
Optimal TNFS-secure pairings on elliptic curves
with even embedding degree

Georgios Fotiadis1 and Chloe Martindale2 ?

1 University of the Aegean, Greece
gfotiadis@aegean.gr

2 Technische Universiteit Eindhoven, the Netherlands
chloemartindale@gmail.com

Abstract. In this paper we give a comprehensive comparison between
pairing-friendly elliptic curves in Jacobi Quartic and Edwards form with
quadratic, quartic, and sextic twists. Our comparison looks at the best
choices to date for pairings on elliptic curves with even embedding degree
on both G1 × G2 and G2 × G1 (these are the twisted Ate pairing and
the optimal Ate pairing respectively). We apply this comparison to each
of the nine possible 128-bit TNFS-secure families of elliptic curves com-
puted by Fotiadis and Konstantinou [14]; we compute the optimal choice
for each family together with the fastest curve shape/pairing combina-
tion. Comparing the nine best choices from the nine families gives a opti-
mal choice of elliptic curve, shape and pairing (given current knowledge
of TNFS-secure families). We also present a proof-of-concept MAGMA
implementation for each case. Additionally, we give the first analysis, to
our knowledge, of the use of quadratic twists of both Jacobi Quartic and
Edwards curves for pairings on G2 × G1, and of the use of sextic twists
on Jacobi Quartic curves on G1 ×G2.

Keywords: TNFS-secure, optimal pairing, twisted Ate pairing, twisted
Edwards curves, Jacobi Quartic curves.

1 Introduction

Pairings in cryptography first appeared in 1940 when André Weil showed that
there is a way to map points of order r on a supersingular elliptic curve to an
element of order r in a finite field; his map became known as the Weil pairing.
In 1986, Victor Miller [22] gave an algorithm that computes the Weil pairing
efficiently, and in 1993, Menezes, Okamoto and Vanstone [23] applied Miller’s
method to the elliptic curve discrete logarithm problem (ECDLP) for supersin-
gular elliptic curves. They reduced ECDLP for supersingular elliptic curves to
the discrete logarithm problem in a finite field (DLP), giving a subexponential

? Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was supported in part by the Nether-
lands Organisation for Scientific Research (NWO) under CHIST-ERA USEIT (grant
number 651.002.004). Date of this document: October 11, 2018.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/196184862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.ams.org/profession/leaders/ culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/ culture/CultureStatement04.pdf

attack now known as the MOV-attack. This attack was followed by the more
general FR-reduction [15], which can be applied to ordinary elliptic curves (and
higher-dimensional abelian varieties) when using a variant of the Weil pairing
called the Tate pairing. In the early 2000s however, several authors presented
secure and efficient pairing-based protocols (see e.g. [6,7,17]) which are now the
backbone of privacy-related cryptosystems.

1.1 Pairings on elliptic curves

Let G1,G2, and GT be cyclic groups of prime order r and assume that the discrete
logarithm problem is intractable in all three groups. An abstract pairing is a
bilinear, non-degenerate, efficiently computable map of the form: ê : G1×G2 →
GT . We call G1 and G2 the source groups and GT the target group. When
G1 6= G2 the pairing is called asymmetric, otherwise it is called symmetric.

Let E be an ordinary elliptic curve defined over a prime field Fp and let r be
largest prime such that r|#E(Fp). The minimal integer k for which all the r-th
roots of unity are contained in Fpk is called the embedding degree of E. For all
pairings on elliptic curves that are currently used in cryptography, the source
groups G1 and G2 are r-order subgroups of E(Fpk) and the target group GT is
the subgroup µr ⊆ F∗pk of rth roots of unity. (Typically G1 is in fact contained in

E(Fp)). That is, a pairing of elliptic curves is a map: ê : E(Fpk)[r]×E(Fpk)[r]→
µr ⊂ F∗pk . The most widely used pairings on ordinary elliptic curves are the
Tate pairing and its variants and the Ate pairing and its variants. All of these
different types of pairings can be efficiently computed using variants of Miller’s
algorithm ([22], c.f. Algorithm 1).

1.2 Attacks on pairings

For a sufficiently generic elliptic curve E/Fp, the complexity of ECDLP in any
r-order subgroup of E(Fpk) is O(

√
r), due to Pollard’s rho algorithm. The com-

plexity of DLP in the multiplicative group F∗pk , however, depends both on the
factorisation of k and on how the prime p is constructed. In the case of pairing-
friendly curves, we may assume that the prime p is large (at least 256-bits) and
that it is derived from the evaluation of a polynomial with degree greater that
2. The asymptotic complexity of DLP in F∗pk is then

LN [c, `] = exp
[(
c+ o(1)

)(
lnN

)`(
ln lnN

)1−`]
, (1)

for some c, ` ∈ R, with ` ∈ [0, 1], c > 0 and N = pk.
When k is prime, the asymptotic complexity of DLP in F∗pk is LN [1/3, 1.923];

the best known attack is the number field sieve (NFS) method. For composite
embedding degrees, Kim and Barbulescu’s [18] improvements on the tower num-
ber field sieve (TNFS) method have reduced complexity of DLP in F∗pk from

LN [1/3, 1.923] to LN [1/3, 1.529]. These new improvements have immediate con-
sequences on the selection of the extension fields Fpk . Fotiadis and Konstanti-
nou [14] present a summary of (new) recommendations of pairing-friendly elliptic

2

curves that are resistant against the new TNFS attacks, for many different em-
bedding degrees.

1.3 Our contributions

The main goal of this paper to present the best choice of pairing and of elliptic
curve that gives 128-bit security according to the state-of-the-art. As families of
TNFS-secure elliptic curves are already presented in [14], our main contribution
is a comprehensive comparison of pairings and elliptic curve shapes and the
consequent selection of a curve from the available families. To our knowledge,
this is the first suggestion of a 128-bit secure pairing-friendly elliptic curve that
takes into account the latest attacks described above.

Our comparison takes into account competing candidates for the most ef-
ficient pairings (Section 2) and competing curve shapes for the most efficient
curve arithmetic (Section 3). In section 4 we combine the discussion in Sections
2 and 3 to compute the optimal elliptic curve and pairing choice for a 128-bit
security level.

Additionally, we present a new analysis for efficient curve arithmetic in the
case of quadratic twists of Edwards curves and Jacobi Quartic curves for the
Ate pairing (Section 3.2 and Section 3.3), and of sextic twists of Jacobi Quartic
curves (Section 3.2).

For every case that we consider we present an implementation in MAGMA,
available at www.martindale.info/research.

2 Secure and efficient pairings on elliptic curves

In all that follows, we write Fp for a finite field of prime order, we write E/Fp
for an elliptic curve defined over this field, we write r for a large prime dividing
#E(Fp), and k for the embedding degree of E with respect to r. For G1 and G2

distinct r-order subgroups of E(Fpk) and GT an r-order subgroup of F∗pk , there

is an asymmetric pairing ê : G1 × G2 → GT . Good choices of p, E, r, and k
give rise to pairing-based cryptographic protocols, the security and efficiency of
which depends on ê and is discussed in detail below.

2.1 Constructing explicit pairing-friendly elliptic curves

We make (severe) restrictions on the families of elliptic curves we consider for
specifically pairing-based applications; these families are commonly referred to
as pairing-friendly in the literature. In all that follows p, E, r, and k are as in
the preamble to this section.

Definition 1. We say that E/Fp is pairing-friendly (c.f. [13]) if:

1. There is a sufficiently large choice for r such that the discrete logarithm
problem in G1 and G2 is computationally hard.

2. The ρ-value ρ = log(p)/ log(r) is close to 1.

3

www.martindale.info/research

3. The discrete logarithm problem in GT is as computationally hard as the
discrete logarithm problem in G1 and G2.

4. Computations in GT ⊂ Fpk are efficient.

The precise meanings of ‘computationally hard’, ‘close to 1’, and ‘efficient’ de-
pend heavily on the desired security parameters.

Points (1) and (3) above are to ensure the security of a protocol based on a
pairing using such an elliptic curve. The recent TNFS attacks [18] on the discrete
logarithm problem for pairing-friendly elliptic curves changed the meaning of
‘computationally hard’ in this definition, so that the security analyses of papers
pre-dating this attack are now too weak. Fotiadis and Konstantinou [14] gave
examples of families of pairing-friendly elliptic curves that are resistant to the
TNFS attacks.

We aim to present which choices can be made with regards to points (2) and
(4). Point (2) gives control on the bandwidth of the pairing computation and
point (4) ensures efficient arithmetic in GT , normally achieved by using small k.
Each family of pairing-friendly elliptic curves presented in [14] is given together
with the ρ-value and the embedding degree, so the remaining work is to assess
the trade-off.

For the construction of pairing-friendly elliptic curves we use the notion of
complete polynomial families, introduced in [8]. For a given embedding degree
k > 0 the elliptic curve parameters p, t and r are described as polynomials
p(x), t(x), r(x) ∈ Q[x] respectively, such that 4p(x) − t(x)2 = Dy(x)2, where
D > 0 is the square-free complex multiplication (CM) discriminant and y(x) ∈
Q[x]. These polynomials must satisfy Φk(t(x) − 1) ≡ 0 mod r(x), where Φ(x)
is the kth cyclotomic polynomial. This implies that t(x) − 1 is a primitive kth

root of unity in the number field Q[x]/〈r(x)〉. An additional constraint for these
polynomials is that p(x) + 1− t(x) ≡ 0 mod r(x). This ensures that the order of
the curve has a polynomial representation as #E(Fp(x)) = h(x)r(x).

We can generate elliptic curve parameters by evaluating the polynomial fam-
ily at some integer x0, such that r = r(x0) and p = p(x0) are both primes and
t = t(x0) ≤ 2

√
p (Hasse bound). We further need to verify that these choices

respect the the recommendations of Definition 1. Particularly, for 128-bit secu-
rity in µr ⊂ F∗pk with composite k, Equation (1) implies that the extension field
size N = k log p should be around 4400-bits. Given the embedding degree k and
a desired security level S, we need to find a complete family of pairing-friendly
elliptic curves with CM discriminant D and ρ = N/(2kS).

2.2 Tate pairing

The reduced Tate pairing is a common example of a pairing that can be used
in cryptographic algorithms. The (non-reduced) Tate pairing is something more
general which we do not address here as our main focus is on applications. In
the reduced Tate pairing we have G1 = E(Fp)[r], G2 = E(Fpk)[r], and GT = µr,
the group of r-th roots of unity in F∗pk , with p, E, r, and k as defined at the

beginning of Section 2. For a point P ∈ E(Fq)[r] define the function fr, P to be

4

the unique function on E with divisor r(P)− r(P∞) (existence and uniqueness
follows from eg. [25, Corollary 3.5]). The reduced Tate pairing is the (p, E, r,
k-dependent) non-degenerate bilinear map t̂ : E(Fp)[r] × E(Fpk)[r] → µr given

by (P,Q) 7→ fr,P (Q)
pk−1
r . The value fr,P (Q) can be computed efficiently using

Miller’s algorithm (see [22], or Algorithm 1 below).

Definition 2. Let R and S be points on the elliptic curve E. We denote by hR,S
the rational function with divisor (R) + (S)− (S +R)− (P∞).

As explained in detail in [13,22], Miller’s algorithm computes fr,P (Q) iteratively
from hR,S(Q); see Algorithm 1.

Algorithm 1 Miller’s algorithm

Input: P ∈ E(Fp)[r], Q ∈ E(Fpk)[r], r = (1, rn−2, . . . , r1, r0)2.

Output: The reduced Tate pairing fr,P (Q)
pk−1
r of P and Q.

1: Set f ← 1 and R← P .
2: for i = n− 2 to 0 do
3: f ← f2 · hR,R(Q)
4: R← 2R
5: if ri = 1 then
6: f ← f · hR,P (Q)
7: R← R+ P

8: return f
pk−1
r

Remark 1. – The number of field operations needed to compute hR,S can be
decreased by using elliptic curves written in a special form, such as Jacobi
quartic form [16] or Edwards form [4]; see Section 3.

– The pairings that are presented in the following sections were partly intro-
duced in order to reduce the number of iterations in Algorithm 1.

– The number of times that Steps 6-7 of Algorithm 1 are performed depends
on the Hamming weight of r, which is minimized using Algorithm 2.

– Step 8 computes the power (pk − 1)/r of an element in F∗pk . This is known

as the final exponentiation; see e.g. [11], c.f. Section 2.4.

Algorithm 2 Finding suitable elliptic curve parameters for the Tate pairing

Input: A complete family of pairing-friendly elliptic curves: [p(x), t(x), r(x)]; security
level: S; integers a, b, such that the family is integer-valued for every x ≡ b (mod a).

Output: Optimal elliptic curve parameters p, t, r.
1: Set nmin ← (2S − log lc(r))/ deg r and nmax ← nmin + (1/ deg r) and w ← 2S
2: for i = 2nmin to 2nmax do
3: if i ≡ b (mod a) then
4: x0 ← i; r ← r(x0)
5: if r: ir prime and log r = 2S then
6: p← p(x0)
7: if p: ir prime and wt(r) < w then
8: t← t(x0); w = wt(r)

9: return [p, t, r]

5

2.3 Optimal Ate pairing

As the name suggests, the optimal Ate pairing is a descendant of the (reduced)
Ate pairing, which we introduce first for the benefit of the reader. In the Ate
pairing, we take

G1 = E(Fp)[r] ∩ ker(πp − [1]) and G2 = E(Fp)[r] ∩ ker(πp − [p]),

where πp denotes the p-power Frobenius endomorphism on E. Note that G1 =
E(Fp)[r] and G2 ⊆ E(Fpk)[r]. For a point P ∈ G2 and a positive integer
T , we define the function fT,P to be the unique function on E with divisor
T (P) − ([T]P) − (T − 1)P∞ (as before, existence and uniqueness follows from
e.g. [25, Corollary 3.5]). The reduced Ate pairing is the (p, E, r, k-dependent)

non-degenerate bilinear map â : G2 ×G1 → µr given by (P,Q) 7→ fT,P (Q)
pk−1
r ,

where T = t− 1 and t is the trace of Frobenius.
In [26], Vercauteren presented the optimal Ate pairing which always gives

the minimal number of iterations compared to other variants of the Ate pairing
(e.g. [28], [21], [19]). Note that it may still be slower than the Tate pairing.

Let E, p, r, and k be as above. Recall that pairing-friendly curves satisfy
Φk(p) ≡ 0 mod r, where Φk is the kth cyclotomic polynomial. We consider the
ϕ(k)-dimensional lattice L (spanned by the rows):

L =

r 0 0 . . . 0
−p 1 0 . . . 0
−p2 0 1 . . . 0

...
...

...
. . .

...
−pϕ(k)−1 0 0 . . . 1

 (2)

and let V = [c0, c1, . . . , cϕ(k)−1] be the shortest vector of this lattice. By [26,
Theorem 7], the shortest vector V of the lattice L satisfies

‖V ‖2 ≥
r1/ϕ(k)

‖Φk‖2
and ‖V ‖∞ ≤

r1/ϕ(k)

(ϕ(k)− 1)‖Φk‖∞
,

where ‖·‖2 and ‖·‖∞ are the square and infinite norms respectively. The optimal
Ate pairing is defined as the bilinear, non-degenerate map âo : G2 ×G1 → µr ⊂
F∗pk given by

(P,Q) 7→

ϕ(k)−1∏
i=0

fp
i

ci,P
(Q) ·

ϕ(k)−2∏
i=0

h[si+1]P,[cipi]P (Q)︸ ︷︷ ︸
H

pk−1
r

,

where hR,S(Q) is as defined in Definition 2 and the values si are obtained by the

relation: si =
∑ϕ(k)−1
j=i cjp

j . By [26] this choice of the coordinates ci ensures the
non-degeneracy property of the above pairing. Miller’s algorithm can be adapted
from Algorithm 1 to compute the optimal Ate pairing.

6

Algorithm 3 Miller’s algorithm (optimal Ate pairing)

Input: P ∈ G2, Q ∈ G1, V = [c0, c1, . . . , cϕ(k)−1], H.
Output: The reduced optimal Ate pairing âo of P and Q.
1: for j = 0 to ϕ(k)− 1 do
2: Set n← blog2 cjc, f ← 1, R← P , vj ← (1, Tn−2, Tn−1, . . . , T1, T0)2
3: for i = n− 2 to 0 do
4: f ← f2 · hR,R(Q)
5: R← 2R
6: if Ti = 1 then
7: f ← f · hR,P (Q)
8: R← R+ P

9: f ← f ·H
10: return f

pk−1
r

Note also that the second product H in the above formula depends on the
points P,Q which are fixed during the pairing computation so can be precom-
puted. Furthermore, we need the coordinates ci to have the smallest possible
Hamming weight.

Algorithm 4 Suitable elliptic curve parameters for the optimal Ate pairing

Input: A complete family of pairing-friendly elliptic curves: [p(x), t(x), r(x)]; security
level: S; integers a, b, such that the family is integer-valued for every x ≡ b (mod a);
the shortest vector V = [c0, c1, . . . , cϕ(k)−1] of the lattice L.

Output: Optimal elliptic curve parameters p, t, r.
1: Set nmin ← (2S − log lc(r))/ deg r and nmax ← nmin + 1/ deg r and w ← 2S
2: for i = 2nmin to 2nmax do
3: if i ≡ b (mod a) then
4: x0 ← i; r ← r(x0); p← p(x0); t← t(x0);
5: if r: ir prime and p: ir prime then
6: wt(V)← wt(c0) + wt(c1) + . . .+ wt(cϕ(k)−1)
7: if wt(V) < w then
8: w ← wt(V)

9: return [p, t, r]

The total number of iterations in this case is: bc =
∑′ϕ(k)−1

i=0
log ci =

log
∏′ϕ(k)−1

i=0
ci, where the sum and product run over all i = 0, 1, . . . , ϕ(k) − 1

such that ci 6= 0. Clearly, every ci contributes in Miller’s loop, as long as
ci /∈ {0,±1} (otherwise, fci,Q(P) = 1). According to [26], the total number
of iterations in Miller’s loop cannot be less than log r/ϕ(k). Given a complete
family [p(x), t(x), r(x)] of pairing-friendly elliptic curves with embedding degree
k, the process for generating optimal elliptic curve parameters for the reduced
optimal Ate pairing is described in Algorithm 4.

7

Twisted Ate Pairing. The downside to the (optimal) Ate pairing is that most
of the operations have to occur in extension fields. However, as observed in [21],
if an elliptic curve E/Fp has a twist (definition recalled below), we can essentially
switch G1 and G2.

Definition 3. Let E/Fp be an elliptic curve over a finite field Fp. A twist of E
is an elliptic curve E′ that is Fp-isomorphic to E. Suppose that the isomorphism
is defined over Fpk (but not over any subfield) and that E′ is defined over Fpe ,
where e|k, and not over any subfield. We say that E′ is a degree k/e twist of E.

Suppose now that E has a twist of degree δ|k, let e = k/δ, and let Te = T e

(mod r). Then there exists a non-degenerate bilinear pairing that is referred to

as the twisted Ate pairing âe : G1 × G2 → µr given by (P,Q) 7→ fTe,P (Q)
pk−1
r .

In particular, Algorithm 1 for the reduced Tate pairing with r replaced by Te
computes âe. In particular, if E has a (non-trivial) twist, then the twisted Ate
pairing has lower cost than the Tate pairing. As we restrict our attention to
elliptic curves with even embedding degree, every curve has at least a quadratic
twist. The process of generating optimal pairing-friendly elliptic curve param-
eters is the same as Algorithm 2, except that we are looking for the smallest
Hamming weight of Te.

Remark 2. By construction the value T = t− 1 is a primitive kth-root of unity
modulo r. When k is even and δ = 2, i.e. the case of quadratic twists, we have
e = k/2. In this case: Te ≡ T e ≡ T k/2 ≡ −1 ≡ (r − 1) (mod r). This implies
that log Tk/2 ≈ log r and in particular wt(Te) = wt(r)−1. Hence the complexity
of the Tate and twisted Ate pairings should be roughly the same in this case.
However, if there exist quartic or sextic twists, the complexity of the twisted
Ate pairing will be strictly better than the Tate pairing. For this reason, from
this point on we consider only the optimal Ate pairing (as the most efficient
pairing on G2 × G1) and the twisted Ate pairing (as the most efficient pairing
on G1 ×G2).

2.4 Final exponentiation

As we have already discussed, the efficiency of pairing calculations heavily relies
on the number of iterations in Miller’s loop. Another costly part of the pairing
calculations is the final step of Miller’s algorithm, the final exponentiation. It
comprises of raising an element f in an extension field Fpk of Fp to the power
(pk − 1)/r. Experiments in MAGMA indicate that it is possible to reduce the
cost of the final exponentiation by applying several tricks that will shorten the
exponent (pk − 1)/r (see e.g. [11]).

We give a brief description of the final exponentiation we used in our exper-
iments. Let [p(x), t(x), r(x)] be a family of pairing-friendly elliptic curves with
even embedding degree k and let x0 ∈ Z, such that p = p(x0), r = r(x0) are
primes and t = t(x0) is the trace of Frobenius. Write (pk − 1)/r as:

e =
(
pk/2 − 1

)[pk/2 + 1

Φk(p)

] [
Φk(p)

r

]
, where

Φk(p)

r
=

ϕ(k)−1∑
i=0

λip
i,

8

for some λi ∈ Q. Then fe is equivalently written as:

f
pk−1
r = f(pk/2−1) p

k/2+1
Φk(p) (λ0+λ1p+...+λϕ(k)−1p

ϕ(k)−1).

The first two exponentiations can be computed using the MAGMA’s Frobenius
function. The final step is to raise a value to λ0 + λ1p + . . . + λϕ(k)−1p

ϕ(k)−1.
This can be done by using the Frobenius function each time we need to raise to
pi and simple arithmetic operations when raising to λi. We point out that our
final exponentiation procedures are not necessarily optimal.

3 Efficient arithmetic on elliptic curves

Let E, p, r, and k be as given at the beginning of Section 2. As p 6= 2, 3, it is
possible to write E in the form E/Fp : y2 = x3 + Ax + B, where A, B ∈ Fp.
This is a short Weierstrass equation for E. For certain choices of curve families,
it is possible to rewrite the Weierstrass equation in an equivalent representation
where point operations such as addition and doubling can be performed with less
operations in Fp. To our knowledge, the most competitive elliptic curve forms
with respect to efficient arithmetic (for even embedding degree) are the Jacobi
quartic form [16] and (twisted) Edwards form [12]. In this section we recall the
definition of these special curve forms and the basic arithmetic of curve points
which are needed in pairing computations, namely addition and doubling. We
now set some notation:

– sm: time required to square an Fpm -element.
– mm: time required to multiply together two Fpm-elements.
– mcm: time required to multiply by a (small) constant in Fpm .

3.1 Twists of elliptic curves

Many authors have given ways to improve the performance of pairing computa-
tions via twists. There is of course the twisted Ate pairing that we have already
discussed, but there also are three further improvements. All of these improve-
ments are using the fact (see e.g. [24]) that, for a pairing-friendly elliptic curve
E/Fp and Q ∈ E(Fpk), if E has a degree δ twist E′/Fpk/δ , then with no loss of
security we can take for the point Q the image of a point Q′ ∈ E′(Fpk/δ) under
the twist isomorphism φ : E′ → E.

Speed-up (1). When computing the optimal Ate pairing via Miller’s algorithm,
the basic double and add operations are performed in E(Fpk). However, if the
curve has a degree δ twist E′ as above then the operations can be performed
instead in E′(Fpk/δ). If E and E′ can be written in the same form (i.e. both
in Jacobi Quartic form or both in Edwards form), then the map φ is (usually)
simple so does not add to the operation count. The map differs between different
curve shapes; details are given on a case-by-case basis below.

9

Speed-up (2). Let E and E′ be as above. For both the optimal Ate pairing and
the twisted Ate pairing, in each iteration of the Miller loop we are required to
compute the Miller function hP1,P2(Q) on E at least once. For optimal Ate, we
have P1, P2 ∈ G2 and Q ∈ G1, and for twisted Ate, we have P1, P2 ∈ G1 and
Q ∈ G2. Suppose that ω generates Fpk over Fpk/δ . If we take for the point(s) in
G2 the image under φ of (a) point(s) in E′(Fpk/δ), we can write hP1,P2

(Q) as

hP1,P2
(Q) = h1ω + · · · + hδω

δ, that is, as an element of a δ-dimensional vector
space over Fpk/δ . The computation of each hi is then a computation in Fpk/δ .
More details on a case-by-case basis are given below.

Speed-up (3). Let E and E′ be as above. In some cases, the Miller function h
has a denominator that lies in a subfield of Fpk and hence goes to 1 in the final
exponentiation step of Miller’s algorithm. In some cases, in the numerator some
of the hi are zero, where the hi are as given in Speed-up (2). If h has n non-zero
coefficients hi, then the multiplication by h with a generic element of Fpk (as
occurs at least once in every iteration of the Miller loop) can be performed in nδ
Fpk/δ -multiplications. If n < δ, then this costs less than a generic multiplication
in Fpk . More details on a case-by-case are given below.

3.2 Jacobi Quartic Curves

A Jacobi quartic curve over a prime field Fp is described by the equation:

EJ/Fp : Y 2Z2 = dX4 + 2µX2Z2 + Z4, (3)

where d, µ ∈ Fp and d 6= 0. The neutral element of the group of rational points
is [0 : 1 : 0]. By [5], if an elliptic curve E/Fp has a rational point of order 2, then
it can be written in the form given in Equation (3). The isomorphism from the
short Weierstrass equation to the Jacobi Quartic form is also given in [5].

For efficient arithmetic, in [16] it is recommended to use the extended pro-
jective representation of points, namely [X : Y : T : Z], where T = X2/Z. Given
two points in extended projective representation, P1 = [X1 : Y1 : T1 : Z1] and
P2 = [X2 : Y2 : T2 : Z2], we can calculate their sum P3 = [X3 : Y3 : T3 : Z3] by
the formulas:

X3 = (X1Y2 − Y1X2)(T1Z2 − Z1T2),

Y3 = (T1Z2 + Z1T2 − 2X1X2)(Y1Y2 − 2µX1X2 + Z1Z2 + dT1T2)− Z3,

T3 = (T1Z2 − Z1T2)2,

Z3 = (X1Y2 − Y1X2)2.

For the doubling process, given a point P1 = [X1 : Y1 : T1 : Z1], we can calculate
the point 2P = [X3 : Y3 : T3 : Z3] via:

X3 = 2X1Y1(2Z2
1 + 2µX2

1 − Y 2
1),

Y3 = 2Y 2
1 (Y 2

1 − 2µX2
1)− (2Z2

1 + 2µX2
1 − Y 2

1)2,

T3 = (2X1Y1)2,

Z3 = (2Z2
1 + 2µX2

1 − Y 2
1)2.

10

Using Wang, Wang, Zhang, and Li’s recommendations [27], point addition costs
16m + 1s + 4mc and point doubling costs 4m + 8s + 1mc. Here, m denotes
the cost of the multiplication of two elements, s denotes the cost of squaring
an element, and mc denotes the cost of the multiplication of an element with a
constant value; all elements are considered to lie in the field of definition of the
points P1 and P2.

Quadratic twists of Jacobi Quartic Curves. All the curves that we consider
in this paper have even embedding degree, and hence admit quadratic twists.
Let ω ∈ Fpk \ Fpk/2 , and define EωJ /Fpk/2 : Y 2Z2 = dω4X4 + 2µω2X2Z2 + Z4.
The curve EωJ is a quadratic twist of EJ via the isomorphism

φ : [X : Y : Z]→ [ωX : Y : Z]. (4)

We can use this isomorphism in the three ways described in the Section 3.1,
which we summarize following [27].

Pairings on G1 × G2. For pairings on G1 × G2 (such as the twisted Ate pair-
ing), Wang, Wang, Zhang, and Li [27] show that the function hP1,P2(Q), where
P1, P2 ∈ G1 and Q ∈ G2, can be computed in time km1, and that the result is a
general element of Fpk (i.e. has no zero coefficients as a vector over Fpk/2). The
total time for the doubling steps of Miller (i.e. steps 3 and 4 of Algorithm 1) is
therefore

1mk + 1sk + (4 + k)m1 + 8s1 + 1mc1,

and for the addition steps of Miller (i.e. steps 6 and 7 of Algorithm 1) is therefore

1mk + (16 + k)m1 + 1s1 + 4mc1.

Pairings on G2×G1. For pairings on G2×G1 (such as the optimal Ate pairing),
the necessary formulas do not to our knowledge appear in the literature, so for
completeness we include them here.

Speed-up (1) of Section 3.1 clearly applies; suppose that we wish to compute
the optimal Ate pairing of Q ∈ G1 and P ∈ G2 where P = φ(P ′) and P ′ ∈
EωJ (Fpk/2). Every R ∈ G2 appearing in the Miller function hR,R(Q) or hR,P (Q)
is a multiple of P , and hence R′ = φ−1(R) ∈ EωJ (Fpk/2). Therefore, every point
doubling/addition R + S, where S = R or P , can be computed in Fpk/2 via φ
as R + S = [ωXT , YT , ZT] where T = φ−1(R) + φ−1(S). Thus, using [27], point

doubling takes 4mk/2 + 8sk/2 + 1mck/2 = k2m1 + 2k2s1 + k2

4 mc1, and point

addition takes 16mk/2 + 1sk/2 + 4mck/2 = 4k2m1 + k2

4 s1 + k2mc1.
For speed-up (2) of Section 3.1 we start from the formula for the Miller

function hP1,P2
(Q) given in [27] and apply it to the case that P1 = φ(P ′1) and

P2 = φ(P ′2). To this end, let (xQ, yQ) be the affine coordinates of Q, set P1 =
[X1 : Y1 : Z1 : T1], and set P2 = [X2 : Y2 : Z2 : T2]. By [27], the Miller function
is given by

hP1,P2
(Q) =

x2Q
N(yQ + 1− cx2Q)

(ηN + (θ + a)M1 +M3), (5)

11

where

η =
yQ + 1 + ax2Q

x3Q
and θ =

1 + yQ
x2Q

and N,M1,M3 are calculated by:

N =

{
X1X2((T1Y2 − Y1T2) + (T1Z2 − Z1T2)), if P1 6= P2

2X3
1 , if P1 = P2,

M1 =

{
(Y1 + Z1 + aT1)X2T2Z1 − (Y2 + Z2 + aT2)X1T1Z2, if P1 6= P2

−(Y1 + 2Z1)X2
1 if P1 = P2,

M3 =

{
(Y1 + Z1 + aT1)(Y2 + Z2 + aT2)(X1Z2 − Z1X2) if P1 6= P2

(aX2
1 + Z2

1 + Y1Z1)Y1 if P1 = P2.

Here η, θ ∈ Fp and can be precomputed, and N , M1, and M3 are computed
during the point addition/doubling step.

If P1 6= P2, then rewriting the formulas for N , M1, and M3 in terms of ω and
the Fpk/2-coordinates of P ′1 and P ′2, we see that M1 =: ωm1 ∈ ωFpk/2 , N ∈ Fpk/2 ,

and M3 =: ωm3 ∈ ωFpk/2 . As N ∈ Fpk/2 , so is the coefficient
x2
Q

N(yQ+1−cx2
Q)
, hence

maps to 1 in the final exponentiation of Miller’s algorithm (so can be ignored).
Therefore, the computation of the Miller function hP1,P2(Q) when P1 6= P2

amounts to the computation of ηN+((θ+a)m1+m3)ω, where all the variables are
known, the time-consuming part of which is 2 multiplications of an element in Fp
by an element in Fpk/2 , which using the schoolbook method takes 2· k2m1 = km1.

If P1 = P2, then in the same way we see that M1 ∈ Fpk/2 , N =: ωn ∈
ωFpk/2 , and M3 ∈ Fpk/2 . As N ∈ ωFpk/2 , so is N−1 and hence also

x2
Q

N(yQ+1−cx2
Q)
,

thus goes to ω in the final exponentiation of Miller’s algorithm. Therefore, the
computation of the Miller function hP1,P1

(Q) amounts to the computation of
ηω2n+ ((θ+ a)M1 +M3)ω. As ηω2 can be precomputed, again all the variables
are known, so the computation takes km1 in exactly the same way as above.

Speed-up (3) of Section 3.1 does not apply as the Miller function h has no
zero coordinates as a vector with coefficients in Fpk/2 .

Combining the above, we see that the whole Miller doubling step (i.e. steps
4 and 5 of Algorithm 3) takes

mk + sk +
(
k2 + k

)
m1 + 2k2s1 +

k2

4
mc1,

and the whole Miller addition step (i.e. steps 7 and 8 of Algorithm 3) takes

mk +
(
4k2 + k

)
m1 +

k2

4
s1 + k2mc1.

Quartic twists of Jacobi Quartic curves. In the following section we sum-
marize results of Duquesne, El Mrabet, and Fouotsa [9]. The only elliptic curves
that admit quartic twists are those of j-invariant 1728, and with embedding

12

degree divisible by 4. For Jacobi Quartic curves this is equivalent to the coef-
ficient µ in Equation (3) being zero, that is E1728 : Y 2Z2 = dX4 + Z4. For
E1728, the formulas to add and double points are of course simpler than gen-
eral curves in Jacobi Quartic form. Also, rather than the extended projective
coordinates that we use for general Jacobi Quartic curves, we use the extended
projective point representation proposed by Hisil, Koon-Ho Wong, Carter, and
Dawson [16], namely [X : Y : Z : U : V], where U = X2 and V = Z2.

Let ω ∈ Fpk \Fpk/4 , and define Eω1728/Fpk/4 : Y 2Z2 = dω4X4 +Z4. The curve
Eω0 is a quartic twist of E0 via the isomorphism φ : [X : Y : Z]→ [ωX : Y : Z].
We can use this isomorphism in the ways described in the Section 3.1 as is
described in [9].

Pairings on G1 ×G2. As the point arithmetic in this case occurs in G1, clearly
speed-up (1) of Section 3.1 does not apply.

In [9], the authors show that speed-ups (2) and (3) of Section 3.1 can be
applied via the above isomorphism φ, together with the simpler arithmetic on
this specific curve, to get an operation count of(

1

k
+

1

2

)
mk + 1sk +

(
k

2
+ 3

)
m1 + 7s1 + 1mc1

for the doubling steps of Miller (i.e. steps 3 and 4 of Algorithm 1), and of(
1

k
+

1

2

)
mk +

(
k

2
+ 12

)
m1 + 7s1 + 1mc1

for the addition steps of Miller (i.e. steps 6 and 7 of Algorithm 1). Note that
mixed addition is always possible in this case ([9, Section 3.3]).

Pairings on G2 × G1. Clearly speed-up (1) of Section 3.1 applies, so the point
arithmetic can all be performed in Fpk/4 . Following the recommendations of [9]
this gives an operation count of

3mk/4 + 7sk/4 + 1mck/4 =
3k2

16
m1 +

7k2

16
s1 +

k2

16
mc1

for point doubling, and

12mk/4 + 7sk/4 + 1mck/4 =
3k2

4
m1 +

7k2

16
s1 +

k2

16
mc1

for point addition.
For speed-up (2), we refer to [9, p 16] in which it is shown that the Miller

function can be computed in time k
2m1.

For speed-up (3), we refer to [9, Remark 8; Appendix B] in which it is shown
that multiplication by the Miller function costs 3

4mk.
Combining the results of [9] stated above, this gives an operation count of

3

4
mk + sk +

(
k

2
+

3k2

16

)
m1 +

7k2

16
s1 +

k2

16
mc1

13

for the doubling steps of Miller (i.e. steps 4 and 5 of Algorithm 3) and of

3

4
mk +

(
k

2
+

3k2

4

)
m1 +

7k2

16
s1 +

k2

16
mc1

for the addition steps of Miller (i.e. steps 7 and 8 of Algorithm 3).

Sextic twists of Jacobi quartic curves We include here the necessary for-
mulas for sextic twists of Jacobi Quartic curves. These do not, to our knowledge,
appear in the literature. As suggested in [20] for Edwards curves, one can use
the Weierstrass sextic twist of a curve to save on arithmetic in extension fields
of degree divisible by 6.

Define EJ,a/Fp : Y 2Z2 = − 3
16a

2X4−3aX2Z2+Z4. This curve has j-invariant
0, hence admits sextic twists; its embedding degree k is divisible by 6. Let ω be a
generator of Fpk as a Fpk/6 -vector space, define EW,ω,a/Fpk/6 : ω6y2 = ω6x3−a3,
and define EW,a/Fp : y2 = x3 − a3. As shown in [27], there is an isomorphism

EW,a → EJ,a

(x, y) 7→
[
2(x− a) :

(2x+ a)(x− a)2 − y2

y
: y

]
.

(6)

Clearly, there is a Fpk -isomorphism defined by EW,ω,a → EW,a given by (x, y) 7→
(ω2x, ω3y), so by composition with (7) we get an Fpk -isomorphism

ϕ : EW,ω,a → EJ,a

(x, y) 7→
[
2(ω2x− a) : (2ω2x+a)(ω2x−a)2−ω6y2

ω3y : ω3y
]
.

(7)

Pairings on G1×G2. We first give the formulas for pairings that are computed on
G1×G2 (e.g. twisted Ate pairing). In this case, the point arithmetic is performed
in G1 ⊆ E(Fp), so point (1) from Section 3.1 does not apply.

For point (2) of Section 3.1 we proceed by computing the Miller function
h. Let (xQ, yQ) = Q ∈ G2 = EJ,a(Fpk) be the image of (x′Q, y

′
Q) = Q′ ∈

EW,ω,a(Fpk/6) under the twist isomorphism ϕ of (7). Plugging these values into
Equation (5) (i.e. the Miller function as given in [27]) gives

hP1,P2
(xQ, yQ) =

4

N(2ω2x′Q + a− 4c)

(
M3 −

a

2
M1 +M1

x′Q
2
ω2 +N

y′Q
4
ω3

)
.

Observe that 4
N(2ω2x′Q+a−4c) ∈ Fpk/2 , so in particular in the final exponentiation

step of Miller’s algorithm this becomes 1. Therefore, without loss of generality,
in the pairing computation we can replace hP1,P2(xQ, yQ) by

hP1,P2
(xQ, yQ) = M3 −

a

2
M1 +M1

x′Q
2
ω2 +N

y′Q
4
ω3.

Here x′Q/2 and y′Q/2 are in Fpk/6 and can be precomputed, so hP1,P2
(Q) can

be computed as an element of the Fpk/6 -vector space Fpk generated by ω in two

14

multiplications of an Fp-element with an Fpk/6-element, namely M1 ·
x′Q
2 and

N · y
′
Q

4 , and one multiplication by a constant in Fp, namely a
2 ·M1. Hence the

total cost for computing hP1,P2
(Q) is given by 2 · k6m1 + mc1 = k

3m1 + mc1.
Furthermore, this also shows us that speed-up (3) of Section 3.1 applies. The

multiplication step in Miller’s algorithm of a general element f ∈ Fpk with h, is
much more efficient than the general k2m1 for two general elements

f = f0 + f1ω + f2ω
2 + f3ω

3 + f4ω
4 + f5ω

5

and
h = h0 + h1ω + h2ω

2 + h3ω
3 + h4ω

4 + h5ω
5,

as here h1 = h4 = h5 = 0 and h0 ∈ Fp. Each of the 6 multiplications h0 · fi cost
k
6m1, and each of the 12 multiplications h2 · fi and h3 · fi cost

(
k
6

)2
m1, giving

a total time complexity of

6
k

6
m1 + 12

(
k

6

)2

m1 =

(
k +

k2

3

)
m1 =

(
1

k
+

1

3

)
mk

for the multiplication f · h. This corresponds to the speed-up (3) of Section 3.1.
We refer to the recommendations of [27] for the point arithmetic, giving a

total cost of (
1

k
+

1

3

)
mk + sk +

(
4 +

k

3

)
m1 + 8s1 + 2mc1

for the Miller doubling step (Steps 3 and 4 of Algorithm 1) and(
1

k
+

1

3

)
mk +

(
16 +

k

3

)
m1 + 1s1 + 5mc1

for the Miller addition step (Steps 6 and 7 of Algorithm 1).

Pairings on G2 ×G1. In this case, the point arithmetic would näıvely be com-
puted in Fpk , but point (1) of Section 3.1 applies (to some extent). We cannot do
arithmetic only in Fpk/6 without paying for the conversion between Weierstrass
and Jacobi Quartic form; also, doing point doubling and addition on a curve
in Weierstrass form is more expensive than on a curve in Jacobi Quartic form.
What we can do is perform our point arithmetic on a quadratic twist in Jacobi
Quartic form, so in Fpk/2 , via the isomorphism of Equation (4), as described in
Section 3.2.

Both speed-up (2) and speed-up (3) of Section 3.1 use the formula for the
Miller function h viewed as an element of a Fpk/δ -vector space. The speed-up
comes partly from the fact that the coefficients of h can be written relatively
simply in terms of values that were computed during the point addition/doubling
just before the computation of h. For this reason, as the point doubling/addition
is performed now in Fpk/2 , the best we can hope for in speed-ups (2) and (3) of
Section 3.1 is the speed-up that we get for the quadratic twist.

In particular, for pairings on G2 × G1, the operation count is the same for
sextic twists as it is for quadratic twists.

15

3.3 Edwards Curves

A twisted Edwards curve over a prime field Fp is defined by the equation:

EEd/Fp : aX2Z2 + Y 2Z2 = Z4 + dX2Y 2, (8)

where a, d ∈ F∗p and a 6= d. The base point (neutral group element) is [0 : 1 : 0].
The isomorphism to short Weierstrass form can be found in [1].

As stated in [1,20], it is common practice for fast addition and doubling
on EEd(Fp) to represent points on twisted Edwards curves in four coordinates
[X : Y : Z : T], where T = XY/Z. The sum P3 = [X3 : Y3 : Z3 : T3] of two
points P1 = [X1 : Y1 : Z1 : T1] and P2 = [X2 : Y2 : Z2 : T2] is given by the
formulas:

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (aX1X2 + Y1Y2)(T1Z2 − Z1T2),

Z3 = (aX1X2 + Y1Y2)(X1Y2 − Y1X2),

T3 = T 2
1Z

2
2 − Z2

1T
2
2 .

Using the recommendations in [1,20], addition can be performed using 14m +
1mc, mixed addition using 12m1 + mc, and doubling using 4m + 7s + 1mc.

Quadratic Twists of Edwards Curves As mentioned previously, all the
curves that we consider in this paper have even embedding degree and admit
quadratic twists. Let ω ∈ Fpk \ Fpk/2 , and define

EωEd/Fpk/2 : aω2X2Z2 + Y 2Z2 = Z4 + dω2X2Y 2.

The curve EωEd is a quadratic twist of EEd via the isomorphism

φ : [X : Y : Z]→ [ωX : Y : Z]. (9)

We can use this isomorphism in the three ways described in Section 3.1.

Pairings on G1×G2. For pairings on G1×G2 (such as the twisted Ate pairing),
we refer to [1] and the improvement mentioned in [20]. Clearly speed-up (1) of
Section 3.1 does not apply as the point arithmetic is performed in G1. In [1,20]
they apply speed-ups (2) and (3) of Section 3.1 to get a total operation count of

1mk + 1sk + (k + 4)m1 + 7s1 + 2mc1

for the doubling steps of Miller (steps 3 and 4 of Algorithm 1) and a total
operation count of

1mk + (k + 14)m1 + 1mc1 or 1mk + (k + 12)m1 + 1mc1

for the addition steps of Miller (steps 6 and 7 of Algorithm 1) using regular or
mixed addition respectively.

16

Pairings on G2×G1. For pairings on G2×G1 (such as the optimal Ate pairing),
the necessary formulas for quadratic twists of Edwards curves do not, to our
knowledge, appear in the literature, so for completeness we include them here.

It turns out to be more convenient for this case to use the twist

Eω,YEd /Fpk/2 : aX2Z2 + ω2Y 2Z2 = Z4 + dω2X2Y 2

of EEd. The curve Eω,YEd is a quadratic twist of EEd via the isomorphism

φY : [X : Y : Z]→ [X : ωY : Z]. (10)

Speed-up (1) of Section 3.1 clearly applies; all the point arithmetic can be
performed in Fpk/2 . Using Li, Wu, and Zhang’s recommendations [20], point
doubling takes

4mk/2 + 7sk/2 + 2mck/2 = k2m1 +
7k2

4
s1 +

k2

2
mc1,

regular point addition takes

14mk/2 + mck/2 =
7k2

2
m1 +

k2

4
mc1,

and mixed point addition takes

12mk/2 + mck/2 = 3k2m1 +
k2

4
mc1.

For speed-up (2) of Section 3.1 we start from the formula for the Miller
function hP1,P2

(Q) given in [20] and apply it to the case that P1 = φY (P ′1) and

P2 = φY (P ′2), where P ′1, P
′
2 ∈ Eω,YEEd

(Fpk/2). To this end, let (xQ, yQ) be affine
coordinates for Q, P1 = [X1 : Y1 : Z1 : T1], P2 = [X2 : Y2 : Z2 : T2], and
P1 + P2 = [X3 : Y3 : Z3 : T3]. By [20], the Miller function is given by

hP1,P2
(Q) =

CXxQ + CY (yQ + xQyQ) + CZ
Z3xQ −X3

,

where

CX =

{
Z2(T1 + Y1)− Z1(T2 + Y2), if P1 6= P2

Y1T1 − aX2
1 , if P1 = P2

CY =

{
X2Z1 −X1Z2 if P1 6= P2

X1T1 −X1Y1 if P1 = P2

CZ =

{
X1(Y2 + T2)−X2(T1 + Y1) if P1 6= P2

dX1Z1 − T 2
1 if P1 = P2.

Here xQ and yQ + xQyQ ∈ Fp and can be precomputed, and CX , CY , and CZ
are computed during the point addition/doubling step.

17

Observe that P3 = φY (P ′1 + P ′2) is in the image of φY and hence X3, Z3 ∈
Fpk/2 . In particular, the denominator Z3xQ−X3 ∈ Fpk/2 and so goes to 1 in the
final exponentiation of Miller’s algorithm (and so can be ignored).

If P1 6= P2, then rewriting the formulas for CX , CY , and CZ in terms of ω and
the Fpk/2 -coordinates of P ′1 and P ′2, we see that CY ∈ Fpk/2 , CX = ωcX ∈ ωFpk/2 ,
and CZ = ωcZ ∈ ωFpk/2 . That is, computing hP1,P2

(Q) amounts to computing

(yQ + xQyQ)CY + (xQcX + cZ)ω,

in other words, performing 2 multiplications of an Fp-element by an Fpk/2 -
element, which costs km1 using the schoolbook method.

If P1 = P2, then rewriting the formulas for CX , CY , and CZ in terms of ω
and the Fpk/2-coordinates of P ′1, we see that CX , CZ ∈ Fpk/2 and CY =: ωcY ∈
ωFpk/2 . That is, computing hP1,P1

(Q) amounts to computing

xQCX + CZ + (yQ + xQyQ)cY ω,

in other words, performing 2 multiplications of an Fp-element by an Fpk/2 -
element, which again costs km1 using the schoolbook method.

Speed-up (3) of Section 3.1 does not apply as the Miller function h has no
zero coordinates as a vector with coefficients in Fpk/2 .

Combining the above, we see that the whole Miller doubling step (i.e. steps
4 and 5 of Algorithm 3) takes

mk + sk + (k2 + k)m1 +
7k2

4
s1 +

k2

2
mc1

and the addition step (i.e. steps 7 and 8 of Algorithm 3) takes

mk +

(
7k2

2
+ k

)
m1 +

k2

4
mc1 or mk + (3k2 + k)m1 +

k2

4
mc1

without, or with mixed addition respectively.

Quartic twists of Edwards curves This section summarizes results of [20].
As mentioned previously, the only elliptic curves that admit quartic twists are
those of j-invariant 1728, and with embedding degree k = 2i for some i ≥ 2. For
Edwards curves this is equivalent to setting d = −a in Equation (8), that is

EEd/Fp : aX2Z2 + Y 2Z2 = Z4 − aX2Y 2. (11)

There is no quartic twist of EEd that can be written in Edwards form, but in [20,
Lemma 2] it is shown that for ω ∈ Fpk \ Fpk/4 , the curve

Wa/Fpk/4 :
2

a
v2 = u3 +

1

ω4
u

defines a degree 4 twist of EEd.

18

Pairings on G1 × G2. In this case, the point arithmetic is performed in G1 so
speed-up (1) of Section 3.1 does not apply.

The authors of [20] show that applying speed-ups (2) and (3) via the isomor-
phism to Wa gives a total operation count of(

1

2
+

1

k

)
mk + 1sk +

(
k

2
+ 4

)
m1 + 7s1 + 2mc1

for the doubling steps of Miller’s algorithm (i.e. steps 3 and 4 of Algorithm 1
and of(

1

2
+

1

k

)
mk+

(
k

2
+ 14

)
m1+1mc1 or

(
1

2
+

1

k

)
mk+

(
k

2
+ 12

)
m1+1mc1

for the addition steps of Miller’s algorithm (i.e. steps 5 and 6 of Algorithm 1
using regular or mixed addition respectively.

Pairings on G2 × G1. As there is no quartic twist of EEd that can be written
in Edwards form, the best we can do (as explained in Section 3.2) is use the
methods for quadratic twists described in 3.3.

Sextic twists of Edwards curves The following section summarizes results
of [20]. As mentioned previously, the only elliptic curves that admit sextic twists
are those of j-invariant 0 and with embedding degree divisible by 6. For Edwards
curves this is equivalent to setting a = (−7± 4

√
3)d in Equation (8); this gives

rational a when p ≡ 1 (mod 12). In this case the curve is given by

EEd/Fp : (−7± 4
√

3)dX2Z2 + Y 2Z2 = Z4 + dX2Y 2.

There is no sextic twist of EEEd
that can be written Edwards form, but in [20]

(Lemma 3), it is shown that for ω ∈ Fpk \ Fpk/6 , the curve

WM,N/Fpk/6 : v2 = u3 − M3N3ω6

27
,

with M = and N = is a degree 6 twist of EEd.

Pairings on G1 × G2. In this case, the point arithmetic is perform in G1 so
speed-up (1) of Section 3.1 does not apply.

The authors of [20] show that applying speed-ups (2) and (3) via the isomor-
phism to WM,N gives a total operation count of(

1

3
+

1

k

)
mk + 1sk +

(
k

3
+ 4

)
m1 + 7s1 + 3mc1

for the doubling steps of Miller’s algorithm (i.e. steps 3 and 4 of Algorithm 1
and of(

1

3
+

1

k

)
mk+

(
k

3
+ 14

)
m1+2mc1 or

(
1

3
+

1

k

)
mk+

(
k

3
+ 12

)
m1+2mc1

for the addition steps of Miller’s algorithm (i.e. steps 5 and 6 of Algorithm 1
using regular or mixed addition respectively.

19

Pairings on G2 × G1. As there is no sextic twist of EEd that can be written
in Edwards form, the best we can do (as explained in Section 3.2) is use the
quadratic twist methods described in Section 3.3.

4 Computational results

In this section we first summarize the operation counts for each pairing and curve
type addressed in this survey, and then use this review to choose the optimal
curve in each known TNFS-secure compact family for 128-bit security level (of
which there are 9 to which our methods may be applied), and give the best pair-
ing and curve shape for this curve. We then present the best choice(s) of curve,
pairing, and curve shape from these 9 choices, giving the optimal known TNFS-
secure pairing-friendly elliptic curve for 128-bit security level. This method can
easily be applied also to 192- and 256-bit security level.

Notation

– s: time required to square an Fp-element.
– m: time required to multiply an Fp-element.
– mc: time required to multiply by a (small) constant in Fp.
– hDBL: steps 3 and 4 of Algorithm 1 or steps 4 and 5 of Algorithm 3 (com-

putation of and multiplication by the line function hR,R(Q)).
– hADD: steps 6 and 7 in Miller’s algorithm of Algorithm 1 or steps 7 and

8 of Algorithm 3 (computation of and multiplication by the line function
hR,P (Q)).

– e: final exponentiation in Miller’s algorithm (c.f. Algorithms 1, 3).
– bx: the bit length of x.
– wx: the Hamming weight of x.

In Tables 1 and 2, we compare operation counts for hDBL and hADD in each
of the cases studied in Section 3. For simplicity, where relevant the operation
counts are for mixed addition (not general addition). Observe that the total cost
of the twisted Ate pairing âe is

(bTe − 1)hDBL + (wTe − 1)hADD + e

and the total cost of the optimal Ate pairing â0 with parameter s is

(bs − 1)hDBL + (ws − 1)hADD + e.

For easier comparison, we now replace each instance of mk, sk, and mck with
k2m1 = k2m, k2s1 = k2s, and k2mc1 = k2mc. (Consider Fpk as a k-dimensional
Fp-vector space, then this is clearly true in general). Besides the comparison in
terms of operation count, we also give the timing of our MAGMA implementation
for each of the examples that follow. These timings are definitely not optimal
(but serve as a basic comparison between families) as we have not yet considered
optimising finite field arithmetic and the implementation is not yet in C. We leave
this for future work.

20

Table 1. Operation counts for hDBL

hDBL JQ on G1 ×G2 JQ on G2 ×G1 Ed on G1 ×G2 Ed on G2 ×G1

2|k (k2 + k + 4)m
(
2k2 + k

)
m (k2 + k + 4)m (2k2 + k)m

j 6= 0, 1728 +(k2 + 8)s + 1mc +3k2s + k2

4
mc +(k2 + 7)s + 2mc + 11k2

4
s + k2

2
mc

4|k (k2

2
+ 3k

2
+ 3)m (15k2

16
+ k

2
)m (k2

2
+ 3k

2
+ 4)m (2k2 + k)m

j = 1728 +(k2 + 7)s + 1mc + 23k2

16
s + k2

16
mc +(k2 + 7)s + 2mc + 11k2

4
s + k2

2
mc

6|k (k2

3
+ 4k

3
+ 4)m

(
2k2 + k

)
m (k2

3
+ 4k

3
+ 4)m (2k2 + k)m

j = 0 +(k2 + 8)s + 2mc +3k2s + k2

4
mc +(k2 + 7)s + 3mc + 11k2

4
s + k2

2
mc

Table 2. Operation counts for hADD

hADD JQ on G1 ×G2 JQ on G2 ×G1 Ed on G1 ×G2 Ed on G2 ×G1

2|k (k2 + k + 16)m
(
5k2 + k

)
m (k2 + k + 12)m (4k2 + k)m

j 6= 0, 1728 +1s + 4mc + k2

4
s + k2mc +1mc + k2

4
mc

4|k (k2

2
+ 3k

2
+ 12)m (3k2

2
+ k

2
)m (k2

2
+ 3k

2
+ 12)m (4k2 + k)m

j = 1728 +7s + 1mc + 7k2

16
s + k2

16
mc +1mc + k2

4
mc

6|k (k2

3
+ 4k

3
+ 16)m

(
5k2 + k

)
m (k2

3
+ 4k

3
+ 12)m (4k2 + k)m

j = 0 +1s + 5mc + k2

4
s + k2mc +2mc + k2

4
mc

Family 1 (embedding degree 8, CM discriminant D = 1). By [14] there is
a complete polynomial family [p(x), t(x), r(x)] of pairing-friendly elliptic curves
E/Fp : y2 = x3 + x with embedding degree k = 8, CM-discriminant D = 1 and
ρ = 2 given by the polynomials:

p(x) =
1

4

(
x8 + x6 + 5x4 + x2 + 4x+ 4

)
, t(x) = x4 +x+ 2, r(x) = Φ8(x) = x4 + 1.

All three polynomials produce integer values for every x ≡ 0 (mod 2) and give
128-bit level security when x is in the range [264, 264.25). That is, for this range,
the extension field Fp8 has a size of 4096-bits, which by Equation (1) offers a
security level of approximately 124-bits.

Twisted Ate pairing: As T = t−1 is a primitive 8th root of unity for this family,
we get that T4 = r− 1, so we set e = 2 in order to minimize bTe . We then apply
Algorithm 2 (with T2 in place of r) to minimize wT2 for our range of choices for
x0, giving x0 = 18446744073710252032 and

T2 = 340282366920964304252768870620960129024,

with wT2 = 14 and bT2 = 129. The elliptic curve in Jacobi Quartic form is
EJ/Fp : y2 = dx4 + 1, where

d = 8379879956216668634593347121131816515070084017337664741173880872
1072703339902003799176786332186311744324273449198560964388059783
6109560681909227642596352

21

and in Edwards form is EEd/Fp : 2x2 + y2 = 1− 2x2y2.

Optimal Ate pairing: The shortest vector of the corresponding lattice L is V =
[x,−1, 0, 0]. Thus, the optimal Ate pairing is calculated by the formula:

âo(Q,P) = fx,Q(P)
pk−1
r .

We apply Algorithm 4 to choose the best value of x0, which in this case is (also)
x0 = 18446744073710252032 with s = x0, giving ws = 6 and bs = 65.

Comparison: Following e.g. [10], we give two comparisons by plugging in these
values to Tables 1 and 2 corresponding to the two options s = 0.8m and s = m.
The table below indicates time required to compute the pairing in each case as
a multiple of m.

JQ, â2 JQ, âo Ed, â2 Ed, âo

s = m 16064 10900 15960 21288

s = 0.8m 14228.2 9694.4 14142.4 19035.2

As each pairing includes exactly 1e, we do not include this in the count, as it
does not change the comparison. As the curve constants for EJ are in the order
of p, we set mc = m for the Jacobi Quartic case. As the curve constants for
EEd are very small, we set mc = 0 for the Edwards case. The above table shows
clearly that the best choice for this family is the optimal Ate pairing applied to
the above curve in Jacobi Quartic form. Our MAGMA implementation runs this
example in 16ms.

Family 2 (embedding degree 8, CM discriminant D = 2). The second
family of TNFS-secure pairing-friendly elliptic curves in [14] is also of embedding
degree 8, it has CM discriminant D = 2 and it is parametrized by:

p(x) =
1

8

(
2x8 + 4x7 + 3x6 + 2x5 + 11x4 + 12x3 + 3x2 + 2x+ 9

)
,

t(x) = x4 + x3 + 2, r(x) = x4 + 1,

where x ≡ 1 (mod 2) in the range [264, 264.25).

Twisted Ate pairing: The curves generated by this family admit only quadratic
twists, thus the only possibility for the twisted Ate pairing is T4. The value
x = 18446744073709584935 gives the lowest Hamming weight for T4, particularly
bT4 = 256 and wT4 = 68. The coefficients of the elliptic curve in Weierstrass form
are:

A = 1933995701602254373352815227295577988001391575075214905224432577
6723696340238896700311167681216806999831537071596907112291500601
55123867284775372963879318

B = 3249925724244561680737407994390614893551384131971449827168082404
7654448427002208648788265190103673429884742123474891938446749436
32641573710140606666223982

22

Optimal Ate pairing: For this family, we take the shortest vector of the lattice
L as V = [x, 0, 0,−1], so that the optimal Ate pairing is:

âo(Q,P) = fx,Q(P)
pk−1
r .

The best value of x is (also) x = 18446744073709584935 with s = x, giving
ws = 6 and bs = 65.

JQ, â4 JQ, âo Ed, â4 Ed, âo

s = m 44226 24464 43690 23696

s = 0.8m 40540.6 21987.2 40069 21443.2

For this family the best choice is the optimal Ate pairing with Edwards curve.
Our MAGMA implementation runs this example in 21ms.

Family 3 (embedding degree 8, CM discriminant D = 3). The third
family with embedding degree 8 has D = 3 and it is parametrized by:

p(x) =
1

3

(
3x16 − 9x12 + x10 − 2x9 + 16x8 − x6 + 5x5 − 13x4 + x2 − 5x+ 7

)
t(x) = (x8 + x5 − x4 − x+ 2), r(x) = x8 − x4 + 1,

for every x ≡ 1 (mod 3) and x ∈ [232, 232.125).

Twisted Ate pairing: We only have only choice of Te for this family, that is
T4 = r− 1. Applying Algorithm 2, we see that the best choice in this family for
the twisted Ate pairing is x = 4295331013, giving bT4

= 256 and wT4
= 107.

Optimal Ate pairing: The shortest vector of the corresponding lattice that we
choose is V = [x2, x, 1, 0], so that in this case the optimal pairing is

âo(Q,P) =
(
fx2,Q(P)fpx,Q(P)hs2Q,xpQ(P)hs3Q,p2Q(P)

) pk−1
r

.

Observe that s3Q = ∞, so hs3Q,p2Q is the vertical line passing through p2Q =
(a, b) with equation X−a. Recall that in every case outlined above Q ∈ E(Fpk) is
chosen to be in the image of the quadratic twist isomorphism (X,Y) 7→ (X,ωY),
where X,Y ∈ Fpk/2 and ω generates Fpk as a Fpk/2 -vector space. In particular,
the multiple p2Q of Q is also in the image of this isomorphism, hence a ∈ Fpk/2
and hs3Q,p2Q(P) = xP − a ∈ Fpk/2 , so maps to 1 under the final exponentiation.
This leaves hs2Q,xpQ(P), which does give a nontrivial contribution, but can be
precomputed so adds negligable computation to the pairing.

We also recall from [26] that fx2,Q = fxx,Qfx,[x]Q and thus the formula for the
optimal Ate pairing simplifies to:

âo(Q,P) =
(
fp+xx,Q (P)fx,[x]Q(P)hs2Q,xpQ(P)

) pk−1
r

.

23

Then total time to compute the optimal Ate pairing âo is

2(bs − 1)hDBL + 2(ws − 1)hADD + e + E,

where E denotes exponentiaion by p + x. We apply Algorithm 4 to choose the
best value of x, which in this case is (also) x = 4295331013 with s = x, giving
ws = 10 and bs = 32. We exclude the cost of E from the following table as
our implementation uses a combination of MAGMA’s Frobenius function and a
basic exponentiation algorithm, meaning that the cost is hard to give precisely
in terms of m. This means that the operation count for âo is an underestimation.

JQ, â4 JQ, âo Ed, â4 Ed, âo

s = m 48002 28672 47154 26368

s = 0.8m 44294.4 26233.6 43518.8 24185.6

Our MAGMA implementation runs this example in 31ms for the optimal Ate
pairing on twisted Edwards curves (this is also the fastest implementation).

Family 4 (embedding degree 10, CM discriminant D = 1). This family
is parametrized by:

p(x) =
1

4

(
x14 − 2x12 + x10 + x4 + 2x2 + 1

)
, t(x) = x2 + 1, r(x) = Φ20(x)

It produces pairing-friendly elliptic curves E/Fp : y2 = x3 + x, with ρ = 1.7422
whenever x ≡ 1 (mod 2). For a 128-bit security level, the input x must be in
the range [232, 232.125).

Twisted Ate pairing: Elliptic curves derived by this family admit quadratic
twists. For x = 4295075489 we get T5 = (t(x)−1)5 (mod r(x)), with log T5 = 256
and wt(T5) = 98.

Optimal Ate pairing: We choose the shortest vector of the lattice L to be V =
[x2,−1, 0, 0] and the formula for the optimal Ate pairing becomes:

âo(Q,P) = fx2,Q(P)
pk−1
r .

For x = 3963617801 we set s = x2, where we have bs = 64 and ws = 24.

Comparison: Since µ = 0 in the Jacobi quartic form, there is only one multipli-
cation with the constant d in the doubling step, for which we set mc = m. In
addition for the twisted Edwards curve we set mc = 0.

JQ, â5 JQ, âo Ed, â5 Ed, âo

s = m 69026 45010 68189 39985

s = 0.8m 63498.6 41115 62732 36520

Our MAGMA implementation runs this example in 31ms, using the optimal Ate
pairing for the elliptic curve in twisted Edwards form.

24

Family 5 (embedding degree 10, CM discriminant D = 5). The next
polynomial family is parametrized by

p(x) =
1

20

(
4x14 − 7x12 + 11x10 − 11x8 − 9x6 + 13x4 − 16x2 + 20

)
,

t(x) = −x6 + x4 − x2 + 2, r(x) = x8 − x6 + x4 − x2 + 1,

and produces pairing-friendly curves when x ≡ 0, 4 or 6 (mod 10).

Twisted Ate pairing: The elliptic curves produced by this family have quadratic
twists; for x = 4299680754 we get log T5 = 256 and wt(T5) = 94. The coefficients
of the Weierstrass curve are:

A = 1434142558072482992717767987605224926822071654581181887660806883979085
33157494227966571977857509978621188790947050157295400195043348754

B = 1448152355655271041167166000663895746945176603078579211573447332928465
42388964430457326978055255774719968539520707063509316602096298019

Optimal Ate pairing: We take the shortest vector V = [x2 − 1, 1,−1, 1] and the
formula for the optimal Ate pairing becomes:

âo(Q,P) =
[
fx2−1,Q(P)h[s2]Q,[p]Q(P)h[s3]Q,[−p2]Q(P)

] pk−1
r ,

where both values h[s2]Q,[p]Q(P) and h[s3]Q,[−p2]Q(P) contribute in the pairing
computation but they can be precomputed. We take x = 4295426686; the coef-
ficients of the Weierstrass curve are:

A = 4983541974485518942640702841041487964808494612567841938054317835752967
9913898846590407063815257610665928626825793838213034968895531605

B = 8175213845678406654230954570916316289077807358823318928079745531213973
2354874453453192312647819009597646943271112111073990129871455013

JQ, â5 JQ, âo Ed, â5 Ed, âo

s = m 69048 47675 68304 43275

s = 0.8m 63521.4 43785 62847 39810

In the above table we can see that the best choice is to use the optimal Ate
pairing for twisted Edwards curves. The running time using our implementation
is 40ms. Note that there is also an additional multiplication of f and H, before
the final exponentiation.

Family 6 (embedding degree 10, CM discriminant D = 15). The final
complete family with embedding degree 10 is parametrized by:

p(x) =
1

15
(4x14 + 4x13 + x12 − 12x11 − 12x10 − 7x9 + 11x8 + 17x7 + 15x6 − 3x5

− 11x4 + x3 − 2x2 + 3x+ 6), (x) = x3 + 1, r(x) = Φ30(x),

with x ≡ {1, 3, 6, 13} (mod 15).

25

Twisted Ate pairing: These curves have quadratic twists and hence the twisted
Ate pairing requires log T5 iterations in Miller’s loop. We take x = 4295609701;
then bT5 = 256 and wT5 = 109. The coefficients of the Weierstrass curve are:

A = 7530549875619995973904171476874159634597247325554413189099502208876127
3119595856002093259712232206207252788312933020423372440709996445

B = 1891078794636363879141088254463737306214748143829845976539884415128302
68496147067961907300153652307761692277431976821323488452819833486

Optimal Ate pairing: We choose the shortest vector V = [x, 0,−1, x2] for the
corresponding lattice L and the formula for the optimal Ate pairing is:

âo(Q,P) =
(
fx,Q(P)fp

3

x2,Q(P)h[s2]Q,∞(P)h[s3]Q,[−p2]Q(P)
) pk−1

r

.

Note that for h[s2]Q,∞(P), we have h[s2]Q,∞(P) = xP − x[s2]Q ∈ Fp5 and hence
maps to 1 in the final exponentiation. Therefore, only the value h[s3]Q,[−p2]Q(P)
contributes in the pairing computation. Furthermore, we can use the relation
fx2,Q(P) = fxx,Q(P)fx,[x]Q(P), and thus the formula for the optimal Ate pairing
transforms to:

âo(Q,P) =
(
f1+xp

3

x,Q (P)fp
3

x,[x]Q(P)h[s3]Q,[−p2]Q(P)
) pk−1

r

.

We take s = x = 4295609701 as in the case of the twisted Ate pairing, for which
bs = 32 and ws = 12.

JQ, â5 JQ, âo Ed, â5 Ed, âo

s = m 71013 47140 70149 42740

s = 0.8m 65483.4 43310 64692 39330

The best choice is to use the optimal Ate pairing for twisted Edwards curves.
Our MAGMA implementation runs this example in 37ms.

Family 7 (embedding degree 12, CM discriminant D = 3). We study
the following complete polynomial family with k = 12:

p(x) =
1

3

(
x6 − 2x5 + 2x3 + x+ 1

)
, t(x) = x+ 1, r(x) = x4 − x2 + 1,

where x ≡ 1 (mod 3). This is a family of elliptic curves in Weierstrass form given
by E/Fp : y2 = x3 + 1.

Twisted Ate pairing: Elliptic curves produced by this family admit sextic twists,
giving a choice of â2, â3, and â6 for the twisted Ate pairing. The optimal choice
for the twisted Ate pairing is â2 with x = 18446744073709611553, for which
bT2

(r) = 129 and wt(T2) = 19.

26

Optimal Ate pairing: The shortest vector of the corresponding lattice for this
family is V = [x,−1, 0, 0] and so the formula for the optimal Ate pairing is:

âo(Q,P) = fx,Q(P)
pk−1
r .

We choose s = x = 18446744073709818889, with bs = 64 and ws = 6.

JQ, â2 JQ, âo Ed, â2 Ed, âo

s = m 29742 52944 29598 51504

s = 0.8m 25877.6 47464.8 25762.6 46514.4

The best choice for this family is the twisted Ate pairing with twisted Edwards
curves. Our MAGMA implementation runs this example in 23ms.

Family 8 (embedding degree 12, CM discriminant D = 2). The next
complete polynomial family has embedding degree 12 and is parameterized by:

p(x) =
1

8
(x14 − 4x10 + 2x8 + 4x6 − 2x4 + 5x2 + 2), t(x) = x2 + 1, r(x) = Φ24(x),

with x ≡ 1 (mod 2).

Twisted Ate pairing: This family produces elliptic curves which admit quadratic
twists and thus for the twisted Ate pairing the number of iterations in Miller’s
loop derives from the size of T6 = (t − 1)6 mod r. For x = 4295114753 we get
that log T6 = 256, with wt(T6) = 97. The coefficients of the elliptic curve in
Weierstrass form are:

A = 1035384114086415639385033191584877403068222061220040515425501700254105
9163488608120808766441757343152957214120074465669038166665814946

B = 3947328936377596310410210945159429794869115284391294094527343308557187
6583864616864154630093167743249959592989117035943541619831594138

Optimal Ate pairing: The shortest vector for this family is V = [x2,−1, 0, 0] and
the formula for the optimal Ate pairing is

âo(Q,P) = fx2,Q(P)
pk−1
r .

We choose s = x2, for x as in the case of the twisted Ate pairing. Here bs = 64
and ws = 10.

JQ, â6 JQ, âo Ed, â6 Ed, âo

s = m 96807 56592 96039 54000

s = 0.8m 89035.8 51084 88338 49010.4

The best choice for this family is to use the optimal Ate pairing with twisted
Edwards curves. Our MAGMA implementation runs this example in 41ms.

27

Family 9 (embedding degree 14, CM discriminant D = 1). The next
polynomial family is a complete family with variable discriminant (CVD). The
construction of such families is similar to complete families, however the CM
discriminant is not a fixed value, but varies depending on the input of the poly-
nomial family (see [14] for more details). In this case, a CVD polynomial family
[p(x), t(x), r(x)] satisfies 4p(x) − t(x)2 = xy(x)2 and thus we need to find an
input of the form x = Dy2, for some square-free D > 0, such that p(x) and r(x)
are both primes of a desired size. For a desired security level of S-bits, this can
be easily done by fixing a square-free value D > 0 and searching for a y ∈ Z,
such that

log y =
1

2

(
2S − log lc(r)

deg r
− logD

)
,

where lc(r) is the leading coefficient of the polynomial r(x).
The following is an example of a CVD family with embedding degree k = 14,

which is parametrized by the polynomials:

p(x) =
1

4

(
x9 − 2x8 + x7 + x2 + 2x+ 1

)
, t(x) = x+ 1, r(x) = Φ14(x)

with x ≡ 1 mod 2. This family has ρ = 1.5, so for 128-bit security level we get
an extension field Fp14 of 5376-bits. We fix D = 1 and choose x = D · 19016972

Note that with this choice the prime r is 250-bits and the base field prime p
373-bits, corresponding to an extension field of 5222-bits.

Twisted Ate pairing: These curves admit only quadratic twists, so the only choice
is to set T7 ≡ (t− 1)7 (mod r). Then bT7

= 250 and wT7
= 124.

Optimal Ate pairing: We choose the shortest vector V = [x0,−1, 0, 0, 0, 0], then
the formula for the optimal Ate pairing is:

âo(Q,P) = fx,Q(P)
pk−1
r .

For x as above we get bx = 41 and wx = 15.

JQ, â7 JQ, âo Ed, â7 Ed, âo

s = m 132744 59066 131760 53578

s = 0.8m 122560.2 54224.8 121650.6 49266

The best choice for this family is the optimal Ate pairing applied to twisted
Edwards curves. Our MAGMA implementation runs this example in 41ms.

5 Conclusion

We give a comprehensive comparison of the competing proposals put forward
in the literature for curve shapes and pairing choices for elliptic curves with
even embedding degree, for each known TNFS-secure complete pairing-friendly
family for 128-bit security level. We additionally provide the formulas for the

28

‘gaps’ in the literature: utilizing quadratic twists for pairings on G2 × G1 with
Jacobi Quartic and Edwards curves, and utilizing sextic twists for pairings on
G1 ×G2 with Jacobi Quartic curves.

Our comparisons show that, from the currently known TNFS-secure families,
the best pairing implementation choice for 128-bit security is the optimal Ate
pairing applied to the Jacobi Quartic elliptic curve E/Fp : y2 = dx4+1 (utilizing
quartic twists), where

p = 33519519824866674538373388484527266060280336069350658964695523488
42908133596080151967071453287452469772970937967942438575522391344
438242727636910570385409

and

d = 83798799562166686345933471211318165150700840173376647411738808721
07270333990200379917678633218631174432427344919856096438805978361
09560681909227642596352.

This choice comes from Family 1, for which our MAGMA implementation runs
in 16ms. We leave an optimised implementation of this example to future work.

References

1. C. Aréne, T. Lange, M. Naehrig, C. Ritzenthaler, Faster computation of the Tate
pairing. Journal of Number Theory, Vol. 131, No. 5, pp. 842–857, Elsevier, 2011.

2. P.S.L.M. Barreto, M. Naehrig. Pairing-Friendly Elliptic Curves of Prime Order.
SAC 2005, LNCS Vol. 3897, pp. 319–331, Springer, 2005.

3. D. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters. Twisted Edwards Curves.
AFRICACRYPT 2008, LNCS Vol. 5023, pp. 389–405, Springer, 2008.

4. D. Bernstein, T. Lange. Faster Addition and Doubling on Elliptic Curves. ASI-
ACRYPT 2007, LNCS Vol. 4833, pp. 29–50, Springer, 2007.

5. O. Billet, M. Joye. The Jacobi model of an elliptic curve and side-channel analysis.
AAECC 2003, LNCS Vol. 2643, pp. 34–42, Springer, 2003.

6. D. Boneh, M. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM
Journal on Computing: 32(3), pp. 586–615, 2003.

7. D. Boneh, B. Lynn, H. Shacham. Short Signatures From the Weil Pairing. Journal
of Cryptology: 17(4), pp. 297–319, 2004.

8. F. Brezing, A. Weng. Elliptic Curves Suitable for Pairing Based Cryptography.
Designs, Codes and Cryptography: 37(1), pp. 133–141, 2005.

9. S. Duquesne, N. El Mrabet, E. Fouotsa. Efficient computation of pairings on Jacobi
quartic elliptic curves. Journal of Mathematical Cryptology, Vol. 8, No. 4, pp. 331–
362, De Gruyter, 2014.

10. S. Duquesne, N. El Mrabet, S. Haloui, F. Rondepierre. Choosing and generating
parameters for low level pairing implementation on BN curves. Cryptology ePrint
Archive, Report 2015/1212, https://eprint.iacr.org/2015/1212, 2015.

11. S. Duquesne, L. Ghammam. Memory-saving computation of the pairing final ex-
ponentiation on BN curves. Groups Complexity Cryptology: 8 (1), pp. 75–90, De
Gruyter, 2016.

12. H. Edwards. A normal form for elliptic curves. Bulletin of the American Mathe-
matical Society: 44(3), pp. 393–422, 2007.

29

https://eprint.iacr.org/2015/1212

13. D. Freeman, M. Scott, E. Teske. A Taxonomy of Pairing-Friendly Elliptic Curves.
Journal of Cryptology, Vol. 23, No. 2, pp. 224–280, Springer, 2010.

14. G. Fotiadis, E. Konstantinou. TNFS Resistant Families of Pairing-Friendly Elliptic
Curves. Journal of Theoretical Computer Science, Elsevier, 2018 (to appear).

15. G. Frey, H.G. Rück. A Remark Concerning m-divisibility and the Discrete Loga-
rithm in the Divisor Class Group of Curves. Mathematics of Computation, Vol.
62, No. 206, pp. 865–874, 1994.

16. H. Hisil, K. Koon-Ho Wong, G. Carter, E. Dawson. Jacobi quartic curves revisited.
ACISP 2009, LNCS Vol. 5594, pp. 452–468, Springer, 2009.

17. A. Joux. One Round Protocol for Tripartite DiffieHellman. Journal of Cryptology:
17 (4), pp. 263–276, 2004.

18. T. Kim, R. Barbulescu. Extended Tower Number Field Sieve: A New Complexity for
the Medium Prime Case. CRYPTO 2016, LNCS Vol. 9814, pp. 543–571, Springer,
2016.

19. E. Lee, H-S. Lee, C-M. Park. Efficient and generalized pairing computation on
abelian varieties. IEEE Transactions on Information Theory: 55 (4), pp. 1793–
1803, IEEE, 2009.

20. L. Li, H. Wu, F Zhang. Pairing Computation on Edwards Curves with High-Degree
Twists. Inscrypt 2013, LNCS Vol. 8567, pp. 185–200, Springer, 2014.

21. S. Matsuda, K. Naoki, F. Hess, E. Okamoto. Optimised versions of the Ate and
twisted Ate pairings. IMACC 2007, LNCS Vol. 4887, pp. 302–312, Springer, 2007.

22. V.S. Miller. The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology,
Vol. 17, pp. 235–261, 2004.

23. A.J. Menezes, T. Okamoto, S.A. Vanstone. Reducing Elliptic Curve Logarithms to
Logarithms in a Finite Field. IEEE Transactions on Information Theory, Vol. 39,
No. 5, pp. 1639–1646, 1993.

24. M. Naehrig, P.S.L.M. Barreto, P. Schwabe. (2008) On Compressible Pairings and
Their Computation. Progress in Cryptology AFRICACRYPT 2008. Lecture Notes
in Computer Science, Vol. 5023. Springer, 2008.

25. J. Silverman. The Arithmetic of Elliptic Curves. Vol. 106 of Graduate Texts in
Mathematics, 1986.

26. F. Vercauteren. Optimal Pairings. IEEE Transactions on Information Theory: 56
(1), pp. 455–461, IEEE, 2010.

27. H. Wang, K. Wang, L. Zhang, B. Li. Pairing Computation on Elliptic Curves of
Jacobi Quartic Form. Chinese Journal of Electronics, Vol. 20, No. 4, 2011.

28. C-A. Zhao, F. Zhang, J. Huang. A note on the Ate pairing. International Journal
of Information Security: 7 (6), pp. 379–382, Springer 2008.

30

	Optimal TNFS-secure pairings on elliptic curves with even embedding degree

