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Abstract  13 

Frequency tagging has been widely used to study the role of visual selective attention. 14 

Presenting a visual stimulus flickering at a specific frequency generates so-called steady-state 15 

visually evoked responses. However, frequency tagging is mostly done at lower frequencies 16 

(<30 Hz). This produces a visible flicker, potentially interfering with both perception and 17 

neuronal oscillations in the theta, alpha and beta band. To overcome these problems, we used 18 

a newly developed projector with a 1440 Hz refresh rate allowing for frequency tagging at 19 

higher frequencies. We asked participants to perform a cued spatial attention task in which 20 

imperative pictorial stimuli were presented at 63 Hz or 78 Hz while measuring whole-head 21 

magnetoencephalography (MEG). We found posterior sensors to show a strong response at 22 

the tagged frequency. Importantly, this response was enhanced by spatial attention. 23 

Furthermore, we reproduced the typical modulations of alpha band oscillations, i.e., decrease 24 

in the alpha power contralateral to the attentional cue. The decrease in alpha power and 25 

increase in frequency tagged signal with attention correlated over subjects. We hereby 26 

provide proof-of-principle for the use of high-frequency tagging to study sensory processing 27 

and neuronal excitability associated with attention.  28 

Introduction  29 

Frequency tagging has been successfully used to study selective stimulus processing in EEG 30 

studies (e.g., (Müller et al., 2006, 2003, 1998; Norcia et al., 2015; Vialatte et al., 2010)). The 31 

technique has also been applied in MEG studies to investigate visual perception (Parkkonen 32 

et al., 2008) as well as the engagement of representational selective areas in the ventral 33 

stream (Baldauf and Desimone, 2014). With frequency tagging, a stimulus (usually visual or 34 

auditory) is presented at a fixed frequency, which then produces robust steady-state visually 35 

evoked potentials or fields (respectively SSVEPs or SSVEFs for EEG and MEG), resulting in 36 
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a power increase at the tagged frequency (Vialatte et al., 2010). These responses are for 37 

instance enhanced by attention (Morgan et al., 1996; Müller et al., 2006) and reflect 38 

subjective perception in a bi-stable perception task (Parkkonen et al., 2008). As such they are 39 

a useful tool for investigating mechanisms of attention and perception in humans. Typically, 40 

frequency tagging is applied at lower frequencies (<30 Hz), which is associated with flicker 41 

perception and may interfere with task performance. It also creates a problem when relating 42 

frequency tagging to neuronal oscillations in e.g. the alpha (8 – 13 Hz) and beta band (15 – 43 

30 Hz) since frequency tagging is likely to entrain or interfere with spontaneous neuronal 44 

oscillations as well (Keitel et al., 2014; Spaak et al., 2014). In this study, we use a newly 45 

developed projector that allows us to perform frequency tagging at higher frequencies and 46 

hence to investigate neuronal excitability and visual attention in relation to endogenous 47 

oscillations in the alpha band.  48 

Neuronal oscillations have been shown to play a key role in the processing of sensory 49 

information by synchronizing neuronal firing and modulating synaptic input (Schroeder and 50 

Lakatos, 2009). For example, alpha oscillations have been hypothesized to support active 51 

inhibition of brain regions processing task-irrelevant, and possibly distracting, stimuli (Foxe 52 

and Snyder, 2011; Jensen and Mazaheri, 2010; Klimesch et al., 2007). This is underscored by 53 

the findings that posterior alpha oscillations are strongly modulated by spatial attention 54 

(Händel et al., 2011; Thut et al., 2006; Worden et al., 2000). Additionally, the phase of alpha 55 

has been shown to modulate perception (Mathewson et al., 2011; Vanrullen et al., 2011) and 56 

cortical excitability (Dugué et al., 2011; Scheeringa et al., 2011; Spaak et al., 2012). 57 

In this study, we apply frequency tagging between 60 and 80 Hz in order to probe neocortical 58 

excitability in relation to alpha oscillations. A previous study by Christoph Hermann 59 

(Herrmann, 2001) has shown that rapidly flickering LED can drive the visual cortex as 60 

measured by human EEG up to around 100 Hz. Intracranial recordings in monkeys and 61 

humans have demonstrated that neuronal spiking in visual regions is entrained by the refresh 62 

rate of a CRT computer monitor (60 Hz) (Krolak-Salmon et al., 2003; Sandström et al., 1997; 63 

Williams et al., 2004). We applied frequency tagging above 60 Hz using a projector with a 64 

1440 Hz refresh rate while recording whole-head MEG. This was done while subjects 65 

attended to flickering face and house stimuli in a cued spatial attention paradigm. The aim 66 

was to determine if cortical excitability as modulated by spatial attention could be estimated 67 

using rapid frequency tagging. Our core assumption is that the amplitude of MEG signal at 68 

the tagged frequency reflects neuronal excitability. Furthermore, we expect neuronal 69 

excitability to increase with spatial attention and thus the tagged signal as well. A second aim 70 

was to investigate the relationship between alpha band oscillations and the cortical 71 

excitability assessed by rapid frequency tagging.  72 

Materials and Methods 73 

Participants  74 

Participants were recruited from a participant database of the Radboud University Nijmegen. 75 

Twenty-five healthy (17 females, aged 26 ± 10 (mean ± SD)) participants partook in the 76 
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study. Two of the subjects were excluded due to an excessive amount of rejected trials. 77 

Written informed-consent was acquired before enrolment in the study. All subjects 78 

conformed to standard inclusion criteria for MEG experiments. Subjects had normal or 79 

corrected-to-normal vision. The study was approved by the local ethics committee (CMO 80 

region Arnhem/Nijmegen). Subjects received financial compensation of 8 euros per hour or 81 

were compensated in course credits.   82 

Attention Task  83 

Participants performed a spatial attention task (4 blocks of 15 minutes) in which they had to 84 

allocate attention to either the left, or the right visual hemifield, depending on a cue presented 85 

at the start of each trial (Fig. 1).  86 

-------------------------------- 87 

Figure 1 about here 88 

-------------------------------- 89 

Each trial started with a fixation cross (500 ms) followed by an arrow (150 ms) indicating the 90 

hemifield that the participants had to attend to (attentional cue), while fixating on the center 91 

of the screen. The fixation cross was shown for 350 ms after the attentional cue, and then 92 

stimuli were presented in the left and right visual hemifield for 1500 ms. Participants were 93 

instructed to detect a vertical flip of the attended stimulus. Flips occurred at the end of trial in 94 

25% of trials. In 20% of these trials, the flip was on the cued side, while in 5% of the trials 95 

(catch trials), the flip was in the hemifield opposite to the cued side, and participants had not 96 

to respond. Participants responded to the vertical flip by button presses with either index 97 

finger (flip on the left) or middle finger (flip of the right). The duration of the flipped 98 

stimulus was adjusted using QUEST adaptive staircase procedure (Watson and Pelli, 1983) to 99 

attain 80% correct responses. The initial duration of the flipped stimuli was 10 ms and it 100 

varied between 2 and 30 ms during the session controlled by the QUEST procedure. The 101 

validity of the responses was indicated on the screen as correct (“CORRECT”), incorrect 102 

(“INCORRECT”), or missed (“MISS”) response. Next trial began following a random 103 

interval of 500±250 ms. Such relatively short inter-stimulus interval may influence the 104 

neuronal responses in the subsequent trials; however, the random stimulus onset reduces this 105 

effect. The experimental paradigm was implemented in MATLAB 2017b (Mathworks Inc., 106 

Natrick, USA) using Psychophysics Toolbox 3.0.11 (Kleiner et al., 2007).  107 

Visual stimuli 108 

Pairs of stimuli (face and house) were presented simultaneously in the lower left and right 109 

visual field (8.3 degrees eccentricity). Different combinations of faces and houses 110 

(comprising ten faces and ten houses) were presented in random order over the trials. 111 

Luminance of the grayscale stimuli was normalized using the SHINE Toolbox for MATLAB 112 

(Willenbockel et al., 2010) and a circular mask was applied to the images (see, Fig. 1). 113 

Stimuli were presented at a rate of respectively 63 Hz and 78 Hz (counter-balanced over 114 

trials). The presentation rate was achieved by modulating transparency of the stimulus with a 115 
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sinusoid at the target frequency, phase-locked across trials. Direction of attention, pairing of 116 

face-house stimuli and tagging frequencies were counterbalanced over trials. 117 

Projector  118 

To achieve a high rate of stimuli presentation, we used a GeForce GTX960 2GB graphics 119 

card in combination with a PROPixx DLP LED projector (VPixx Technologies Inc., Saint-120 

Bruno-de-Montarville, Canada). This projector provides a refresh rate up to 1440 Hz by 121 

dividing each frame received from the graphics card (at 120 Hz) into multiple frames. 122 

Basically, the projector divides each received frame (1920 x 1200 pixels) into four equally 123 

sized quadrants (960 x 600 pixels), allowing for a fourfold increase in refresh rate (480 Hz). 124 

Colour (RGB) images presented in each quadrant can be further converted to a grayscale 125 

representation by equalizing all components of RGB code. As such, this allows for an 126 

increased refresh rate of 120 Hz by a factor of 4 times 3 (1440 Hz) when presenting grayscale 127 

images with a resolution of 960 x 600 pixels.  128 

MRI data acquisition  129 

A high-resolution Tl-weighted image (TR = 2300 ms, TE = 3.03 ms, TI = 1100 ms, 1.0 mm3 130 

isotropic resolution, 192 sagittal slices) was acquired using a 3T MAGNETOM Skyra 131 

(Siemens Healthcare, Erlangen, Germany). 132 

MEG data acquisition  133 

MEG was acquired using a 275-sensor axial gradiometer CTF system (CTF MEG systems, 134 

Coquitlam, Canada). The MEG data was low-pass filtered at 300 Hz using embedded anti-135 

aliasing filters and sampled at 1200 Hz. Head position of the participants was continuously 136 

monitored throughout the experiment using three head-localization coils placed on the nasion 137 

and both periauricular points (Stolk et al., 2013). 138 

MEG data preprocessing  139 

MEG data were analysed using MATLAB and the Fieldtrip toolbox (Oostenveld et al., 2011). 140 

The data were segmented into 3.5 s epochs; –1.5 to 2 s relative to the onset of flickering 141 

stimulation. The data were further down-sampled to 300 Hz and ICA unmixing matrices were 142 

calculated using the ’infomax’ algorithm (Makeig et al., 1996) on the first 90 principal 143 

components of the data. Components containing topographies and time courses clearly 144 

matching cardiobalistic activity and eye-blinks were rejected from the data. The trials 145 

containing large amplitude events (above 5 SD) were rejected. The number of such trials has 146 

not exceeded of 5% of total amount of trials.  147 

Sensor-level analysis  148 

Synthetic planar gradients were calculated to ease interpretation of the topography of power 149 

measurements (Bastiaansen and Knösche, 2000). The planar gradient power was combined 150 

by summing the orthogonal components for each sensor location. 151 
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To estimate the effect of attention on power at the tagging frequencies or neuronal 152 

oscillations, the attention modulation index (AMI) was calculated. To this end, spectral 153 

power for time-frequency representations (TFR) was computed using Fourier transform (FT) 154 

for each sensor and epoch from –1.5 to 2 s relatively to stimulus onset. The spectral power 155 

was computed for multiple moving-time windows (1 s length and 0.05 s step) weighted by 156 

the Hanning taper, and over a range of frequencies (1 – 100 Hz). The effect of spatial 157 

attention for the left sensors was calculated as follows: 158 

AMI {SL}  = (PAR{SL}  – PAL{SL} ) / (PAR{SL}  + PAL{SL} )    (1) 159 

where SL denotes the subset of left sensors (similarly, SR denotes the subset of right 160 

sensors); PAL and PAR denote spectral power averaged over trials “attention left” and 161 

“attention right”, respectively. The AMI for the right sensors was computed in the same 162 

manner, and the resulting AMI was obtained by combining AMI for the left and right sensors 163 

with inverse polarity as follows: 164 

AMI = AMI {SL}  – AMI{SR}     (2) 165 

In case of all sensors AMI (see, Figure 4), we computed the spatial patterns as follows: 166 

AMI = (PAR – PAL) / (PAR + PAL)     (3) 167 

where PAL and PAR denote spectral power averaged over trials “attention left” and “attention 168 

right”, respectively. 169 

Statistical comparisons  170 

Unless specified otherwise, conditions were compared using two-sided paired-sample t-tests. 171 

To statistically quantify the AMI in spatial domain, we used cluster-based permutation 172 

statistics (Maris and Oostenveld, 2007), which allow controlling for multiple comparisons 173 

over sensors.  174 

Results  175 

Subjects performed a cued spatial attention task and were instructed to press a button if a 176 

stimulus flipped vertically on the cued side (left or right). In each trial, a pair of face/house 177 

stimuli appeared for 1.5 s in the left and right visual hemifield (Fig. 1). Each stimulus was 178 

flickering at either 63 Hz or 78 Hz. The location of the face and house stimulus (left or right 179 

hemifield), tagging frequency (63 or 78 Hz), and direction of attention were counterbalanced 180 

over trials throughout the experiment.  181 

Behaviour  182 

Behavioural results demonstrated that participants were able to detect flips in the attended 183 

hemifield while ignoring flips in the unattended hemifield. The average hit rate was 0.75 ± 184 

0.05 (mean ± SD) and the average reaction time was 0.47 ± 0.03 s (mean ± SD).  185 

Spatial attention modulates responses of frequency-tagged stimuli 186 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

To assess the response in the early visual cortex to the flickering stimuli, we calculated time-187 

locked averages of the event-related fields pooling data over stimulus type (face, house) and 188 

direction of attention (left, right). Visual stimulation at the tagging frequencies produced clear 189 

steady-state visual evoked fields (SSVEFs) in occipital sensors (Fig. 2A,B). The SSVEFs 190 

lasted for the entire stimulation period and were markedly larger for 63 Hz compared to 78 191 

Hz, as evident by a significant main effect of tagging frequency. 192 

-------------------------------- 193 

Figure 2 about here 194 

-------------------------------- 195 

We calculated the power spectra for each trial and then averaged over the trials. The sensors 196 

were selected according to the strongest response at the tagging frequencies for all the 197 

participants (Fig. 2C). The group-level normalized power spectra showed pronounced peaks 198 

in the tagging frequencies at the selected occipital sensors (Fig. 2D), suggesting that the 199 

frequency tagging method produces reliable responses in majority of the participants.  200 

To quantify the effect of attentional modulation of power at the tagging signals we calculated 201 

the attention modulation index (AMI; see Materials and Methods). The AMI indicates the 202 

power at sensors contralaterally to the attended hemifield minus the power ipsilaterally 203 

(normalized by the sum); as such the figures reflect attention ‘ON’ minus attention ‘OFF’.  204 

The AMI was computed for the entire trial interval from –1.5 to 2 s (relatively to stimulus 205 

onset) using time-frequency representations of power (Fig. 3A). This was done for the 206 

sensors shown in Fig. 2C. The signals at the tagged frequencies increased with attention; i.e. 207 

they increased in the hemisphere contralateral to the attended hemifield. The alpha power was 208 

relatively suppressed in the hemisphere contralateral to attention. The AMI was then 209 

averaged over time bins in the 0.5 – 1.5 s interval to reduce the contribution of the initial 210 

evoked response (Fig. 3B). The AMI was significantly different from zero (t22 > 5.64, p < 211 

10-5, uncorrected) in both the alpha band and at the tagging frequencies. However, AMI at 63 212 

Hz was significantly larger than AMI at 78 Hz (t22 = 2.74, p < 0.01), suggesting that the 213 

efficacy of the response decreases at high frequencies (above 20 Hz) as a function of 214 

(tagging) frequency.  215 

The AMI was derived as a difference in power between trials “attention left” and “attention 216 

right” (see, equation 1), and hence, it does not indicate whether the difference is related to 217 

ipsilater increase or contralateral decrease in power at the alpha frequency (and opposite in 218 

the tagging frequencies). To clarify this, we quantified the relative change in power compared 219 

to the baseline as follows, ∆P = (Pstimulation – Pbaseline) / Pbaseline, where Pbaseline and Pstimulation 220 

denote power at the baseline and stimulation, respectively. The power at the alpha 221 

frequencies showed larger decrease contralaterally to stimulation side and the power at the 222 

tagging frequencies showed an opposite change (Fig. 3C, D). 223 

-------------------------------- 224 

Figure 3 about here 225 

-------------------------------- 226 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

Using cluster-based permutation test controlling for multiple comparisons over sensors (see 227 

Materials and Methods), we identified the clusters of sensors at which power was 228 

significantly modulated by attention (Fig. 4). The spatial clusters of AMI in the alpha band 229 

and the tagging frequencies were over occipito-parietal areas; however, the alpha frequency 230 

clusters were located more posterior compared to those of the tagging frequencies. We 231 

quantified the overlap between clusters using the Jaccard (or Intersection over Union) index. 232 

The results of such method should be taken with caution because the cluster size is strongly 233 

affected by the signal-to-noise ratio and by the metric of statistical testing. The spatial 234 

clusters at the alpha and higher tagging frequency showed a moderate (nearly 60%) overlap 235 

as indicated by the Jaccard index. The spatial map of AMI at the alpha frequency was well in 236 

line with previous observations (e.g., (Foxe and Snyder, 2011; Händel et al., 2011; Thut et 237 

al., 2006; van Ede et al., 2011; Worden et al., 2000)), suggesting that the spatial attention 238 

related modulations of alpha activity are preserved despite the frequency tagging. Clusters at 239 

the lower (63 Hz) and higher (78 Hz) tagging frequencies showed a strong (over 90%) 240 

overlap as indicated by the Jaccard index; however, the clusters at 63 Hz were slightly larger 241 

compared to those for the higher frequency (78 Hz).  242 

-------------------------------- 243 

Figure 4 about here 244 

-------------------------------- 245 

Relationship between AMI at the alpha and tagging frequencies  246 

Considering the inverse relationship between the attentional modulation in the alpha band and 247 

the tagging frequencies (see Fig. 4), we tested whether participants with a stronger 248 

modulation of alpha power have stronger power modulation at the tagging frequencies. To 249 

this end, we derived the individual AMI of the alpha band and the tagging frequencies (63 250 

and 78 Hz combined) and assessed their correlation over subjects. We defined separate masks 251 

for the alpha and tagging frequencies (Fig. 5A) by selecting sensors expressing the 10% of 252 

largest absolute AMI values (see Fig. 4). We observed a robust correlation (r = -0.47, p < 253 

0.03; Spearman correlation) between individual AMIs (Fig. 5B). This suggests that 254 

participants demonstrating stronger alpha modulation had also stronger modulation at the 255 

tagging frequencies. Additionally, we assessed the Spearman correlation between the 256 

individual AMI of the alpha and each tagging frequency, separately. The correlation was 257 

significant for the lower tagging frequency (63 Hz; r = -0.51, p < 0.01), but it was not 258 

significant for the higher tagging frequency (78 Hz; r = -0.24, p > 0.26). This result could be 259 

partially explained by lower signal-to-noise ratio at the higher frequencies.   260 

-------------------------------- 261 

Figure 5 about here 262 

-------------------------------- 263 

To test whether the relationship between AMI at the alpha and tagging frequencies holds at 264 

the single trial level, we computed the lateralization index (LI) for each trial as follows,  265 

LI (i) = (P(i){SR} – P(i){SL} ) / (P(i){SR} + P(i){SL} ),    (4) 266 
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where P(i) denotes power for trial (i), SL and SR denote indices of the left and right sensors, 267 

respectively. In contrast to the equation (1), we subtracted left and right sensors instead of 268 

“attention left” and “attention right” trials. The LI (i) were split into two categories “attention 269 

left” and “attention right”, and correlation (and median split t-test) between LI at the alpha 270 

and tagging frequencies was computed for each category separately. We did not find any 271 

significant (p > 0.05) correlation (or median split t-statistics) between LI at the alpha and 272 

tagging frequencies. A larger amount of trials is necessary to establish whether such a 273 

relationship exists or not. 274 

 275 

Discussion  276 

We here demonstrate that tagging of visual stimuli at rapid frequencies (63 and 78 Hz) can 277 

induce neuronal responses at the same frequencies in visual cortex. Spatial attention towards 278 

a visual object produced stronger responses at the tagging frequency contralateral to the 279 

direction of attention compared to the unattended stimulus. As such, the tagging signal 280 

reflects the gain of neuronal excitability with spatial attention. Posterior alpha oscillations 281 

decreased in magnitude in posterior regions contralateral compared to ipsilateral to the 282 

direction of attention. This demonstrates that the alpha oscillations were not disrupted by the 283 

tagging signal.  284 

The correlation between individual modulations in the alpha and the power at the tagging 285 

frequencies suggests a link between attentional mechanisms for the alpha power and tagging 286 

frequencies. One possibility is that alpha modulated by attention determines the neuronal 287 

excitability which then determines the increase in the frequency tagged responses. This 288 

interpretation however only partially explains the correlation as the topographies of AMI at 289 

the alpha and tagging frequencies did not perfectly overlap.  290 

Proof-of-principle: using rapid frequency-tagging to probe neocortical excitability  291 

This study provides proof-of-principle that rapid frequency tagging can be used to probe 292 

brain mechanisms involved in processing of visual stimuli without affecting endogenous 293 

oscillations in the alpha range. Previous studies have shown that it is possible to elicit 294 

responses in early visual cortex by using flickering light emitting diodes (LED) at frequencies 295 

up to 100 Hz (Herrmann, 2001). However, the use of discrete LEDs does not allow for 296 

creating complex stimuli. In this study, we used a state-of-the-art LED projector that is 297 

capable of presenting stimuli at a refresh rate of 1440 Hz. Thus, this projector allowed us to 298 

modulate luminance of the stimulus at frequencies up to 720 Hz (the Nyquist frequency of 299 

the projector). Similarly to the study of Herrmann (2001), we observed weaker neuronal 300 

response for the stimuli tagged at 78 Hz compared to 63 Hz, although both stimuli were 301 

modulated with the same intensity. This might be explained by the attenuation resulting from 302 

the synaptic drives in the early visual stream. The time course of the post-synaptic potentials 303 

are in the order of ~10 ms (Koch et al., 1996), which effectively creates a ~100 Hz low pass 304 

filter. Another possibility is that the proximity of the frequency of the tagged signal to the 305 

frequency of the individual gamma oscillations influences the magnitude of the tagged 306 
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response. These possibilities require further investigation in future studies where the tagging 307 

over a broader frequency is systematically explored.  308 

Attention enhances neural response to tagging signal  309 

An assumption underlying the use of frequency tagging as a tool to study sensory processing 310 

in the brain is that the EEG/MEG signal at the tagged frequency reflects underlying sensory 311 

processing. We have shown here that spatial attention modulates power at the tagging 312 

frequency in the expected direction; the response at the tagged frequency was enhanced when 313 

attention was directed towards the stimulus and suppressed when attention was directed 314 

away. This suggests that the gain increase associated with the allocation of spatial attention 315 

results in increased neuronal excitation, which in turn is reflected by the power of the 316 

frequency tagged MEG signal.  317 

Alpha oscillations are not disrupted by rapid frequency tagging  318 

The increase in neuronal response modulated by spatial attention has also been shown at the 319 

lower (up to 30 Hz) tagging frequencies (e.g. (Müller et al., 2006; Toffanin et al., 2009)). 320 

However, frequency tagging at lower frequencies (0.5–30 Hz) is likely to interfere with 321 

endogenous neuronal oscillations. Most frequency tagging experiments are limited to 322 

frequency bands below 30 Hz (e.g. (Müller et al., 2006; Norcia et al., 2015; Toffanin et al., 323 

2009)). In this case, the tagging signal produces visible a flicker and may potentially entrain 324 

the ongoing oscillations (Spaak et al., 2014; Thut et al., 2011). This is especially evident 325 

given that tagging produces the strongest neuronal response in the visual system at 326 

frequencies between 12 Hz and 18 Hz (Kuś et al., 2013).  327 

In our study, alpha oscillations in the posterior regions remained undisrupted by the rapid 328 

frequency tagging. Alpha power increased ipsilaterally to the direction of attention and 329 

decreased contralaterally as observed in numerous other studies  (Händel et al., 2011; Thut et 330 

al., 2006; Worden et al., 2000). Applying frequency tagging at higher frequencies therefore 331 

makes is possible to in conjunction study the role of lower-frequency oscillations on sensory 332 

processing.  333 

In future work it would be interesting to investigate if the rapid frequency tagging entrains intrinsic 334 
gamma oscillations or rather reflect a simple feedforward drive. Similar considerations have been put 335 
forward for the alpha rhythm (Keitel et al., 2014). It would also be interesting to investigate the 336 
relationship between the phase of the alpha oscillations and the frequency tagged signal. Indeed the 337 
phase of alpha oscillations has been suggested to modulate perception rhythmically in a pulsed 338 
inhibitory manner; and this modulation is dependent on attention (Kizuk and Mathewson, 2017). This 339 
notion could be investigated in the context of a phase-code coordinated by the alpha rhythm as 340 
proposed by Jensen and colleagues (Jensen et al., 2014). 341 

Does rapid frequency tagging entrain neuronal gamma oscillations?  342 

There are several studies (Adjamian et al., 2004; Murty et al., 2018; Muthukumaraswamy and 343 

Singh, 2013) that attempted to apply stimulation at frequencies in the gamma range in order 344 

to entrain endogenous gamma band oscillations (30–90 Hz). Such studies are important for 345 
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understanding the important function gamma band oscillations may have in neuronal 346 

computations (Fries et al., 2007; Jensen et al., 2007; Varela et al., 2001). Bauer and 347 

colleagues (Bauer et al., 2009) showed that attention could be captured by subliminally 348 

perceived stimuli flickering at 50 Hz. Manipulating visual perceptual integration by 349 

modulating the phase of externally driven gamma frequency stimulation has proven difficult 350 

(Bauer et al., 2012). Future studies may explore to what extent the neuronal activity elicited 351 

by rapid frequency tagging entrains endogenous gamma oscillations. If this is the case, 352 

frequency tagging should be more efficient and result in a relative power increase when 353 

applied at the frequency of the individual endogenous gamma oscillations. This could also be 354 

investigated by pharmacological means. It is well established that GABAergic inhibition 355 

from interneurons plays a crucial role for generating of gamma oscillations (Traub et al., 356 

1999). In support of this notion, we recently demonstrated that visual gamma oscillations in 357 

humans increase when the GABergic agonist Lorazepam is applied (Lozano-Soldevilla et al., 358 

2014). If rapid frequency-tagging entrains natural gamma oscillations, one would expect that 359 

rapid-frequency tagging in the gamma band increases with the application of GABAergic 360 

agonists.  361 

Conclusion  362 

We set out to investigate the feasibility of rapid frequency tagging to study the role of sensory 363 

processing in the visual cortex. Our results show that it is indeed possible to measure 364 

responses at the tagging frequencies and that these responses are modulated by spatial 365 

attention. The modulation of alpha power was inversely related to the modulation in gamma 366 

power. These findings provide important proof-of-principle that rapid frequency tagging can 367 

be used to measure neuronal excitability of visual cortex in a stimulus specific manner to for 368 

instance investigate spatial attention. Furthermore, the dynamical properties of the alpha band 369 

oscillations were preserved despite the frequency tagging. Rapid frequency tagging is highly 370 

advantageous to conventional frequency tagging at lower frequency (<20 Hz) as it does not 371 

produce a visible flicker and furthermore the faster frequencies allow for investigating the 372 

tagged response with a better temporal resolution. The stage is now set for applying 373 

frequency tagging in combination with EEG or MEG to study the dynamical properties of the 374 

visual system.  375 
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Figure legends 383 

Fig. 1. Schematic representation of the experimental paradigm. After an attentional cue, a house-face 384 
pair was presented at 63 and 78 Hz (counterbalanced over trials). In 20% of the trials, one of the 385 
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images was flipped vertically and required participant’s response. In 5% of the trials (catch trials), the 386 
flip was in the hemifield opposite to the cued side and participants had to ignore this event.  387 

Fig. 2. Event-related fields for a representative participant showed clear responses at the tagging 388 
frequencies. Note that the frequency tagged signals were presented with the same phase over trials. 389 
(A) Broadband (black line) and narrowband (red line) trial-averaged ERFs for 63 Hz stimulus 390 
(presented right) for the left occipital sensors (see panel C). (B) Trial-averaged ERFs for 78 Hz 391 
stimulus (presented right) for the left occipital sensors. (C) Left and right occipital MEG sensors that 392 
covered areas with the stronger power at the tagging frequencies for all the participants were used in 393 
the analysis. (D) Normalized group-level power spectra for the left sensors when the tagged image 394 
was presented at 63 Hz and 78 Hz in the right hemifield. Prior to computing individual power spectra, 395 
the trials were normalized by the standard deviation of time series over sensors. The line noise with 396 
peak near 50 Hz was cut out in the plot.  397 

Fig. 3. Attention modulates power in the alpha band and at the tagging frequencies. (A) Time-398 
frequency representation of the attention modulation index (AMI). The AMI reflects the power 399 
modulation in the sensors contra- versus ipsilateral to the attended hemifield for combined left and 400 
right occipital sensors (see Fig. 2C for sensors selection). The power was calculated per trial and then 401 
averaged. Black line indicates onset of the frequency tagged stimuli; the cue onset was at -0.5 s. (B) 402 
The AMI (averaged over time bins 0.5 – 1.5 s) at the group level. Dashed lines indicate p-values of 403 
the t-test comparing modulation index against zero (over participants). The effect is highly robust in 404 
the 8-12 Hz alpha band and at 63 and 78 Hz even if multiple comparisons over frequencies are 405 
considered. (C) Relative power change compared to the baseline (-1, -0.5 s) at the left sensors for 406 
trials “attention left” (cyan line; ipsilateral to the cue) and “attention right” (blue line; contralateral to 407 
the cue). (D) The same as (C) but for the right sensors for trials “attention right” (orange line; 408 
ipsilateral to the cue) and “attention left” (red line; contralateral to the cue). 409 

Fig. 4. Group average topography maps of the AMI in the alpha band (10±2 Hz) and tagging 410 
frequencies (63 and 78 Hz). Black dots indicate MEG sensors at which amplitude modulation index 411 
was significantly different from zero (p < 0.05, cluster-based permutation). 412 

Fig. 5. Relationship between the modulation of alpha power and frequency tagging. (A) 413 

Spatial masks for the alpha and tagging frequencies. The masks were obtained by selecting 414 

sensors expression the 10% of largest absolute AMI values. (B) Scatter plot of individual 415 

AMI relating the alpha power modulation and the power combined for the tagging 416 

frequencies. Subjects with a strong alpha power modulation with attention were also subjects 417 

with a strong modulation of the tagged signals.  418 
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