dispersed by the insect to a new host plant 301 

 To assess, whether Delia flies which had been exposed to P. protegens CHA0 at the 302 

larval stage are able to transmit CHA0 to a new host plant, we elaborated a specific test 303 

system. Pupae that emerged from control and CHA0 treatments in the cauliflower 304 

experiments were transferred into closed plastic beakers (three to four pupae per beaker) 305 

containing rapeseed plantlets grown axenically on a sand-vermiculite substrate. To avoid 306 

transmission of bacteria by the pupae, those were kept in containments preventing direct 307 

contact with plants or substrate. Emerging flies were flying around in the transmission 308 

microcosms and in several of them they also laid eggs. Nine days after first flies started to 309 

emerge, root systems were assessed for bacterial colonization. The roots of twelve out of 310 

thirteen (experiment one) and of eight out of nine (experiment two) transmission microcosms, 311 

which had been exposed to flies emerging from the CHA0 treatment, were indeed colonized 312 

by P. protegens CHA0 (Figure 2D, Supplementary Figure S3). In both experiments, no 313 

CHA0 could be detected on roots from transmission microcosms that had been exposed to 314 

control flies (Figure 2D, Supplementary Figure S3). In microcosms with successful CHA0 315 

transmission, average colonization rates in experiment one and two were 5.0 log10 and 4.3 316 

log10 cfu per g of roots, respectively. Hence, Delia flies were able to transmit P. protegens 317 

CHA0 to a new host plant (Figure 3). 318 

 319 

Transstadial transmission of P. protegens CHA0, a phenomenon observed in different 320 

insect species 321 
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 The phenomenon of P. protegens CHA0 persisting throughout different life stages 322 

observed in D. radicum, was studied in more detail in further insect species differing in their 323 

susceptibility to a CHA0 infection: the leaf-feeders diamondback moth Plutella xylostella and 324 

large white butterfly Pieris brassicae and the root-feeder black vine weevil Otiorhynchus 325 

sulcatus.  326 

 P. protegens CHA0 was found in larvae, pupae and adults of P. xylostella which is 327 

highly susceptible to CHA0 infections. Almost 80% of larvae fed on artificial diet inoculated 328 

with 10 µl of OD600 = 0.1 of CHA0 did not survive until pupation and the rest commonly 329 

died in the pupal stage (Figure 4A). Bacterial numbers in larvae and pupae were comparable, 330 

while at both developmental stages dead individuals harbored about 100 to 1000 times more 331 

bacteria than individuals that were still alive (Figure 4B). To investigate, whether CHA0 can 332 

persist even to the adult stage, we further extracted P. xylostella after infection with a ten 333 

times lower dosage causing almost no mortality at the larval stage anymore (Figure 4A). In 334 

these infections, CHA0 was only detected in six out of fifteen larvae and at very low numbers 335 

(Figure 4C). However, colonization rates increased at the pupal and the adult stage (Figure 336 

4C). Generally, adult emergence was very low, also in control treatments (Figure 4A), 337 

because the Plutella feeding assay is optimized for fast killing of larvae upon feeding on 338 

CHA0 and not for long term survival of the insects. Nevertheless, the consistent detection of 339 

CHA0 in all extracted imagines indicates transstadial transmission in P. xylostella from the 340 

larval via the pupal to the adult stage.  341 

 Although several insect pathogenicity factors of P. protegens CHA0 have been 342 

identified (Keel, 2016), very little is known about the infection process inside the insect and 343 

the damage caused by CHA0. To be able to study in the same insect the localization of CHA0 344 

and histological changes of insect tissues we established a microscopy method on thin 345 

sections of P. xylostella larvae (Supplementary Methods). Larvae fed on CHA0 containing 346 
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diet were fixed and consecutive sections were either stained with anti-GFP antibodies or 347 

Heidenhain’s iron hematoxylin to visualize the bacteria or the insect tissue, respectively. 348 

Larvae coming from two independent experiments were analyzed and representative pictures 349 

are shown in Figure 4 D-K. They give a first insight into colonization of P. xylostella larvae 350 

by P. protegens CHA0. In most larval samples from early infection time-points CHA0 could 351 

not be detected, but in two cases it was found in the midgut lumen (Figure 4D, E). In 352 

contrast, at later stages of infection CHA0 was often found in the hemolymph and the fat 353 

body cells while no excessive destruction of the midgut epithelium and no bacteria in the gut 354 

could be observed (Figure 4F, G, I). Finally, moribund larvae were always full of CHA0 all 355 

over the hemocoel and the gut and organs were not distinctively recognizable anymore 356 

(Figure 4J). 357 

 In oral infections of P. brassicae larvae with P. protegens CHA0, survival was found 358 

to be dependent on the larval stage. When 1st, 2nd and 3rd instar larvae were fed with high 359 

dosages of CHA0, approximately 70% to 95.8% of the larvae died within six days 360 

(Supplementary Figures S4A, S4B, S4C). In contrast, 4th instar larvae fed with the same 361 

number of CHA0 cells showed survival rates of over 95% in most of the experiments (Figure 362 

5B, Supplementary Figures S4D, S5) and therefore this instar was used to assess persistence 363 

of CHA0 throughout different developmental stages (Figure 5). Still some CHA0-infected 4th 364 

instar larvae were unable to form intact pupae (Figure 5A6) and some pupae with normal 365 

appearance became melanized and died (Figure 5A7). The number of dead individuals 366 

(larvae plus pupae) was significantly higher in the CHA0 treatment compared to the control 367 

(Chi-Square, p=3.95e-05) (Figure 5C). Moreover, 15.5% of butterflies from the CHA0 368 

treatment emerged with morphological defects, i.e. strongly deformed wings (Figure 5A8, 369 

5C), which was again significantly higher than in the control (4.4%) (Chi-Square, p=0.018). 370 

Extraction of larvae, pupae and adults revealed presence of CHA0 in nearly all living larvae 371 
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at levels of around 4 log10 cfu per insect and in dead larvae even at levels as high as 9 log10 372 

cfu per insect while in living pupae and adults with healthy appearance, CHA0 was only 373 

found exceptionally (Figure 5D). In individuals with abnormal phenotypes, CHA0 was often 374 

detected, which indicates that in certain cases it can survive in P. brassicae until the pupal 375 

and the adult stages (Figure 5D). 376 

 Similar to the results with Delia larvae feeding on cauliflower roots, CHA0 did not 377 

affect the survival of larvae of the root pest O. sulcatus feeding on strawberry roots 378 

(Supplementary Figure S6). However, CHA0 was qualitatively detected (Supplementary 379 

Methods) in two thirds (experiment A and B) of the pupae and in two thirds or all 380 

(experiment A and B, respectively) of O. sulcatus adults emerging from the CHA0 fed larvae. 381 

 382 

Discussion 383 

 The here presented experiments provide first evidence that the root-colonizing P. 384 

protegens CHA0 can be dispersed by D. radicum to a new host plant and thus insects might 385 

not only serve as additional hosts for P. chlororaphis subgroup bacteria, but also as vectors. 386 

A summary of a potential transmission cycle is depicted in Figure 3. P. protegens becomes 387 

internalized by root feeding Delia larvae, persists until the pupal stage and emerging flies can 388 

transmit the bacterium to the roots of a new host plant (Figure 3). This could, for instance, 389 

occur when female flies lay eggs next to plant stems, thereby delivering bacteria directly into 390 

a new soil habitat. Alternatively, P. protegens might be transmitted to plant shoots and 391 

washed into the soil by rainfall. In the following, the bacterium colonizes the roots of the new 392 

host plant and can again colonize larvae that hatched from deposited eggs (Figure 3). As 393 

vectors, insects would allow the bacteria to overcome large distances and to conquer new root 394 

habitats, which might considerably influence the spread of root-colonizing fluorescent 395 

pseudomonads. Insect-mediated dispersal is also known for several plant-pathogenic bacteria, 396 
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but most of them do not exhibit insecticidal activity (Nadarasah and Stavrinides, 2011); for 397 

instance Xylella fastidiosa, causing citrus variegated chlorosis and Pierce’s disease of grape, 398 

can be transmitted from one plant host to another by sharpshooter leafhoppers and spittlebugs 399 

(Chatterjee et al., 2008). Still, in some associations plant-pathogens are also insect-400 

pathogenic. Pseudomonas syringae B728a can cause high mortality rates in the pea aphid and 401 

at the same time, it is excreted with honeydew and can thereby be dispersed by moving 402 

aphids (Stavrinides et al., 2009). Our results indicate that the susceptibility of the root pest D. 403 

radicum to P. chlororaphis subgroup bacteria depends on the bacterial strain, but is generally 404 

smaller than the susceptibility of the lepidopteran leaf-feeders tested here and in earlier 405 

studies (Flury et al., 2016; Rangel et al., 2016; Ruffner et al., 2013). However, those larvae 406 

were kept in small cages and were fed on artificial diet or detached leaves, an unnatural 407 

environment to the insects and thus potentially stressful. Moreover, bacterial numbers 408 

internalized by D. radicum feeding on radishes or cauliflower roots were presumably very 409 

low, since larvae burrow into the root and P. protegens CHA0 colonizes mainly the root 410 

surface (Troxler et al., 1997). Nevertheless, for certain of the tested strains reduced larval 411 

survival and pupal size were observed indicating that they can be pathogenic to D. radicum.  412 

Morphological defects in adult P. brassicae and D. radicum co-occurring with the 413 

presence of P. protegens CHA0 are an indication for negative effects of CHA0 on insect 414 

development. Similar observations are reported for D. melanogaster larvae infected with the 415 

related strain P. protegens Pf-5 (Loper et al., 2016; Olcott et al., 2010) and for leaffolder 416 

moths (Cnaphalocrocis medinalis) fed with rice leaves treated with a mix of P. fluorescens 417 

strains (Saravanakumar et al., 2007). We hypothesize that P. chlororaphis subgroup bacteria 418 

are opportunistic pathogens for D. radicum and able to infect weakened individuals. For 419 

biocontrol purposes, bacterial effects might be increased by exposing D. radicum to 420 
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additional stress, e.g. by combining bacteria with organisms that could facilitate the access to 421 

the hemocoel, such as entomopathogenic fungi or nematodes.  422 

 A prerequisite for insect-mediated dispersal of P. protegens CHA0 is the persistence 423 

inside the insect. Transstadial transmission (from larva to adult) of bacteria that do not exhibit 424 

an intracellular lifestyle, which is common for endosymbionts (Engel and Moran, 2013; 425 

Kikuchi, 2009), is reported for several insect species (Chavshin et al., 2015; Greenberg and 426 

Klowden, 1972; Moll et al., 2001; Radvan, 1960). However, in other cases bacteria are lost 427 

during pupal stage, before adult emergence (Greenberg and Klowden, 1972; Leach, 1934; 428 

Moll et al., 2001; Radvan, 1960). In D. radicum and O. sulcatus, P. protegens CHA0 was 429 

transstadially transmitted, without affecting insect survival. Our qualitative approach, where 430 

entire flies were incubated in selective medium, detected CHA0 associated with adult D. 431 

radicum in contrast to our extraction method. Moreover, our transfer experiments showed 432 

that the bacterium was transmitted by Delia flies in about 90% of the cases. These results 433 

indicate that emerging flies regularly carry CHA0 but in very low numbers (detection limit of 434 

the extraction method: 10-100 cells). Due to repeated molting and metamorphosis, the insect 435 

represents an unstable habitat for microbes, though bacteria might still persist in specialized 436 

crypts or paunches present in the guts of many insect species (Engel and Moran, 2013). 437 

Persistence of CHA0 in insects of different orders each of which harbors specific anatomical 438 

and developmental features might rely on different strategies.  439 

In contrast to D. radicum and O. sulcatus, larvae of P. xylostella and P. brassicae are 440 

susceptible to CHA0 and become highly colonized. In P. xylostella CHA0 generally persists 441 

throughout all developmental stages, but the insects seem to succumb to the infection sooner 442 

or later. In contrast, a considerable fraction of 4th instar P. brassicae larvae was able to 443 

eradicate CHA0 before or during pupation. However, those Pieris larvae, in which CHA0 444 

was able to persist, seemed to succumb to the infection during pupation or exhibited major 445 
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developmental defects. During a lethal infection, P. protegens CHA0 multiplies to very high 446 

numbers as shown in Figure 4 and reported earlier (Flury et al., 2016; Kupferschmied et al., 447 

2013; Péchy-Tarr et al., 2008; Ruffner et al., 2013). Extraction of entire larvae does not allow 448 

any conclusion on the localization of the bacteria. The here presented microscopical method 449 

enabled the visualization of P. protegens CHA0 during the insect infection and, in parallel, 450 

the observation of histopathological changes in P. xylostella larvae. First observations 451 

indicate that P. protegens CHA0 does not colonize the gut to very high numbers and does not 452 

cause complete rupture of the midgut epithelium. Therefore, we hypothesize that P. 453 

protegens CHA0 colonizes a restricted area of the gut, where it is able to enter the hemocoel. 454 

Once in the hemocoel the bacteria multiply exponentially causing a fatal septicemia. The use 455 

of the insect body as a mass replication vessel is supported by the pictures of moribund larvae 456 

as well as by the very high bacteria counts in dead individuals of P. xylostella and P. 457 

brassicae. The pictures presented here give only a first insight into the colonization and 458 

infection process. How and where exactly the bacterium overcomes the gut barrier in order to 459 

invade the hemolymph remains to be discovered and requires more in-depth microscopical 460 

studies. 461 

 This study investigated for the first time different aspects of how P. chlororaphis 462 

subgroup bacteria, known for their insecticidal activity against leaf-feeding insects, interact 463 

with a root-feeding insect present in their natural habitat, the rhizosphere. While the reduction 464 

of larval survival by certain strains gives hope for potential applications as biocontrol 465 

organisms of root pests, such as D. radicum, the discovery of persistence of P. protegens 466 

CHA0 in insects throughout different developmental stages and its dispersal to a new host 467 

plant adds novel and intriguing aspects to the ecology of fluorescent pseudomonads. These 468 

bacteria seem to be much more versatile than previously thought and we are still far from 469 

fully understanding their ecology. It is for instance still unknown how often and in which 470 
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relation, e.g. whether as commensals or pathogens, plant-beneficial pseudomonads are 471 

associated with natural insect populations. It also remains subject to future research to 472 

discover additional habitats these bacteria might have conquered and to elucidate how they 473 

manage to switch between very different, e.g. root- and insect-associated, life styles. 474 
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Figure Legends 658 

Figure 1. Certain strains of the Pseudomonas chlororaphis subgroup negatively affect 659 

Delia radicum pupation rate and pupal size. Pupation rate per egg (A, B) and pupal size (C, 660 

D) of D. radicum larvae fed on radishes inoculated with strains CHA0, PF, CMR12A, or 661 

PCL1391 of the P. chlororaphis subgroup, known to have insecticidal activity, or with the 662 

non-insecticidal strain PITR2 or amended with water (controls). In experiment one (A, C), 663 

nine radishes per treatment were infested each with eight D. radicum eggs, while in 664 

experiment two (B, D) twelve radishes per treatment were infested each with six eggs. 665 

Treatments with different letters significantly differed from each other (Kruskal-Wallis, 666 

p<0.05). Control, sterile water; CHA0, Pseudomonas protegens CHA0-gfp2; PF, 667 

Pseudomonas protegens PF-gfp2; CMR12a, Pseudomonas sp. CMR12a-gfp1; PCL1391, 668 

Pseudomonas chlororaphis PCL1391-gfp2; PITR2, Pseudomonas thivervalensis PITR2-gfp2. 669 

 670 

Figure 2. Pseudomonas protegens CHA0-gfp2 does not affect survival of Delia radicum, 671 

but it persists throughout different life stages and can be dispersed to new host plants by 672 

adult flies. (A, B, C) Five freshly hatched D. radicum larvae were added to cauliflower plants 673 

(four trays per treatment, each containing twelve pots) grown with P. protegens CHA0-gfp2 674 

(CHA0) on the roots or without (control). (A) The pupation rate and the rate of flies emerging 675 

from pupae did not significantly differ between control and CHA0 treatment (p < 0.05; Mann-676 

Whitney U test). Error bars depict standard deviations of the means of replicate trays. A 677 

repetition of the experiment is depicted in Supplementary Figure S1. (B) Population sizes of 678 

P. protegens CHA0-gfp2 detected in D. radicum at different life-stages after larvae fed on 679 

roots colonized by P. protegens CHA0-gfp2. No CHA0 was detected in individuals emerging 680 

from the control treatment (data not shown). Data are pooled from two experiments. (C) 681 

Some flies in the CHA0 treatment exhibited morphological defects, e.g. crippled wings. (D) 682 
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Colonization levels of CHA0-gfp2 on roots of rapeseed plants. Plants were exposed for nine 683 

days to flies, which as larvae had fed on roots of control or CHA0-gfp2 treated cauliflower 684 

plants, i.e. the previous plant host. In the CHA0 treatment, in twelve out of thirteen systems 685 

roots became colonized with P. protegens CHA0-gfp2. A repetition of the experiment is 686 

depicted in Supplementary Figure S3. (B, D) Numbers above boxes indicate sample size.  687 

 688 

Figure 3. Pseudomonas protegens CHA0, taken up by root-feeding Delia radicum larvae, 689 

persists in the insect throughout different life stages and is dispersed to new host plants. 690 

Roots of cauliflower plants were inoculated with P. protegens CHA0 (1) and freshly hatched 691 

larvae of D. radicum were added to feed on the colonized roots (2). CHA0 was ingested by 692 

the larvae (3) and found to persist inside the insect also in the pupal (4) and adult stage (5, 6) 693 

(Figure 2B). A few flies emerging from pupae exhibited morphological defects (5), which 694 

affected mainly the wings (Figure 2C). In nature, crippled flies are not able to reproduce, 695 

which will cause a decline of the insect population. However, healthy flies (6) will mate and 696 

females will search for a new host plant where they deposit their eggs in the immediate 697 

vicinity of the stem (7). Flies are able to transmit the bacterium to the roots of a new host 698 

plant resulting in high bacterial colonization (8) (Figure 2D). 699 

 700 

Figure 4. Infection of Plutella xylostella by Pseudomonas protegens CHA0. (A-C) One-701 

week-old P. xylostella larvae (n=32-64) were exposed to artificial diet inoculated with a low 702 

dosage (low, 10 μl of OD600 = 0.01) or a high dosage (high, 10 μl of OD600 = 0.1) of P. 703 

protegens CHA0-gfp2 or amended with sterile 0.9% NaCl solution (control). (A) Fraction of 704 

P. xylostella larvae dying at larval or pupal stages or emerging as adults. Three repetitions of 705 

the experiment are depicted. (B) Colonization of P. xylostella by P. protegens CHA0-gfp2 706 

(high dosage). Data are pooled from experiments 2 and 3. (C) Colonization of P. xylostella by 707 
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P. protegens CHA0-gfp2 (low dosage). Data are pooled from all three experiments. (B, C) 708 

Numbers above boxes indicate sample size. No P. protegens CHA0-gfp2 was detected in 709 

control insects. (D - K) Tracking P. protegens CHA0 in P. xylostella larvae upon oral uptake 710 

using microscopy on serial sections of fixed larvae. Larvae were infected with P. protegens 711 

CHA1176, a GFP expressing variant of P. protegens CHA0. (D-G, J) Sections of these larvae 712 

were stained with anti-GFP. The use of anti-GFP antibodies was necessary, because of 713 

fixation of larvae with Duboscq-Brazil’s alcoholic Bouin’s destroys intrinsic GFP 714 

fluorescence. (H, I) Sections stained with Heidenhain’s iron hematoxylin. (D, E) CHA0 in the 715 

gut, but not in the hemolymph. (E) is a magnification of (D). (F-I) CHA0 in the hemolymph 716 

and in fat body cells, but not in the gut. (H) Control larva fed on bacteria free diet. (J) 717 

Moribund larva completely colonized by CHA0. (K) Consecutive section of (J) stained 718 

without adding anti-GFP antibody. B, bacteria; F, fat body; GL, gut lumen; H, hemocoel; ME, 719 

midgut epithelium. 720 

 721 

Figure 5. Infection of Pieris brassicae by Pseudomonas protegens CHA0. (A-D) Fourth 722 

instar P. brassicae larvae were fed on artificial diet inoculated with 10 µl of a P. protegens 723 

CHA0-gfp2 bacterial suspension (OD600= 20) (CHA0) or amended with sterile 0.9% NaCl 724 

solution (control). (A) Phenotypical differences between insect stages developed from control 725 

(1-4) and CHA0 (5-8) treated larvae. Healthy larvae (1, 2), pupa (3) and butterfly (4); dead 726 

larva (5) and pupa (7); pupa (6) and butterfly (8) with morphological defects. (B) Impact of 727 

CHA0 on development and mortality of P. brassicae over time. Two repetitions of the 728 

experiment are depicted in Supplementary Figure S5. (C) Fate of larvae fed with control or 729 

CHA0 treated diet. Data are pooled from three independent experiments. Numbers of dead 730 

and crippled individuals differed significantly between the control and CHA0 treatments 731 

according to a Chi-Square test (p-value < 0.05). (D) Colonization of P. brassicae by P. 732 
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protegens CHA0-gfp2. Data are pooled from three independent experiments. Numbers above 733 

boxes indicate sample size. No P. protegens CHA0-gfp2 was detected in control insects. 734 

Alive crippled pupae or butterflies, living individuals with abnormal phenotypes; dead 735 

crippled pupae, individuals that failed to form intact pupae and died; dead crippled butterflies, 736 

butterflies with morphological defects that died during emergence. 737 
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 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 



 30

 758 



Table 1. Bacterial strains used in this study 
Strain Genotype, phenotype or relevant 

characteristics 

Insecticidal 

activity 

Reference or source 

Pseudomonas 
protegens CHA0 

Wild type, isolated from tobacco roots Yes Jousset et al. (2014); 
Stutz et al. (1986) 

Pseudomonas 
protegens CHA0-
gfp2 

CHA0::attTn7-gfp2; Gmr Yes Péchy-Tarr et al. (2013) 

Pseudomonas 
protegens CHA1176 

CHA0::attTn7-gfp2 fitD-mcherry; 
Gmr 

 

Yes Péchy-Tarr et al. (2013) 

Pseudomonas 
protegens PF-gfp2 

PF::attTn7-gfp2; Gmr

 
Yes This study, for wild 

type PF see Levy et al. 
(1992) 

Pseudomonas sp. 
CMR12a-gfp1 

CMR12a::attTn7-gfp1; Kmr  Yes This study, for wild 
type CMR12a see 
Perneel et al. (2007) 

Pseudomonas 
chlororaphis 
PCL1391-gfp2 

PCL1391::attTn7-gfp2; Gmr Yes This study, for wild 
type PCL1391 see 
Chin-A-Woeng et al. 
(1998) 

Pseudomonas 
thivervalensis 
PITR2-gfp2 

PITR2::attTn7-gfp2; Gmr No This study, for wild 
type PITR2 see (Keel et 
al., 1996)  

Gmr, gentamicin resistance; Kmr, kanamycin resistance 
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Supplementary Methods 

Growing and inoculation of cauliflower plants  

Cauliflower seeds (Brassica oleracea botrytis ‘Walcheren Winter 5’, Samen Mauser AG, Switzerland) 

were surface-sterilized as follows: seeds were placed for 2 min in 70% ethanol, thoroughly washed with 

sterile ddH2O, subsequently placed for 30 min in 4% NaOCl, and again thoroughly washed with sterile 

ddH2O. Surface-sterilized seeds were pre-germinated for six days on 1% water agar at 24°C in the dark. 

Individual seedlings were transferred to pots (one seedling per pot) of which the lower two thirds were 

filled with autoclaved potting soil (TREF Go PP 7000 plant substrate, GVZ Rossat AG, Switzerland) 

and the upper third was filled with a mix of different fractions of quartz sand and vermiculite (Keel et 

al 1989). Each pot was amended with 10 ml of bacterial suspension (CHA0-gfp2, OD600 = 0.45; an 

OD600 of 0.125 contains about 108 cfu/ml) or water (control) and four trays, each containing twelve pots, 

were prepared for each treatment. Cauliflower plants were then grown for three weeks in a growth 

chamber with a 16-h day (20°C, 210 μmol m-2 s-1), 8-h night cycle (18°C) and a relative humidity of 

80%. For application of Delia radicum to cauliflower plants, a small piece of blue paper containing five 

freshly hatched larvae was placed next to the stem of the plants. Larvae that did not manage to enter the 

soil were replaced to ensure equal numbers of viable larvae on the roots.  

Assessment of root colonization by Pseudomonas protegens CHA0-gfp2 

Root colonization was assessed in four pots per tray of the P. protegens CHA0-gfp2 treated plants and 

in all control pots to ensure that these were not contaminated with CHA0. Roots of cauliflower plants 

were washed on a sieve to remove adhering substrate. Then subsamples of the roots were placed in 

Eppendorf tubes containing 0.9% NaCl solution and incubated at 3°C over-night. Next, samples were 

shaken for 30 min at 1400 rpm on an Eppendorf thermomixer compact at 4°C. Serial dilutions were 

plated onto King’s B (KB) agar plates (King et al 1954) supplemented with chloramphenicol (13 μg ml-

1), cycloheximide (100 μg ml-1), ampicillin (40 μg ml-1) and gentamicin (10 μg ml-1) and plates were 

incubated at 27°C for two days. Colony forming units (cfu) were checked for expression of GFP with 

a Leica DM2500 microscope (Leica Microsystems CMS GmbH, Wetzlar, Germany). In a few pots of 

the control treatment, a contamination by P. protegens CHA0-gfp2 was observed. These samples were 

excluded from the analysis and emerging pupae not used for further experiments. 

Transmission experiment with Delia radicum 

Rapeseed seeds were sterilized and pre-germinated as described above for cauliflower seeds with the 

only difference that pre-germination lasted only one day instead of six days. Plastic beakers (500 cc) 

with a lid (Riwisa AG, Switzerland) were partly filled with 3 cm of autoclaved sand-vermiculite mix 

supplemented with 35 ml of Knop plant nutrient solution (Keel et al 1989). Four pre-germinated seeds 
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were planted per beaker and grown for four weeks in a growth chamber with a 16-h day (20°C, 210 

μmol m-2 s-1), 8-h night cycle (18°C) and a relative humidity of 80%. Then, another 10 ml of Knop 

solution was added as well as sterile lids of Eppendorf tubes, one containing wet fly diet and one 

containing dry fly diet (Razinger et al 2014). Three to four pupae that had emerged from control or 

P. protegens CHA0-gfp2 treatments in the cauliflower experiment (see above) were added per beaker 

in small sterile Erlenmeyer flasks (experiment 1) or sterile lids of Eppendorf tubes (experiment 2). In 

experiment 1, three of these transmission microcosms were established for the control treatment and 

fourteen for the CHA0-gfp2 treatment. Of the latter one sample was excluded from the analysis, because 

no flies hatched. In experiment 2, nine transmission microcosms per treatment were established. Flies 

started to hatch after one day. Nine days later roots of rapeseed plants were checked for colonization by 

P. protegens CHA0-gfp2 as described above for cauliflower plants. Roots of plants grown in the same 

beaker were pooled for analysis.  

Experiments with Otiorhynchus sulcatus  

Larvae of O. sulcatus and strawberry plants were kindly provided by Matthias Lutz (ZHAW 

Wädenswil, Switzerland). Root balls of two months old strawberry plants (‘Elsanta’, Näppbrunnenhof, 

Switzerland) were incubated for 10 min in a cell suspension of P. protegens CHA0 (OD600 = 0.0125) or 

in sterile water for control treatments and in the following planted in pots containing potting soil (TREF 

Go PP 7000 plant substrate, GVZ Rossat AG, Switzerland). Fifteen (experiment A) or ten (experiment 

B) last-instar larvae of O. sulcatus were added per pot. Plants were kept at 18°C day temperature, 15°C 

night temperature, 60% humidity and a 16-h day, 8-h night cycle in a growth chamber. After one month, 

pupae were harvested and either directly extracted or maintained until adults emerged. Three pupae and 

three adults of both treatments were surface sterilized (30 s 70% ethanol, rinsed in 0.9% NaCl solution) 

and homogenized in sterile 0.9% NaCl solution with a Polytron PT-DA 2112 blender (Kinematica, 

Littau, Switzerland). The resulting suspensions were serially diluted and plated onto KB agar plates 

supplemented with chloramphenicol (13 μg ml-1), cycloheximide (100 μg ml-1) and ampicillin (40 μg 

ml-1). The identity of growing colonies was checked as described by Ruffner (2013) with a colony PCR 

using primers that specifically amplify P. protegens CHA0 (Von Felten et al 2010) and by sequencing 

a part of the 16s rRNA gene. The experiment was conducted twice. 

Survival and colonization experiments with Plutella xylostella  

The experiments with Plutella xylostella were conducted as detailed in Flury et al (2017). One-week-

old P. xylostella larvae were kept each separately in multi-well plates and exposed to artificial diet 

inoculated with 10 μl of bacterial suspension of an OD600 of 0.1 or 0.01. Experiments 1 and 2 were set 

up with 32 larvae per treatment, experiment 3 with 64 larvae per treatment. Larvae and pupae were 

considered dead when they did not react to poking. From each treatment, five individuals per 
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developmental stage (alive and dead) or as many as available were extracted as described under 

‘Assessment of bacterial colonization rates’ in the main paper. 

Microscopy  

For microscopy, twelve one-week-old P. xylostella larvae were kept together in a Petri dish which was 

lined with a wetted filter paper and contained four pellets of artificial diet. For the bacterial treatments 

diet was inoculated with 10 μl of bacterial suspension of OD600 = 10, which corresponds to about 8 x 

107 cells. Larvae were collected at different time points after infection (a total of 27 infected larvae were 

investigated by microscopy), were killed by exposure to ethyl acetate, and subsequently fixed for 24 h 

in Duboscq-Brazil’s alcoholic Bouin’s (saturated alcoholic solution of picric acid, formaldehyde, 

glacial acetic acid, 10:4:1 [vol/vol]). After dehydration in ascending concentrations of ethanol, larvae 

were embedded in Histosec (Merck, Darmstadt, Germany). Embedded larvae were cut into serial 

sections of 6 μm, mounted onto microscope slides and cleared from Histosec with xylene. For 

histopathology analysis, sections were stained with Heidenhain’s iron hematoxylin, counterstained in 

erythrosine and examined in a Leica photomicroscope, model DMRB (Leica, Wetzlar, Germany). To 

be able to identify the applied bacteria, the GFP tagged variant P. protegens CHA1176 (Table 1) was 

used instead of wild type CHA0. However, fixation in Duboscq-Brazil’s alcoholic Bouin’s destroys 

intrinsic GFP fluorescence and immunofluorescence microscopy was needed to specifically detect the 

bacteria. To allow access of the antibodies to the intracellular GFP, tissue sections were boiled for 30 

min at 90°C in 10 mM sodium citrate, washed in PBS and blocked in 1% BSA, 0.3%Triton X-100 in 

PBS as described by Benjamin et al (2013). Sections were then incubated in monoclonal mouse anti-

GFP IgG (1:500, Roche, Switzerland) for 1 h at room temperature and subsequently over-night at 4°C. 

After washing three times in PBS, sections were incubated with donkey anti-mouse IgG-FITC (1:200, 

Dianova, Germany) for 4 h at room temperature and were examined with a Leitz Aristoplan 

epifluorescence microscope (Leica, Wetzlar, Germany). All images were captured with an SIS 

ColorView II camera (Soft Imaging System GmbH, Münster, Germany).  
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Supplementary Figure S1. Pseudomonas protegens CHA0-gfp2 does not affect survival of Delia radicum. 
This experiment is a repetition of the one depicted in Figure 2A. Five freshly hatched D. radicum larvae were 
added to cauliflower plants (four trays per treatment, each containing twelve pots) grown with P. protegens 
CHA0-gfp2 (CHA0) on the roots or without (control). Pupation rate and the rate of flies emerging from pupae did 
not significantly differ between control and P. protegens CHA0-gfp2 treatment (p < 0.05; Student’s t test). Error 
bars depict standard deviations of the mean of four replicate trays.  
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Supplementary Figure S2. Pseudomonas protegens CHA0-gfp2 does neither reduce pupal size of Delia 
radicum nor increase the shoot weight of cauliflower plants infested with the insect. Roots of cauliflower 
plants were inoculated with a cell suspension of P. protegens CHA0-gfp2 (CHA0) or amended with water 
(control) at planting (n = 48). Three weeks later, five freshly hatched D. radicum larvae were added and let feed 
on the roots until pupation. Then size of emerged pupae (A, B) as well as shoot weight of cauliflower plants (C, 
D) was assessed. For both parameters, no significant difference between control and CHA0 treatment could be 
detected (p < 0.05; Mann-Whitney U Test) in both repetitions of the experiment (A, C) and (B, D). Results of 
experiment 1 and 2 are depicted in (A, C) and (B, D), respectively.  
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Supplementary Figure S3. Pseudomonas protegens CHA0 taken up by root-feeding Delia radicum larvae 
can be dispersed to a new host plant. This experiment is a repetition of that depicted in Figure 2D. Colonization 
levels of P. protegens CHA0-gfp2 on roots of rapeseed plants. Plants were exposed for nine days to flies, which 
as larvae had fed on roots of control or CHA0-gfp2 treated cauliflower plants, i.e. the previous plant host. In the 
CHA0 treatment roots in eight out of nine systems became colonized with P. protegens CHA0-gfp2. Numbers 
above boxes indicate sample size. 
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Supplementary Figure S4. First, second and third instar Pieris brassicae larvae, but not fourth instar larvae 
are highly susceptible to an infection with Pseudomonas protegens CHA0. Kaplan-Meier survival graphs of 
different larval stages of P. brassicae treated with P. protegens CHA0. First (A), second (B), third (C) and fourth 
(D) instar larvae (n=24 to 32) of P. brassicae were fed with a pellet of artificial diet inoculated with ~108 bacteria 
or amended with 0.9% NaCl solution (Control). Only larvae that consumed the entire piece of diet were included 
in the analysis. Asterisks indicate significant differences according to a Log-Rank test (p ≤ 0.05, Survival Package 
in R).  
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Supplementary Figure S5: Impact of Pseudomonas protegens CHA0-gfp2 on development and mortality of 
Pieris brassicae over time. These experiments are two repetitions (A and B) of the one depicted in Figure 5B. 
Thirty fourth-instar P. brassicae larvae were fed with artificial diet inoculated with 10 µl of a bacterial suspension 
of OD600=20 or amended with 0.9% NaCl solution (control).  The different development stages of the insects were 
monitored during 17 or 23 days until the butterflies emerged from the pupae.  
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Supplementary Figure S6. Pseudomonas protegens CHA0 does not affect survival of Otiorhynchus sulcatus 
larvae. The roots of strawberry plants (one plant per pot, six and five pots per treatment in experiment A and B, 
respectively) were either inoculated with P. protegens CHA0 (CHA0) or mock (control). Fifteen (experiment A) 
or ten (experiment B) O. sulcatus larvae were added per pot. After one month insect survival per pot did not 
significantly differ between control and CHA0 treatment in both experiments (p < 0.05; Student’s t test). Error 
bars depict standard deviations of the mean. 
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