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Abstract
Industrial and service robots deal with the complex task of grasping objects that have different shapes and which are seen
from diverse points of view. In order to autonomously perform grasps, the robot must calculate where to place its robotic
hand to ensure that the grasp is stable. We propose a method to find the best pair of grasping points given a three-
dimensional point cloud with the partial view of an unknown object. We use a set of straightforward geometric rules to
explore the cloud and propose grasping points on the surface of the object. We then adapt the pair of contacts to a multi-
fingered hand used in experimentation. We prove that, after performing 500 grasps of different objects, our approach is
fast, taking an average of 17.5 ms to propose contacts, while attaining a grasp success rate of 85.5%. Moreover, the method
is sufficiently flexible and stable to work with objects in changing environments, such as those confronted by industrial or
service robots.
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Introduction

Robotic grasping is an important topic in industrial and

service robotics with a broad multidisciplinary approach,

such as motion planning, control and perception, among

others.1 The grasping problem focuses on determining a

set of contact points on the surface of the object in order

to automatically carry out a manipulation task, either using

robots with grippers or multi-fingered hands.2 Computed

contacts can be evaluated with multiple metrics.3,4 In short,

they should provide stable grasps by considering the kine-

matic constraints of the robot.

The field of robotic grasping when robots operate in

unknown environments or under changing conditions is

still being researched. These situations are currently

becoming more frequent in a wide variety of applications

within Industry 4.0, such as the flexible manufacturing

processes in smart factories,5 the restocking and ware-

house tasks in smart stores,6,7 automated deliveries from

distribution centres and logistics8 or household assis-

tants,9 among others.
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In all of these applications, robots still confront difficul-

ties when attempting to grasp objects of different shapes,

sizes and materials. Even more if the object is unknown to

the robot and it does not have prior knowledge of it. Main-

taining a database of known objects is a complicated task,

since there are many possible configurations as regards the

geometry and appearance of the same item. Even when

objects are known, the grasping task is still made difficult

by issues like the light conditions, the variety of positions

that can be adopted by them and the changing orientation

during the grasp.

In order to attain robots that can autonomously perform

grasps, it is often used information acquired from different

sensors integrated as part of the autonomous robotic sys-

tem.10 Thereby, the autonomous manipulation can exploit

force and torque data,11 vision systems,12 tactile informa-

tion13 or combine several of them. In this work, we exploit

a three-dimensional (3D) vision sensor.

Related work

In our work, we use a single point cloud with a partial view

of the objects present in the scene. Moreover, the objects

are unknown: they have not been previously recognized

and we do not have a 3D computer-aided design (CAD)

model to compute candidate grasping points. Our main goal

is to estimate a pair of 3D-located points on the surface of

the object in order to enable a robotic grasper (either a

gripper or a multi-fingered hand) to perform a stable grasp

of the object in the scene with no information other than the

point cloud.

Previous vision-based grasping systems proposed in the

literature usually take multiple views to detect and identify

the object in front of the robot. Once they recognize the

object and its pose, they proceed to calculate potential con-

tact points using stored 3D CAD models. Some recent solu-

tions find these grasping configurations by using machine

learning techniques trained on large data sets or in

simulation.

Salichs et al.14 discuss the decision-making process in

robotics. They state that there are different levels of auton-

omy given the degree of high-level decisions that are made

by the robot. When objects are reconstructed to retrieve

grasps from 3D models, the robot does not have any level

of autonomy as regards the grasp computation because this

is delegated to an offline computation. As for the machine

learning cases and, more remarkably, in reinforcement

learning approaches, the authors leave the whole decision

process to the machine and cannot predict its behaviour. In

our case, we have decided to provide the robotic system

with the tools required to discover how it should approach

objects and grasp them. The system is autonomous, but we

know what strategies it uses and how it behaves.

In this work, we focus solely on those vision technique-

based approaches that are used to obtain object information

and calculate the grasping contact. We consequently

identify three main different approaches for the problem

of robotic grasping, depending on the level of autonomy

or the contact calculus methodology.

Object reconstruction and template grasp retrieval

Some authors have dealt with this problem by reconstruct-

ing meshes, given multiple views of the object, and then

computing the grasping points on CAD models. For

instance, Varley et al.15 proposed a system that segmented

an input point cloud in order to find the objects present in

the scene. After reconstructing them as meshes, they ran the

GraspIt! simulator16 that calculated the best grasp config-

uration for a three-fingered robotic hand. Some authors

have proposed approximating the object’s surface: com-

pleting its symmetries17 or regenerating a similar model

using Gaussian Processes.18 They then searched for the

final grasp pose by optimizing a function that evaluates the

distance between the centre of the reconstructed object and

the centroid of the polygon formed by the fingertips.

With regard to template grasps retrieval, some authors

have proposed to use a database of pre-calculated grasps on

segmented meshes of real objects.19 During the real execu-

tion of the system, the robot decomposed the RGBD image

of the object into meshes of primitive forms like cylinders.

The authors then matched these parts against template

grasps. Similarly, Jain and Argall20 described an algorithm

to match whole real objects against geometric shapes (i.e.

spheres, cylinders, boxes) rather than parts of them. Once

they found the corresponding primitive, the authors prede-

fined a set of fixed strategies that could be used to grasp

those shapes.

This methodology can work to grasp known objects but

it does not generalize properly to unseen ones. This is

owing to the fact that it is limited to a previously recorded

set of shapes. In addition, it needs multiple views in order to

reconstruct the object and match it against a CAD model. In

a real scenario, such as that of a restocking robot, these are

restrictions that would result in the robot being stuck in the

case of confronting an unknown object or if it cannot move

to take sufficient multiple views.

Machine learning

The latest advances in machine learning have led to a new

set of solutions that consider the problem of finding the best

grasping pose as a classification task. Firstly, Jiang et al.21

introduced the idea of the grasping rectangle: an oriented

rectangle in the two-dimensional (2D) image space, in

which two of the opposite borders corresponded to a grip-

per’s plates and the other two represented the gripper’s

opening. The authors used RGBD labelled images to find

the best ranked grasping rectangle using a support vector

machine. In recent years, this grasping rectangle has been

extensively researched using more complex techniques.

For instance, some authors have explored the use of
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convolutional neural networks (CNNs) to learn this repre-

sentation.22–25 They input whole RGBD images or subsets

of these channels in order to train networks that generate

grasping rectangles and rank them.

Although these approaches have proved to achieve high

grasping rates, they require a significant amount of cor-

rectly, labelled data and also enormous computation cap-

abilities and amounts of time. This is necessary to fine-tune

both the learning architectures and their hyper-parameters

in order for them to generalize well to unknown objects.

Some authors have collected data sets with synthetic

RGBD images and point clouds so as to overcome this

problem.26 Some works have collected thousands of real

robotic grasping attempts by running several robots for

hundreds of hours.27,28 From our point of view, all of this

requires a hardware architecture that is limited to just a few

researchers.

There are also solutions that apply reinforcement learn-

ing. Some approaches explored the possibility of learning

to grasp through the use of a real robot.29–31 This led to

long, time-consuming experiments with no prior knowl-

edge of possible future success. Following works attempted

to deal with this problem by performing the reinforcement

learning on a simulator.32,33 Some authors have processed

simulated images with adversarial methods34–36 to produce

life-like images of the robotic grasps. These methods no

longer require labelled data sets but they struggle with

problems like transferring the learnt grasping policies to

the real world and to visually changing environments.

Point cloud analysis

Three-dimensional point clouds have some advantages

over 2D RGBD images, like containing rich information

about the volume, surface and location of the objects. In

this area, Richtsfeld and Vincze37 were one of the firsts to

propose a method for computing a set of grasping points

using this information. The authors first searched for the

top planar surface of the object and then selected the closest

point to the centroid at the edge. The second contact point

was then located on the opposite rim. Later on, Gori et al.38

proposed a whole pipeline for finding triplets through the

use of a variant of the Discrete Particle Swarm Optimiza-

tion algorithm. The authors defined a set of specific prop-

erties that the triplet should satisfy, related to the robotic

hand in use, in order to retrieve stable grasps from incom-

plete 3D point clouds.

More recently, ten Pas et al.39–41 computed grasping

candidates by locating antipodal configurations on the

object in order to produce antipodal grasps using a gripper.

Therefore, they were able to find points at which an enclos-

ing gripper would apply opposite, colinear forces to per-

form stable grasps. They further developed this method in

such a way that a representation of the surface of the object,

contained within the enclosing antipodal configuration,

was introduced into a CNN that ranked whether or not it

was in frictionless equilibrium and improved the grasping

success rate.

Last, Zapata-Impata et al.42 presented another approach

in which a set of contact points were found by doing a

geometrical analysis of a single point cloud. Firstly, their

method segmented the point cloud to detect the objects

present in the scene, which were unknown. For each object,

the authors approximated their main axis as well as their

centroid. Using this, their proposal sampled potential grasp

points that were evaluated using a set of constrains, which

theoretically guaranteed the most stable grasp.

For our work, we chose to use 3D point clouds because

we find advantages in the use of this type of structure for

robotic grasping. 3D point clouds contain geometric infor-

mation about the objects, like the curvature of their surface.

It is of great value for computing grasping points getting to

know whether the potential contact areas are highly curved,

since that could mean a less stable surface. In addition,

knowing the location of the object in the 3D world can

solve problems like finding a 6D pose for the gripper so

that it can perform the computed grasp. Finally, if one uses

the volume information captured in the 3D point cloud, it

would be possible to know whether the computed grasp

wraps the whole object. For all of these reasons, this article

is developed on top of the 3D geometric method introduced

by Zapata-Impata et al.42

We improve the ranking function they proposed in order

to find grasps that are more promising. Moreover, we pro-

pose a way of adapting the pair of contact points calculated

to grippers as well as multi-fingered hands. In contrast to

their work, we analyse the grasping computation in a real

system and test it on a real set-up grasping everyday

objects. All in all, the proposed method offers advantages

over previous approaches and overcomes some of their

limitations. These are the main contributions of this work:

1. We define an improved version of the ranking

metric introduced in Zapata-Impata et al.42 for eval-

uating a pair of contact points in order to find the

best grasp configuration. It is parameterized by the

morphology of the robotic hand in use so it is adap-

table to different hands or grippers.

2. Extensive real experiments are carried out to prove

the effectiveness of the grasping computation. We

demonstrate that the proposed method generalizes

well to diverse objects and geometries. To achieve

this, the proposed method is integrated in a real

robotic system.

3. The proposed method is fast so it can be used in

real-time scenarios. It consists of a set of straight-

forward generic rules that can be rapidly computed.

As a consequence, our method spends half of the

time processing a scene than the current state of the

art.

4. We explore how the computed contact points can be

adapted to multi-fingered hands, demonstrating in

Zapata-Impata et al. 3



real experiments that this method proposes feasible

grasps for these kind of morphologies.

The remainder of the article is organized as follows:

Section ‘System architecture’ describes the data acquisition

system, the real robotic set-up used and their constraints.

Section ‘Grasping points computation’ details the method

used to segment the input cloud, find the candidate grasp-

ing points areas and rank potential contact points. More-

over, this section details how we find the grasper’s pose.

Section ‘Grasp execution system’ explains the methodol-

ogy followed to execute grasps in the real set-up. Section

‘Experimentation’ shows the results obtained after grasping

a set of everyday objects. Finally, section ‘Conclusions’

presents our conclusions.

System architecture

In this section, we describe our robot set-up used to carry

out experiments in the laboratory, the RGBD camera that

recorded the input point clouds, and the objects that we can

process and grasp, which are influenced by the hardware.

Data acquisition

We carry out this work using an Intel RealSense SR300

depth camera, which projects a coded infrared pattern in

order to calculate depth images and generate point clouds.

This camera has an optimal recording distance of between

0.2 and 1.5 m. Due to its technology, we are constrained to

record opaque objects and to avoid dark colours. Because

of the wavelength of the light emitted, the camera does not

properly see translucent or dark objects since they reflect,

refract or absorb the light.

Regarding the stiffness of the objects, we do not work

with highly deformable bodies like pieces of clothing.

These are usually grasped by following different strategies,

such as detecting the points which the gripper should

pinch.43 In addition, their dynamics require further super-

vision of shape deformation after the first grasping con-

tact.44 Nevertheless, our proposed grasping points can be

used as an initial pair of contacts for this type of objects.

Robot set-up

In our laboratory, we have a robotic torso that comprises

two robotic arms and two robotic hands. We have tested our

algorithm using the left-hand side of the robot. It consists of

a Mitsubishi PA-10 industrial robotic arm with 7 degrees of

freedom (DoF). Its end effector is an Allegro robotic left

hand, which is a four-fingered hand that has 16 DoF, four

for each finger, and is capable of holding up to 5 kg. Figure

1 shows the robotic arm and hand configurations. There is a

table in front of the robotic torso on which we place the

working objects. The whole robot is shown in the bottom-

right corner of the figure. OH stands for the reference frame

of the hand, OC is the reference frame of the camera and

OW is the world’s origin.

The visual system for 3D robot positioning uses an eye-

to-hand configuration in which the camera is located exter-

nally to the robot. The reason for having our camera fixed

in this position and not placed like a head on the top of the

torso is to ease the configuration of the arm. If the camera is

on the top of the robot acting as a head, the point of view

will produce grasping points in front of the torso. Since the

PA-10 is a long arm, its working space would be limited if

we were to constrain it to grasp objects frontally because

most of the configurations of the arm would collide with

the torso. By placing the camera on the left, it will be more

feasible for the arm to reach the proposed contact points.

Grasping points computation

In order to compute a pair of grasping points, we first

segment the input point cloud to find the objects that are

present in the scene. For each object, we then find two

candidate areas on their surface. We rank combinations of

points from these two areas using a custom function. The

best-ranked pair guarantees the most stable grasp config-

uration, given the view conditions. The entire method

described during this section is graphically summarized

in Figure 2.

We receive a single point cloud C containing the

scene of the objects that we want to grasp. Let

p ¼ ðpx; py; pzÞ 2 C define any point in the cloud. In order

to detect the objects, we begin by filtering out the back-

ground: any point whose z-component fulfils the condition

pz > 1:5 m is removed. We then find the table represented

by a plane T by running random sample consensus.45 Once

the points p 2 T have been extracted from the cloud C, an

Euclidean Cluster Extraction process from the Point Cloud

Library46,47 is run to detect each of the K objects’ clouds

Ck . Figure 2 (Scene Segmentation) shows the result of this

scene segmentation.

Figure 1. Left arm of our robot comprising a Mitsubishi PA-10
and a left Allegro robotic hand. In the bottom-right corner, a view
of the whole robot and the working table.
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From here, the remainder of the method description

focuses on working with one object. By repeating the fol-

lowing steps with every point cloud Ck , we compute a pair

of contact points for each of the K detected objects.

Grasping areas

It is necessary to find a grasping area for each of the two

contact points at which the candidate grasping points will

be located. Let Ck be the point cloud of one of the detected

objects. We begin by filtering outliers from the surface in

order to reduce noise. Next, we calculate the centroid c of

the cloud. We also find the main axis ~v of the object by

running a principle component analysis (PCA) in order to

approximate its orientation. This information is then used

to compute a cutting plane g with a normal vector ~ng par-

allel to ~v and that contains the centroid c. We subtract a

sub-cloud D � Ck from the intersection of the plane g and

the point cloud of the object Ck . This sub-cloud D holds the

points which are within 7 mm of the cutting plane g, mea-

sured on the axis of the object~v. This distance is the best

found empirically as regards the dimensions of the objects

used in the experimentation, as well as the density of the

point clouds recorded in the optimal work range of the

camera in use. See Figure 2 (Grasping Areas – b) for a

representation of these elements.

We define two geometric rules to find the grasping areas

in the cloud D. The basic idea is to determine which of the

axes of the object is more easily graspable. Inspired in the

way humans usually grasp objects, our objective is to per-

form grasps in a perpendicular direction to the main axis of

the object and close to its centre of mass. It is for this reason

that we calculate the cloud D perpendicular to ~v and

through the centroid c.

Let OC ¼ ðX C; Y C; ZCÞ define the axes of the reference

frame of the camera, where X C is left to right from the point

of view of the camera, Y C is from top to bottom and ZC is

pointing towards the table (see Figure 1 for a graphical

representation of OC). Thus:

1. If~v is more parallel than perpendicular to the plane

T of the table and to the X C axis, then the object is

lying on the table oriented towards this X C axis.

We will search for the candidate grasping points in

the two opposite areas of the ZC axis. Parallelism

to the table is estimated checking if the cosine of

the angle defined between~v and the normal vector

~nT of the table is smaller than the sine. And for

estimating if ~v is parallel to X C , the cosine of the

Figure 2. Summary of the proposed method for computing a pair of contact points. Symbols are explained through the section. Scene
segmentation: (a) original cloud and (b) segmented objects. Grasping areas: (a) cloud of the object, (b) centroid, axis, cutting plane and
cutting cloud, (c) initial points and grasping areas. Points ranking: (a) curvature and normal vector of potential points, (b) samples of
evaluated pairs of contacts, (c) best ranked points and connecting line.
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angle defined between these vectors must be

greater than the sine.

2. Otherwise, the object is standing up or lying on the

table oriented towards the ZC axis. Therefore, the

candidates will be in opposite areas along the X C

axis.

By simply defining these two rules, we find the grasping

areas for any object in any orientation. We avoid the Y C

axis because it is parallel to the normal vector ~nT of the

table so it includes the points of the object in contact with

the surface of the table. Any proposed contact point in this

area would produce a colliding configuration of the hand.

We now search for the initial candidate grasping points

p1; p2 2 D. If the first rule is met, then p1; p2 are the points

with the maximum and minimum value in the component

pz in the cutting cloud D. Otherwise, they have the max-

imum and minimum value in the component px. Let S1; S2

be two spheres with a radius r and centred in p1; p2,

respectively. We extract two new sub-clouds such that

they fulfil Q1 ¼ S1 \ Ck and Q2 ¼ S2 \ Ck . That is, the

clouds Q1;Q2 hold the potential contact points in

the cloud of the object Ck that are within the volume of

the spheres S1; S2, comprising our proposed grasping

areas. Figure 2 (Grasping Areas – c) shows the initial

points and the grasping areas.

These spheres initially have a radius that is equal to

r ¼ 2� f ingerTipWidth, being f ingerTipWidth the fin-

gertip width (or the diameter in the case of spherical tips)

in millimetres. This value is a configurable parameter

of the method. If the approximated width of the

object, calculated as wobj ¼ L2normðp1; p2Þ, meets the

condition wobj � 2� r, then we change the radius to

r ¼ ðwobj � 0:9Þ=2 in order to adapt the grasping areas

to the size of the object. This is done because we want

to have plenty space to explore possible contact points that

are reasonably different from each other, given the robotic

hand in use, but at the same time stay close to p1; p2.

Grasping points ranking

Before evaluating the contact points, we create voxels in

the clouds Q1;Q2 in order to make this step faster. It is not

necessary to rank every combination of points that config-

ure a potential grasp. For example, if a point has a high

curvature value, its neighbours are likely to have similar

values. Since we want to avoid those areas, voxels can

help us skip them rapidly. We compute voxels using a

radius dependent on f ingerTipWidth in order to ensure

that the remaining representative points in the grasping

areas are reasonably distant from each other, regarding

the hand in use. More precisely, we have used a factor

equal to voxelRadius ¼ f ingerTipWidth � 0:5. This was

empirically estimated to provide good results in a wide

variety of experiments, as will be shown in section

‘Experimentation’.

Let Y ¼ fq1 2 Q1; q2 2 Q2g be a grasp configuration

whose contact points are one point qi from each of the

voxelized grasping areas Qi. We propose using a ranking

function to choose the two best points by assessing the

potential stability of the grasp, considering the following

factors:

Distance to the cutting plane g. This plane is cutting the

object in half through its centroid c, so the closer the

grasping points q1; q2 are to the plane g, the closer they

are to our reference of the centre of mass of the object.

Humans usually grasp objects by taking this into account

in order to perform balanced grasps. This distance is cal-

culated as distðg; qiÞ ¼ jj~ng � qi þ of f setjj, where~ng is the

unitary normal vector of the cutting plane g, qi is one of

the grasping points and of f set is the distance between the

plane and the world’s origin. Afterwards, we scale sepa-

rately on each grasping area the distance values so the

closest point in the area to the cutting plane has a distance

value equal to 0.0 and the furthest has a distance equal to

1.0. Therefore, this distance is scaled in a general way

which is independent of the object.

Curvature of the point. A grasp is more likely to be stable if

we perform it by placing our fingertips on flat areas instead

of on highly curved points. We introduce this into our

algorithm by measuring the variation in position between

a point and its neighbours, a feature that is called curvature.

This is estimated by applying the method presented by

Pauly et al.48 We first compute the covariance matrix of

the points within a sphere from the reference point, the

point to which we are measuring its curvature, using PCA.

Then, we obtain the eigenvalues and eigenvectors from

Singular Value Decomposition. The curvature can accord-

ingly be computed as lp ¼ l0=ðl0 þ l1 þ l2Þ, where lp is

the curvature of the reference point and li is each eigenva-

lue in which i ¼ 0 is the smallest and i ¼ 2 is the biggest.

Figure 2 (Points Ranking – a) shows the curvatures and

normal vectors on a cloud. Curvature values are scaled to

the range ½0:0; 1:0� on each of the grasping areas. In con-

sequence, lqi
¼ 0:0 when the curvature of the point qi is the

smallest in the area, which does not imply that it is com-

pletely flat but less curved than the rest.

Antipodal configuration. An antipodal grasp configures the

hand in such a way that it applies opposite and collinear

forces at two points on the surface of the object. A pair of

contact points with friction could approximate an antipodal

grasp if these two points lie along a line parallel to the

direction of finger motion. In order to approximate this in

our ranking function, the angle aqi
between the normal~nqi

of the ith contact point and the vector ~w that connects q1

and q2 should be close to zero (see Figure 3). In conse-

quence, when the robotic fingers close at these two points

applying forces through the connecting line ~w, having par-

allel normals ~nqi
to this line will ensure that the contact
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surfaces are parallel but in opposite directions. Thus, the

fingers will be able to maintain a stable grip because their

forces are aligned with the normals of the object. However,

to guarantee that both aq1
and aq2

are close to zero, we

penalize configurations by measuring their difference.

Perpendicular grasp. Since our grasping areas are spherical,

there are chances that the grasp configuration Y will not be

parallel to the cutting plane g. We want our points to be at

equal distances from it so the grasps are perpendicular to

the main axis~v of the object, which is also something that

humans do to avoid slippery grasps. In order to control this,

the connecting vector ~w should have an angle b with the

normal~ng of the cutting plane, which is a reference parallel

to the axis~v of the object, close to 90� in order to configure

a perpendicular grasp.

Taking these four factors into account, we propose the

following ranking function to assess the potential stability

of a grasp configuration Y

rankðq1; q2Þ ¼ w1� r1ðq1; q2Þ þ w2� r2ðq1; q2Þ
r1ðq1; q2Þ ¼

�
1:0� distðg; q1Þ

�
þ
�

1:0� distðg; q2Þ
�

�
�

cosðbÞ � 0:2
�
� 10:0

r2ðq1; q2Þ ¼ ð1:0� lq1
Þ þ ð1:0� lq2

Þ þ cosðaq1
Þ

þ cosðaq2
Þ � jjcosðaq1

Þ � cosðaq2
Þjj

ð1Þ

Configurations ranked with our function equation (1)

can have a maximum value equal to 8.0, if

w1 ¼ w2 ¼ 1:0. Grasping configurations ranked with val-

ues close to that maximum are, according to our proposal,

more likely to be stable and successful. We decided to split

our ranking function into two sub-functions because they

carry out their calculus on different aspects of the grasp

configuration Y . In the case of r1, it evaluates the geome-

trical position of the contact points in relation to the cutting

plane g. Every grasp configuration starts with 2.0 points in

this part of the ranking function. If the contact points q1; q2

are far from the cutting plane g, the grasp configuration

loses up to 2.0 points depending on this scaled distance. In

addition, if cosðbÞ ¼ 0:0 (the connecting line ~w forms a

90� angle with the normal~ng), then the grasp configuration

scores 2.0 points more on r1. Thus, r1 can add 4.0 points

maximum. However, if ~w and~ng make smaller angles, the

configuration gets a penalty, losing up to 8.0 points from

this third term on r1. As a result, r1 can score �6.0 points

minimum in the worst case.

Curvature and normal directions are evaluated by r2.

Again, grasp configurations start with 2.0 points from this

part of the ranking function. If any of the lqi
have a scaled

curvature value greater than 0.0, then the configuration loses

points in accordance. Grasp configurations can add 2.0 more

points depending on the angles aqi
. These angles need to be

close to 0� in order to do it. Otherwise, the grasp configura-

tion is not approximating an antipodal configuration (see

Figure 3). In result, r2 can score up to 4.0 points maximum.

However, the grasp configuration can lose points if the dif-

ference between these two angles is up to 90� (meaning that

only one contact point is well placed and the other one is not

aligned). To measure this, we calculate the absolute differ-

ence between cosines of these angles. Thus, the grasp con-

figuration can lose up to 1.0 point, meaning that r2 can score

�1.0 point minimum in the worst case.

These subfunctions are weighted in order to balance

their influence with w1 ¼ 1:5;w2 ¼ 1:0, these being the

best values found empirically to keep contacts perpendicu-

lar to the object. Giving both weights the same importance

can make the method chose configurations which are anti-

podal and with highly planar contact points, but far from

the cutting plane and not perpendicular to the object. Since

it is paramount to keep the contact points parallel to the

cutting plane, and therefore perpendicular to the object, we

found through experimentation that the grasps configura-

tions were more stable by giving more importance to r1

using w1 ¼ 1:5. In case that two or more grasp configura-

tions score the same total points, the first one found during

the calculus is chosen as the best.

Finally, we also take into account the maximum ampli-

tude of the grasper in use in order to select the best grasp

configuration. During the ranking of potential points

q1; q2 from the two areas Q1;Q2, we discard those con-

figurations Y in which the distance of the points meets the

condition L2normðq1; q2Þ > grasperMaxAmplitude, where

grasperMaxAmplitude is the maximum amplitude that

the grasper can attain in order to work. Therefore, this para-

meter is dependent of the gripper or robotic hand chosen to

perform the grasp. If every grasping configuration Y meets

this condition, it means that the object is possibly too wide

for the working grasper, given the available point of view.

Estimation of hand pose

We propose the two best points of contact that can be used

straightforwardly with grippers moving each of the plates

q
2

q
1

n
q2

w n
q1

α
q2 α

q1

Surface

Camera

Figure 3. Representation of how the antipodal configuration is
approximated in this work using ~w , normals~nqi

and angles aqi
.
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towards each proposed contact. The Allegro hand we use

has four fingers, one of which acts as the thumb. In order to

perform three-fingered grasps, we take the following cri-

terion: one of the contact points corresponds to the place

the thumb must reach during a grasp, while the other con-

tact point remains between the first two fingers (index and

middle). This means that the first and second finger wrap

around the second contact point. Figure 4 shows an exam-

ple of this grasp configuration.

Four-fingered grasps would follow a similar criterion.

However, in this case, the second contact point corresponds

to the place the second finger (middle) must reach, while

the first and the third finger wrap around it. Figure 4 shows

an example of this. In this work, we perform three-fingered

grasps so we do not make use of the third finger. We have

made this decision owing to the size of the Allegro’s fin-

gertips, which are large. Using four fingers would lead to

issues with some of the small objects tested, like one of the

wrapping fingers not making contact with the object.

Once we have found the best grasp configuration, we

determine the pose our hand should acquire in order to

perform a grasp on these such points. This is done by using

the main axis ~v of the object and the computed grasping

points q1; q2. The goal is to place our robotic hand with its

palm pointing towards the object and its fingers spreading

perpendicularly to the axis ~v of the object, completely

aligned with the connecting vector ~w.

Let OH ¼ ðX H ;Y H ; ZH Þ be the reference frame of the

Allegro hand at its palm, where X H is the vector pointing

forward from the palm, Y H is in the direction of the width

of the hand pointing to the bottom and ZH points from the

base of the fingers to their tips (see Figure 5 for a repre-

sentation of OH ). We define the pose of the grasper as

follows: ZH is the unitary vector that points from q1 to

q2. Consequently, the tip of the thumb is placed at q1 and

q2 ends between the first two fingers. Afterwards, we cal-

culate X H ¼ ZH �~v, such that X H is a perpendicular uni-

tary vector to both ZH and~v. We want it to be perpendicular

to the axis~v of the object because this will result in a vector

pointing to the object. Therefore, our hand will face the

object with the palm, according to the Allegro’s palm ref-

erence system. Finally, Y H ¼ ZH � X H is a perpendicular

unitary vector to both ZH and X H , thus allowing a correct

reference frame to be formed.

Last, this reference frame is translated backwards from

the object so that the closing movement of the hand places

the fingers in the desired positions. To perform this, we

measured the distance between the fingertips and the palm

of the hand, where the reference frame is located, during a

closing movement. Thus, knowing the distance between q1

and q2 would allow us to know the position of the hand so

that the fingers would contact at the same time the desired

points, applying collinear forces. Consequently, the built

frame is translated backwards (on X H axis) a distance that

depends on the morphology of the hand in use. Figure 5

shows this position both in simulation and in reality.

Grasp execution system

This work has been developed under the robot operating

system (ROS) framework and programmed in Cþþ. The

whole system is integrated into ROS, thus enabling us to

have multiple nodes running simultaneously and sharing

information among them. The grasp computation node is

available at https://github.com/yayaneath/GeoGrasp. In

addition, our robot model is defined in URDF files so we

can load it and simulate grasps before sending them to the

real robot. We have done this by also integrating the Move-

It! package49 into our workflow in order to simulate the

robot and plan trajectories that take into account collidable

objects. All these components allow us to work in a real

scenario, as seen in Figure 1, but to model the environment,

as shown in Figure 6, in order to plan and virtually perform

grasping trajectories.

Figure 4. Adaptation of our two best contact points for two-
fingered grasp (i.e. grippers), three-fingered grasp and four-
fingered grasp.

Figure 5. Grasping pose of the hand estimated from the contact
points: (left) seen during the simulation and (right) in reality.
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Solution architecture

We have integrated the process in charge of reading a pub-

lished point cloud and computing grasps into a single node,

making use of the proposed contacts computation. We call

this node pointcloud_listener. It executes our proposed

method and creates a custom ROS message called Grasp-

Configuration for each of the segmented objects in the

scene. This message holds the information needed to per-

form a grasp: q1; q2; c;~v;Ck . After processing each of the

objects detected, it constructs another custom ROS mes-

sage entitled SceneObjects that holds an array with every

GraspConfiguration message created and publishes it.

A second node, called allegro_plan_grasp, subscribes to

the topic in which SceneObjects messages are published.

This node reads the SceneObjects message and publishes an

approximated collision box for each object in the MoveIt!
planning scene. Since each GraspConfiguration holds the

cloud of the K object Ck , we can approximate the volume

of the box and its location. The right-hand picture in Figure 6

shows two collidable objects on the table.

The allegro_plan_grasp then proceeds to plan a grasp

on the closest object to the camera: the object located furth-

est to the left with regard to the robot. We have employed

this criterion because we are using the left arm so grasping

these objects first will ease the planning of collision-free

trajectories. Moreover, if we first remove the objects that

are closest to the camera, it will be possible to see the rest

of the objects in the back better. Finally, this node is also

responsible for calculating the pose of the hand used to grasp

the object, using the method described in the previous sec-

tion. In Figure 7, we display a scheme that represents our

main nodes and their interactions through the use of ROS.

With regard to planning the trajectories, we have several

planners available in the MovetIt! package. After testing

them, we decided to use the RRTConnectkConfigDefault

planner because it was able to find good trajectories in a

short amount of time.

Grasping steps

Before beginning this process, we configure the arm in a

preparing position in which it is ready to move towards the

table but it is not visible from the camera. In consequence,

the arm and the hand do not interfere with the grasping

point computation. This position is displayed in reality in

the previous Figure 1, and Figure 6 shows it in simulation.

We visit this position after each iteration of the grasping

steps routine in order to prepare the robot to grasp another

object. A human operator frees the robot’s hand from the

currently grasped object beforehand. It is possible to

change this to any task depending on the goal of the robot:

this could be to place grasped objects inside a box, to place

them on a conveyor belt or hand them to a human colla-

borator, among many other possibilities.

In order to grasp the closest object, we have divided the

process into four steps (see Figure 8):

1. First, we move the hand to a point 10 cm away from

the object but facing it with the previously com-

puted pose. We take this pre-grasping position to

facilitate the planning of the following steps, since

MoveIt! planners do not always find the optimal

path with 7 DoF arms. In the figure, this is repre-

sented with the reference system centred in the

orange sphere, labelled as number one.

2. We then move the hand forward towards the object,

keeping it open and oriented. The hand reaches its

final pose in which closing its fingers will place their

tips on the computed grasping points. In the figure,

we represent this position with the reference system

centred in the pink sphere, labelled as number two.

3. We command the thumb and the first two fingers to

close and make contact with the object.

4. Finally, we move 15 cm upwards so that the robot

lifts the grasped object. This step is represented in

the figure with the reference system centred in the

white sphere, labelled as number 4.

Experimentation

We have tested our proposal using two object sets: basic, a

set with objects that have a basic geometry like a cylinder, a

box or a sphere; complex, another set with more complex

shapes and materials. The basic set comprises the following

14 objects: a shower soap bottle, a can of crisps, a detergent

bottle, a carton of milk, a twisted plastic glass, a salt bottle,

a sponge, a pencil holder, a pen box, a coke can, a carton of

juice, a toothpaste box, a plastic apple and a plastic ball.

The complex set comprises 13 objects: an Olaf soft toy, a

Minion soft toy, a plastic Creeper toy, a stuffed rugby ball,

a toy wardrobe, a stuffed football, a toy horn, a shoe, a

plastic mug, a toy train, a mini drill, a toy bunny and a

hammer. We have included objects with distinct geometric

shapes, along with different sizes and materials, as can be

seen in Figure 9.

In order to assess the goodness of our method, we

have divided these tests into two subsections. One

Figure 6. Environment used to simulate grasps using MoveIt!
Right picture shows a planned trajectory with collidable objects
on the table.
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evaluates the system as regards grasping objects in iso-

lation and in different poses. The other evaluates its

ability to clear the table on which various objects are

placed randomly. We do also measure the time required

to compute grasping points in order to ensure it can

work in real time. The experiments were carried out

on a computer with an Intel Core i7-4770 @ 3.40 GHz

(8 cores) and 8 GiB DDR3 RAM. The computer runs

Ubuntu 16.04 and ROS Kinetic.

Grasp objects in isolation

In each experiment, the goal was to grasp the target object

and lift it. If the object slipped during the grasp or after

lifting it, it was marked as a failure. A sample of one grasp

sequence can be seen in Figure 10, in which each of the

steps described in subsection ‘Grasping steps’ are

represented.

For this experiment, we placed on the table a single

object in a different pose each time. The poses tested can

be categorized in the following general orientations:

frontal standing, turned standing, frontal lying, lateral lying

and turned lying. These poses included orientations in

which the object was not perfectly parallel nor perpendi-

cular to the table, so its main axis had some angle with

respect to the table. For each pose and object tested, we

performed three grasp attempts, changing the position of

the object but maintaining the pose, with the exception of

the spheres: we made five attempts with them but with

fewer poses due to their regular geometry.

Figure 7. Architecture of the solution implemented.

Figure 8. Grasping steps as represented in the simulation:
(1) pre-grasping, (2) grasping and (4) lift.

Figure 9. Set of objects tested in experimentation: (left) basic set,
(right) complex set.
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Table 1 contains the results of our isolated grasps

experiments. We classified the basic object set in general

geometrical categories, such as boxes, cylinders and spheres.

Boxes have multiple faces so they were all tested in eight

poses. With regard to cylinders, these are regular objects and

fewer poses were, therefore, used. Spheres are complete

revolution objects: they are seen almost identically from

different points of views. Consequently, we performed 10

different trials (two poses) with each of them. As for the

complex set, they were tested in a diverse number of poses,

but at least six poses, except for the Football and the Rugby,

which were tested as the basic spheres. As a result, we have

executed about 503 real grasps using these two objects sets.

Regarding the average grasp rank obtained by each of

the objects in these tests, it can be seen that our algorithm is

able to find grasps configurations that at least score 50%
points of the maximum ranking points (8.0 points). More

precisely, we have found that spheres have in average a

higher score than the rest of the items. The main reason

for this is that spheres present the same geometry indepen-

dently of the point of view we use for finding grasping

points on them. In contrast, the rest of the objects present

significant differences in the seen geometry depending on

the point of view. Moreover, it is easier to score more

points on r2 because the continuous curvature of the

spheres allows the method to find more antipodal

configurations.

These results also show that the worst performing basic

objects in terms of grasp ranking points were mostly the

smaller ones. For instance, the salt bottle holds the lowest

average ranking among all: just 3.34 points, very far from

the second worst performing object, the juice box with 4.48

points. Since these objects are smaller than the others, the

camera could not record properly their geometry due to

the fact of being in the limits of the optimal operating

distance of it. Consequently, their point clouds were not

dense so the proposed method did not have enough infor-

mation to find better ranking configurations.
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Figure 10. Whole grasp sequence with the real robot and arms joints positions during the sequence: (first shaded area) ready position
as seen in the first picture, (second shaded area) reaching the pre-grasp position seen in the second picture, (third shaded area) final
grasp position shown in the third picture and (forth shaded area) lift position in the last picture.
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When it comes to finding grasps on the complex set, the

average ranking points computed are similar to those

obtained in the basic set, except for the hammer: this object

obtained an average ranking of �2.03 points. Checking

further the results, we found that most of the best grasps

computed for the hammer had negative r1 ranking because

the proposed grasping points did not form a grasp perpen-

dicular to the normal vector of the plane. The reason for this

was that the handle of the hammer was flat, with soft curves

in the sides, so most of the time one contact point was in the

rim of the handle and the other was at some place of the

curve. As a consequence, the found grasps were slippery so

the hammer scored the lowest grasping rate.

We attained an average grasp rate of 82.77% for the

basic set and 76.00% for the complex set. This gives a total

average grasp rate of 79.51%, taking into account attempts

with successful grasps, slips and bad views (these terms are

explained below). If we discard failures caused by bad

views, these rates raise to 88.69% (basic), 81.26% (com-

plex) and 85.11% (total). Figure 11 shows samples of com-

puted grasps in each of the grasp results considered. As can

be seen in it, the successful grasps are configured as we

wanted them: perpendicular to the main axis of the object

and contacting them on their opposite edges. This leads to

successful grasps that are stable. Moreover, the method

works correctly with objects of different shapes and sizes

in diverse poses. We have seen that our method works best

with spheres because their geometry allows us to find more

points that can configure an antipodal grasp. This also

applies to regular cylinders, like the can of crisps or the

coke can.

The proposed grasps are slippery if the contact points

are in the middle of a face and they are not on opposite

faces. For example, let us take the example of the carton of

milk that slipped in Figure 11. In this test, the milk is lying

on the table slightly rotated. The first contact point is

placed on the furthest edge of the upper face but the sec-

ond contact point is on the middle of the closest face of the

object. When the robotic hand closed on these points, the

contacts were not collinear and the object slipped due to

the forces applied. The very same can be said of the carton

of juice. This is the most common case of slippery grasps

that we have found in the experiments and it mostly

affected boxes.

Table 1. Grasping rate of isolated objects.a

Type Object Shape (mm) Tries Grasps Slips BVs Avg. Rank Rate (%)

Box Milk 97 � 195 � 58 24 19 3 2 5.67 86.36
Box Toothpaste 123 � 202 � 25 24 20 2 2 4.98 90.91
Box Sponge 91 � 125 � 42 24 19 3 2 5.84 86.36
Box Pencil holder 72 � 72 � 115 24 20 3 1 5.43 86.96
Box Juice 49 � 121 � 38 24 20 2 2 4.48 90.91
Box Pen box 72 � 140 � 27 24 18 4 2 4.58 81.82
Cylinder Chips 74 � 232 � 74 15 13 1 1 5.31 92.86
Cylinder Soap 87 � 308 � 60 21 17 2 2 4.53 89.47
Cylinder Coke 65 � 115 � 65 15 13 2 0 5.17 86.67
Cylinder Twisted 77 � 151 � 77 18 14 3 1 4.74 82.35
Cylinder Detergent 112 � 133 � 112 15 11 2 2 5.94 84.62
Cylinder Salt 55 � 143 � 55 15 12 1 2 3.34 92.31
Sphere Apple 87 � 74 � 87 10 9 1 0 5.47 90.00
Sphere Pink ball 103 � 103 � 103 10 10 0 0 5.75 100.00
Complex Minion 104 � 200 � 83 21 18 2 1 6.01 90.00
Complex Train 64 � 137 � 81 24 19 1 4 4.87 95.00
Complex Wardrobe 90 � 128 � 35 24 18 2 4 5.94 90.00
Complex Olaf 144 � 294 � 120 21 14 6 1 6.45 70.00
Complex Football 116 � 116 � 116 10 9 1 0 6.43 90.00
Complex Rugby 102 � 157 � 102 15 11 3 1 6.06 78.57
Complex Horn 78 � 128 � 70 17 13 2 2 4.92 86.67
Complex Shoe 98 � 76 � 283 12 7 3 2 5.71 70.00
Complex Bunny 97 � 79 � 126 21 16 5 0 4.64 76.19
Complex Hammer 27 � 24 � 300 21 12 8 1 �2.03 60.00
Complex Mug 67 � 80 � 67 18 15 3 0 5.58 83.33
Complex Creeper 176 � 149 � 140 18 14 4 0 5.37 77.78
Complex Mini-drill 37 � 141 � 115 18 16 2 0 3.74 88.89
Basic set 88.69
Complex set 81.26

BVs: bad view.
aTries corresponds to the total sum of attempts among poses tested. Avg. Rank states for the average rank of the executed best grasp configuration.
Grasp rate discards failed grasps caused by bad view conditions (BVs in the table).

12 International Journal of Advanced Robotic Systems



We represent another case of slips with the rugby ball

sample. Given the point of view, most of the volume of the

ball is hidden behind the frontal face. As a result, the com-

puted contact points do not enclose much of the object and

it slips away once we lift the arm. The centroid of the

cluster is, in this case, not close to the real centre of mass

of the object. In addition, the rugby ball is made of a slip-

pery, soft material that deforms under pressure.

Materials are an important property to take into account.

Our Allegro robotic hand has rubber-like fingertips that

produce sufficient friction to avoid slips when grasping

cardboard, metal, wood and plastic objects. However,

stuffed objects are usually made of soft materials with low

friction coefficients. In addition, they deform once grasped.

We have seen during our experiments that some promising

grasp configurations failed owing to this. This was a fre-

quent case when lifting the Olaf soft toy, which slipped

because it was a soft heavy object. This was also an issue

with the shoe, because it was a deformable object, except

for its sole. Thus, after grasping it from some other part, the

shoe deformed and the fingers slipped.

Generally speaking, the worst performing objects for

our method are those with geometries that can hide most

of their mass and volume when seen from certain points of

view (like we have discussed above with the rugby ball).

Moreover, those objects made of soft materials with low

friction coefficients are also difficult to grasp (like the Olaf

soft toy or the shoe). Grasps configurations for these three

items scored in average more than 5.5 points during these

experiments. However, they have the lowest grasp success

rates as well: 60.00% for the shoe, 70.00% for the Olaf toy

and 78.57% for the rugby ball. This happens because our

ranking function cannot take this type of information into

account: we do not recognize the object beforehand.

Although we approximate antipodal configurations to keep

the contacts in the friction cones, soft objects can deform

themselves while being grasped and hence they can slide.

This is even worse if the point of view limits the computed

grasping points so they do not enclose most of the volume

of the object.

With regard to bad views, we count as bad views those

points of view that only hold one mostly flat face of the

object, which is oriented towards the camera, and the main

axis of the object is parallel to the table and the camera X C

axis. This situation was manually identified during experi-

mentation by checking that these conditions were met by

the point cloud being processed. See any of the presented

samples in Figure 11 to verify this. Following our geo-

metric rules in subsection ‘Grasping areas’, the grasping

areas should be on the maximum and minimum points of

the ZC axis. Placing one of the fingers on the minimum is

not a problem because that area is visible (blue point at the

top in Figure 12). However, due to the position of the

camera, the back of the object is not visible so in this case

the maximum ZC values are at the bottom of the object,

which is in contact with the table. It is for this reason that

this other contact ends in the lower part of the cloud. We

present Figure 12 to illustrate this issue with a lateral per-

spective of the same carton of milk example, in which it

will be noted that greater z-component values are in the

lowest area of the object.

Our method has very limited geometric information to

work with in this case, resulting in poor contact points.

Although these grasp configurations always fail, since they

place the fingers on the same flat surface, they usually push

Figure 12. Bad view sample: (top) perspective from the camera,
(bottom) lateral view of the point cloud.

Figure 11. Computed grasps samples as seen from the point of
view of the camera.
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the object and change its perspective with respect to the

camera. As a consequence, in a second attempt to grasp the

object, the grasp computation can work with a different

point of view of it. We do not believe that it is possible

to successfully grasp an object in this orientation given only

its frontal face and no other information. We discard these

failures for the computation of the grasp rate because the

point of view of the camera and the quality of the cloud are

responsible for the failed grasp. The same object in the

same orientation seen from a distinct point of view, or even

a reconstructed point cloud of the object with two or more

points of view, would have resulted in a different grasp

configuration that could be more promising.

Clear the table task

In these experiments, we randomly took a subset of the

testing objects, put them inside a box, mixed its contents

and then poured them on the table. Next, we executed the

whole grasping sequence described previously attempting

to grasp the closest object to the camera, but we eventually

freed the robots’ hand from the grasped object. After each

attempt, the arm moved to its ready position and the contact

points for the remaining objects in the scene were com-

puted again. Table 2 presents the results obtained for four

experiments when different objects were used in them.

It is possible to state that this task is successfully carried

out by our method. Basically, each attempt consists of

executing a grasp on a single object but with more collid-

able objects nearby in the scene, meaning that the planner is

more constrained. We obtain an average success rate of

72.00% as regards grasping an object on the first attempt

and a 100.00% on the second attempt, giving a final

86.00% grasp success rate. The issues presented previ-

ously, like bad views due to perspective conditions or slips,

have also occurred in these experiments. However, we also

faced a new case of slippery grasp.

Since multiple objects are lying on the table in clutter,

the process in charge of segmenting the objects can confuse

two objects and group them in the same cluster if they are

too close together. We present Figure 13, which shows a

sample of this. On the first attempt in the Scene A, the

closest object was the salt bottle. Nevertheless, owing to

noise in the cloud and the perspective, the method grouped

its cloud with the toy wardrobe and a pair of contact points

was, therefore, computed for both of them at the same time,

as if they were a single object. Despite this, the robot

decided to go for the stuffed football because its centroid

was closer than the centroid of the salt bottle and the toy

wardrobe together. After grasping the football, the salt

bottle was correctly distinguished from the scene because

its cloud did not have sufficient noise for it to be grouped

with the toy wardrobe.

The same situation occurred in experiment C. However,

this time the cluster made of the two mixed objects was the

closest item and the robot attempted to grasp it. The result

was a slippery grasp that moved the objects apart when the

hand closed over the computed contact points. We have

seen that this issue can be handled by our method by

attempting to grasp the cluster and performing a failing

grasp that does not pick up any of the objects but at least

separates them. In consequence, in the following attempt,

the scene is different and they may not be grouped

together again. Nevertheless, the segmentation method

in the proposed algorithm constitutes a module that

could be changed for any other segmentation method,

since the rest of the algorithm works with segmented point

clouds containing the objects.

Execution times

We have calculated the amount of time required to find the

best pair of contact points given the point cloud of the

object, that is, the time spent on finding the grasping areas

on the point cloud of an object and ranking each pair of

potential contact points. We have also calculated this for

point clouds with multiple objects. Table 3 presents the

results obtained in terms of CPU execution time in milli-

seconds depending on the size of the input cloud. We

additionally indicate the Root Mean Square Error (RMSE)

of these times.

On the one hand, the biggest object in our set is the

stuffed Olaf. This condition is reflected in the average

amount of points contained in its recorded point clouds.

It is, therefore, the object that requires the most time to

be processed, reaching an average of almost 40 ms. On the

other hand, the object with the smallest cloud is the mini-

drill. On average, it had less than 800 points in its points

clouds so processing them took an average of 9.61 ms. This

object was not the smallest in dimensions, that was the

juice box, but since it had a darker area around the handle,

the depth camera could not record completely that part.

Generally, it takes us an average of 17.43 ms to find the

best pair of grasping points given the point cloud of an

object. This is clearly a fast approach as regards robotic

grasping. In short, the amount of time required to process a

single scene depends directly on the total number of points.

The size of the point cloud simultaneously depends on the

size of the objects, how close they are to the camera and the

occlusions they produce.

Table 2. Results obtained in the clear the table task.

Scene Objects
Grasps 1st

attempt
Grasps 2nd

attempt Slips BVs

A 7 5 2 1 1
B 5 4 1 0 1
C 5 3 2 2 0
D 7 6 1 1 0

BVs: bad view.
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Comparison to other methods

First of all, we compare the new version of the ranking

metric introduced in this work with the one first presented

by Zapata-Impata et al.42 The changes affect the way the

best grasp configuration is evaluated and the difference in

the result can be seen in Figure 14. We recorded the point

cloud of some objects and ran both ranking functions in

order to check the difference in the computed grasp con-

figurations under exactly the same conditions.

With the ranking function implemented by Zapata-

Impata et al., the proposed grasps are not configured com-

pletely perpendicular to the estimated axis of the object. As

a result, when the gripper is executing the grasp, the object

is contacted in such a way that is not stable. With the

changes introduced in this work, we evaluate more appro-

priately the angle defined by the line that connects

the grasping points and the axis of the objects. Hence, the

computed grasps in our implementation are more stable

Figure 13. Point clouds at each step of clearing scene A: (box) successful grasp, (star, like step 8) slippery grasp, (circle, like step 5) bad
contact points due to the point of view. Labels at the bottom indicate the object the robot attempted to grasp.

Table 3. Execution times as regards computing a pair of
contact points.

Object Cloud size (points) Time (ms) RMSE

Milk 2934.00 25.50 3.31
Toothpaste 1622.21 15.42 2.13
Sponge 1966.54 18.75 2.58
Pencil holder 1680.21 16.38 1.22
Juice 1101.67 11.58 1.61
Pen box 1328.25 13.58 3.43
Chips 2224.27 20.93 3.43
Soap 3139.14 28.24 5.72
Coke 1067.13 11.53 1.69
Twisted 1253.83 13.00 1.49
Detergent 2792.33 24.93 1.56
Salt 1232.13 12.67 1.05
Apple 897.30 10.20 1.82
Pink ball 1170.20 12.80 1.10
Minion 2734.48 26.10 3.75
Train 1463.08 13.88 1.88
Wardrobe 1843.58 17.13 2.22
Olaf 4434.90 39.81 4.96
Football 1828.30 18.20 1.23
Rugby 2080.73 20.67 2.02
Horn 1066.94 13.94 1.72
Shoe 2109.58 22.83 4.01
Bunny 960.05 13.05 2.38
Hammer 1227.14 12.82 2.45
Mug 1024.94 11.67 1.36
Creeper 1609.94 15.28 2.35
Mini-drill 789.44 9.61 1.91
(10 objects) 39,841.58 486.40 1.13

RMSE: root mean square error of the average time.

Figure 14. Difference in the computed best grasp for various
objects using: (top row) the ranking function introduced by
Zapata-Impata et al.42 (bottom row) the improved version pre-
sented in this work.
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because they are configured in a perpendicular orientation.

See the first two objects (juice box and carton of milk) in

Figure 14.

In addition, our improved version of the ranking function

evaluates more correctly the curvature and the antipodal

configuration of the ranked grasping configurations. See the

right-most object (toy Creeper) in Figure 14. The ranking

function proposed by Zapata-Impata et al. selects the same

first point (blue point on the left) as us. However, the second

point (red point on the right) is selected at the edge next to

the edge where the first point is located. The surface on this

second point is possibly less curved but the whole grasp

configuration is far from being antipodal. In contrast, our

improved version of the ranking function selects the second

point on the opposite edge of the first point, defining a better

grasp: the grasp points configure an antipodal grasp, which is

more perpendicular to the estimated axis as well.

The current state-of-the-art results for robotic grasping

using 3D point clouds are achieved by ten Pas et al.39 In

their work, the authors reported their performance with four

approaches. Check Table 4 to find the comparison between

their approach and the method we propose. The data con-

tained in the table has been extracted from their paper.

Regarding our numbers, the average grasp success reported

is the average obtained in all of our experiments and the

execution time is the one obtained from processing a point

cloud similar in size to the ones reported by ten Pas et al.

As can be seen, our method achieves the fastest results.

It is remarkable that our execution times are attained using

a CPU while the reported times in the work of ten Pas et al.

are on a GPU. If we compare it to the Active method, the

improvement in the speed calculus is of 126%, with a loss

in the grasp success rate of less than 8 points. Nevertheless,

the grasp success rate they report is achieved after using a

point cloud obtained while moving a camera above the

objects, something we do not have to do. Thus, that point

cloud holds much more information about the objects’ geo-

metry than just one single partial view.

The Passive results are obtained by using two fixed cam-

eras, being this a closer set-up to our experiments where we

used one fixed camera. The authors collected a data set of

grasps using a simulator and then trained a neural network in

order to learn to rank grasp poses. Using this method with a

stitched point cloud from two points of views, they achieved

an 84% grasp success rate. In our set-up, we do not collect

nor train any model so our method does not have any prior

knowledge about the objects. Despite this fact, we still

achieve a higher grasp success rate, in addition to compute

grasps in less than half of their time.

The fastest approach reported in their work is the No

classification method. In this solution, they sampled grasp

poses that were later on filtered using a set of rules so they

did not make use of the trained neural network. Our method

improves the grasping success rate of that approach in 61%
and its time in 64%.

Despite the improvement in computation time and

achieving similar grasping rates, our method is limited to

medium levels of occlusion due to the segmentation method

in use. In contrast, ten Past et al. work has proven to work

successfully on dense clutter scenarios since their method

does not need to segment the processed point cloud.

Conclusions

In this work, we describe a method for computing a pair of

contact points given a single 3D point cloud with a partial

view of an unknown object, available at https://github.com/

yayaneath/GeoGrasp. This method analyses the cloud geo-

metry and finds the best contact points on the basis of a set

of simple geometry conditions that must be fulfilled. We

propose a custom function that we use as a metric to eval-

uate the potential stability of the contact points computed.

Our inspiration is the way in which humans usually grasp

objects: by the centre of mass and perpendicular to its main

axis. It is for this reason that we search for a perpendicular

plane to the approximated main axis of the object and

through its centroid, thus enabling potential contact points

to be found near the opposite edges of this plane.

We use both these points and the axis of the object to

compute a grasping pose for our Allegro robotic hand. We

have followed this methodology in order to provide our

robot with autonomy so that it can flexibly reach and grasp

objects of diverse shapes and in distinct poses, with no need

for it to have any prior knowledge of them. We have addi-

tionally built a whole system using ROS and packages like

MoveIt! to simulate grasps and plan them before sending

the trajectories to the real robot.

Experimentation with 27 objects and the execution of

about 500 real grasps has allowed us to ascertain that the

proposed method is fast and accurate. We have attained an

average success rate of 85.55% in our experiments, discard-

ing failures due to the bad point of view of the camera. On

average, we compute these grasping points in 17.5 ms per

Table 4. Performance comparison of our method with current state-of-the-art results.

Method Clutter Grasp success (%) Cloud size (Points) Time (ms) Processing

ten Pas et al.39 – active Dense 93.00 39,000 1100 GPU
ten Pas et al.39 – passive Dense 84.00 39,000 1100 GPU
ten Pas et al.39 – no selection Dense 75.00 39,000 1100 GPU
ten Pas et al.39 – no classification Dense 53.00 39,000 800 GPU
Ours Medium 85.55 39,841 486 CPU
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object, improving the current state of the art. It is remark-

able that we required only a single point cloud with a partial

view of the object and no prior knowledge nor training

phase in order to achieve these rates. This makes our

approach useful and accessible for a wide range of envir-

onments: from robots with low computational power to

industrial systems with great throughput needs.

However, our approach is highly sensitive to the point of

view of the camera and the quality of the point cloud,

standing this as the main limitation of the system. Point

clouds can be noisy due to factors like distance or light

conditions. In our experimental set-up, we were limited

to work in the optimal range distance of the depth camera,

so objects could not be more than 1.5 m away from it.

Otherwise, the recorded point cloud could not capture prop-

erly the geometry of the object, or even the object would

not be recognizable from the background. In addition, the

segmentation stage is paramount for computing the best

grasp configurations and the current segmentation method

used is limited to scenarios which are not densely cluttered.

Although the presented experiments only work with par-

tial views, it is still possible to process reconstructed scenes

with multiple points of view, or even complete 3D objects,

using our proposed method. In those cases, the grasp com-

putation can find better grasp configurations thanks to the

existence of more information about the geometry of the

objects. However, the main advantage of the proposed sys-

tem is that it can work with partial views from a single point

cloud and find stable grasps.

We believe that there is room for improvement. In the

future, we would like to enhance the segmentation stage in

such a way that densely cluttered scenarios would no longer

cause issues concerning two objects being confused as a

single one. In addition, we would like to extend the contact

points computation to find n grasping points for n-fingered

robotic hands, parameterizing the algorithm to take into

account the morphology of the hand and its kinematics.

Moreover, we wish to explore the possibility of using tac-

tile sensors on the fingertips, which could help us detect

slips and deformations. Finally, we wish to add a human

detector process to the system in order to avoid collisions

with operators and collaborate with them safely.
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