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Abstract This paper presents a novel direct param-

eter estimation method for continuous-time fractional

nonlinear models. This is achieved by adapting a filter-

based approach that uses the delayed fractional state

variable filter for estimating the nonlinear model pa-

rameters directly from the measured sampled input-

output data. A class of fractional nonlinear ordinary

differential equation models is considered, where the

nonlinear terms are linear with respect to the param-

eters. The nonlinear model equations are reformulated

such that it allows a linear estimator to be used for

estimating the model parameters. The required frac-

tional time derivatives of measured input-output data
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are computed by a proposed delayed fractional state

variable filter. The filter comprises of a cascade of all-

pass filters and a fractional Butterworth filter, which

forms the core part of the proposed parameter esti-

mation method. The presented approaches for design-

ing the fractional Butterworth filter are the so-called,

square root base and compartmental fractional Butter-

worth design. According to the results, the parameters

of the fractional-order nonlinear ordinary differential

model converge to the true values and the estimator

performs efficiently for the output error noise structure.

Keywords Delayed fractional state variable filter ·
Fractional Butterworth filter · Fractional nonlinear

system · Parameter estimation · Delay equalisation ·
Square root base · Compartmental ·

1 Introduction

Fractional-order systems are proven, through various

publications, to have advantages over their integer-order

counterparts. The advantages of fractional-order sys-

tems over integer order systems include: i) modelling

systems by fractional-order allows higher order systems

to be expressed by models with fewer parameters, ii)

the very nature of many systems lend themselves to

be more precisely modelled using fractional-order dif-

ferential equations as opposed to integer-order differen-

tial equations, and iii) fractional-order models of real

systems are generally more adequate than commonly

adapted integer order models. As such, fractional cal-

culus is attractive to many research fields and hence

has encouraged researchers from various fields to ex-

tend a significant number of the classical theories and

applications to fractional-order [34,13]. Nonlinear and

linear fractional-order systems are thus widely applied
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in engineering, [17,23] physics [19,54] and control [20,

39,4].

In the case of modelling, which is the focus of this

paper, fractional-order nonlinearity has been employed

for modelling valve-regulated lead-acid battery systems,

described by the nonlinear fractional-order electric equiv-

alent circuit model (NL-FECM) [9,3]. The NL-FECM

contains two branches and each branch contains a con-

stant phase element, connected in parallel with a non-

linear resistor. The constant phase element is an expres-

sion of a fractional integral element where the nonlin-

earity appears in both resistors as a function of cur-

rent (the input of the NL-FECM). The structure of

one function is derived from the Butler-Volmer expo-

nential and the other is formulated using the curve

fitting approach. The Warburg element represents the

diffusional behaviour of the battery and is also char-

acterised by fractional integrals [9]. Linear and nonlin-

ear fractional-order models have also been used to im-

prove the description of thermal dynamic systems [32,

31,30]. In [32], an Aluminum rod was thermally isolated

from the surrounding environment to limit the ther-

mal description to only heat conduction with zero heat

loss and small temperature variations. In their work

[32], the authors employ a fractional-order linear sys-

tem which significantly improves the performance over

small temperature variations via the introduction of a

constant heat conductive coefficient. The nonlinearity

is observed due to a non-constant conductive coefficient

in the case of large temperature variations as shown in

[31]. With the presence of a heat loss term, convective

and radiative heat transfer appear on the boundary and

the radiative heat transfer introduces more nonlinear-

ity to the thermal model [49]. An integer-order chaotic

nonlinear system requires a minimum of third order

for chaos to appear, based on the Poincare-Bendixon

theorem [46]. This is not the same for fractional-order

nonlinear systems. For instance, a chaotic attractor is

generated by an order as low as 2.7 of Chua’s circuit

[18] and a sinusoidally driven Duffing system of order

less than 2 can still behave in a chaotic manner [24].

Further examples of fractional-order nonlinear system

modelling and analysis can be found in [25,36,33].

From a control aspect, fractional-order controllers

are widely used for providing robust control. For in-

stance, the fractional-order proportional integral deriva-

tive (PID) controller exhibits better performance over

classical PID controllers. In particular, for the electro-

hydraulic servo, because it leads to an improved re-

sponse, minimum performance indices values, better

disturbance rejection, and better sinusoidal trajectory

[15]. Several fractional control applications are presented

in [7]. In other applications, for instance, systems identi-

fication, fractional calculus appears as a fractional least

mean square which provides efficient performance in the

presence of active noise (Box-Jenkins) for estimating

the parameters of linear and nonlinear systems, pre-

sented in [37] and [6], respectively.

Fractional nonlinear systems identification has not

received major attention because of the complexity as-

sociated, mainly, with parameter estimation of the non-

linear fractional-order systems in the continuous-time

domain. The benefits of continuous-time models and

direct parameter estimation of continuous-time mod-

els (not in the discrete domain) have been highlighted

in [16]. Continuous-time models are preferred over their

discrete-time counterparts because the dynamics of phys-

ical systems are generally better described in continuous-

time. Continuous-time models also retain a-priori knowl-

edge with inherent data filtering properties. As for di-

rect parameter estimation, then this does not require

uniformly sampled data. In addition, significant perfor-

mance advantages for direct estimation, over indirect

approaches, have been reported for a number of classes

of systems, including stiff systems. For further details,

interested readers are directed to [16].

There are algorithms that have been developed to

estimate the parameters of nonlinear fractional-order

models, for instance, the differential evolution method.

Differential evolution has been used as an algorithm for

optimisation purposes and belongs to a class of generic

algorithms considered to be a suitable objective func-

tion for identifying the orders and parameters of the

commensurate fractional-order chaotic systems [43,29].

The advantages of employing this approach are sum-

marised as follows: (i) it has the capability of finding the

actual global minimum, regardless of parameter initiali-

sation accuracy, and (ii) it has the ability of fast conver-

gence with fewer control parameters. The drawbacks of

differential evolution, however, include (i) it is designed

for a chaotic system and thus needs to be redesigned to

cope with a different class of system (ii) convergence

is not guaranteed in the case where noise is present,

and (iii) the overall estimation problem becomes a com-

plex optimisation problem which is not simple to cope

with in different noise scenarios. A different approach

based on the Volterra series was presented in [31] to de-

scribe the nonlinear diffusive phenomena in a thermal

system. In this approach, the Volterra kernel functions

are generated by fractional orthogonal bases. The use of

Volterra series is motivated by two principal reasons: (i)

the separation of linear and the nonlinear contributions

due to the decomposition of a nonlinear model and (ii)

the Volterra series can be considered as a generalised

linear model. In [31], the nonlinear model parameters

and linear coefficients are estimated by nonlinear pro-
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gramming. However, this approach also involves opti-

misation and the nonlinear model description is limited

to the Volterra structure.

Fractional nonlinear derivative terms are not realiz-

able (measurable) in a majority of systems, which leads

to fractional derivative terms being directly approxi-

mated from collected data or an equivalent fractional

derivative being sought. In the presence of measure-

ment noise, the latter is ill-posed because the approx-

imation amplifies the effects of noise such that finite

difference based methods [53,5] become impractical for

many applications. This problem is more pronounced

for fractional derivatives than integer-order derivatives.

To achieve robustness, the B-Spline functions-based frac-

tional differentiator [27], the digital fractional Savitzky-

Golay differentiator [12] and the fractional Jacobi differ-

entiator [26] can be assumed, for example. These frac-

tional differentiators are designed in the time domain

and built on a polynomial which is used as the unknown

signal approximation. The fractional differentiation of

this polynomial is used for estimating the required frac-

tional derivatives. The truncation error produced by the

polynomial (i.e., the truncated Taylor series expansion

of the unknown signal) is retained as an estimation error

in the fractional differentiators. This truncations error

can generate large errors near the boundaries of the es-

timating interval, including the noise free signal [28]. To

sum up, the approximation of the fractional derivative

terms directly from the data show different drawbacks

thus the derivative terms for the parameter estimation

are replaced by filtered derivative terms using filter base

approaches.

On the other hand, in the fractional linear model

identification case, different publications have employed

a commutative property between known recommended

filters and the fractional-order continuous-time linear

systems to produce the filtered signal and their deriva-

tives to replace the original signals and their deriva-

tives. The filtered data is utilized for parameter esti-

mation instead of the original data. Examples of linear

filters used for this purpose include the Poisson moment

functional [11], state variable filters [14], the refined in-

strumental variable filter [2,47] and the instrumental

variable [21]. Unfortunately, the commutative property

of the recommended filters is not valid in the case of the

fractional-order continuous-time nonlinear systems.

However, Kohr [22] has shown that the delayed state

variable filter and the nonlinear derivative terms do

commute. Kohr firstly proposed the delayed state vari-

able filter and demonstrated how it could be utilised to

estimate the parameters of the continuous-time integer-

order nonlinear system, but with very simple nonlin-

earity. Then in 1994 Tsang and Billing improved the

filter to adapt higher order nonlinear terms [45]. The

major advantage of the delayed state variable filter is

that the commutative property which may allow the

techniques used in the linear filter based approach be

applicable in the nonlinear case, such as the extra pre-

filtering technique is used to adapt with coloured noise

in the fractional-order linear systems [2]. Due to ad-

vantages associated with the delayed state variable fil-

ter and fractional-order system properties, the delayed

state variable filter is here extended to the delayed frac-

tional state variable filter (DFSVF).

The DFSVF is a cascade of all-pass filters, for group-

delay equalisation, with a fractional Butterworth filter

(FBF). In the DFSVF, the delayed signals and their

higher derivatives are generated by the FBF and are

used for subsequent parameter estimation. Therefore,

there is also a need to design the FBF. Several authors

have published how to extend the approximated inte-

ger Butterworth filter to a FBF. For example, Soltan,

Rawan and Soliman [41] has extended a two element in-

teger Butterworth filter to a fractional-order in the case

of the commensurate order and for higher commensu-

rate order, see [1], where similar coefficients of classical

integer Butterworth filter are used for FBF. This filter

has been further extended to have two different non-

equal base-orders for non-commensurate order in [42].

This is achieved by transforming the FBF to frequency-

domain, and then the generated nonlinear equation is

optimised to obtain the best flat gain with consideration

given to the stability. However, these are not straight-

forward solutions. Rather they depend on knowledge

and experience associated with limited, integer, order.

Moreover, in the cited examples, a two element equiv-

alent circuit model is used, where it is relatively easy

to adapt fractional-order theory, but this approach be-

comes increasingly more complex as the number of ele-

ments increases.

In this paper, a class of fractional-order nonlinear

systems is introduced. This class can be described by a

single-input single-output fractional nonlinear ordinary

differential equation model. One novelty of this paper is

the parameter estimation of this class of systems. The

DFSVF is proposed to be directly applied for parameter

estimation of the fractional-order continuous-time non-

linear systems from collected input-output data. The

process of parameter estimation, using DFSVF, is de-

noted here by a delayed fractional state variable identi-

fication approach. The DFSVF is a cascade of all-pass

filters, for group-delay equalisation, with a fractional

Butterworth filter (FBF). Two different approached are

proposed for the FBF design and are here termed as

the square root base and compartmental approaches.

In this approach, it is assumed that the system can be
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described by an input-output fractional-order nonlin-

ear differential equation. A detailed illustration of how

the proposed DFSVF is designed and how this links to

the proposed FBF and all-pass filter is provided in this

article.

2 Problem statement

A general single-input single-output fractional nonlin-

ear system is described by a fractional nonlinear ordi-

nary differential equation as:

A(Dα)x(t) +N (Dκ, x(t), u(t)) = B(Dβ)u(t) (1)

where u(t) and x(t) denote input and noise-free out-

put signals, respectively. The fractional derivative op-

erator is defined as Dµf(t) = dµf(t)
dtµ and µ ∈ R+ and

α, β, κ ∈ R+. N is a known nonlinear mapping function

of u(t), x(t) and the fractional derivative terms, which is

defined as fractional polynomial nonlinear function for

ease of demonstration in this article. A(Dα) and B(Dβ)

are output and input fractional linear polynomials in D
defined as:

A(Dα) = a0Dαn + a1Dαn−1 + . . .+ an−1Dα1 + an

B(Dβ) = b0Dβm + b1Dβm−1 + . . .+ bm−1Dβ1 + bm
(2)

where the coefficients {ai, bj} ∈ R, (i = 0, 1, · · · , n ),

(j = 0, 1, · · · ,m) and the derivative term orders are real

and αn > αn−1 ≥ · · · ≥ α1 > 0, βm > βm−1 ≥ · · · ≥
β1 > 0, αn > βm. It is assumed α0 = β0 = 0. The model

parameter an is normalised to be unity, i.e. an = 1.

The fractional polynomial nonlinear function is linear in

parameters and does not have a particular description.

It is mainly a combination of the nonlinear terms which
can have a general form as:

N (Dκ, x(t), u(t)) =

p∑
i=0

viNi(Dκp−i , x(t), u(t)) (3)

where vi ∈ R, (i = 0, 1, · · · , p ) are estimated model

parameters, i.e scalar weighting coefficients, which sig-

nify the relative importance of the individual nonlin-

ear functions Ni. The orders of derivative terms of the

fractional polynomial nonlinear function are defined as

κi ≤ κi+1 ≤ · · · ≤ κp and κp < αn. A uniformly

sampled noise-free input-output signals are denoted by

x(tk) and u(tk), respectively, where the discrete time

index is defined as tk = kT for k = 1, 2, ...N with N

being the total number of recorded samples and T is

the sampling time interval. The sampled noisy output,

denoted y(tk), is assumed to be corrupted by an ad-

dictive discrete white measurement noise e(tk) and is

given by:

y(tk) = x(tk) + e(tk) (4)

3 Parameter estimation

It is proposed to estimate the model parameters of (1)

using the instrumental variable least squares method,

see for example [52], while other estimation methods

can be clearly utilized. The use of instrumental vari-

ables mitigate the impact of additive measurement noise

e(tk) on parameter estimates. Without loss of general-

ity, for ease of derivation and notation, the noise free

output x(tk) will be used instead of y(tk) for the al-

gorithm derivation. The fractional time derivatives of

sampled input-output signals are required by the least

squares method and are obtained by the proposed DFSVF,

denoted by Γ (Dη). Exploiting the commutative prop-

erty of the proposed filter the model (1) becomes:

A(Dα)Γ (Dη)x(t) +N (Dκ, Γ (Dη)x(t), Γ (Dη)u(t))

= B(Dβ)Γ (Dη)u(t)
(5)

where the filter acts on all input-output signals. Intro-

ducing the filtered input-output variables:

xΓ (t) = Γ (Dη)x(t)

uΓ (t) = Γ (Dη)u(t)
(6)

the fractional nonlinear system (5) takes the following

filtered form:

A(Dα)xΓ (t) +N (Dκ, xΓ (t), uΓ (t)) = B(Dβ)uΓ (t) (7)

The fractional polynomial nonlinear function is described

as a linear combination of nonlinear terms in (3), which

allows the fractional nonlinear system (7) to be ex-

pressed in the following filtered form:

a0DαnxΓ (t) + a1Dαn−1xΓ (t) + . . .+ anxΓ (t)+
p∑
i=0

viNi(Dκp−i , xΓ (t), uΓ (t)) =

b0DβmuΓ (t) + b1Dβm−1uΓ (t) + . . .+ bmuΓ (t)

(8)

Consequently, (8) can be reformulated into the linear

regression form, used by the linear least squares algo-

rithm, as follows:

xΓ (t) = ϕTΓ (t)θ (9)

where ϕTΓ (t) and θ denote the filtered regression and

parameter vectors, respectively. These are described ac-

cording to (8) as:

ϕTΓ (t) = [−DαnxΓ (t), . . . , −Dα1xΓ (t),

−N0(Dκp , xΓ (t), uΓ (t)), . . . ,−Np(Dκ0 , xΓ (t), uΓ (t)),

DβmuΓ (t), . . . , uΓ (t)]

(10)
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θ = [a0, . . . , an−1, v0,

. . . , vp, b0, . . . , bm]
(11)

Although the model is originally nonlinear (1), the

parameter estimation problem becomes similar to the

linear parameter estimation problem by applying the

classical state variable filter due to the commutative

property between the DFSVF and the nonlinear model

(1). This allows extending the off-line estimation to on-

line applications. Furthermore, the estimation proce-

dure can be improved to deal with coloured noise pro-

cesses in a similar manner to the linear case, for in-

stance, by applying the pre-filtering technique for dis-

crete coloured noise [48,40,2] on the generated filtered

data in (9).

4 Delayed fractional state variable design

The ideal transport-delay filter can generate a transport-

delay for all fractional-order states for all angular fre-

quencies ω. In other words, it is a filter whose gain

frequency response is unity and the phase frequency re-

sponse is denoted ∠ (1/Γ (jω)) = −τω, for all ω where τ

is a constant which is equal to the value of the transport-

delay. As a result, the transport-delay (which is the neg-

ative derivative of the phase with respect to frequencies

ω) is a constant and T (jω) = τ for all frequencies ω.

Fig. 1a illustrates the gain, phase and transport-delay

axis of the transport-delay filter against ω, where phase

and transport-delay axes are expressed in terms of τ .

Although there is no finite order filter that can gen-

erate an ideal transport-delay, it is possible to approx-

imate such a filter by introducing some design con-

straints. Therefore, it is assumed that the ideal transport-

delay filter can be designed within a selected range of

frequencies ω less than the cut-off frequency denoted ωc.

This generates a group-delay as illustrated in Fig. 1b,

for more details on group-delay; see for example the

text [51]. This filter is termed an ideal delayed frac-

tional state variable filter. In this paper, the ideal de-

layed fractional state variable filter is approximated by

DFSVF. There are three essential properties must the

filter has to be CDFSVF. These properties are the fil-

ter has (i) unity gain, (ii) has as constant group-delay

as required and (iii) a stable behavior. The DFSVF de-

sign starts from selecting the most appropriate basic

analogue filter. The Butterworth filter offers a maxi-

mally flat gain but associated with this there is a fre-

quency dependent group-delay. In other words, there

is a nonlinear phase shift and, furthermore, the rate

of change of the phase generally increases as the fil-

ters cut-off frequency is approached [8]. However, this

unwanted phase distortion and group-delay variation

can be corrected and minimised to retain a maximally

flat gain by the use of phase-equalising all-pass filters.

All-pass filters can be designed to have a group-delay

that is virtually complementary to a low-pass filter, so

the two filters connected in cascade produce an almost

constant group-delay. Therefore, the IBF and all-pass

filter are selected for designing the delayed fractional

state variable filter, for more details on filters and their

properties; see [51,8].

4.1 Fractional Butterworth Filter

The proposed square root base and compartmental FBF

designs are based on the classical integer Butterworth

filter, which is introduced in detail in following subsec-

tions. The approximated (as opposed to ideal) integer

Butterworth transfer function can be derived from the

maximally flat squared gain function, firstly proposed

in [10], and described by a product of the pole terms in

[51] as:

HBW (s) =
G0∏N

k=1[s− sk]/ωc
(12)

sk = ωc

[
cos

(
π

2
+ π

2k − 1

2N

)
+ i sin

(
π

2
+ π

2k − 1

2N

)]
(13)

where the subscript BW refers to Butterworth filter,

ωc is the cut-off frequency and s = sk is the kth root

for k = 1, 2, · · · , N . The number of roots, denoted N ,

is user specific and selection guidance is provided in

this article. The term G0 denotes the DC gain, which

is selected to be unity, i.e. G0 = 1.

The group-delay of the integer Butterworth filter is

the time needed for each frequency component of the

filtered signal to pass through the filter and is defined

as:

TBW (ω) = −
N∑
k=1

ωc cos
(
π
2 + π 2k−1

2N

)
ω2
c − 2ωcω sin

(
π
2 + π 2k−1

2N

)
+ ω2

(14)

Fig. 2 shows group delay for an integer Butterworth

filter with ωc = 1. It can be observed that almost flat

group-delay is obtained in the low and high frequency

ranges with sharp group-delay rise around the cut-off

frequency. The higher the order of the filter the higher

the group-delay.
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(a) Transport-delay filter. (b) Delayed fractional state variable filter.

Fig. 1: Gain, phase and transport-delay in (a) or group-delay in (b) of 1
Γ (jω) , expressed in dashed, solid and

dotted lines, respectively where ωc = 1 (rad.s−1).
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Fig. 2: Group-delay in (s) of the integer Butterworth

filter, with order N = 1 : 8 and ωc = 1.

4.1.1 Square root base design (fractional Butterworth

filter with α = 1
/

2n base-order)

This section demonstrates how the maximally flat gain

frequency response of fractional Butterworth filter can

be obtained with a restricted base-order α = 1
/

2n where

n ∈ Z. There are N root terms in equation (12). When

α = 1 and N is an even number, the roots in equation

(12) are given by N/2 complex pairs where s̄k denotes

the conjugate of sk. Each root term is considered to

be a quadratic function, described by the difference of

two squares (s and sk), and expressed in the standard

quadratic form and factored form as:

s− sk︸ ︷︷ ︸
Standard quadratic form

=
(
s0.5 −

√
sk
) (
s0.5 +

√
sk
)︸ ︷︷ ︸

Factored quadratic form

(15)

The factored quadratic form can be obtained by

considering the square root of the complex number ac-

cording to De Moivres theorem:

q
√
sk = q

√
|sk|

[
cos

(
∠sk
q

+
2πa

q

)
+ sin

(
∠sk
q

+
2πa

q

)]
(16)

where a = 0, 1 and N is assumed to be an even num-

ber. From equation (15), it can be noted that each root

term has two different complex roots
√
s = ±√sk. The

same techniques are applied to the root term which con-

tains the complex conjugate s̄k so that the two differ-

ent conjugate roots ±
√
s̄k are produced. For example, if

N = 2, the integer Butterworth denominator of equa-

tion (12) is described as a product of two root terms

as:

HB(s) =
1(

s−
(
−
√
2

2 + j
√
2
2

))(
s−

(
−
√
2

2 j −
√
2
2

))
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(17)

The factored form of the root term which contains

one complex root and the root term which contains the

conjugate root can be obtained from equations (15) and

(16), and presented as follows:(
s−

(
−
√

2
/

2 + j
√

2
/

2
))

=(
s0.5 + (0.38 + j0.92)

) (
s0.5 − (0.38 + j0.92)

)(
s−

(
−
√

2
/

2− j
√

2
/

2
))

=(
s0.5 + (0.38− j0.92)

) (
s0.5 − (0.38− j0.92)

)
(18)

The fractional Butterworth transfer function of half-

base order, derived from equation (18), is expressed as:

HB(s) =
1[ (

s0.5 − 0.38 + j0.92
) (
s0.5 − 0.38− j0.92

)
(s0.5 + 0.38 + j0.92) (s0.5 + 0.38− j0.92)

]

(19)

However, in order to avoid returning to the integer-

order Butterworth transfer function, the fractional But-

terworth transfer function must be described by two

subsystems as follows:

HB(s) =
1

(s− 0.7654s0.5 + 1)

1

(s+ 0.7654s0.5 + 1)

(20)

From equation (16), all the fractional derivative terms

can be obtained, which can then be used in the identi-

fication process.

This can then be factored into eight root terms

of base-order α = 0.25, and it is expressed as (21):

HB(s) =
1[ (

s0.25 − 0.8315− j0.5556
) (
s0.25 − 0.8315 + j0.5556

) (
s0.25 + 0.5556− j0.8315

)
(s0.25 + 0.5556 + j0.8315) (s0.25 + 0.8315− j0.5556) (s0.25 + 0.8315 + j0.5556)

(s0.25 − 0.5556− j0.8315) (s0.25 − 0.5556 + j0.8315)
]

(21)

The N root terms of the integer Butterworth trans-

fer function produce 2nN root terms of the fractional

Butterworth filter of base-order α = 1
/

2n. For example,

the first order Butterworth transfer function generates

2 root terms of a fractional Butterworth filter of base-

order α = 0.5.

The Butterworth filter of base-order α = 0.25 in

(21) can be described by two first-order subsystems (s1)

or two subsystems whose orders are (s1.5) and (s1.5)

as shown in Fig 4 and, respectively, expressed as (22):

HB(s) =
1(

s+ 0.0.5518s0.75 + 0.1522s0.5 + 0.5518s0.25 + 1
) (
s− 0.0.5518s0.75 + 0.1522s0.5 − 0.5518s0.25 + 1

)
=

1

(s1.25 − 1.6629s1.25 + 1.7654s− 1.2728s0.75 + 1.7645s0.5 − 1.6629s0.25 + 1)
(
s0.5 + 1.6629s0.25 + 1

) (22)

The following algorithm can be used to directly gener-

ate the roots of the denominator of the fractional But-

terworth filter of base-order α = 1
/

2n:

r = 0

for k = 1 : N

θ = π
(
1
/

2 + (2k − 1)
/

2N
)

for a = 0 : m− 1

r = r + 1

s

(
1
/
2n

)
k = m

√
ωc

[
e
j
(
θ
/
m+2απ

/
m

)]
(23)

end

end

where m = 2n, M = mN , a = 0, 1, · · · ,m − 1 and

k = 1, 2, · · · , N .

The proposed fractional Butterworth filter is de-

rived from the integer Butterworth filter. As a conse-

quence, the frequency response and the group-delay are

similar to the frequency response and the group-delay

of the integer Butterworth filter. The group-delay of

the integer Butterworth filter is shown in Fig 2. Fur-

thermore, the proposed fractional filter is always stable
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because it is derived from a stable integer Butterworth

filter.

Summary of the design

(i) Design the classical integer Butterworth filter.

(ii) Obtain the factored quadratic form of each root

term of the integer Butterworth transfer function

by using the complex square roots in (16) for gener-

ating the root terms of the fractional Butterworth

filter of base-order α = 1
/

2 . The fractional Butter-

worth filter of base-order α = 1
/

4 is then derived

from the fractional Butterworth filter of base-order

α = 1
/

2. Likewise, the fractional Butterworth filter

of base-order α = 1
/

2p is then derived from the frac-

tional Butterworth filter of base-order α = 1
/

2p−1

until the targeted base-order is obtained. Further-

more, the roots of the denominator of the fractional

Butterworth transfer function of the targeted base-

order could be directly derived from the integer But-

terworth transfer function by using (23).

4.1.2 Compartmental fractional Butterworth filter

design

The proposed compartmental FBF is derived from the

integer Butterworth filter which is simulated in Simulink

using integer integral block, see [35]. Every integer in-

tegral term is compartmentally divided into its equiva-

lent fractional integral terms (If(t) =
∫ t
0
f(t)dt), based

on the semigroup property of fractional integral of the

arbitrary order IαIβ = Iα+β , stated in [34]. Conse-

quently, the integer integral block in equivalent block

diagram form can be represented by a series of frac-

Fig. 3: CFBF of base-order α = 0.5 and α = 0.25,

derived from CIBF where U(s) and X(s) are the input

and output of Butterworth filter, respectively.

Fig. 4: A block diagram of the fractional integral block.

Fig. 5: Compartmental FBF of the first order for ap-

proximating the fractional derivative term D0.7v(t).

tional integral blocks. This is additional to the prop-

erty of fractional calculus which takes the fractional

derivative term to be the right inverse of the fractional

integral term IαDα = I, where I denotes the identity or

unity. This property is valid only when considering zero

initial conditions, see [34]. Thus, any fractional deriva-

tive term can be obtained. This approach can be sum-

marised by the following two steps:

(i) Exploiting the property that the inverse operator of

the fractional integral term is the right inverse of

the fractional integral term, when considering zero

initial conditions. This allows obtaining any frac-

tional derivative term from the fractional integral

as shown in Fig. 4.

(ii) The semigroup property of the fractional integral

of arbitrary order allows splitting up an integer or-

der integral into compartmental form to produce the

targeted order.

For example, if there is a need to approximate an ar-

bitrary α derivative term of the output signal v(t) of

the Butterworth filter in Fig. 3, whose order is N = 1,

the first order integral block can be split into, for ex-

ample, α = 0.7 and β = 0.3 fractional integral blocks

as shown in Fig. 5. Considering the semigroup property

it is possible to see that a full integer order integration

still takes place, i.e. I0.7I0.3 = I, hence the function-

ality of the designed integer Butterworth filter is left

intact, but it has been possible to obtain the fractional

time derivatives of filtered input-output signals. The

fractional integral blocks are available in Simulink via

FOMCON Simulink toolbox, for more details see [44].
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4.2 Group-delay equalisation: All-pass filter

The designed FBF has been derived based on the clas-

sical integer Butterworth filter without changing its

non-uniform group-delay. Therefore, it is proposed to

adapt the all-pass filter for group-delay equalisation of

the FBF, within a selected pass-band, resulting in the

overall DFSVF. A second order transfer function of the

all-pass filter is expressed as [8]:

HAP (s) =
(s− c)2 + d2

(s+ c)2 + d2
(24)

where c > 0 for generating a stable filter and the sub-

script AP denotes all-pass filter. The group-delay of the

second order all-pass filter is given by:

TAP (ω) =
4c(ω2 + c2 + d2)

(c2 + d2 − ω2)2 + 4c2ω2
(25)

The overall group-delay of DFSVF is then defined

as the sum of the group-delays of all-pass filter and

cascaded FBF, where this should equal to a constant,

frequency independent, delay, denoted T0. According to

[8], the parameters c and d are then found by solving a

following non-linear least squares problem:

ε =

∫ ωTmax

0

[T0 − TBW (ω)− TAP (ω)]
2

(26)

where TAP (ω) and TBW (ω) are the frequency depen-

dent group delays of the all-pass filter and the integer

Butterworth filter defined in (25) and (12), respectively.

The group delay equalisation is performed only in a pre-

defined low frequency range ω = 0 to ω = ωTmax, where

at ωTmax the TBW (ω) reaches its maximum value.

When increasing the order of integer Butterworth

filter the slope of group delay TBW (ω) (equivalent to the

group delay of FBF) becomes more steep and uneven,

within the frequency range of interest ω = (0, ωTmax),

see Fig. 2. Consequently, in order to equalise the group

delay TBW (ω) higher order all-pass filter must be used.

So far, the only single second order all-pass filter has

been introduced in (24), where higher order all-pass fil-

ter can be obtained by cascading several second order

all-pass filters into stages. Consequently, as the order

of the all-pass filter increases more individual c and d

parameters must be found.

In order to assess the performance of the group

delay equalisation two following examples are consid-

ered. Firstly, a Butterworth filter with cut-off frequency

ωc = 1 (rad.s−1) and filter orders ranging from N = 5

to N = 12 is considered. A two stage all-pass filter is

selected, i.e. a cascade connection of two second order

HAP (s) filters. The number of stages is denoted M ,

where M = 2 in this example. Table 1 shows the found
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Fig. 6: Group delay of DFSVF with two stage all-pass

filter and cut-off frequency ωc = 1 (rad.s−1). The order

of Butterworth filter ranges from N = 5 to N = 12.
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Fig. 7: Group delay of DFSVF with stages of all-pass

filter ranging from M = 1 to M = 9. The order of

Butterworth filter is N = 8 with cut-off frequency ωc =

12 (rad.s−1). The case when no all-pass filter is used is

also shown, i.e. only the group delay of the Butterworth

filter is plotted.

all-pass filter parameters for stage M = 1 and M = 2,

which are denoted (c1, d1) and (c2, d2), respectively.

The table also shows the found approximated group

delay T0 and ωTmax. Corresponding Fig. 6 shows the

overall obtained group delay of the DFSVF, where the

closer the order of the all-pass filter to the order of the

Butterworth filter the better equalisation is achieved.

This is especially true for orders N = 5 and N = 6. In

other words, selecting the number of the all-pass filter

stages mainly depends on the Butterworth order.

Secondly, a Butterworth filter with cut-off frequency

ωc = 12 (rad.s−1) and a fixed order N = 8 is chosen.

All-pass filter stages range from M = 1 to M = 9

are shown in 7. Table 2 shows the found all-pass filter

parameters for all stages as well as the approximated

delay T0. In general, the higher the number of stages

the better equalisation is achieved and the higher the

value of the approximated group delay T0 is obtained.
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Table 1: Parameters of two stage all-pass filter when equalizing a Butterworth filter with cut-off frequency ωc = 1

(rad.s−1) and orders ranging from N = 5 to N = 12.

Butterworth filter Orders c1 d1 c2 d2 T0 (s) ωTmax (rad.s−1)

N = 5 0.7310 0.5594 1.1570 0.0000 10.1581 0.9236

N = 6 0.5766 0.6269 0.8300 0.0000 11.8575 0.9443

N = 7 0.4765 0.6723 0.5611 0.2198 13.4829 0.9574

N = 8 0.4086 0.6747 0.4617 0.2245 14.7928 0.9663

N = 9 0.3662 0.6675 0.4074 0.2219 15.9344 0.9726

N = 10 0.3366 0.6559 0.3708 0.2185 16.9856 0.9772

N = 11 0.3145 0.6504 0.3439 0.2152 17.9797 0.9807

N = 12 0.2972 0.6422 0.3229 0.2121 18.9351 0.9835

Table 2: All-pass filter parameters for stages ranging from M = 1 to M = 9. Butterworth filter cut-off frequency

is ωc = 12 (rad.s−1) and order N = 8.

T0 i M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9

0.8819 ci 5.6700 − − − − − − − −
di 4.5222 − − − − − − − −

1.3769 ci 8.9502 8.9500 8.9504 − − − − − −
di 5.8805 5.8806 5.8806 − − − − − −

1.7856 ci 10.698 10.698 10.698 10.698 10.698 − − − −
di 6.6533 6.6533 6.6534 6.6533 6.6533 − − − −

2.0622 ci 18.087 13.377 20.439 15.491 17.316 17.140 5.8819 − −
di 0.8265 2.7210 1.1312 1.4624 0.8546 0.8785 8.6657 − −

2.3167 ci 19.450 19.870 19.484 19.557 20.317 19.572 21.230 14.687 5.9750

di 0.4351 0.6444 0.4578 0.4910 0.8413 0.5015 1.1094 0.1490 8.7329

5 DFSVF implementation and estimation

process

The implementation and simulation of the delayed state

variable filter are essential steps to proper parameter es-

timation. The system of equation defined in the state

space representation or a transfer function can be ex-

pressed in an equivalent block diagram as a state vari-

able filter and more information can be found in [36,

2]. The equivalent block diagram allows collecting the

derivatives of the signals in clearer and easier manner

by implementing it in Simulink. It is then numerically

solved at each sample by using one of the Simulink

solvers such as the Euler or Runge-Kutta solver.

In previous sections, FBF and all-pass filter are indi-

vidually treated. However, all these filters can be com-

bined in one filter called delayed fractional state vari-

able filter for generating delayed fractional derivative

terms whether they are linear or nonlinear. Thus, the

delayed state variable filter is simulated in two steps as

illustrated in Fig. 8. The all-pass filters are firstly and

individually cascaded and simulated in Simulink.

The output of the cascaded all-pass filters is used as

an input to simulate the fractional Butterworth filter

in Simulink. From fractional Butterworth filter, all the

higher fractional derivative terms of the filtered signals

can be obtained. For instance, an arbitrary signal y(t)

is passed through the delayed fractional state variable
filter. Consequently, the filtered or delayed y(t) is pro-

duced and denoted yΓ (t). Furthermore, all the higher

fractional derivative terms DαiyΓ (t)(t) = dαiyΓ (t)(t)
dtαi

can be collected from fractional Butterworth.

Fig. 8 demonstrates the input and the outputs of the

delayed fractional state variable filter where in later sec-

tions the input will be the signals, which are collected

for identification. The system simulation and identifi-

cation process steps are illustrated in Fig. 9.

6 Simulation study

This section addresses the comparison between the pro-

posed approaches and the numerical example for non-

linear system estimations.



Design of Delayed Fractional State Variable Filter for Parameter Estimation of Fractional Nonlinear Models 11

Fig. 8: Block Diagram of the delayed state variable filter

simulation.

Fig. 9: System simulation and identification process.

6.1 Comparison of the proposed approaches

Two approaches for designing the fractional-order But-

terworth filter has been proposed in this paper, namely,

the square root base design and compartmental fractional-
order Butterworth filter design.

The comparison made in this section is used to sup-

port the selection of one approach to be used in approx-

imating the higher fractional-order derivative terms of

the output of the Butterworth filter in the numeri-

cal example that will foloow. Accordingly, in this sec-

tion, an illustrative example is used as a benchmark

to evaluate the performance of the two proposed ap-

proaches. The second order classical Butterworth filter

is used as a reference to validate both approaches and

is also used to approximate the higher fractional-order

derivative terms. For instance, if we take the Butter-

worth output v(t) and D0.25v(t) are the collected tar-

gets. The square root base fractional Butterworth filter

(SRBFBF) is second order and is shown in Fig. 10. It

can be observed that this approach has eight fractional-

order integral blocks. This requires computational time

compared to the compartmental fractional Butterworth

filter (CFBF) which only has three fractional-order in-

tegral blocks, as illustrated in Fig. 11. The simulation

runs for 5 s by using Simulink and MATLAB R©. The

solver is selected to be Runge-Kutta with 0.001s sam-

pling time. Fractional-order integral blocks are from

The FOMCON Simulink block library where approx-

imation order and frequency range are set to fifth or-

der and [0.001; 100] rad.s−1, respectively. The input

is selected as a sum of the sinusoid signals within the

range of the fractional-order integral blocks range as il-

lustrated in Fig. 12. The integral of the absolute error

(IAE) between the output and higher fractional-order

derivative terms, obtained from the integer-order But-

terworth filter, are compared with those obtained by

the CFBF and SRBFBF.

The Butterworth filter output, theDv(t) terms based

on the three different designs and the D0.25v(t) terms

of both fractional-order filter designs are shown in Figs.

13, 14, and Table 3. It can readily be seen from Table

3 that the CFBF provides a better approximation to

the reference filter, i.e. the classical Butterworth filter,

as compared to the SRBFBF in terms of IAE measure.

This improved filtering performance of CFBF is further

visible in Figs. 13, 14, where the filtered signals are seen

to be closer to their reference counterpart. The error

that is present is the numerical error associated with

each fractional-order integral block. This error scales

with the number of fractional-order integral blocks used

and consequently more pronounced for the SRBFBF.

The results, obtained from 13, and Table 3, favour se-

lection of the compartmental approach over the square

root approach. It is noteworthy to highlight that:

(I) The design process of the compartmental approach

is considerably simpler than the square root based

approach.

(II) The compartmental approach can be applied to ob-

tain any fractional-order, which is not the same with

the square root based approach that is limited by

base-order α = 1/2n .

(III) A higher numerical accuracy is achieved using the

compartmental approach relative to the square root

based approach for approximation of the same fractional-

order derivative term.

(IV) The computational time of the compartmental ap-

proach is relatively smaller than the computational

time of the square root approach.

(V) The compartmental approach presented better ca-

pability in generating any arbitrary fractional-order

derivative terms.

This leads to the compartmental approach being the

favourable method; adopting this method also increases

the adaptability to non-commensurate systems.

The major advantages of the proposed designs and

filters over the published approaches are their general-

ity and simplicity. Several authors have published on
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Fig. 10: The upper part shows the transfer function of the two subsystems representing fractional-order-

Butterworth filter and the equivalent block diagram by applying square root base for base-order α = 1/2 where

α = 1/4 and ωc = 1.

Fig. 11: Second order fractional-order Butterworth filter

using compartmental approach where ωc = 1.

Fig. 12: Input is used for simulation.

how to extend the approximated integer Butterworth

filter to an FBF. For example, Soltan, Rawan and Soli-

man [41] have extended a two element integer But-

terworth filter to fractional-order in the case of the

commensurate order and higher commensurate orders,

see [1]. In their work, similar coefficients of a classi-

cal integer Butterworth filter are used for FBF. This

filter was been further extended to have two different

non-equal base-orders for non-commensurate orders in

[42]. This is achieved by first transforming the FBF to

the frequency-domain. The generated nonlinear equa-

tion is then optimised to obtain the best flat gain, with

consideration given to stability. However, these are no

Fig. 13: Bold grey solid-line is the integer-order But-

terworth filter output v(t), black doted-line and black

dashed-line represent the CFBF output v(t) and the

SRBFBF output v(t), respectively.

Fig. 14: Bold grey solid-line is the derivative term

Dv(t) of the integer-order Butterworth filter and black

doted-line and black dashed-line represent the deriva-

tive terms Dv(t) of CFBF and SRBFBF, respectively.

straightforward solutions. Rather, they depend on knowl-

edge and experience associated with limited, integer,

orders. Moreover, in the cited examples, a two element
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Table 3: The calculated IAE performance measure to-

gether with corresponding frequency ranges for different

integer model orders of approximated fractional mod-

els.

IBF CFBF SRBFBF

Computational time 0.4228s 0.9568s 1.0270s

0 0.0036 0.0180

0 0.0015 0.0262

Fig. 15: The equivalent block diagram of (27) with con-

sidering noise.

equivalent circuit model is used, where it is relatively

easy to adapt fractional-order theory, but this approach

becomes increasingly more complex as the number of

elements increase.

6.2 Numerical example

The performance of the presented delayed fractional

state variable identification approach is demonstrated

on a parameter estimation problem of fractional non-

linear Duffing’s oscillator [36]. The system model is de-
scribed by a following ordinary fractional nonlinear dif-

ferential equation:

S

{
a0Dα2x(t) + a1Dα1x(t) + a2x(t) + v0x

3(t) = b0u(t)

y(tk) = x(tk) + e(tk)

(27)

where the measured output is corrupted by additive,

white, zero mean noise with Gaussian distribution with

variance σ2
e . The noise variance is selected such that

a prescribed signal to noise ratio, denoted SNR, is

achieved. The SNR is defined in dB by 10 log(σ2
x/σ

2
e),

where σ2
x denotes the variance of noise free system out-

put x(t). The model parameters are chosen to be: a0 =

1, a1 = 1, v0 = 0.6, b0 = 1 and parameter a2 is nor-

malised to unity. Two fractional order cases are consid-

ered, firstly, commensurate with α1 = 0.5 and α2 = 1

and, secondly, non-commensurate fractional order with

α1 = 0.7 and α2 = 1.

The system in (27) can be simulated in Simulink by

using equivalent block diagram as shown in Fig. 15.

The input signal is selected to be a sum of 10 sinu-

soids whose bandwidth is ω = 1 (rad.s−1). The highest

frequency of system, required to be covered is approx-

imately 3-5 times the bandwidth of the input signals.

This is because for low pass characteristics and systems

having mild nonlinearities, the response of the system

output can be well tackled by the first 3-5 Volterra ker-

nels [50].

This simulation has been run over a time period of

50 (s) with a simulation time step of Ts = 0.001 (s).

The selected Simulink solver is ode4 (Runge-Kutta).

The Simulink fractional integral block-set, required to

implement FBF, is provided by FOMCON Simulink li-

brary with the following setting: The interesting fre-

quency range of the fractional integral term has been

selected to be [0.001, 1000] (rad.s−1) in order to guar-

antee the noise in high frequencies is not filtered by the

integral approximation. The FOMCON library uses the

modified Oustaloup method and the coefficient selec-

tion is connected more to the numerical study require-

ments but not connected with the DFSVF implemen-

tation. There are more numerical methods for approx-

imating the fractional integral terms such as Carlson’s

and Matsuda’s methods [38]. The DFSVF has been de-

signed with eighth order FBF, N = 8, and cut-off fre-

quency of ωc = 12 (rad.s−1). Nine stages of the sec-

ond order all-pass filter, M = 9, are chosen to achieve

approximately constant group-delay. The bandwidth of

the Butterworth filter is selected to handle the entire

output range of frequencies.

Figs. 16a, 16b and 17 show the performance of the

selected commensurate DFSVF applied to system input

and output signals, respectively, with SNR = 20dB.

For example, considering Fig. 16a, the filtered input

signal (solid black line) is delayed approximately by

2.3 (s), while only little to no shape distortion is cased

by the filtering process, as expected. Furthermore, the

noise in the filtered output has been significantly re-

duced as shown Fig. 16b because the DFSVF performs

as a low pass filter. Fig. 17 shows the noise-free frac-

tional signal derivatives D0.5x(t) (solid black line) and

Dx(t) (dashed black line) and their corresponding fil-

tered measured counterparts D0.5y(t) (solid grey line),

andDy(t) (dashed grey line), respectively. A small shape

distortion of the filtered derivative signals is visible in

Fig. 17 due to relatively high signal to noise ratio, as

expected, indicating a high performance of the designed

DFSVF.

Table 4 presents Monte Carlo simulation study re-

sults, where 50 runs with random measurement noise

realisation for each run are considered. The mean and
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Fig. 16: Subplot (a) shows sampled input signal u(t)

(solid grey line) and filtered input uΓ (t) (solid black

line). Subplot (b) shows noise-free output x(t) (dashed

black line), measured noisy output y(t) (solid grey

line), and filtered noisy output yΓ (t) (dashed black

line). Commensurate system order is considered for

SNR = 20dB.
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Fig. 17: Noise-free fractional signal derivatives D0.5x(t)

(solid black line) and Dx(t) (dashed black line) with

their corresponding filtered measured counterparts

D0.5y(t) (solid grey line) and Dy(t) (dashed grey line).

standard deviations of parameter estimates are pre-

sented for comparing the statistical efficiency of the

proposed identification approach. Two different noise

strengths scenarios are evaluated with low SNR = 10dB

and high SNR = 20dB. The obtained results indicate a

high parameter estimation accuracy for both the com-

mensurate and non-commensurate system orders de-

spite the presence of significant measurement noise.

7 Conclusions

The delayed fractional state variable identification ap-

proach for parameter estimation of a class of fractional

nonlinear ordinary differential equation models, in the

continuous-time domain, has been presented. The core

part of this approach comprises of the proposed de-

layed fractional state variable filter (DFSVF) in a con-

nection with a suitable parameter estimation method.

The DFSVF contains a cascade of all-pass filters, for

group delay equalisation, and proposed, a novel, frac-

tional Butterworth filter (FBF).

The comparison study illustrates that the compart-

mental fractional Butterworth filter (CFBF) showed

better performance in the delayed fractional state vari-

able identification approach over the square root base

fractional Butterworth (SRBFB) of in terms of gener-

ality (the proposed CFBF can generate any arbitrary

fractional terms while SRBFB is limited with base-

order α = 1/2n), simplicity and computational accuracy

and computational time. However, both approaches and

FBF offer the following advantages: i) they are simpler

in derivation because they are built on the well-known

integer Butterworth filter. The extra step is to use well-

known properties of the integral and avoiding the use

of optimisation algorithms or square roots of complex

terms; iii) the performance of the proposed FBF gen-

erates and guarantees maximum flat gain because it

holds the properties of the integer Butterworth filter;

and iv) the proposed compartmental and square root

base approaches can be mapped to extend any other

linear filter directly from the classical integer linear fil-

ter.

The required property of the DFSVF is to have a

maximally flat magnitude response and constant group

delay in a selected frequency band in order to achieve

the required commutative property for subsequent model

parameter estimation. It has been revealed that the or-

der of all-pass filter depends on the order of fractional

Butterworth filter and the selected cut-off frequency of

DFSVF.

The presented delayed fractional state variable iden-

tification approach is demonstrated on a parameter es-

timation problem of fractional nonlinear Duffings os-

cillator and its performance has been assessed via a

Monte-Carlo simulation study. The measured, sampled,

input-output data were used to show the practicality

of the proposed method. A consistent performance has

been achieved for various noise strength scenarios with

small standard deviations of parameter estimates.

In addition to the advantages of the aforementioned

CFBF and SRBFBF, the properties of a low pass-filter

allow the DFSVF to reduce the effect of high frequency

noise. The commutative property of DFSVF further al-

lows the nonlinear estimation problem to be expressed

as a linear estimation problem by using the classical

state variable filter. This increases the possibility of

canceling the effect of coloured noise directly from the

filtered (delayed) data by, for instance, using pre-filtered

techniques and extending the proposed algorithm to an
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Table 4: Monte Carlo simulation results for fractional-order continuous-time nonlinear commensurate (α1 =

0.5, α2 = 1) and non-commensurate (α1 = 0.7, α2 = 1) system.

System order SNR true a0 = 1 a1 = 1 v0 = 0.6 b0 = 1

Commensurate

10dB
mean 1.0012 1.0013 0.6289 1.0010

std 0.0131 0.0301 0.2271 0.0120

20dB
mean 1.0004 1.0004 0.6091 1.0003

std 0.0041 0.0095 0.0713 0.0038

Non-commensurate

10dB
mean 1.0003 1.0035 0.6191 1.0014

std 0.0193 0.0279 0.1625 0.0087

20dB
mean 1.0001 1.0011 0.6061 1.0004

std 0.0061 0.0088 0.0512 0.0027

on-line application. This extends the applicability of

the proposed approach to fields of model based systems

monitoring, fault detection, adaptive observer design,

and adaptive control.

For further work, the proposed approach will be

compared with other approaches such as the optimisa-

tion based approaches to highlight strengths and weak-

nesses in light of different noise processes.
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identification of an aluminum rod using fractional cal-
culus. IFAC Proceedings Volumes 42(10), 958 – 963
(2009). DOI https://doi.org/10.3182/20090706-3-FR-
2004.00159. 15th IFAC Symposium on System Identi-
fication

33. Mani, A.K., Narayanan, M.D., Sen, M.: Parametric iden-
tification of fractional-order nonlinear systems. Nonlinear
Dynamics (2018). DOI 10.1007/s11071-018-4238-6. URL
https://doi.org/10.1007/s11071-018-4238-6

34. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-
Batlle, V.: Fractional-order systems and controls: funda-
mentals and applications. Springer Science & Business
Media (2010)

35. Nise, N.: Control systems engineeringl, 6 edn. Wiley
(2011)

36. Petras, I.: Fractional-order nonlinear systems: modeling,
analysis and simulation. Springer Science & Business
Media (2011)

37. Raja, M., Chaudhary, N.: Adaptive strategies for param-
eter estimation of box-jenkins systems. IET Signal Pro-
cessing 8, 968–980(12) (2014)

38. Sheng, H., Chen, Y., Qiu, T.: Fractional processes and
fractional-order signal processing: techniques and appli-
cations. Springer-Verlag London Springer (2012)

39. Sierociuk, D., Dzielinski, A.: Fractional kalman filter al-
gorithm for the states, parameters and order of fractional
system estimation. International Journal of Applied
Mathematics and Computer Science 16(1), 129 (2006)

40. Simpkins, A.: System identification: Theory for the user,
2nd edition (ljung, l.; 1999) [on the shelf]. IEEE
Robotics Automation Magazine 19(2), 95–96 (2012).
DOI 10.1109/MRA.2012.2192817

41. Soltan, A., Radwan, A., Soliman, A.M.: Butterworth pas-
sive filter in the fractional-order. In: International Con-
ference on Microelectronics, pp. 1–5. IEEE (2011)

42. Soltan, A., Radwan, A., Soliman, A.M.: Fractional order
filter with two fractional elements of dependant orders.
Microelectronics Journal 43(11), 818–827 (2012)

43. Tang, Y., Zhang, X., Hua, C., Li, L., Yang, Y.: Pa-
rameter identification of commensurate fractional-order
chaotic system via differential evolution. Physics Letters
A 376(4), 457 – 464 (2012)

44. Tepljakov, A., Petlenkov, E., Belikov, J.: Fomcon:
Fractional-order modeling and control toolbox for mat-
lab. In: Proceedings of the 18th International Confer-
ence Mixed Design of Integrated Circuits and Systems -
MIXDES 2011, pp. 684–689 (2011)

45. Tsang, K., Billings, S.: Identification of continuous time
nonlinear systems using delayed state variable filters. In-
ternational Journal of Control 60(2), 159–180 (1994)

46. Verhulst, F.: Nonlinear differential equations and dynam-
ical systems. Springer Science & Business Media (2006)

47. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Pa-
rameter and differentiation order estimation in fractional
models. Automatica 49(4), 926 – 935 (2013). DOI
http://dx.doi.org/10.1016/j.automatica.2013.01.026

48. Wang, L., Gawthrop, P.: On the estimation of continuous
time transfer functions. International Journal of Control
74(9), 889–904 (2001). DOI 10.1080/00207170110037894

49. Welty, J.R., Wicks, C.E., Rorrer, G., Wilson, R.E.: Fun-
damentals of momentum, heat, and mass transfer. John
Wiley & Sons (2009)

50. Wiener, D., SPINA, J.: Sinusoidal Analysis and Mod-
elling of weakly Non-linear Circuits. New York: Van Nos-
trand Reinhold (1980)

51. Winder, S.: Analog and digital filter design. Newnes
(2002)

52. Young, P.C.: Recursive estimation and time-series anal-
ysis: An introduction for the student and practitioner.
Springer Science & Business Media (2011)

53. Zhang, B., Billings, S.: Identification of continuous-time
nonlinear systems: The nonlinear difference equation
with moving average noise (ndema) framework. Mechan-
ical Systems and Signal Processing 60, 810 – 835 (2015)

54. Zhao, Y., Baleanu, D., Cattani, C., Cheng, D., Yang, X.:
Maxwell’s equations on cantor sets: a local fractional ap-
proach. Advances in High Energy Physics 2013 (2013)


