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Abstract

Frequency tagging has been widely used to studyralee of visual selective attention.
Presenting a visual stimulus flickering at a spedrequency generates so-called steady-state
visually evoked responses. However, frequency tagg mostly done at lower frequencies
(<30 Hz). This produces a visible flicker, potelyianterfering with both perception and
neuronal oscillations in the theta, alpha and batad. To overcome these problems, we used
a newly developed projector with a 1440 Hz refrestie allowing for frequency tagging at
higher frequencies. We asked participants to perfarcued spatial attention task in which
imperative pictorial stimuli were presented at 68 &t 78 Hz while measuring whole-head
magnetoencephalography (MEG). We found posterios@s to show a strong response at
the tagged frequency. Importantly, this responses wahanced by spatial attention.
Furthermore, we reproduced the typical modulat@nalpha band oscillations, i.e., decrease
in the alpha power contralateral to the attentiong. The decrease in alpha power and
increase in frequency tagged signal with attentonrelated over subjects. We hereby
provide proof-of-principle for the use of high-figgncy tagging to study sensory processing
and neuronal excitability associated with attention

I ntroduction

Frequency tagging has been successfully used dy stlective stimulus processing in EEG
studies (e.g., (Muller et al., 2006, 2003, 1998rd¥oet al., 2015; Vialatte et al., 2010)). The
technique has also been applied in MEG studieavestigate visual perception (Parkkonen
et al.,, 2008) as well as the engagement of repiasemal selective areas in the ventral
stream (Baldauf and Desimone, 2014). With frequdagging, a stimulus (usually visual or

auditory) is presented at a fixed frequency, whiamn produces robust steady-state visually
evoked potentials or fields (respectively SSVEPS8VEFs for EEG and MEG), resulting in
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a power increase at the tagged frequency (Viaktttal., 2010). These responses are for
instance enhanced by attention (Morgan et al., 1998ller et al., 2006) and reflect
subjective perception in a bi-stable perceptiok (&arkkonen et al., 2008). As such they are
a useful tool for investigating mechanisms of atenand perception in humans. Typically,
frequency tagging is applied at lower frequenc&®0(Hz), which is associated with flicker
perception and may interfere with task performaticalso creates a problem when relating
frequency tagging to neuronal oscillations in ¢ alpha (8 — 13 Hz) and beta band (15 —
30 Hz) since frequency tagging is likely to entraininterfere with spontaneous neuronal
oscillations as well (Keitel et al., 2014; Spaakakt 2014). In this study, we use a newly
developed projector that allows us to perform festy tagging at higher frequencies and
hence to investigate neuronal excitability and aisattention in relation to endogenous
oscillations in the alpha band.

Neuronal oscillations have been shown to play a kag in the processing of sensory
information by synchronizing neuronal firing and aodating synaptic input (Schroeder and
Lakatos, 2009). For example, alpha oscillationsehbgen hypothesized to support active
inhibition of brain regions processing task-irredat; and possibly distracting, stimuli (Foxe
and Snyder, 2011; Jensen and Mazaheri, 2010; Kdimetal., 2007). This is underscored by
the findings that posterior alpha oscillations ateongly modulated by spatial attention
(Handel et al., 2011; Thut et al., 2006; Wordealgt2000). Additionally, the phase of alpha
has been shown to modulate perception (Mathewsah,&t011; Vanrullen et al., 2011) and
cortical excitability (Dugué et al., 2011; Schegaret al., 2011; Spaak et al., 2012).

In this study, we apply frequency tagging betwee@ragd 80 Hz in order to probe neocortical
excitability in relation to alpha oscillations. Arqvious study by Christoph Hermann
(Herrmann, 2001) has shown that rapidly flickeriobgD can drive the visual cortex as
measured by human EEG up to around 100 Hz. Inmadraecordings in monkeys and
humans have demonstrated that neuronal spikingsuakregions is entrained by the refresh
rate of a CRT computer monitor (60 Hz) (Krolak-Sainet al., 2003; Sandstréom et al., 1997;
Williams et al., 2004). We applied frequency taggabove 60 Hz using a projector with a
1440 Hz refresh rate while recording whole-head MHB®is was done while subjects
attended to flickering face and house stimuli iougd spatial attention paradigm. The aim
was to determine if cortical excitability as modath by spatial attention could be estimated
using rapid frequency tagging. Our core assumpgsaiat the amplitude of MEG signal at
the tagged frequency reflects neuronal excitabiliurthermore, we expect neuronal
excitability to increase with spatial attention ahds the tagged signal as well. A second aim
was to investigate the relationship between alpbadboscillations and the cortical
excitability assessed by rapid frequency tagging.

Materialsand Methods
Participants

Participants were recruited from a participant dase of the Radboud University Nijmegen.
Twenty-five healthy (17 females, aged 26 + 10 (mea8D)) participants partook in the
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study. Two of the subjects were excluded due taexressive amount of rejected trials.
Written informed-consent was acquired before eneoimin the study. All subjects

conformed to standard inclusion criteria for MEGpesiments. Subjects had normal or
corrected-to-normal vision. The study was approbgdhe local ethics committee (CMO

region Arnhem/Nijmegen). Subjects received financ@npensation of 8 euros per hour or
were compensated in course credits.

Attention Task

Participants performed a spatial attention taskl¢¢ks of 15 minutes) in which they had to
allocate attention to either the left, or the rigistual hemifield, depending on a cue presented
at the start of each trial (Fig. 1).

Each trial started with a fixation cross (500 nwdfwed by an arrow (150 ms) indicating the
hemifield that the participants had to attend tte(dional cue), while fixating on the center
of the screen. The fixation cross was shown for B80after the attentional cue, and then
stimuli were presented in the left and right visbamifield for 1500 ms. Participants were
instructed to detect a vertical flip of the attethdéimulus. Flips occurred at the end of trial in
25% of trials. In 20% of these trials, the flip wars the cued side, while in 5% of the trials
(catch trials), the flip was in the hemifield opfiego the cued side, and participants had not
to respond. Participants responded to the verflgalby button presses with either index
finger (flip on the left) or middle finger (flip othe right). The duration of the flipped
stimulus was adjusted using QUEST adaptive starpascedure (Watson and Pelli, 1983) to
attain 80% correct responses. The initial durabbrihe flipped stimuli was 10 ms and it
varied between 2 and 30 ms during the session altetrby the QUEST procedure. The
validity of the responses was indicated on theestras correct (‘“CORRECT"), incorrect
(“INCORRECT"), or missed (“MISS”) response. Nexiatr began following a random
interval of 500250 ms. Such relatively short imsémulus interval may influence the
neuronal responses in the subsequent trials; hawinerandom stimulus onset reduces this
effect. The experimental paradigm was implementeMATLAB 2017b (Mathworks Inc.,
Natrick, USA) using Psychophysics Toolbox 3.0.11e{er et al., 2007).

Visual stimuli

Pairs of stimuli (face and house) were presentedilaneously in the lower left and right
visual field (8.3 degrees eccentricity). Differembmbinations of faces and houses
(comprising ten faces and ten houses) were prasdntgandom order over the trials.
Luminance of the grayscale stimuli was normalizemg the SHINE Toolbox for MATLAB

(Willenbockel et al., 2010) and a circular mask vegmplied to the images (see, Fig. 1).
Stimuli were presented at a rate of respectivelyHg3and 78 Hz (counter-balanced over
trials). The presentation rate was achieved by hatidg transparency of the stimulus with a



116
117

118

119
120
121
122
123
124
125
126
127
128

129

130
131
132

133

134
135
136
137
138

139

140
141
142
143
144
145
146
147

148

149
150
151

sinusoid at the target frequency, phase-lockedsadrials. Direction of attention, pairing of
face-house stimuli and tagging frequencies weraieshalanced over trials.

Projector

To achieve a high rate of stimuli presentation, wsed a GeForce GTX960 2GB graphics
card in combination with a PROPixx DLP LED projec{Pixx Technologies Inc., Saint-
Bruno-de-Montarville, Canada). This projector po®s a refresh rate up to 1440 Hz by
dividing each frame received from the graphics c@d 120 Hz) into multiple frames.
Basically, the projector divides each received #afh920 x 1200 pixels) into four equally
sized quadrants (960 x 600 pixels), allowing fdoarfold increase in refresh rate (480 Hz).
Colour (RGB) images presented in each quadrantbeafurther converted to a grayscale
representation by equalizing all components of R&MBle. As such, this allows for an
increased refresh rate of 120 Hz by a factor afiés$ 3 (1440 Hz) when presenting grayscale
images with a resolution of 960 x 600 pixels.

MRI data acquisition

A high-resolution Tl-weighted image (TR = 2300 &, = 3.03 ms, TI = 1100 ms, 1.0 Mim
isotropic resolution, 192 sagittal slices) was aegl using a 3T MAGNETOM Skyra
(Siemens Healthcare, Erlangen, Germany).

MEG data acquisition

MEG was acquired using a 275-sensor axial gradiem@TF system (CTF MEG systems,
Coquitlam, Canada). The MEG data was low-pasgdifteat 300 Hz using embedded anti-
aliasing filters and sampled at 1200 Hz. Head pwsiof the participants was continuously
monitored throughout the experiment using threelHeealization coils placed on the nasion
and both periauricular points (Stolk et al., 2013).

MEG data preprocessing

MEG data were analysed using MATLAB and the Figbdiimolbox (Oostenveld et al., 2011).
The data were segmented into 3.5 s epochs; —15staelative to the onset of flickering
stimulation. The data were further down-sample@8@0 Hz and ICA unmixing matrices were
calculated using the ’infomax’ algorithm (Makeig &t, 1996) on the first 90 principal
components of the data. Components containing tapbies and time courses clearly
matching cardiobalistic activity and eye-blinks werejected from the data. The trials
containing large amplitude events (above 5 SD) wejected. The number of such trials has
not exceeded of 5% of total amount of trials.

Sensor-level analysis

Synthetic planar gradients were calculated to @#sepretation of the topography of power
measurements (Bastiaansen and Knésche, 2000). [&har gradient power was combined
by summing the orthogonal components for each sdosation.
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To estimate the effect of attention on power at thgging frequencies or neuronal
oscillations, the attention modulation index (AMMas calculated. To this end, spectral
power for time-frequency representations (TFR) w@®puted using Fourier transform (FT)
for each sensor and epoch from —1.5 to 2 s relgtieestimulus onset. The spectral power
was computed for multiple moving-time windows (leagth and 0.05 s step) weighted by
the Hanning taper, and over a range of frequendes 100 Hz). The effect of spatial
attention for the left sensors was calculated ksviss:

AMlsy = (Pargsy — Pagsy ) / (Pargsy + Paysy ) (1)

where SL denotes the subset of left sensors (Sigil&R denotes the subset of right
sensors); R and Rgr denote spectral power averaged over trials “atenteft” and
“attention right”, respectively. The AMI for theght sensors was computed in the same
manner, and the resulting AMI was obtained by conmigi AMI for the left and right sensors
with inverse polarity as follows:

AMI = AMI {sL} — AN”{SR} (2)
In case of all sensors AMI (see, Figure 4), we coteg the spatial patterns as follows:
AMI = (PAR - PAL) / (P/_\R + PAL) (3)

where R and Rg denote spectral power averaged over trials “atieriéft” and “attention
right”, respectively.

Statistical comparisons

Unless specified otherwise, conditions were contpaseng two-sided paired-sample t-tests.
To statistically quantify the AMI in spatial domainve used cluster-based permutation
statistics (Maris and Oostenveld, 2007), whichwallontrolling for multiple comparisons
over sensors.

Results

Subjects performed a cued spatial attention taskvegre instructed to press a button if a
stimulus flipped vertically on the cued side (leftright). In each trial, a pair of face/house
stimuli appeared for 1.5 s in the left and righdual hemifield (Fig. 1). Each stimulus was
flickering at either 63 Hz or 78 Hz. The locatiohtloe face and house stimulus (left or right
hemifield), tagging frequency (63 or 78 Hz), anckdiion of attention were counterbalanced
over trials throughout the experiment.

Behaviour

Behavioural results demonstrated that participardgse able to detect flips in the attended
hemifield while ignoring flips in the unattendednhield. The average hit rate was 0.75 *
0.05 (mean £ SD) and the average reaction timeOwbs+ 0.03 s (mean = SD).

Spatial attention modulates responses of frequéagged stimuli
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To assess the response in the early visual castéhetflickering stimuli, we calculated time-
locked averages of the event-related fields poddiata over stimulus type (face, house) and
direction of attention (left, right). Visual stimatlon at the tagging frequencies produced clear
steady-state visual evoked fields (SSVEFs) in otdigensors (Fig. 2A,B). The SSVEFs
lasted for the entire stimulation period and wergrkadly larger for 63 Hz compared to 78
Hz, as evident by a significant main effect of taggrequency.

We calculated the power spectra for each trialthed averaged over the trials. The sensors
were selected according to the strongest responsgkeatagging frequencies for all the
participants (Fig. 2C). The group-level normalizexiver spectra showed pronounced peaks
in the tagging frequencies at the selected octipgasors (Fig. 2D), suggesting that the
frequency tagging method produces reliable resginseajority of the participants.

To quantify the effect of attentional modulationpmiwer at the tagging signals we calculated
the attention modulation index (AMI; see Materialsd Methods). The AMI indicates the
power at sensors contralaterally to the attendedifledd minus the power ipsilaterally
(normalized by the sum); as such the figures refigtention ON’ minus attentionOFF’.
The AMI was computed for the entire trial interdiedm —1.5 to 2 s (relatively to stimulus
onset) using time-frequency representations of po{kvgg. 3A). This was done for the
sensors shown in Fig. 2C. The signals at the tafjgediencies increased with attention; i.e.
they increased in the hemisphere contralaterddd@ttended hemifield. The alpha power was
relatively suppressed in the hemisphere contrabter attention. The AMI was then
averaged over time bins in the 0.5 — 1.5 s intetwaleduce the contribution of the initial
evoked response (Fig. 3B). The AMI was significardifferent from zero ¢ > 5.64,p <
10°, uncorrected) in both the alpha band and at thgirig frequencies. However, AMI at 63
Hz was significantly larger than AMI at 78 Haz(t 2.74,p < 0.01), suggesting that the
efficacy of the response decreases at high fregeen@bove 20 Hz) as a function of
(tagging) frequency.

The AMI was derived as a difference in power betwials “attention left” and “attention
right” (see, equation 1), and hence, it does ndicate whether the difference is related to
ipsilater increase or contralateral decrease ingo@at the alpha frequency (and opposite in
the tagging frequencies). To clarify this, we qufeed the relative change in power compared
to the baseline as fOHOW&P = (F%timulation— I:baselina / I:Jt)aselin(ie where IE))aselineand I:s)timulation
denote power at the baseline and stimulation, ctsjedy. The power at the alpha
frequencies showed larger decrease contralatdmlgtimulation side and the power at the
tagging frequencies showed an opposite change 3EigD).
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Using cluster-based permutation test controllingrfmltiple comparisons over sensors (see
Materials and Methods), we identified the clustafs sensors at which power was
significantly modulated by attention (Fig. 4). Tsatial clusters of AMI in the alpha band
and the tagging frequencies were over occipitogpalriareas; however, the alpha frequency
clusters were located more posterior compared ¢sethof the tagging frequencies. We
guantified the overlap between clusters using #ueard (or Intersection over Union) index.
The results of such method should be taken withi@alecause the cluster size is strongly
affected by the signal-to-noise ratio and by therimeof statistical testing. The spatial
clusters at the alpha and higher tagging frequeshoyed a moderate (nearly 60%) overlap
as indicated by the Jaccard index. The spatial oh&MI at the alpha frequency was well in
line with previous observations (e.g., (Foxe angden, 2011; Handel et al., 2011; Thut et
al., 2006; van Ede et al., 2011; Worden et al.,020Guggesting that the spatial attention
related modulations of alpha activity are presemtespite the frequency tagging. Clusters at
the lower (63 Hz) and higher (78 Hz) tagging frequies showed a strong (over 90%)
overlap as indicated by the Jaccard index; howekierclusters at 63 Hz were slightly larger
compared to those for the higher frequency (78 Hz).

Relationship between AMI at the alpha and taggreqdencies

Considering the inverse relationship between ttenibnal modulation in the alpha band and
the tagging frequencies (see Fig. 4), we testedtheneparticipants with a stronger
modulation of alpha power have stronger power matcthi at the tagging frequencies. To
this end, we derived the individual AMI of the adpband and the tagging frequencies (63
and 78 Hz combined) and assessed their correlatiensubjects. We defined separate masks
for the alpha and tagging frequencies (Fig. 5A)sblecting sensors expressing the 10% of
largest absolute AMI values (see Fig. 4). We olesstra robust correlationmr € -0.47,p <
0.03; Spearman correlation) between individual AMKg. 5B). This suggests that
participants demonstrating stronger alpha modulatiad also stronger modulation at the
tagging frequencies. Additionally, we assessed #pearman correlation between the
individual AMI of the alpha and each tagging freqoy separately. The correlation was
significant for the lower tagging frequency (63 Hzz= -0.51,p < 0.01), but it was not
significant for the higher tagging frequency (78;IHz -0.24,p > 0.26). This result could be
partially explained by lower signal-to-noise raditothe higher frequencies.

To test whether the relationship between AMI atdhgha and tagging frequencies holds at
the single trial level, we computed the lateral@aindex (LI) for each trial as follows,

LIy = (Piysry — Riysty) / (Piysry + Rlixsy ) (4)

7
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where R) denotes power for trial)( SL and SR denote indices of the left and riginssrs,
respectively. In contrast to the equation (1), wbtsacted left and right sensors instead of
“attention left” and “attention right” trials. Thel ;) were split into two categories “attention
left” and “attention right”, and correlation (andedian split t-test) between LI at the alpha
and tagging frequencies was computed for each aatespparately. We did not find any
significant @ > 0.05) correlation (or median split t-statistidstween LI at the alpha and
tagging frequencies. A larger amount of trials ecessary to establish whether such a
relationship exists or not.

Discussion

We here demonstrate that tagging of visual stimuliapid frequencies (63 and 78 Hz) can
induce neuronal responses at the same frequemciesuial cortex. Spatial attention towards
a visual object produced stronger responses atatlpging frequency contralateral to the
direction of attention compared to the unattend@chudus. As such, the tagging signal
reflects the gain of neuronal excitability with §phattention. Posterior alpha oscillations
decreased in magnitude in posterior regions caital compared to ipsilateral to the
direction of attention. This demonstrates thatahpia oscillations were not disrupted by the
tagging signal.

The correlation between individual modulations lie alpha and the power at the tagging
frequencies suggests a link between attentionahamesms for the alpha power and tagging
frequencies. One possibility is that alpha modualdtg attention determines the neuronal
excitability which then determines the increasethe frequency tagged responses. This
interpretation however only partially explains tt@relation as the topographies of AMI at
the alpha and tagging frequencies did not perfextgriap.

Proof-of-principle: using rapid frequency-tagging probe neocortical excitability

This study provides proof-of-principle that rapieckduency tagging can be used to probe
brain mechanisms involved in processing of visuahwdi without affecting endogenous
oscillations in the alpha range. Previous studiagehshown that it is possible to elicit
responses in early visual cortex by using flickgdight emitting diodes (LED) at frequencies
up to 100 Hz (Herrmann, 2001). However, the usdaistrete LEDs does not allow for
creating complex stimuli. In this study, we usedtate-of-the-art LED projector that is
capable of presenting stimuli at a refresh raté43f0 Hz. Thus, this projector allowed us to
modulate luminance of the stimulus at frequencigsau720 Hz (the Nyquist frequency of
the projector). Similarly to the study of Herrma(2001), we observed weaker neuronal
response for the stimuli tagged at 78 Hz compape@3t Hz, although both stimuli were
modulated with the same intensity. This might bpl&xed by the attenuation resulting from
the synaptic drives in the early visual stream. Tilme course of the post-synaptic potentials
are in the order of ~10 ms (Koch et al., 1996),chheffectively creates a ~100 Hz low pass
filter. Another possibility is that the proximityf he frequency of the tagged signal to the
frequency of the individual gamma oscillations ugihces the magnitude of the tagged

8
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response. These possibilities require further itigagon in future studies where the tagging
over a broader frequency is systematically explored

Attention enhances neural response to tagging signa

An assumption underlying the use of frequency taggis a tool to study sensory processing
in the brain is that the EEG/MEG signal at the &bfrequency reflects underlying sensory
processing. We have shown here that spatial aitentiodulates power at the tagging
frequency in the expected direction; the respohdieeatagged frequency was enhanced when
attention was directed towards the stimulus andomgsed when attention was directed
away. This suggests that the gain increase assdordth the allocation of spatial attention
results in increased neuronal excitation, whichtum is reflected by the power of the
frequency tagged MEG signal.

Alpha oscillations are not disrupted by rapid fregaey tagging

The increase in neuronal response modulated byakp#tention has also been shown at the
lower (up to 30 Hz) tagging frequencies (e.g. (Milkt al., 2006; Toffanin et al., 2009)).
However, frequency tagging at lower frequencie$«80 Hz) is likely to interfere with
endogenous neuronal oscillations. Most frequenaygitey experiments are limited to
frequency bands below 30 Hz (e.g. (Muller et &0Q& Norcia et al., 2015; Toffanin et al.,
2009)). In this case, the tagging signal produdstble a flicker and may potentially entrain
the ongoing oscillations (Spaak et al., 2014; Téwal., 2011). This is especially evident
given that tagging produces the strongest neuroegponse in the visual system at
frequencies between 12 Hz and 18 Hz{Ktal., 2013).

In our study, alpha oscillations in the posteriegions remained undisrupted by the rapid
frequency tagging. Alpha power increased ipsildlierso the direction of attention and
decreased contralaterally as observed in numerthies studies (Handel et al., 2011; Thut et
al., 2006; Worden et al., 2000). Applying frequenagging at higher frequencies therefore
makes is possible to in conjunction study the ofléwer-frequency oscillations on sensory
processing.

In future work it would be interesting to investigdf the rapid frequency tagging entrains intrnsi
gamma oscillations or rather reflect a simple ferdfrd drive. Similar considerations have been put
forward for the alpha rhythm (Keitel et al., 2014%).would also be interesting to investigate the
relationship between the phase of the alpha osoils and the frequency tagged signal. Indeed the
phase of alpha oscillations has been suggestedottulate perception rhythmically in a pulsed
inhibitory manner; and this modulation is dependenattention (Kizuk and Mathewson, 2017). This
notion could be investigated in the context of agicode coordinated by the alpha rhythm as
proposed by Jensen and colleagues (Jensen ), 2

Does rapid frequency tagging entrain neuronal ganuseillations?

There are several studies (Adjamian et al., 2004rtyvet al., 2018; Muthukumaraswamy and
Singh, 2013) that attempted to apply stimulatiofrequencies in the gamma range in order
to entrain endogenous gamma band oscillations (B®4. Such studies are important for
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understanding the important function gamma bandllasens may have in neuronal
computations (Fries et al., 2007; Jensen et alQ72Warela et al., 2001). Bauer and
colleagues (Bauer et al., 2009) showed that attentould be captured by subliminally
perceived stimuli flickering at 50 Hz. Manipulatingsual perceptual integration by
modulating the phase of externally driven gammguescy stimulation has proven difficult
(Bauer et al., 2012). Future studies may explor@hat extent the neuronal activity elicited
by rapid frequency tagging entrains endogenous garostillations. If this is the case,
frequency tagging should be more efficient and Itesua relative power increase when
applied at the frequency of the individual endogengamma oscillations. This could also be
investigated by pharmacological means. It is wsliablished that GABAergic inhibition
from interneurons plays a crucial role for genagtof gamma oscillations (Traub et al.,
1999). In support of this notion, we recently destasted that visual gamma oscillations in
humans increase when the GABergic agonist Lorazepapplied (Lozano-Soldevilla et al.,
2014). If rapid frequency-tagging entrains natg@mnma oscillations, one would expect that
rapid-frequency tagging in the gamma band increasgts the application of GABAergic
agonists.

Conclusion

We set out to investigate the feasibility of rafsieijuency tagging to study the role of sensory
processing in the visual cortex. Our results shbat tit is indeed possible to measure
responses at the tagging frequencies and that tlesp®nses are modulated by spatial
attention. The modulation of alpha power was inglgrselated to the modulation in gamma
power. These findings provide important proof-ofapiple that rapid frequency tagging can

be used to measure neuronal excitability of visaatex in a stimulus specific manner to for

instance investigate spatial attention. Furthermitve dynamical properties of the alpha band
oscillations were preserved despite the frequeagygihg. Rapid frequency tagging is highly

advantageous to conventional frequency taggingvael frequency (<20 Hz) as it does not
produce a visible flicker and furthermore the fadtequencies allow for investigating the

tagged response with a better temporal resolutidre stage is now set for applying

frequency tagging in combination with EEG or MEGstady the dynamical properties of the

visual system.
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Figurelegends

Fig. 1. Schematic representation of the experinigraiadigm. After an attentional cue, a house-face
pair was presented at 63 and 78 Hz (counterbalaaged trials). In 20% of the trials, one of the
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images was flipped vertically and required partcifs response. In 5% of the trials (catch trialsg,
flip was in the hemifield opposite to the cued saahe participants had to ignore this event.

Fig. 2. Event-related fields for a representatieatipipant showed clear responses at the tagging
frequencies. Note that the frequency tagged signale presented with the same phase over trials.
(A) Broadband (black line) and narrowband (red )limgal-averaged ERFs for 63 Hz stimulus
(presented right) for the left occipital sensoree(panel C). (B) Trial-averaged ERFs for 78 Hz
stimulus (presented right) for the left occipitahsors. (C) Left and right occipital MEG sensoi th
covered areas with the stronger power at the taggaguencies for all the participants were used in
the analysis. (D) Normalized group-level power $gefor the left sensors when the tagged image
was presented at 63 Hz and 78 Hz in the right helaifPrior to computing individual power spectra,
the trials were normalized by the standard dewiatibtime series over sensors. The line noise with
peak near 50 Hz was cut out in the plot.

Fig. 3. Attention modulates power in the alpha bamdl at the tagging frequencies. (A) Time-
frequency representation of the attention modufaiimdex (AMI). The AMI reflects the power
modulation in the sensors contra- versus ipsilateréhe attended hemifield for combined left and
right occipital sensors (see Fig. 2C for sensdexcten). The power was calculated per trial arehth
averaged. Black line indicates onset of the frequeagged stimuli; the cue onset was at -0.5 s. (B)
The AMI (averaged over time bins 0.5 — 1.5 s) atghoup level. Dashed lines indicgealues of
the t-test comparing modulation index against Zex@r participants). The effect is highly robust in
the 8-12 Hz alpha band and at 63 and 78 Hz evenulfiple comparisons over frequencies are
considered. (C) Relative power change comparethg¢dbtiseline (-1, -0.5 s) at the left sensors for
trials “attention left” (cyan line; ipsilateral the cue) and “attention right” (blue line; conttalal to

the cue). (D) The same as (C) but for the rightssemn for trials “attention right” (orange line;
ipsilateral to the cue) and “attention left” (rexld; contralateral to the cue).

Fig. 4. Group average topography maps of the AMItha alpha band (10+2 Hz) and tagging
frequencies (63 and 78 Hz). Black dots indicate Mé&@sors at which amplitude modulation index
was significantly different from zerg & 0.05, cluster-based permutation).

Fig. 5. Relationship between the modulation of algfower and frequency tagging. (A)
Spatial masks for the alpha and tagging frequendies masks were obtained by selecting
sensors expression the 10% of largest absolute vdWles. (B) Scatter plot of individual
AMI relating the alpha power modulation and the powcombined for the tagging
frequencies. Subjects with a strong alpha powerutadidn with attention were also subjects
with a strong modulation of the tagged signals.
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