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Abstract 43 

 44 

Large collections of genome-wide data can facilitate the characterization of disease states 45 

and subtypes, permitting pan-cancer analysis of molecular phenotypes and evaluation of 46 

disease context for new therapeutic approaches. We analyzed 9,544 transcriptomes from 47 

more than 30 hematologic malignancies, normal blood cell types, and cell lines, and showed 48 

that disease types could be stratified in a data-driven manner. We then identified cluster-49 

specific pathway activity, new biomarkers and in silico drug target prioritization through 50 

interrogation of drug target databases. Using known vulnerabilities and available drug 51 

screens, we highlighted the importance of integrating molecular phenotype with drug target 52 

expression for in silico prediction of drug responsiveness. Our analysis implicated BCL2 53 

expression level as an important indicator of venetoclax responsiveness and provided a 54 

rationale for its targeting in specific leukemia subtypes and multiple myeloma, linked several 55 

polycomb group proteins that could be targeted by small molecules (SFMBT1, CBX7 and 56 

EZH1) with CLL, and supported CDK6 as a disease-specific target in AML. Through 57 

integration with proteomics data, we characterized target protein expression for pre-B 58 

leukemia immunotherapy candidates, including DPEP1. These molecular data can be 59 

explored using our publicly available interactive resource, Hemap, for expediting therapeutic 60 

innovations in hematologic malignancies.  61 

 62 

Significance 63 

 64 

This study describes a data resource for researching derailed cellular pathways and 65 

candidate drug targets across hematological malignancies. 66 

 67 

Introduction 68 

 69 

Gene expression profiles facilitate genome-wide analyses that can stratify patient subtypes 70 

and identify the activity patterns of various cellular pathways under different biological 71 

conditions (1-2). Even though a large number of studies have characterized hematologic 72 

malignancies and normal blood cell types at genome-wide level since the introduction of 73 

microarray technology, most include only tens to hundreds of samples and focus on one 74 

disease. Thus, understanding the complete heterogeneity and similarity of diseases states 75 
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and their subtypes remains an open challenge. Moreover, many hematologic malignancies 76 

are rare on the population level, necessitating collecting data across study cohorts. 77 

 78 

Hematological malignancies include acute and chronic leukemias of myeloid and lymphoid 79 

lineage, B-, T- and NK cell lymphomas, and multiple myeloma (MM), and a number of 80 

premalignant conditions such as myelodysplastic syndrome (MDS), and myeloproliferative 81 

neoplasms (MPN). These diseases have highly variable genetic features, unique clinical 82 

courses, and varying therapeutic approaches. There is also a marked difference in 83 

prevalence, genetic background and prognosis between adult and pediatric blood cancers. 84 

In children, acute lymphoblastic leukemia (ALL) is the most common hematological 85 

malignancy, while in adults, non-Hodgkin lymphomas (NHL), followed by MM, chronic 86 

lymphocytic leukemia (CLL), and acute myeloid leukemia (AML) are the most common. 87 

Treatment is moving towards increased utilization of targeted therapies in combination with 88 

traditional chemotherapies. Targeted therapies include tyrosine kinase inhibitors such as 89 

those developed against BCR-ABL fusion found in CML and some ALL cases, or antibody 90 

therapies including CD38-targeting in MM, and engineered CAR-T cells recognizing cell 91 

surface CD19 or CD22 antigens in relapsed ALL and NHL (3-5). Yet, current therapies to 92 

treat hematologic malignancies rely heavily on drugs that target DNA metabolism in actively 93 

proliferating cells or intracellular signaling events that are involved in proliferation (6). 94 

Although these drugs have markedly improved progression-free survival, redundancy in 95 

signaling and the failure to eradicate quiescent cells (7) can facilitate the rapid development 96 

of therapy resistance. Testing a wider portfolio of new drug targets, or repurposing drugs 97 

with established clinical indications represent promising strategies (6-7). Molecular profile 98 

guided approaches hold promise to improve the efficiency of this process (8). 99 

 100 

We present here a resource that organizes samples from cancer patients, healthy donors 101 

and those at pre-malignant stages for comparative analysis based on both curated 102 

annotations and data-driven clustering of molecular phenotypes. This hematologic pan-103 

cancer analysis permits the identification of clinically relevant molecular features and the 104 

exploration of new drug targeting approaches across the disease hierarchy. The data and 105 

analysis tools are made available as an interactive online resource, Hemap, 106 

http://hemap.uta.fi/ that synthesizes the curated genome-wide data across different disease 107 

subtypes.  108 

Research. 
on April 2, 2019. © 2019 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on April 2, 2019; DOI: 10.1158/0008-5472.CAN-18-2970 

http://hemap.uta.fi/
http://cancerres.aacrjournals.org/


 

 

 

4 

  109 

 110 

Materials and Methods 111 

 112 

Dataset retrieval and extraction of sample annotation data 113 

Transcriptome datasets for Hemap were retrieved from the NCBI Gene Expression Omnibus 114 

(GEO) database (9) and represent samples hybridized to hgu133Plus2 genome-wide 115 

microarrays. The meta-data were retrieved based on matching disease ontology terms for 116 

hematologic malignancies against sample annotations (R/Bioconductor GEOmetadb 117 

package, “gsm” and “gse” tables), followed by manual curation, resulting in 10,470 samples. 118 

Refer to Methods Supplement for details. Eight leukemia types, 8 B-cell lymphoma types, 7 119 

T/NK lymphomas, multiple myeloma and 4 proliferative disorders are represented by primary 120 

patient samples, while in total 36 disease types are included considering also their sub-121 

categories and cell line data (Tables S1 and S2). 122 

 123 

Data preprocessing and quality control 124 

Samples with a median of raw probe intensity distribution deviating more than 1.5 in log2-125 

scale from the median of all medians were deemed outliers and filtered out as well as those 126 

with an interquartile range (IQR) deviating more than 0.75 from the median of IQRs. Finally, 127 

duplicate samples, as well as all disease types with less than 3 samples (and samples 128 

assigned to these), were removed, resulting in 9,544 samples that were processed using the 129 

RMA probe summarization algorithm (10) with probe mapping to Entrez Gene IDs (from 130 

BrainArray version 18.0.0, ENTREZG). Finally, we employed the bias-correction method (11) 131 

to correct for any remaining technical differences (Fig. S1). BeatAML (12) clinical and 132 

mutation data was obtained from source data file 41586_2018_623_MOESM3_ESM.xlsx. 133 

RNAseq counts were obtained from the authors. Genes with over 1 cpm expression in over 134 

1 % of the samples were kept. Data was normalized using limma voom and quantile 135 

normalization. 136 

 137 

Dimensionality reduction 138 

Dimensionality reduction methods are unsupervised methods that use measures of 139 

(dis)similarity and an optimization strategy to return as output sample coordinates in a lower 140 

dimension. Metrics of continuity, trustworthiness and k-NN error were used to assess how 141 
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well the visualization in 2D preserved their relative placement in the original coordinate 142 

space. We tested Gaussian Process Latent Variable Model (GPLVM) (13), Locally Linear 143 

Embedding (LLE) (14), Principal Component Analysis (PCA) (15), Probabilistic Principal 144 

Component Analysis (PPCA) (16), Sammon Mapping (SM) (17) and t-Distributed Stochastic 145 

Neighbor Embedding (t-SNE) (18) (see Methods Supplement for parameters). Comparison 146 

of the different methods encouraged the selection of t-SNE maps, specifically the Barnes-147 

Hut approximated version of t-SNE implementation (BH-SNE) (19). In final analysis 15% 148 

genes with highest variance were used in construction of t-SNE maps (see (20) for 149 

justification). 150 

 151 

Assignment of cluster centers on t-SNE maps 152 

Kernel density-based clustering algorithm (mean-shift clustering with bandwidth parameter 153 

set to 2.5, LPCM-package in R), was used to cluster the data following the dimensionality 154 

reduction.  This method allows the discovery of sample sets which share similar features 155 

without having to pre-specify the number of clusters. The term “cluster” is used in the text to 156 

refer to this computational clustering result, and the term “group” is used in context of visual 157 

examination. Pairwise statistical analysis between different sample features and clusters 158 

was performed as in (21), based on Spearman correlation and the Bonferroni method for 159 

multiple hypothesis testing correction (see Methods Supplement for details). 160 

 161 

Discretizing gene expression with mixture models 162 

Microarray hybridization generates background signal, which we would like to distinguish 163 

from real expression signal. The large sample size of Hemap was leveraged for fitting gene-164 

specific models to cluster the gene expression in two components (expressed and not 165 

detected, denoted by 1 and -1, respectively). Gaussian finite mixture models were fitted by 166 

expectation-maximization algorithm (R package mclust version 4.3). If the uncertainty value 167 

from the model was more than 0.1, we assigned a value of 0 to denote low level. 168 

Additionally, each log2 expression value lower than 4 was assigned a value -1 and values 169 

higher than 10 a value of 1. This was done to assure minimal amount of misclassifications of 170 

data samples to wrong components. The model was chosen by fitting both equal and 171 

variable variance models and ultimately choosing the model which achieved a higher 172 

Bayesian Information Criterion (BIC) to avoid overfitting. For drug target analysis, we utilized 173 

an adjustment for genes where background distribution was not found (gene is always 174 

expressed), or if over 90% of the samples had uncertain expression based on the model 175 

classification. Expressed state was assigned when >60% of the uncertain samples had 176 

expression above 6. Not detected status was re-evaluated similarly (60% at level below 6).  177 
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 178 

Gene set analysis 179 

The pathway and gene set enrichment analysis available in the Hemap resource was 180 

generated based on gene sets retrieved from MsigDB v5.0 (22) (molecular signatures), 181 

Wikipathways (06.2015) (23), Recon 1 (24) (metabolic pathways), Pathway Commons 7 (25) 182 

and DSigDB v1.0 (26) (drug targets). Gene sets were limited to contain between 5 to 500 183 

expressed genes (as defined above) per gene set, resulting in 19,680 gene sets that were 184 

evaluated across the dataset. The gene set variation analysis (GSVA) (27), GSVA package 185 

1.13.0 in R, was used to calculate gene set enrichment scores (positive for increased and 186 

negative for decreased expression) for each sample (parameters mx.diff=F,  tau=0.25, 187 

rnaseq=F). Significance was evaluated based on empirical P-values calculated using 1000 188 

random permutations of genes within the gene set, separately for gene set sizes 5-20, 25, 189 

30, 40, 50, 75, 100, 200, 300, 400, and 500 to correct for differences in gene set sizes. 190 

Hypergeometric test was used to calculate enrichment of significant scores in a specific 191 

cluster.  192 

 193 

Data sources used for evaluating drug targeting approaches  194 

Drugs in clinical trials for leukemias, lymphomas or multiple myeloma were obtained from 195 

ClinicalTrials.gov (accessed March 7th, 2018) maintained by the U.S. National Institutes of 196 

Health, including ongoing and terminated trials. Leukemia clinical trials were further sorted to 197 

those with clinical indication associated with AML, pre-B-ALL, CML, CLL or multiple 198 

leukemia types. Drugs in use based on approved status in Finland were provided by the 199 

Finnish Pharmaceutical Information Centre Ltd and drugs approved by the Food and Drug 200 

Administration (FDA) for leukemia, lymphoma and myeloma were queried from FDA website 201 

(fda.gov – Drugs – Information on Drugs) (Table S3). A table of gene level details for each 202 

drug was obtained from DSigDB (26) (DSigDBv1.0 Detailed.txt) and integrated to Hemap in 203 

silico drug screening analysis. The list of drugs targeting epigenetic modifiers is based on 204 

the gene list with 124 genes available from ChEMBL_20 Target Classification Hierarchy (28) 205 

(Table S4). Analysis using TTD (Therapeutics Targets Database) (29), DGIdb3.0 (30) for 206 

FDA approved drugs across a wider disease context (31) as a source database was based 207 

on a total of 11,373 unique drugs and 1270 unique genes. Drugs in use and in clinical trial 208 

included high confidence targets that were reported in several databases or had an 209 

associated Pubmed identifier. A surface marker gene list with total of 996 genes was 210 

obtained from Cell Surface Protein Atlas (32) to evaluate putative novel immunotherapy 211 

targets.  212 

 213 
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Drug target in silico analysis in hierarchical manner 214 

A disease hierarchy: 1. All disease samples; 2. disease combinations; 3. leukemia, 215 

lymphoma, myeloma; 4. AML, pre-B-ALL, T-ALL, CLL; 5. disease clusters; was used to 216 

evaluate disease or subtype specific drug target expression. Statistical significance of binary 217 

feature enrichment (e.g. high expression state) in a particular sample group was first 218 

evaluated using the hypergeometric enrichment test, followed by Bonferroni adjustment of P-219 

values. If >90 % of the samples had high expression for a gene in the disease context, Inf 220 

score was assigned instead of -log10 P-value (hypergeometric test would not be meaningful 221 

if the sample size was close to the whole population). Each significant gene was uniquely 222 

assigned to the disease group with the lowest P-value. In the case of equal P-values, a 223 

broader disease category was prioritized using the disease hierarchy. As a second filtering 224 

level, the Wilcoxon test was used to test whether the drug target gene is expressed at higher 225 

level in cancer compared to normal erythroid, myeloid, B-lymphoid or T-lymphoid samples. 226 

One normal sample group comparison was accepted for downstream analysis (with the 227 

respective comparison annotated as failed). In silico drug analysis was benchmarked using 228 

two case studies: drugs from Frismantas et. al. (33) and secondly known vulnerabilities (in 229 

clinical use/trial). Success rate was reported for drug target gene expression in disease, 230 

specificity for disease/subtypes and higher expression relative to normal cells. 231 

 232 

BeatAML drug analysis 233 

 234 

Spearman’s correlation was computed for each drug area under curve (AUC) values and 235 

cancer-map clusters, drug target genes or target gene mutations. Furthermore, mutations 236 

with at least 5 observations and significant correlation adj. P<0.05 to drug AUC values or 237 

significant fisher exact test adj. P<0.05 in cancer-map clusters were added as features that 238 

could improve drug sensitivity prediction. 239 

 240 

From total of 122 drugs 47 were excluded based on three criteria. First, 25 drugs with IC50 241 

lower quartile below 10 nm were excluded as these drugs have limited efficacy. Second, 9 242 

drugs with less than 80 samples with measured drug responses were excluded. Third, only 243 

drugs with drug target information were kept, resulting in total of 75 drugs. The elastic net 244 

implemented in glmnet (34) was trained using tenfold cross-validation using caret (35) 245 

trainControl and repeatedcv method. Caret function train and its functionality tuneGrid was 246 

used to optimize alpha parameter denoting the L1 and L2 regularization term proportions for 247 

elastic net. Each drug had three categories of features to fit the model: clusters, drug target 248 

gene expression, or mutations. To test the importance of each category in model fitting, 249 
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sample order was randomly shuffled for one category while the original order was preserved 250 

for the other categories. Therefore, if the shuffled category features were important for the 251 

model fit, model overall fit should decrease as the other features are unchanged. This 252 

process was repeated 100 times and median of RMSE and R2 values were computed. Only 253 

drugs with good fit when using all the features were kept, having R2 over 0.25 and RMSE 254 

less than 0.9. 255 

 256 

Drug sensitivity testing using patient and healthy donor samples 257 

Bone marrow (BM) aspirates or peripheral blood samples were obtained from AML patients 258 

(N=52) and healthy donors (N=15) after informed written consent using protocols approved 259 

by a local Institutional Review Board and in accordance with the Declaration of Helsinki. 260 

Mononuclear cells (MNCs) were isolated by density gradient separation (Ficoll-Paque 261 

PREMIUM; GE Healthcare, Little Chalfont Bucks, UK) and immediately used for drug testing. 262 

Cells were maintained in Mononuclear Cell Medium (MCM; Promocell) or in a 25% HS-5 263 

conditioned medium plus 75% RPMI 1640 medium mix (CM). Palbociclib and idarubicin 264 

(from Selleck, Houston, TX) were solvated in dimethyl sulfoxide and plated in 5 different 265 

concentrations in 10-fold dilutions on 384-well plates using an Echo acoustic dispenser 266 

(Labcyte, Sunnyvale, CA, USA), 1-10 000 nM for Palbociclib; 0.1-1000 nM for Idarubicin. 10 267 

000 cells were added per well and incubated with the drugs for 3 days at 37°C, 5% CO2. 268 

Viability was measured using the CellTiter-Glo reagent (Promega, Madison, WI, USA) 269 

according to the manufacturer’s instructions and using the PHERAstar (BMG LABTECH, 270 

Ortenberg, Germany) or SpectraMax Paradigm (Molecular Devices, Sunnyvale, CA, USA) 271 

plate readers. Sensitivity to the drugs was quantified using a drug sensitivity score (DSS), 272 

which is a modified area under the curve based metric described previously (36). A selective 273 

DSS value was calculated by subtracting the mean DSS of the healthy BM controls from the 274 

DSS of individual AML samples. 275 

 276 

Immunohistochemistry 277 

Anti-DPEP1 antibody (Atlas antibodies, rabbit polyclonal IgG against human renal 278 

dipeptidase 1, product number: HPA009426, lot number: A57960) was used with the dilution 279 

1:2500 to stain formalin fixed and paraffin embedded bone marrow trephine biopsy samples 280 

from pediatric pre-B-ALL patients from the Pirkanmaa ERVA area between the years 2000 281 

and 2017. 126 diagnostic samples (including also one Burkitt’s lymphoma and a T-282 

lymphoblastic leukaemia/lymphoma case) were stained with a Ventana Benchmark GX 283 

using UltraView Universal DAB Detection Kit. Cytoplasmic and membranous staining was 284 

graded negative if less than 20 percent of the leukemic blasts were stained, positive if 20 285 
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percent or less than 50 percent of the blasts were positively stained and strong positive if 50 286 

percent or a greater proportion of the blasts were positive. The analysis was performed by 287 

two pathologists without the knowledge of the patient data or the interpretation of the other 288 

analyst. The samples and clinical data were studied with the approval of the Tampere 289 

University Hospital Ethical committee (#R16054 and #R13109) and in accordance with the 290 

Declaration of Helsinki. 291 

 292 

Interactive web resource for data analysis 293 

The interactive online resource and the accompanying user guide for the Hemap resource 294 

are described in more detail in the Methods Supplement and available at http://hemap.uta.fi//  295 

 296 

Results 297 

 298 

Integrating transcriptomes to characterize molecular states across hematologic 299 

malignancies  300 

For the comparative analysis of hematologic malignancies on molecular level, we assembled 301 

gene expression profiles from the NCBI GEO database (9), comprising patient samples 302 

representing different cancers and proliferative disorders, and including cell lines and normal 303 

blood cell types as controls. Sample annotations were curated, and each sample was 304 

assigned a disease category. After data quality control and bias correction (see Methods, 305 

Fig. S1), 9,544 samples comprise the final dataset (denoted “Hemap” samples) for 306 

subsequent analysis, including 7,279 patient samples (mainly diagnostic) from hematologic 307 

malignancies (Fig. 1A, Tables S1 and S2).  308 

 309 

To enable discovery and statistical comparison of previously known and novel molecular 310 

phenotypes alongside the annotated disease classes, we utilized a data-driven approach 311 

that allows discovery of sample groups and visualizes these for interpretation. First, we 312 

compared dimensionality reduction methods that allow visualization of complex data in two 313 

dimensional space. The data representation accuracy was quantitatively assessed using the 314 

metrics of continuity, trustworthiness and k-nearest neighbor (k-NN) classifier error (see 315 

Methods, Fig. S2). As a result, t-Distributed Stochastic Neighbor Embedding (t-SNE) (18) 316 

and its approximation, Barnes-Hut-SNE (BH-SNE) (19), was selected, as it performed 317 

robustly (continuity and trustworthiness, 0.9860 and 0.9943, respectively) in two dimensions 318 
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and still preserved the neighborhood structure (k-NN error 0.0668) (Figure S2). The t-SNE 319 

map was then utilized for density-based clustering to assign each sample to a cluster (Fig. 320 

1B, see Methods for details) and the results were compared to annotated disease classes 321 

(Fig. 1C). We conclude that both quantitative and biological assessments confirm that our 322 

approach faithfully organizes the samples in an unsupervised manner based on their 323 

molecular phenotype and disease type. We denote the resulting data-driven sample 324 

grouping as the Hemap “cancer-map” in the following text. 325 

 326 

Comparative analysis associates clinical annotations and pathway activity to the 327 

molecular disease stratification 328 

The 2D cancer-map revealed a clinically relevant sub-structure (Table S2), as exemplified 329 

by the different B-cell lymphomas and pre-B-ALL cytogenetic subtypes (colored in Figs. 2A 330 

and B, respectively), providing biological validation for separation of relevant phenotypes on 331 

the cancer-map. A detailed comparison to annotations is presented in Table S2. Next, 332 

statistically significant associations of clusters with gene expression levels, clinical 333 

annotations and pathway enrichment scores across different databases were calculated (see 334 

Methods). These results can be interactively tabulated and visualized using the online 335 

Hemap resource. We selected five most significant pathways at disease cluster level, or 336 

those matching pre-B-ALL subtype clusters (Fig. 2C) for visualization in a heatmap (see also 337 

Table S5). In AML, the pathways for hematopoietic stem cell differentiation, pentose 338 

phosphate pathway, renin-angiotensin system, IL-8/CXCR1-mediated signaling events and 339 

C-MYB transcription factor networks were most significantly enriched. These reflect well the 340 

known progenitor-like phenotype of AML cells. Pentose phosphate pathway, on the other 341 

hand, represents a recently uncovered vulnerability (37,38) that is important for AML growth. 342 

Similar disease-relevant pathways were also uncovered from T-ALL (TCR pathway), CLL 343 

(BCR signaling pathway), lymphomas (cell adhesion molecules (39)) and multiple myeloma 344 

(N-glycan biosynthesis (40,41)). In pre-B-ALL clusters, processes related to transcriptional 345 

regulation were highly significant (including histone modification, CTCF pathway, and RNA 346 

processing). WNT signaling (42,43) was found as a cluster 29-specific (t1;19) enriched 347 

pathway, which matches its known relevance in these TCF3-PBX1 fusion carrying cases. 348 

Samples expressing a gene or pathway of interest can be visualized as shown in Fig. 2D, 349 

distinguishing the progenitor-like MLL subtype of pre-B-ALL based on the lack of expression 350 

of the differentiation marker MME (also known as CD10) that is used in clinical diagnostics 351 
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(Fig. 2E). Similarly, most significant associations between disease clusters and drug 352 

signatures can be examined by e-staining their significance (in red), as illustrated by 353 

association of PI3K inhibitor BEZ235 gene set signature from DsigDB to pre-B-ALL (Fig. 354 

2F), which validates a known association between a drug and a disease subtype. Further 355 

analysis on the BEZ235 gene set and several case studies on how to generate novel 356 

hypothesis are presented in the accompanying User guide to demonstrate different analysis 357 

(refer to “Explore” and “e-staining” examples). 358 

 359 

Pan-cancer analysis to recognize vulnerabilities across disease contexts  360 

Parallel to molecular stratification, the diversity of patient profiles in Hemap has the potential 361 

to support the development of new therapeutic strategies by leveraging the information 362 

about the expression profiles across hematologic malignancies. We analyzed the specificity 363 

of drug target expression states across patient groups in a hierarchical manner (Methods), 364 

as illustrated in Fig. 3A (see also Table S3 for a list of drugs and their targets and Table S4 365 

for significant associations listed by disease hierarchy). The corresponding significance 366 

ranking for targets of approved drugs is shown as heatmaps in Fig. 3A-B, where the 367 

columns represent different disease contexts and gene targets (in rows) are sorted 368 

according to their most significant association. The clinical indication for the drug(s) that 369 

could be used to target each gene is indicated in the panel on the right, while e-staining 370 

results for example drug targets are shown in Fig. 3C (see also Fig. S3). Proteasome 371 

targeting drugs Bortezomib and Carfilzomib are in use for lymphomas and multiple myeloma. 372 

Accordingly, 10/20 genes encoding the proteasome subunits are associated to this disease 373 

hierarchy level, or to the pan-cancer category, with highest significance (Fig. 3A). In 374 

comparison, for precision drugs such as the antibody drugs Elotuzumab (SLAMF7, P-val < 375 

1e-315) or Daratumumab (CD38, P-val 1e-196) approved for MM, or Rituximab (MS4A1, P-376 

val < 1e-315 in LY+CLL) used in lymphomas and CLL (Fig. 3A) the specific gene targets 377 

can be examined. Among all known vulnerabilities (drugs in clinical use / trial) a gene-level 378 

analysis detected 84% of targets expressed and 69% were associated with highest 379 

specificity score (-log10 P-value) to the respective disease context (see Table S3). This is 380 

exemplified by the comparison of genes with significant association to lymphoid leukemias 381 

(Fig. 3B). BCL2 targeted by venetoclax is shown as an example of an approved target in 382 

CLL that our analysis associates with this disease context and with potential for targeting in 383 

MM. The genes marked with asterisk, including IL2RA indicate targets of drugs approved for 384 
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other hematologic malignancies. Our analysis associated these with re-purposing potential in 385 

CLL and/or ALL. FLT3 is a recently approved target with disease cluster-specific expression 386 

in B-lymphoid and myeloid leukemias. 387 

 388 

Utility of molecular disease stratification for evaluating drug screen results 389 

Next, we examined leukemias at disease subtype level from two ex vivo drug screening 390 

datasets (12,33). Venetoclax had lower efficacy in T-ALL vs. B-ALL and lowest efficacy was 391 

in t1;19 samples in the ALL drug screen (33) which agrees with Venetoclax target BCL2 392 

gene expression in Hemap (Fig. 3C). Topotecan and dasatinib had the opposite profile, also 393 

in agreement with subtype-specific expression of their targets TOP1MT and LCK (Fig. S3). 394 

Taken together, out of 15 drugs from this ALL screen tested with our hierarchical analysis, 395 

14 (93 %) had a candidate target expressed and 12 (80%) received highest target indication 396 

in ALL (Table S4). Using the larger beatAML dataset (12), we set out to examine in an 397 

unbiased manner what matters more in predicting drug responsiveness: target expression, 398 

genetic lesions traditionally used to stratify patients, or the molecular phenotype as defined 399 

by clustering of transcriptome states. We implemented models using elastic nets, where a 400 

model for each drug (75 in total) was fit using these three categories of features. To test their 401 

importance for model fitting, sample order was randomly shuffled for one category while the 402 

original order was preserved for the other categories. The results for 11 drugs that achieved 403 

the best overall model fit (R2>0.25) are shown in Fig. 4A, including Venetoclax, 404 

Panobinostat (HDAC inhibitor), Palbociclib (CDK4/6 inhibitor), 7 kinase inhibitors (many 405 

targeting FLT3) and an ALK inhibitor. The average R2 value from 100 tests is colored in the 406 

heatmap and summarized as a boxplot next to it. If the shuffled feature was important for the 407 

model fit, a decrease in R2 is expected (shift from darker red to dimmer or blue colors) as the 408 

other features are unchanged. For venetoclax, this analysis implicated target gene 409 

expression as the main predictor (Fig. S4). For FLT3-targeting compounds, FLT3 mutation 410 

status was implicated as the top predictive feature (Fig. S4). However, overall, the lack of 411 

cluster features in the model resulted in lowest predictive power. The disease clusters were 412 

the best predictors for Palbociclib and Panobinostat, whereas mutation status had no effect 413 

on their model fit. Panobinostat and Palbociclib showed opposite drug responses in clusters 414 

13, 2, 6 compared to cluster 1 (Fig. 4B). Hemap clusters 17, 5, and 6 corresponded to these 415 

clusters (Fig. S4) and were similarly enriched for NPM1 and FLT3 mutations or PML-RARA 416 

fusion in both data sets. Comparison of clinical phenotypes revealed that blast morphology 417 
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was different between the clusters, linking maturation level to the differential drug response 418 

(Fig. 4C and Fig. S4).  419 

 420 

Classical targets involved in DNA metabolism (TOP2A and B) and clinically interesting 421 

targets, including CDK6, BCL2, MDM2 and VEGFR2 from clinical trials, ranked highly in our 422 

disease hierarchy analysis, as shown in Figs. 3 and S3. However, when compared to 423 

normal cell types, only 7% of the targets had higher expression in disease than in normal 424 

cells (Table S3). Palbociclib target CDK6 is highly expressed in all acute leukemias 425 

compared to normal blood cell types, while TOP2A has high mRNA levels also in normal 426 

blood cells (Fig. 4D). To evaluate drug sensitivity that is specific to cancer cells, an 427 

experimental ex vivo screening approach is exemplified in Fig. 4D by comparing in AML 428 

patient cell responses to the CDK4/6 inhibitor Palbociclib and Idarubicin targeting TOP2A 429 

(see Methods). Drug sensitivity and selective drug sensitivity scores (DSS and sDSS, 430 

respectively, see Methods) (36) are compared in box plots (Fig. 4E). Overall, the AML 431 

patient bone marrow ex vivo cultures were more responsive to Idarubicin (refer to Fig. S4 for 432 

AML cell line data). However, a negative score indicating higher effect on normal bone 433 

marrow cell viability was observed for Idarubicin in a larger fraction of AML cases compared 434 

to Palbociclib. This observation of non-specific response, implied by negative sDSS score, is 435 

consistent with our predictions from Hemap data. Therefore, the normal samples included in 436 

Hemap could provide valuable additional information for drug target selection. Comparison 437 

of BCL2 and BCL2L1 (also known as BCL-XL) levels are presented as another example in 438 

Fig. S4, relevant to Venetoclax vs Navitoclax toxicity in targeting apoptosis. The Advanced 439 

Use Case in the Hemap User guide extends this analysis using pathway activities and drug 440 

chemical screen data. 441 

 442 

Evaluating new therapeutic strategies in a pan-hematologic cancer context 443 

Epigenetic regulation has emerged as an important mechanism that can corrupt the gene 444 

regulatory network (44), motivating novel therapeutic approaches. Utilizing the disease 445 

spectrum in Hemap, we performed a pan-hematologic cancer analysis of epigenetic 446 

modifiers (Table S5), focusing on genes encoding proteins that are validated targets of small 447 

molecule drugs (available from ChEMBL (28)). We found elevated expression of this set of 448 

genes significantly enriched in CLL, T-ALL and clusters 28 (pre-B-ALL) and 32 (AML) (Fig. 449 

5A, hypergeometric test adjusted P-values 0.0003, 0.0074, 0.0127, 0.0174, respectively, see 450 

Research. 
on April 2, 2019. © 2019 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on April 2, 2019; DOI: 10.1158/0008-5472.CAN-18-2970 

http://cancerres.aacrjournals.org/


 

 

 

14 

also Table S5 for additional mutation frequency information (45) for the genes shown). The 451 

expression state for six most significant genes from CLL are shown on the Hemap cancer-452 

map (Fig. 5A) and from independent validation RNA-seq data (46) (Fig. 5B). 453 

 454 

A second promising new strategy, immunotherapy, can kill cancer cells by targeting surface 455 

proteins with antibodies (47) or chimeric antigen receptors (48). However, side effects due to 456 

targeting normal blood cells along with development of resistance occur (49). To provide a 457 

rational basis for extending the target repertoire, we used disease hierarchy analysis to rank 458 

996 candidates available in the Cell Surface Protein Atlas (32) (Table S6) resulting in broad, 459 

disease and subtype-specific candidates. The top ranked candidate genes in our analysis 460 

correspond to those that are uniformly high expressed within the specified disease context. 461 

The stem cell antigen CD33, actively pursued for treatment of AML (50), is among highly 462 

ranked surface targets in clinical trials shown in Fig. S3. Next, we obtained proteomics 463 

profiles from 19 B-ALL patients (51) to compare our ranked list for pre-B-ALL (refer to Table 464 

S6) to protein-level expression. The trend between in silico drug target rank and protein 465 

detection rate is plotted in Fig. 5C. Validation rate for top candidates was above 75%. The 466 

highly ranked surface targets CLEC14A, DPEP1, CELSR2, MME, SDK2, INSR, GPM6B, 467 

ELFN2, FLT3, SLC22A16, FLT4 and APCDD1 correspond to those with higher expression in 468 

pre-B-ALL patients compared to normal blood cells (see also Fig. S5). The high gene 469 

expression state of DPEP1 (Fig. 5D) in pre-B-ALL was further validated at protein level 470 

based on immunohistochemistry of diagnostic bone marrow biopsies. The grading from 117 471 

ALL bone marrows and 16 samples representing other lymphoid malignancies or normal 472 

lymphoid tissues is presented in Table 1 and illustrated in Fig. 5E.  473 

 474 

To further facilitate the utilization of the data, pre-calculated results are accessible via our 475 

interactive web resource (http://hemap.uta.fi/) including the expression state for 4,277 drug 476 

target gene sets and 1,094 drug response signatures, which can be further investigated in 477 

the context of the 12,433 pathways and molecular signatures (see Methods and User guide 478 

examples). Disease hierarchy analysis for the curated list of drug to target gene associations 479 

(11,373 drugs; 1,182 genes) from the Therapeutic Target Database (TTD) (29), DGIdb (30) 480 

and targets of FDA approved drugs across disease (31) is available in Table S4. In this 481 

manner, in silico drug target selection based on Hemap can leverage gene and pathway 482 

expression, as evaluated across cancer types and normal blood cell types.  483 
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 484 

Discussion 485 

 486 

The integration of available genome-wide data from patients allows uncovering shared 487 

disease mechanisms and new therapeutic options. Recent work has highlighted that 488 

molecular and genetic data that helps stratify patients can dramatically increase the 489 

likelihood of success during clinical development (8,52). However, in several cancer types, 490 

including those of hematopoietic and lymphoid tissues, the majority of data have been 491 

collected by separate studies concentrating on certain cancer types, which hinders the 492 

identification of cancer type specific features. We present an interactive online resource, 493 

Hemap (http://hemap.uta.fi/) for analysis across multi-center gene expression datasets to 494 

investigate disease subgroups and compare molecular phenotypes across 9,544 samples 495 

from hematologic malignancies.  496 

 497 

In practice, the samples included to Hemap are inaccessible to most clinical researchers. 498 

The Hemap resource serves to re-purpose data from public repositories for clinical 499 

interpretation in an intuitive manner that does not require data analysis expertise. In future 500 

versions of Hemap, we plan to include also RNA-seq studies. Presently, the resource 501 

already contains the TCGA AML dataset and the User Guide includes examples using this 502 

data. Alongside curated disease assignment, we present a data-driven approach that 503 

organizes and integrates heterogeneous sample collections in an unbiased manner. To 504 

facilitate this, we demonstrated how unsupervised clustering and dimensionality reduction 505 

methods, here by the t-SNE method, can be used for organizing the molecular profiles for 506 

further downstream analysis. The high level of performance of t-SNE has been shown in 507 

context of various data types (18,53-54). In this manner, genes characterizing the patient 508 

clusters can be identified for further delineation of their functional role. In CLL, our analysis 509 

implicates high expression of several polycomb group proteins (SFMBT1, CBX7 and EZH1) 510 

in CLL that could be targeted by small molecules, in line with chromatin state data (46), and 511 

their mutation (45) frequencies, highlighting the importance to consider the spectrum of 512 

genetic and epigenetic changes in these malignancies. Earlier studies have implicated 513 

epigenetic plasticity as a key driver of CLL evolution during treatment (55). Specifically, CLL 514 

cases had little to no genetic subclonal evolution, while significant recurrent DNA methylation 515 

changes were enriched for regions near Polycomb targets (55). To further elucidate the 516 
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mechanisms, inclusion of post-treatment data and integrating methylation, chromatin marker 517 

and mutation profiles represent important future directions in developing the Hemap 518 

resource. 519 

 520 

From a therapeutic perspective, approaches for the development of treatment strategies with 521 

a broad disease focus and molecular subtype resolution are urgently needed. We used 522 

Hemap to provide a roadmap for candidate drug therapies that allows prioritizing new 523 

candidates based on disease-specificity. Our analysis recapitulated known vulnerabilities, 524 

providing additional confirmation for targets in current clinical trials: Several compounds 525 

targeting Bcl2 have been developed and have shown promise in treating both CLL and Non-526 

Hodgkin's lymphoma (56-57). However, navitoclax that also targets BCL2L1 (also known as 527 

BCL-XL) displays platelet toxicity. This potential for off-target effects was visible as high 528 

gene expression level in the erythroid lineage, supporting the choice of the more selective 529 

venetoclax. The prevalent high expression also in MM and pre-B-ALL found in our study 530 

provides a rationale for the expansion of the testing of these compounds in lymphoid 531 

malignancies. This suggestion is additionally supported by a recent study showing that these 532 

compounds have promise in MLL-rearranged ALL (58), a pre-B-ALL subtype corresponding 533 

to cluster 29 in our dataset. However, Hemap analysis predicts insensitivity in T-ALL and 534 

t1;19 subtype, matching recent ALL drug screen data (33). Similarly, the elevated expression 535 

of the p53-regulating MDM2 in pre-B-ALL fits with recent data on successful application of 536 

antagonists in clinical trials (59), and mechanisms for its high expression ETV6-RUNX1-537 

positive leukemias (60). 538 

 539 

Presently no drug screens have been carried out in primary patient cells across the 540 

spectrum of hematologic malignancies in Hemap. The utility of Hemap for drug repurposing 541 

was demonstrated in our recent study that identified dasatinib as a targeted therapy for a 542 

subgroup of T-ALL patients (61). Here, we examined drug screen datasets to examine how 543 

differential drug responsiveness could be linked to disease sub-clusters and drug targets 544 

identified from the cancer maps. Using the beatAML dataset, we systematically compared 545 

the importance of mutations, clusters and drug target gene expression in predicting drug 546 

responses. Clusters were the best predictors of drug response for drugs with best overall 547 

model fit. However, the importance of each predictor was largely influenced by drug type. 548 

Best predictor for Venetoclax response was BCL2 expression level. FLT3 mutation status 549 
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and other mutations were the best predictors for kinase inhibitors. In contrast, disease 550 

clusters were the best predictors for Palbociclib and Panobinostat responses to which 551 

mutation status had no effect on model fit. Comparison of clusters in which Panobinostat and 552 

Palbociclib showed opposite drug responses revealed that blast morphology was different, 553 

linking maturation level to differential drug response. Furthermore, their drug targets were 554 

differentially expressed in these clusters, pointing out the importance of integrating context 555 

and drug target expression for in-silico drug screening. Surprisingly, the HDAC expression 556 

pattern revealed cytosolic members (HDAC6 and HDAC10 (62)) as resistance markers, 557 

while nuclear HDAC4 and HDAC9 correlated with sensitivity. Our analysis also supported 558 

CDK4/6 as disease specific targets that are known to act as critical activators of normal and 559 

leukemic HSC (63). Here, Palbociclib compared favorably to Idarubicin regarding patient 560 

blast sensitivity against normal bone marrow cells, reflected in mRNA data from Hemap. The 561 

selectivity over normal cells may improve further using combination therapy (63) that allows 562 

decreasing the dose. However, additional parameters such as drug target protein level, drug 563 

metabolism and cell proliferation rate further contribute to sensitivity and therefore not all 564 

patients matching a molecular subtype or expressing the target mRNA can be expected to 565 

respond favorably.  566 

 567 

Cancer cells display remarkable plasticity: resistance to recently approved CD19-targeting 568 

CAR-T therapy has been shown to occur via mutations or splicing defects at the CD19 locus 569 

or lineage-switching (49). To combat the diversity of resistance mechanisms, there is a 570 

demand to diversify the target repertoire. In pre-B-ALL, we identified promising surface 571 

protein candidates, prioritizing targets with consistently high levels within the given disease 572 

context and low levels in normal blood cell types. Over 75% of the highly ranked candidates 573 

were confirmed using proteomics (51), and additional literature confirmation was found for 574 

five candidates. Moreover, we validated DPEP1 as a potential surface target in pre-B-ALL by 575 

immunohistochemical staining of diagnostic bone marrow biopsies. Positive staining was 576 

found in each subtype for majority of cases, except in MLL where both the Hemap gene 577 

expression data and protein staining indicated low or undetectable levels. The validation 578 

cohort consisted of pediatric cases, while Hemap analysis included also adult samples. 579 

DPEP1 is a zinc-dependent metalloproteinase that is expressed aberrantly in several 580 

cancers, and has been implicated as a potential therapeutic target in colon and pancreatic 581 
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cancers (64,65). In future, increased availability of protein-level data from different 582 

hematologic malignancies will allow confirming additional targets.  583 

 584 

In conclusion, the interactive Hemap resource facilitates comparative analyses across 585 

multiple hematologic malignancies. We envision that the mechanistic insight gained by 586 

concomitant identification of molecular subtypes, genetic aberrations and derailed cellular 587 

pathways will expedite therapeutic innovations and clinical utility.  588 

 589 
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 778 

Tables 779 

 780 

Table 1. DPEP1 protein expression in bone marrow biopsies based on 781 

immunohistochemistry grading. 782 

 783 

 DPEP1 Immunohistochemistry Total 

Negative Positive Strong 

positive 

pre-B-ALL     

BCR-ABL1 0 2 0 2 

ETV6-RUNX1 7 16 10 33 

Hyperdiploid 13 16 1 30 

Hypodiploid 1 0 0 1 

MLL rearranged 5 0 0 5 

TCF3-PBX1 4 0 0 4 

other 18 16 8 42 

     

Total 48 50 19 117 

Other disease/tissues     

BL 2 0 0 2 

T-lymphoblastic 

leukaemia/lymphoma 

6 1 0 7 
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MCL 1 0 0 1 

CLL 1 0 0 1 

PTCL 1 0 0 1 

CHL (NSCHL) 1 0 0 1 

     

Tonsils 1 0 0 1 

Thymus 1 0 0 1 

Spleen 1 0 0 1 

     

Total 15 1 0 16 

 784 
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Figures and Legends 787 

 788 

Figure 1. A molecular stratification of hematologic malignancies and normal blood 789 

cell types is captured in a t-SNE visualization. A. Composition of the hematologic 790 

transcriptome dataset. Of the 9,544 samples, 6,820 represent hematologic malignancies 791 

(leukemia, lymphoma or myeloma), and the rest consist of cancer cell lines, proliferative 792 

diseases (myeloid denoted pM and lymphoid denoted pL), normal blood cells (healthy donor 793 

or patient). See also Table S2. B. The transcriptome data projected in 2D using t-SNE is 794 

shown. Each dot represents one of the 9,544 samples. Cluster assignment based on density 795 

estimation is shown in color for seven distinct clusters visible on the cancer map. C. The 796 

separation between annotated disease types (indicated by color) is shown: the lymphoid 797 

malignancies separate into acute lymphoid leukemias (pre-B-ALL in pink and T-ALL in blue), 798 

lymphomas (top right), multiple myeloma (adjacent to B-cell lymphomas) and chronic 799 

lymphoblastic leukemia (CLL, below). The myeloid diseases (AML, CML and 800 

myeloproliferative disease) are grouped closely. Samples representing normal cell types or 801 

cell lines are in grey color. Numbers refer to data driven cluster assignment (see Table S2). 802 

 803 

 804 

Figure 2. Comparison of molecular phenotypes based on the cancer-map. Sample 805 

attribute visualizations are exemplified that allow characterizing the molecular phenotypes. 806 

Different BCL types (in A) and pre-B-ALL subtypes (in B) are colored based on sample 807 

annotations (refer to Table S2 for abbreviations). C. The five most significant pathways per 808 

disease cluster (above) or pre-B-ALL cluster (below) are shown as a heatmap (tones of red 809 

indicate significant enrichment to cluster (hypergeometric test, scaled P-value). The pre-B-810 

ALL cluster number and color (as in B) are indicated below the heatmap. D. The bimodal 811 

log2 gene expression signal distribution can be used to separate samples with low or non-812 

detectable expression (N.D., in blue) from samples expressing the gene (in red). 813 

Alternatively significance of enrichment for gene sets and pathways from different databases 814 

can be selected for visualization (e-staining) on the cancer map. E. The corresponding gene 815 

expression state is shown on the cancer-map for the B-lymphoid differentiation marker MME, 816 

where the color tones correspond to scaled log2 expression values (red: high, white low; 817 

blue: not detected). F. Gene set enrichment for BEZ235 targets is e-stained, with empirical 818 

P-value < 0.05 shown in red. 819 
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 820 

Figure 3. Pan-cancer analysis associates disease contexts with therapeutic strategies. 821 

A. The in silico drug target analysis across disease hierarchy groups is illustrated 822 

schematically and using proteasome and surface protein targeting drugs as examples. On 823 

the left, the heatmap columns are organized by disease, and drug targets (in rows) are 824 

sorted based on their most significant disease context association (red color tones indicate 825 

significant P-value in hypergeometric test, -log(P)). The adjacent heatmap shows the 826 

disease indications for drugs known to target the gene in question. Notice that majority of 827 

drugs target multiple genes, as illustrated by Bortezomib/Carfilzomib, and only some 828 

correspond to precision drugs as exemplified by antibody targets (SLAMF7, CD19, MS4A1 829 

and CD38). B. Comparison of targets of approved drugs with significant association to 830 

lymphoid leukemias are shown as in A. The disease indications in dimmer red tone reveal 831 

potential for re-purposing of drugs approved or in clinical trials in other disease indications 832 

(notice that LE includes ALL and CLL). C. Example genes highlighted in the heatmaps are e-833 

stained on the t-SNE map as in Fig. 2C.  834 

 835 

 836 

Figure 4. Evaluation of cluster and disease specificity of drug responses. A. A 837 

heatmap comparing how well the drug response data fits different elastic net regression 838 

models is shown (color indicates R2 values, drugs with R2>0.25 are shown). The values are 839 

summarized as boxplot on the right. Full model included clusters (Clust), gene expression 840 

(Gexp) and mutations (Mut), while one category is omitted in the other models. B. 841 

Palbociclib and Panobinostat drug response AUC values are shown as boxplots for all AML 842 

cases and for clusters correlated to differential drug response identified for Palbociclib and 843 

Panobinostat. High AUC values mean drug resistance and low drug sensitivity. C. Heatmap 844 

of FAB morphology markers, cluster specific genetic aberrations and drug target genes 845 

(CDK6 for Palbociclib and HDAC4,6,10,2 for Panobinostat) are shown for same clusters as 846 

in B. D. The gene expression data for TOP2A and CDK6 are e-stained on cancermap. 847 

Comparison to normal blood cell types is shown as boxplots of the log2 gene expression 848 

signal (T: T-lymphoid, B: B-lymphoid, E: erythroid and M: myeloid). For CDK6 clusters 849 

corresponding to beatAML clusters (as in C) are shown E. Drug sensitivity in an AML patient 850 

cohort based on DSS and sDSS scores (N = 52) are shown as boxplots for Palbociclib 851 

(CDK4/6 inhibitor) and the approved AML drug (idarubicin). High difference between DSS 852 
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and sDSS values indicate response in the bone marrow normal mononuclear cells, whereas 853 

low difference indicate selectivity in AML cells. 854 

 855 

Figure 5. Connecting the map of patient gene expression states to drug target 856 

profiles. A.  857 

Significantly enriched disease clusters are colored on the map based on pan-cancer analysis 858 

of epigenetic modifiers (purple: CLL; blue: T-ALL, green: AML cluster 32; pink: pre-B-ALL 859 

cluster 28). The expression states of the most significant drug candidates for CLL (SFMTB1, 860 

CBX7, EZH1, EHMT1, KMT2B and BAZ2A) are shown (as in Fig. 2C) on the right. B. The 861 

expression level (log10 cpm) and standard deviation (log2 s.d) of the genes shown in A is 862 

indicated on the scatter plot representing independent RNA-seq data52 (GSE81274, N=10). 863 

C. Significance ranking of surface target candidates for pre-B-ALL (x-axis, -log10 P-value) 864 

are plotted against protein level detection rate. Top candidates (P-value < 10-250) are 865 

indicated next to the plot. D. DPEP1 e-staining is shown as in A. E. DPEP1 866 

immunohistochemistry. The sample on the left was interpreted as negative. In the samples in 867 

the middle and on the right over 50 percent of the leukemic blasts are showing membranous 868 

and cytoplasmic positivity and the staining of the sample was graded as strong positive 869 

(FFPE, 40x magnification, Leica DM 3000 microscope, Leica MC190 HD microscope 870 

camera, Leica Application Suite software). 871 

 872 
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