

Faculty of Science, Technology and
Communication

University of Luxembourg

2, avenue de l’Université,
L-4365 Esch-sur-Alzette

Luxembourg

TR_LASSY_19_01
Technical Report

March 2019

Teaching Devops in

academia and industry:
Reflections and Vision

Evgeny Bobrov1, Antonio Bucchiarone3,
Alfredo Capozucca2, Nicolas Guelfi2,
Manuel Mazzara1, Sergey Masyagin1

1 Innopolis University, Russian Federation

2 University of Luxembourg
3 Fondazione Bruno Kessler, Trento, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/196184826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Teaching DevOps in academia and industry:
reflections and vision

Evgeny Bobrov1, Antonio Bucchiarone3, Alfredo Capozucca2

Nicolas Guelfi2, Manuel Mazzara1, Sergey Masyagin1

1 Innopolis University, Russian Federation
2 University of Luxembourg

3 Fondazione Bruno Kessler, Trento, Italy

Abstract. This paper describes our experience of delivery educational
programs in academia and in industry on DevOps, compare the two ap-
proaches and sum-up the lessons learnt. We also propose a vision to
implement a shift in the Software Engineering Higher Education curric-
ula.

1 Introduction

DevOps is a natural evolution of the Agile approaches [1, 2] from the software
itself to the overall infrastructure and operations. This evolution was made pos-
sible by the spread of cloud-based technologies and the everything-as-a-service
approaches. Adopting DevOps is however more complex than adopting Agile [3]
since changes at organisation level are required. Furthermore, a complete new
skill set has to be developed in the teams [4]. The educational process is therefore
of major importance for students, developers and managers.

DevOps way of working has introduced a set of software engineering activities
and corresponding supporting tools that has disrupted the way individual devel-
opers and teams produce software. This has led both the world of research and
industry to review software engineering life-cycle and all the supporting tech-
niques to develop software in continuous operation and evolution. If we want to
enclose DevOps in one word, it is continuous. Modelling, integration, testing,
and delivery are significant part of DevOps life-cycle that, respect to enterprise
or monolithic applications developed some years ago, must be revised contin-
uously to permit the continuous evolution of the software and especially an
easy adaptability at context changes and new requirements. Adopting the De-
vOps paradigm helps software teams to release applications faster and with more
quality. In this paper, we consider two sides of the same coin that are the usage
of DevOps in academia and in industry.

Research in traditional software engineering settings has mainly focused on
providing batch automation, as in the case of translation and re-engineering of
legacy code [5], or on helping developers keep track of their changes, as in the
case of version control [6]. The radically new development processes, introducing
with the DevOps, have required major changes to traditional software practices

2

[7]. New versions of software components are developed, released, and deployed
continuously to meet new requirements and fix problems. A study performed
by Puppet Labs in 20151 testifies that using DevOps practices and automated
deployment led organisations to ship code 30 times faster, complete deployments
8,000 times faster, have 50% fewer failed deployments, and restore service 12
times faster than their peers. Due to the dramatically growing of the DevOps
supporting tools2, has seen a big change in the role played by the software
engineers of a team. The latter today have the complication of covering both
management and development aspects of a software product. They are part of
a team and have the following responsibilities: (1) to be aligned with the new
technologies to ensure that the the high-performance software is released using
smart tools to specify, develop, deploy and execute scalable software systems, (2)
to define procedures to guarantee the high security level of the running code, (3)
to monitor the software in operation and guarantee the right level of adaptability.

As long as DevOps became a widespread philosophy, the necessity of edu-
cation in the field become more and more important, both from the technical
and organisational point of view [4]. This paper describes parallel experiences
of teaching both undergraduate and graduate students at the university, and
junior professional developers in industry. There are similarities and differences
in these two activities, and each side can learn from the other. We will discuss
here some common issues and some common solutions. We also propose a vision
to implement a shift in the Software Engineering Higher Education curricula.

The paper is organised as follows: after this introduction of the context in
Section 1, we first discuss the experience gained in teaching DevOps at the
university (Section 2). We then present the key elements of training and con-
sultancies delivered in industry on the same subject (Section 3) and we analyse
similarities and differences in Section 4. Section 5 proposes a vision to imple-
ment a shift in the Software Engineering Higher Education curricula. Finally, in
Section 6 we present our conclusion.

2 Teaching in Academia

DevOps experienced significant success in the industrial sector, but still received
minor attention in higher education. One of the few and very first courses in
Europe focusing on DevOps was delivered at the university of Luxembourg [8].

This course is part of a graduate programme aimed at students pursuing a
degree in computer science. Students following this programme either continue
their development either in the private sector or doing a PhD at the same uni-
versity (most of the cases). Therefore, most of the courses in such a programme
are designed as a sequence of theoretical lectures and assessed by a mid-term
and final exam. Our course is the exception in the programme as it is designed
according to the Problem-based learning (PBL) method.

1 https://puppet.com/resources/whitepaper/2015-state-devops-report
2 https://raygun.com/blog/best-devops-tools/

Teaching DevOps in academia and industry: reflections and vision 3

Organisation and delivery

Following a problem-based approach, the learning of the students is centred on
a complex problem which does not have a single correct answer. The complex
problem addressed by the course corresponds to the implementation of a De-
ployment Pipeline, which needs to satisfy certain functional and non-functional
requirements. These requirements are:

– Functional Requirements (FR)
• Create separated environments (Integration, Test, and Production)
• Make use of a version control system
• Make use of a continuous integration (CI) server
• Automate the build of the selected product
• Automate the execution of the test cases
• Automate the deploy and release of the selected product

– Non-Functional Requirements (NFR)
• Rely on technologies open-source and available for Unix-based OS
• The Product to test the functioning of the pipeline should be a Web

App (SaaS) done in Java, if possible with an already available set of test
cases

This means that students work in groups all along the course duration to
produce a solution to the given problem. By working in groups students are
immerse in a context where interactions problems may arise, and so allowing
them to learn soft-skills to deal with such as problems. Therefore, the success
to achieve a solution to the problem depends on not only the technical abilities,
but also the soft-skills capacities each group member either has already had or
is able to acquire during the course. Notice that DevOps is not only about tools,
but also people and processes. Thus, soft-skills capabilities are a must for future
software engineers working expected to work in a DevOps-oriented organisations.

Structure

The course is organised as a mix of lectures, project follow-up sessions (aimed at
having a close monitoring of the work done for each group member and helping
solve any encountered impediments), and checkpoints (sessions where each group
presents the advances regarding the projects objectives). Lectures are aimed
at presenting the fundamental DevOps-related concepts required to implement
a Deployment Pipeline (Configuration Management, Build Management, Test
Management, and Deployment Management). Obviously, the course opens with
a general introduction to DevOps and a (both procedural and architectural)
description of what a Deployment Pipeline is. In the first project follow-up ses-
sion each group presents the chosen product they will use to demonstrate the
functioning of the pipeline. The remaining of the course is an interleaving be-
tween lectures and follow-up sessions. The first check-point takes place at the
fifth week, and the second one at the tenth week. The final checkpoint, where
each group has to make a demo of the Deployment pipeline, takes place at the
last session of the course.

4

Execution

Most of the work done by the students to develop the Deployment Pipeline was
done outside of the course hours due to the limited in-class time assigned to
the course. However, examples (e.g. virtual environments creation, initial setup
and provisioning) and references to well-documented tools (e.g. Vagrant, An-
sible, GitLab, Jenkins, Maven, Katalon) provided during the sessions helped
students on moving the project ahead. Moreover, students had to possibility
to request support either upon appointment or simply signalling the faced is-
sues with enough time in advance to be handled during a follow-up session. the
teaching. Nevertheless, the staff was closely supervising the deployment pipeline
development by both monitoring the activity on the groups working repositories
and either asking technical questions or requesting live demos during the in-class
sessions.

Assessment

As described in [8], each kind of activity is precisely specified, so it lets students
know exactly what they have to do. This also applies to the course assessment:
while the project counts for 50% of the final grade, the other half is composed of a
report (12.5%) and the average of the checkpoints (12.5%). The aim at requesting
to each group submit a report is to let students face with the challenge of doing
collaborative writing in the same way most researchers do nowadays. Moreover,
this activity makes the course to remain aligned with programmes objectives:
prepare the student to continue a research career. It is also in this direction
the we have introduced peer-reviewing: each student is requested to review (at
least one) no-authored report (this activity also contributes to the individual
grading of the student). Despite of these writing and reviewing activities may
seem specific to the programme where the course fits, we do believe that they
also contribute to the development of the required skills software engineers need
to have.

Latest experience and feedback

Based on our latest experience the relevant points to highlight are: (1) the pos-
itive feedback obtained from students, (2) the absence of drops out, and (3)
the quality of the achieved project deliverables. Regarding the first point, the
evidence was found through a survey filled out by students once the course was
over: 100% strongly agreed that the course was well organised and ran smoothly,
75% (25) agreed (strongly agreed) the technologies used in the course were inter-
esting, and 75% was satisfied with the quality of this course. We are very happy
about the second point as it was one of the objectives (i.e. reduced the number
of drops out - it used to reach up to 70%) when we decided to redesign the course
to its current format. Moreover, the absence of drops out can also be confirmed
by the fact that (based on the survey) 75% of the students would advise other
students to take the course, if it were optional. Last, but not least, the survey

Teaching DevOps in academia and industry: reflections and vision 5

also helped to confirm that PBL is the right pedagogical approach to tackle sub-
jects like DevOps (and any others related to software engineering): 100% of the
students agreed that they would like to have more project-oriented courses like
this one. The third relevant point was about the quality of the project deliver-
ables: considering the limited time to present and work out the subjects related
to a Deployment Pipeline, each group succeed to provide deliverables able to
meet the given functional and non-functional requirements.

3 Teaching in Industry

Our team is specialised in delivering corporate training for management and
developers and has long experience of research in the service-oriented area [9–
11]. In recent years we have provided courses, training and consultancies to a
number of companies with particular focus on east Europe [12]. For example,
only in 2018 more than 400 hours of training were conducted involving more
than 500 employees in 4 international companies. Although we cannot share the
details of the companies involved, they are mid to large size and employ more
than 10k people.

The trainings are typically focusing on:

– Agile methods and their application [3]
– DevOps philosophy, approach and tools [13]
– Microservices [14, 15]

Organisation and delivery

In order for the companies to absorb the DevOps philosophy and practice, our
action has to focus on people and processes as much as on tools. The target
group is generally a team (or multiple teams) of developers, testers and often
mid-management. We also suggest companies to include representatives from
businesses and technical analysts, marketing and security departments. These
participants could also benefit from participation and from the DevOps culture.
The nature of the delivery depends on the target group: sessions for management
focus more on effective team building and establishment of processes. When
the audience is a technical team, the focus goes more on tools and effective
collaboration within and across the teams.

Structure

The events are typically organised in several sessions run over a one-day to three-
day format made or frontal presentations and practical sessions. The sessions are
generally conducted at the office of the customer in a space suitably arranged
after the previous discussion with the local management. Whenever possible
the agenda and schedule of the activities have to be shared in advance. In this
way, the participants know what to expect, and sometime a preparatory work is
required.

6

Limitations of the set-up

One of the limitations we had to cope with, often but not always, is the fact that
bilateral previous communication with teams is not always possible or facilitated,
and the information goes through some local contact and line manager. At times
this demands for an on-the-fly on-site adaptation of the agenda. In order to
collect as much information as possible on the participants and the environment,
we typically send a survey to be completed a few days in advance, and we analyse
question by question to give specific advice depending on the answers.

Lessons learnt and optimisation

In retrospective, the most effective training for DevOps and Agile were those in
which the audience consisted of both management and developers. Indeed the
biggest challenge our customer encountered was not how to automatise existing
processes, but in fact how to set up the DevOps approach itself from scratch.
Generally, technical people know how to set up automatisation, but they may
have partial understanding about the importance and the benefits for the com-
pany, for other departments, the customer and ultimately for themselves. It is
important therefore to show the bigger picture and help them understanding
how their work affects other groups, and how this in turn affects themselves in
a feedback loop. The presence of management is very useful in this process. The
technical perspective is often left for self-study or for additional sessions.

Latest experience and feedback

The feedback from participants surpassed our expectation. In synthesis, this are
the major achievements of the past sessions:

– Marketers now understand how they may use A/B testing and check the
hypothesis

– Security engineers find positive to approve small pieces of new features, not
the major releases

– Developers developed ways to communicate with other departments and
fulfil their needs step by step based on the collaboration

– Testers shifted their focus on product testing (integration-, regression-, soak-
, mutation-, penetration- testing) rather than unit testing, and usually set
future goals for continuing self-education on the subject

Often multiple session can be useful. The primary objective is to educate
DevOps ambassadors, but it is also important to create an environment that
can support the establishment of DevOps processes and the realisation of a solid
DevOps culture, when every department welcome these changes. This does not
typically happen in a few days.

Teaching DevOps in academia and industry: reflections and vision 7

4 Discussion

The experience of teaching in both an academic and industrial context empha-
sised some similarities and some differences that we would like to discuss here.
Understanding these two realities may help in offering better pedagogical pro-
gramme from the future since each domain can be cross-fertilised by the ideas
taken by the other.

What we have seen in terms of similarities:

– Pragmatism: Both students and developers appreciate hands-on sessions
– Hype: Interest and curiosity in the topic has been seen both in academia

and industry, demonstrating the relevance of the topic
– Asymmetry: Classic education and developers training put more important

on Development than Operations and presenting the two sides as interrelated
strengthen the knowledge and increase efficacy

What we have seen in terms of differences:

– Learners initial state: based on the academic curriculum where the course
is included, it is possible to know (or at least to presume) the already ac-
quired knowledge for the participant students. This may not be the case in a
corporate environment, where the audience is generally composed by people
with different profiles and backgrounds.

– Learners attitude: students too often are grade-focused, developers are
interested in the approach as long as can improve their working conditions,
manager see things in terms of cost saving

– Pace of education: short and intense in a corporate environment, can be
long and diluted in academia

– Assessment/measure of success: classic exam-based at the university, a
corporate environment often does not require a direct assessment at the end
of the sessions and the success should be observed in the long run

– Expectation: corporate audience is more demanding. This may nor be a
surprise given the costs and what is a stake. Students are also subject to a
cost, but it is more moderate and spread over a number of course attended
in one year.

5 Vision

After reporting experiences in teaching DevOps-based courses in both academic
and industrial environments (reflection), in this section we will look at the fu-
ture and we will describe our vision for the modernisation of university curricula
in Computer Science, in particular for the Software Engineering tracks. While
our vision and conclusions can be effectively applied in every Higher Education
institution, we are here considering a specific case study: Innopolis University, a
new IT educational institution in the Russian Federation. This is the reality we

8

have more direct experience of. In [16] the first five years of Innopolis Univer-
sity and the development of the internationalisation strategy is discussed, while
[17] presents some teaching innovations and peculiarities of the university. At
Innopolis University students have a 4-year bachelor, the firs two years are fun-
damental, and a specific track is chosen at the third year (Software Engineering,
Data Science, Security and Network Engineering or Artificial Intelligence and
Robotics). There are also 2-year Master Programs, following exactly the same
four tracks. The last two years of the bachelors are characterised by a fewer
number of courses. Moreover, some of these courses are elective, and delivered
either by academic or industrial lecturers. These elective courses are aimed at
covering specific topics required by industry.

While working with industry we realised that the obstacles for the full adop-
tion of DevOps are not only of technical nature, but also of mindset. This issue
is difficult to solve since companies need to establish a radically new culture and
transfer it to the new employees who join the company with a legacy mindset.
The same situation may occur for fresh graduates. Classic curricula are very
often based on the idea of system as a monolith and process as a waterfall. Of
course, in the last twenty years, innovations have been added to the plan of study
worldwide. However, when focusing on the first two years of Bachelor education,
it can be seen that the backbone of the curricula is still outdated (due to legacy
reasons, and sometimes, ideological ones). It is therefore necessary to explain
students the DevOps values from scratch, establishing clear connections of every
course with DevOps, and describing how fundamental knowledge works within
the frame of this philosophy. Furthermore, Computer Science curricula have a
strong emphasis on the ”Dev” part, but cover the ”Ops” part only marginally,
for example as little modules inside courses such as Operating Systems and
Databases.

To cover the ”Ops” part we need to teach how to engineer innovative software
systems that can react to changes and new needs properly, without compromis-
ing the effectiveness of the system and without imposing cumbersome a priori
analyses. To this end, we need to introduce courses on learning and adaptation
theories, algorithms and tools, since they are becoming the key enablers for con-
ceiving and operating quality software systems that can automatically evolve to
cope with errors, changes in the environment, and new functionalities. At the
same time, to continuously assess the evolved system, we need also to think to
teach validation and verification techniques pushing more them at runtime.

The DevOps philosophy is broad, inclusive, and at the same time, flexible
enough to work as a skeleton for Software Engineering education. This is what
drives our vision and we described in the next parts of this section.

5.1 Phases of Software Engineering Education

The DevOps philosophy presents recurring and neat phases. It has been shown
that companies willing to establish a strong DevOps culture have to pay atten-
tion to every single phase [18]. Missing a phase, or even a simple aspect of it,

Teaching DevOps in academia and industry: reflections and vision 9

might lead to poor overall results. This attention to every single phase should
also be applied also to university education.

In this interpretation (or proposal), every phase corresponds to a series of
concepts and a skill-set that the student has to acquire along the process. It is
therefore possible to organise the educational process and define a curriculum
for software engineering using the DevOps phases as a backbone (Figure 1 sum-
marises these phases). This path would allow students to realise the connection
between different courses and apply the knowledge in their future career. The
plan described here is what we are considering to experiment at Innopolis Uni-
versity, expanding the experience acquired on the delivery of specialised DevOps
courses to the entire plan of study. We will use the idea described in [19] as a
backbone for curriculum innovation.

Fig. 1. DevOps Phases

We consider ideal an incremental and iterative approach for bachelors to
fully understand and implement the DevOps philosophy. We utilise the following
taxonomy:

1. How to code
2. How to create software
3. How to create software in a team
4. How to create software in a team that someone needs
5. How to create software in a team that business needs

In details, this is the path we propose for the bachelor3 programme, based
on Agile and DevOps according to the taxonomy:

3 4-year

10

1. The first three semesters are devoted to fundamental knowledge of hard and
soft skills, which are essential to create software, especially following Agile
and DevOps. We want to educate the next generations of students providing
them not only with knowledge of programming languages and algorithms,
but also with software architectures, design patterns and testing. This way
students know how to create quality software fulfilling the essential non-
functional requirements (such as reliability, maintainability, and scalability).

2. The fourth semester has a software project course (to be considered as an
introduction to the software engineering track) based on the trial and error
approach without any initial constraints and thorough analysis of identified
problems in the second part of the semester.

3. The fifth semester has a new iteration of the software project course with
a deep understanding of the Agile philosophy and the most popular Agile
frameworks.

4. The sixth semester is based on the same project that has been created earlier
and adds automaton, optimisation of the Development, and it introduces the
Operational part and the feedback concept.

5. During the last two semesters (i.e. seventh and eighth), students start to
work with real customers from industry and try to establish all processes
and tools learnt in the previous three years.

6. During the third and fourth years, we propose additional core and elective
courses in order to explore deeper modern technologies, best practices, pat-
terns and frameworks.

5.2 Transition towards the new curriculum

In this section we will address the transition from the current curriculum to the
new one identifying the iterations and steps year by year until the full imple-
mentation, and we will emphasise the role of industry in this process. For the
last years since foundation (2012), the curriculum for Software Engineers at In-
nopolis University was mostly waterfall-based with a clear focus on hard skills.
Each course was delivering methods and tools specific of a certain phase, but
not always the ”fil rouge” between courses was emphasised. Courses connecting
the dots and providing the basis for an iterative and incremental approach are
now under development. The first four semesters of the bachelor provide the
prerequisites for Software Engineering (and for Computer Science in general),
whereas the last four semesters are track-based (see Fig.2 and Fig.3).

The transition is planned to happen in 5-year time:

– Year 1. Make minor changes to the curriculum, targeting in particular two
courses: Software Project for second-year, and Project for Software Engineers
at the third year. The first one has to be adapted to teach students how to
establish processes and develop software according to Agile. The second one
will be increased by adding the possibility to collaborate with industry and
develop actual projects. The students interact with industry representatives
and define project objectives with industry under the control of the univer-
sity.

Teaching DevOps in academia and industry: reflections and vision 11

– Year 2. Work more closely with industry and add more elective courses
covering skills required by companies. A course on DevOps will be added for
the third year of the bachelor to be intended as a continuation of Software
Project. The content of some courses will be adjusted to contain DevOps
philosophy.

– Year 3. Update fundamental courses at the first and second year accord-
ing to the Software Engineering Body of Knowledge (SWEBOK) standard
[20] (chapters Mathematical Foundations, Computing Foundations and En-
gineering Foundations). Furthermore, soft skills courses such as personal soft-
ware process, critical writing and effective presentations will be added to the
first three semesters.

– Year 4. Follow the SWEBOK and deliver the most essential knowledge
areas.

– Year 5. Analyse the results of the changes introduced, and then tune the
fundamental courses with more notions of DevOps and Agile philosophies
along with incremental-iterative approaches. By year 5 we are planning to
establish a framework helping to update the curriculum to give more focus
on industry demands and IT evolution.

Fig. 2. Curriculum of Year 1 and Year 2

6 Conclusions

Ultimately, DevOps [2, 13] and the microservices architectural style [14, 15] with
its domains of interests [21–25] may have the potential of changing how compa-
nies run their systems in the same way Agile has changed the way of developing

12

Fig. 3. Curriculum for Software Engineering track

software. The critical importance of such cultural change should not be under-
valued. It is in this regard that higher education institutions should put a major
effort to fine tune their curricula and cooperative programme in order to meet
this challenge.

In terms of pedagogical innovation, the authors of this paper have exper-
imented for long with novel approaches under different forms [17]. However,
DevOps represents a newer and significant challenge. Despite of the fact cur-
rent educational approaches in academia and industry show some similarities,
they are indeed significantly different in terms of attitude of the learners, their
expectation, delivery pace and measure of success. Similarities lay more on the
perceived hype of the topic, its typical pragmatic and applicative nature, and
the minor relevance that education classically reserves to ”Operations”. While
similarities can help in defining a common content for the courses, the differences
clearly suggest a completely different nature of the modalities of delivery.

From the current experience we plan to adjust educational programs as fol-
lows:

– University teaching: trying to move the focus out of final grade, empha-
sising more the learning aspect and give less importance to the final exam,
maybe increasing the relevance of practical assignments. It may be also use-
ful to intensify the theoretical delivery to keep the attention higher and have
more time for hand-on sessions. Ultimately, our vision is to build a Software
Engineering curricula on the backbone derived from the DevOps philosophy.

– Corporate training: it is important not to focus all the training activity as
a frontal session university-like. Often the customers themselves require this
classical format, maybe due to the influence of their university education.
We believe that this makes things less effective and we advocate for a change
of paradigm.

Finally, we have described our vision for the transition to the new curriculum
at Innopolis University. In terms of educational innovation, other realities are
moving fast and we should not be shy in proposing curricula drastic changes.

Teaching DevOps in academia and industry: reflections and vision 13

Looking, for example, at domains like security and dependability, the Technical
University of Denmark (DTU) is modernising the approach at both MSc and
continuous education programme levels [26, 27].

References

1. Gene Kim, Patrick Debois, John Willis, and Jez Humble. The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in Technology
Organizations. IT Revolution Press, 2016.

2. Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspec-
tive. Addison-Wesley Professional, 1st edition, 2015.

3. Agile and devops: Friends or foes? https://www.atlassian.com/agile/devops.
Accessed: 2018-07-01.

4. Ineta Bucena and Marite Kirikova. Simplifying the devops adoption process. In
Joint Proceedings of the BIR 2017 pre-BIR Forum, Workshops and Doctoral Con-
sortium co-located with 16th International Conference on Perspectives in Business
Informatics Research (BIR 2017), Copenhagen, Denmark, August 28 - 30, 2017.,
2017.

5. Marco Trudel, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Really auto-
matic scalable object-oriented reengineering. In ECOOP, volume 7920 of Lecture
Notes in Computer Science, pages 477–501. Springer, 2013.

6. H.-Christian Estler, Martin Nordio, Carlo A. Furia, and Bertrand Meyer. Unifying
configuration management with merge conflict detection and awareness systems.
In Australian Software Engineering Conference, pages 201–210. IEEE Computer
Society, 2013.

7. Leonard J. Bass, Ingo M. Weber, and Liming Zhu. DevOps - A Software Architect’s
Perspective. SEI series in software engineering. Addison-Wesley, 2015.

8. Alfredo Capozucca, Nicolas Guelfi, and Benôıt Ries. Design of a (yet another?) de-
vops course. In Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment - First International Work-
shop, DEVOPS 2018, Chateau de Villebrumier, France, March 5-6, 2018, Revised
Selected Papers, pages 1–18, 2018.

9. Manuel Mazzara. Towards Abstractions for Web Services Composition. Ph.D.
thesis, University of Bologna, 2006.

10. Zhixian Yan, Manuel Mazzara, Emilia Cimpian, and Alexander Urbanec. Business
process modeling: Classifications and perspectives. In Business Process and Ser-
vices Computing: 1st International Working Conference on Business Process and
Services Computing, BPSC 2007, September 25-26, 2007, Leipzig, Germany., page
222, 2007.

11. Zhixian Yan, Emilia Cimpian, Michal Zaremba, and Manuel Mazzara. BPMO:
semantic business process modeling and WSMO extension. In 2007 IEEE Interna-
tional Conference on Web Services (ICWS 2007), July 9-13, 2007, Salt Lake City,
Utah, USA, pages 1185–1186, 2007.

12. Manuel Mazzara, Alexandr Naumchev, Larisa Safina, Alberto Sillitti, and Kon-
stantin Urysov. Teaching devops in corporate environments - an experience report.
In Software Engineering Aspects of Continuous Development and New Paradigms
of Software Production and Deployment - First International Workshop, DEVOPS
2018, Chateau de Villebrumier, France, March 5-6, 2018, Revised Selected Papers,
pages 100–111, 2018.

14

13. Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. What is
devops?: A systematic mapping study on definitions and practices. In Proceedings
of the Scientific Workshop Proceedings of XP2016, XP ’16 Workshops, pages 12:1–
12:11, New York, NY, USA, 2016. ACM.

14. Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. In Bertrand Meyer and Manuel Mazzara, editors, Present
and Ulterior Software Engineering. Springer, 2017.

15. Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Ruslan
Mustafin, and Larisa Safina. Microservices: How to make your application scale.
In Perspectives of System Informatics - 11th International Andrei P. Ershov Infor-
matics Conference, PSI 2017, Moscow, Russia, June 27-29, 2017, Revised Selected
Papers, pages 95–104, 2017.

16. Sergey Masyagin Manuel Mazzara Angelo Messina Ekaterina Protsko Sergey Kara-
petyan, Alexander Dolgoborodov. Innopolis going global: Internationalization of
a young it university. In Proceedings of 6th International Conference in Software
Engineering for Defence Applications - SEDA 2018, Rome, Italy.

17. Daniel de Carvalho, Rasheed Hussain, Adil Khan, Mansur Khazeev, JooYong Lee,
Sergey Masiagin, Manuel Mazzara, Ruslan Mustafin, Alexandr Naumchev, and
Victor Rivera. Teaching programming and design-by-contract. In 21th Interna-
tional Conference on Interactive Collaborative Learning - ICL 2018, Kos, Greece.

18. Building a healthy devops culture. https://www.wired.com/insights/2013/06/

building-a-healthy-devops-culture/. Accessed: 2019-02-08.
19. Avoid failure by developing a toolchain that enables devops. https://www.

gartner.com/doc/3810934/avoid-failure-developing-toolchain-enables,
Oct 2017.

20. IEEE Computer Society, Pierre Bourque, and Richard E. Fairley. Guide to the Soft-
ware Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 3rd edition, 2014.

21. Dilshat Salikhov, Kevin Khanda, Kamill Gusmanov, Manuel Mazzara, and Niko-
laos Mavridis. Microservice-based iot for smart buildings. In Proceedings of the 31st
International Conference on Advanced Information Networking and Applications
Workshops (WAINA), 2017.

22. Dilshat Salikhov, Kevin Khanda, Kamill Gusmanov, Manuel Mazzara, and Niko-
laos Mavridis. Jolie good buildings: Internet of things for smart building infrastruc-
ture supporting concurrent apps utilizing distributed microservices. In Proceedings
of the 1st International conference on Convergent Cognitive Information Technolo-
gies, pages 48–53, 2016.

23. Marco Nalin, Ilaria Baroni, and Manuel Mazzara. A holistic infrastructure to
support elderlies’ independent living. Encyclopedia of E-Health and Telemedicine,
IGI Global, 2016.

24. Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan Thordal
Larsen, and Manuel Mazzara. From monolithic to microservices: An experience
report from the banking domain. IEEE Software, 35(3):50–55, 2018.

25. M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S. T. Larsen, and S. Dust-
dar. Microservices: Migration of a mission critical system. IEEE Transactions on
Services Computing, pages 1–1, 2018.

26. N. Bielova, N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Matching in
Security-By-Contract for Mobile Code. Journal of Logic and Algebraic Program-
ming, 78:340–358, 2009.

Teaching DevOps in academia and industry: reflections and vision 15

27. Nicola Dragoni, Fabio Massacci, and Ayda Saidane. A self-protecting and self-
healing framework for negotiating services and trust in autonomic communication
systems. Computer Networks, 53(10):1628 – 1648, 2009. Autonomic and Self-
Organising Systems.

	cover_LASSY_techreports_devops19.pdf
	Binder1.pdf
	Teaching_Devops_in_academia_and_industry

