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Abstract. We demonstrate both analytically and with a mod-
elling example that cross-validation of free-running bias-
corrected climate change simulations against observations is
misleading. The underlying reasoning is as follows: a cross-
validation can have in principle two outcomes. A negative (in
the sense of not rejecting a null hypothesis), if the residual
bias in the validation period after bias correction vanishes;
and a positive, if the residual bias in the validation period
after bias correction is large. It can be shown analytically
that the residual bias depends solely on the difference be-
tween the simulated and observed change between calibra-
tion and validation periods. This change, however, depends
mainly on the realizations of internal variability in the obser-
vations and climate model. As a consequence, the outcome of
a cross-validation is also dominated by internal variability,
and does not allow for any conclusion about the sensibility
of a bias correction. In particular, a sensible bias correction
may be rejected (false positive) and a non-sensible bias cor-
rection may be accepted (false negative). We therefore pro-
pose to avoid cross-validation when evaluating bias correc-
tion of free-running bias-corrected climate change simula-
tions against observations. Instead, one should evaluate non-
calibrated temporal, spatial and process-based aspects.

1 Introduction

Bias correction is a widely used approach to postprocess cli-
mate model simulations before they are applied in impact
studies (e.g. Gangopadhyay et al., 2011; Hagemann et al.,
2013; Girvetz et al., 2013; Warszawski et al., 2014). A wide
range of different correction methods has been developed,
ranging from simple additive or multiplicative corrections to
quantile-based approaches. For reviews of bias correction see

Teutschbein and Seibert (2012), Maraun (2016) and the book
by Maraun and Widmann (2018).

The performance of a bias correction is typically evalu-
ated against independent observational data, which have not
entered the calibration of the correction function. For in-
stance, Piani et al. (2010a, b), Li et al. (2010) and Dosio
and Paruolo (2011) apply the holdout method, i.e. they cali-
brate the method on a calibration period and evaluate it on a
non-overlapping validation period. Some authors even apply
a full cross-validation, most often by permuting calibration
and validation period (a 2-fold cross-validation; Gudmund-
son et al., 2012).

Cross-validation is a well-known and widely used statis-
tical concept to assess the skill of predictive statistical mod-
els (Stone, 1974; Efron and Gong, 1983). It has been suc-
cessfully applied in the atmospheric sciences, e.g. in weather
forecasting (Jolliffe and Stephenson, 2003; Mason, 2008;
Wilks, 2006) and perfect predictor experiments of downscal-
ing methods (Themeßl et al., 2011; Maraun et al., 2015).

In climate change applications, however, the setting is typ-
ically different from a weather forecasting or perfect predic-
tor setting: here, the model is running free, i.e. only external
forcings are common to observation and simulation. Inter-
nal climate variability on all scales is independent and not
synchronized. In this setting, the aim is not to assess predic-
tive power, e.g. on a day-by-day or season-by-season basis,
as in weather forecasting – in fact, by construction it cannot
be assessed. Importantly, observed and simulated long-term
trends may also differ substantially, just because of differ-
ent random realizations of long-term modes of variability.
Prominent examples of such modes are the Pacific Decadal
Oscillation (PDO, Mantua et al., 1997) and the Atlantic Mul-
tidecadal Oscillation (AMO, Schlesinger and Ramankutty,
1994).
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These differences have crucial implications for the appli-
cation of cross-validation or any evaluation on independent
data. Our results build upon a recent study by Maraun et al.
(2017), who demonstrated that in a climate change setting
cross-validation of marginal aspects is not able to identify
bias correction skill. Here, we additionally show that the
outcome of a cross-validation is essentially random and in-
dependent of the sensibility of the bias correction. We will
demonstrate these consequences for the holdout method, but
they can of course be generalized to any type of cross-
validation.

We will discuss the specific context of climate change sim-
ulations in Sect. 2. An analytical derivation of the cross-
validation problem will be given in Sect. 3, a modelling ex-
ample in Sect. 4. We will close with a discussion of the im-
plications of our findings.

2 Cross-validation in the climate context

Cross-validation was developed to quantify the predictive
skill of statistical models in the 1930s, and has become
widely used with the advent of modern computers (Stone,
1974; Efron and Gong, 1983). It has become a standard tool
in weather and climate forecasting (Michaelsen, 1987; Jol-
liffe and Stephenson, 2003; Wilks, 2006; Mason, 2008).

The first major aim of cross-validation is to eliminate ar-
tificial skill: if the statistical model is evaluated on the same
data that are used for calibration, the performance to predict
new data will almost certainly be lower than the estimated
skill. Hence, the model is calibrated only on a subset of the
data, and evaluated on another – ideally independent – sub-
set of the data. This so-called holdout method, however, uses
each data point only either for calibration or validation and
thus suffers from relatively high sampling errors.

The second major aim of cross-validation is therefore to
use the data optimally. To this end, the holdout method, i.e.
training and validation, is repeated on different subsets of
the data. The simplest approach is the so-called split sample
method, where the data are just split once into two subsets.
More advanced k-fold cross-validation splits the data set into
k non-overlapping blocks; in each fold, k–1 blocks are used
for calibration and the remaining block is used for validation.

In weather and climate predictions, the aim is to predict
the weather, i.e. internal variability, with a given lead time
(say, 3 days or a season) at a desired timescale (say, 6 h or a
season). A typical evaluation assesses how well certain mete-
orological aspects are predicted: in weather forecasting, one
may for instance be interested in the overall prediction accu-
racy, measured by the root-mean squared error between pre-
dicted and observed daily time series. In a seasonal predic-
tion, one may be interested in the bias of the predicted mean,
or in the bias of the predicted wet-day frequency over a sea-
son. In this context, a cross-validation makes perfect sense

if the validation blocks are long compared to the prediction
lead time (and process memory).

Downscaling and bias correction methods are typically
tested in perfect predictor or perfect boundary condition ex-
periments (Maraun et al., 2015), where predictors or bound-
ary conditions are taken from reanalysis data. The aim of the
downscaling in this context is not to predict internal vari-
ability ahead into the future, but rather to predict the local
weather conditional on the state of the large-scale weather
(i.e. to simulate the correct local long-term weather statis-
tics). Still, in such a setting cross-validation makes perfect
sense: the choice of reanalysis data as predictors/boundary
conditions synchronizes simulated and observed local vari-
ability on timescales beyond a few weeks, such that the eval-
uation framework is similar to the case of seasonal predic-
tion.

In free-running climate simulations, however, the situation
is fundamentally different: here, any predictive power results
only from external (e.g. anthropogenic) forcing at very long
timescales, but internal variability is not synchronized at any
timescale. Yet long-term modes of internal climate variabil-
ity, such as the PDO (Schlesinger and Ramankutty, 1994)
and the AMO (Schlesinger and Ramankutty, 1994), often
mask forced climate trends even at multidecadal timescales
(Deser et al., 2012; Maraun, 2013b). Thus, much of the dif-
ference between observed and simulated trends is not caused
by model errors, but rather by random fluctuations of the cli-
mate system. This fact has strong implications for the evalua-
tion of simulated trends (Bhend and Whetton, 2013; van Old-
enborgh et al., 2013; Laprise, 2014), but it is also the reason
why cross-validation of bias correction fails in this context.

As any cross-validation consists of repeated holdout eval-
uations, we will in the following only consider the holdout
method. In Sect. 5 we will discuss how the following results
generalize to a full cross-validation.

3 Analytical derivation

Consider a simulated time series xi and an observed time se-
ries yi . Assume that an evaluation addresses the represen-
tation of some statistic such as the long-term mean. Over
the calibration period, we denote the simulated and observed
means as xcal and ycal, respectively. Correspondingly, we de-
note them as xval and yval over the validation period. Then an
estimate for the bias over the calibration period is given as

BIAS= xcal− ycal. (1)

Applying the bias estimate to the validation period, one ob-
tains an estimate of the corrected mean over the validation
period:

xcorr
val = xval−BIAS= xval− xcal+ ycal. (2)

The remaining residual bias is then

BIASres = xcorr
val − yval = xval− xcal+ ycal− yval. (3)

Hydrol. Earth Syst. Sci., 22, 4867–4873, 2018 www.hydrol-earth-syst-sci.net/22/4867/2018/
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This residual bias can be expressed in terms of the ob-
served and simulated climate change signals. The change sig-
nal from calibration to validation period is defined as

1x = xval− xcal (4)

for the model and

1y = yval− ycal (5)

for the observations. Thus, the residual bias is given as

BIASres =1x−1y. (6)

For variables such as precipitation, one often considers rel-
ative changes. Here a corresponding derivation holds. The
relative error is defined as

RE= xcal/ycal, (7)

and the corrected mean over the validation period is given as

xcorr
val = xval/RE= xval · ycal/xcal. (8)

The residual relative error results in

REres = xcorr
val /yval =

xval · ycal

xcal · yval
. (9)

The relative change signal from calibration to validation
period is defined as

1x = xval/xcal (10)

for the model and

1y = yval/ycal (11)

for the observations. Hence, the residual relative error is

REres =1x/1y. (12)

The residual bias or relative error could further be tested
for significance, i.e. whether the bias-corrected statistic xcorr

val
is significantly different from the observed statistic yval over
the validation period. Thus, a holdout evaluation will yield a
positive result (in the sense of rejecting the null hypothesis,
i.e. a non-zero residual bias) if the simulated change 1x is
different from the observed change 1y, and a negative result
(i.e. a residual bias compatible with zero) if simulated and
observed changes are indistinguishable.

Assume now that a given bias correction may or may not
be sensible. Note in this context that it is completely irrele-
vant to explicitly define what constitutes a sensible bias cor-
rection (but for a brief discussion see Sect. 4). Thus, in prin-
ciple four cases are possible.

1. True negative: the bias correction is sensible, and the
(bias-corrected) climate model simulates a trend closely
resembling the observed trend.

2. False positive: the bias correction is sensible, but due
to internal climate variability, the (bias-corrected) cli-
mate model simulates a trend different from the ob-
served trend.

3. False negative: the bias correction is not sensible, but
the (bias-corrected) climate model for some reason sim-
ulates a trend similar to the observed trend. This case
corresponds to the example given in Maraun et al.
(2017).

4. True positive: the bias correction is not sensible, and the
(bias-corrected) climate model simulates a trend differ-
ent from the observed trend.

The crucial point is that for typical record lengths, much
of the difference between simulated and observed changes
1x and 1y will be caused by internal climate variability.
Thus the result of a cross-validation, i.e. which of the four
cases occurs, is mostly random and says only little about the
sensibility of the cross-validation.

Maraun et al. (2017) considered case 3: as the difference
between simulated and observed trends on typical timescales
of a few decades is dominated by internal variability, the
holdout method is not suitable to identify a non-sensible bias
correction. The reverse conclusion is that the holdout method
– and consequently also a cross-validation – is not able to
corroborate whether a bias correction is sensible.

Yet the discussion above implies an even stronger conclu-
sion: because case 2 might randomly occur, a sensible bias
correction may be rejected by a cross-validation. Thus, even
more importantly, cross-validation in the given context is not
just useless, but even misleading.

4 Empirical demonstration

To further illustrate the analytic findings, we will give ex-
amples of the four cases in an exaggerated modelling exam-
ple. We consider mean summer (JJA) precipitation at four
locations. As observational reference we select the E-OBS
data set (Haylock et al., 2008). As calibration period we use
1956–1980, as evaluation period 1981–2005.

We need to select two examples where the given bias cor-
rection is sensible, and two where it is not. Finding a con-
vincing example of a sensible bias correction has to rely
on process understanding (Maraun et al., 2017). A major
precondition is that the climate model simulates a realistic
present climate and a credible climate change (Maraun and
Widmann, 2018). The former condition mainly involves a re-
alistic representation of the large-scale circulation (Maraun
et al., 2017). We therefore consider the following set-up: as
examples of a sensible bias correction, we consider sum-
mer mean precipitation at two locations in Norway. Sum-
mer mean precipitation in Norway is dominated by large-
scale precipitation, which can sensibly be assumed to be

www.hydrol-earth-syst-sci.net/22/4867/2018/ Hydrol. Earth Syst. Sci., 22, 4867–4873, 2018
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Figure 1. Maps of relative changes in boreal mean summer (JJA) precipitation, 1981–2005 relative to 1956–1980. (a) EC-EARTH, (b) E-
OBS, version 15.0. Square: case 1 (true negative); circle: case 2 (false positive); triangle: case 3 (false negative); diamond: case 4 (true
negative).

realistically simulated by current-generation general circu-
lation models (GCMs). Specifically we choose a transient
simulation of EC-EARTH (Hazeleger et al., 2010), a model
which has been demonstrated to suffer from minor biases in
the synoptic-scale atmospheric circulation over Europe only
(Zappa et al., 2013). We assume that other potential prob-
lems such as mislocations (Maraun and Widmann, 2015) or
scale gaps (Maraun, 2013a) are negligible for the consid-
ered locations and timescales. In this setting, we argue that
a bias correction is in principle sensible. Two slightly differ-
ent locations have been selected (Fig. 1): in the Børgefjell re-
gion north-east of Trondheim observed and simulated trends
are very similar (case 1). Further north, around the town of
Bodø, the two trends are very different as observed precipi-
tation has decreased whereas simulated precipitation has in-
creased. It is reasonable to assume that the observed negative
trend is caused by internal climate variability and not a forced
change. Thus, in principle the bias correction is sensible even
though the validation rejects it (case 2). Here, the key point
is not whether the bias correction in this particular example
is really sensible or not, but that case 2 is indeed a possible –
and misleading – outcome of a bias correction.

In the following we show two examples where a bias cor-
rection is not sensible. A discussion about the question when
a bias correction makes no sense would go very much beyond
the scope of this piece. Therefore, we follow the logic of Ma-
raun et al. (2017) and select examples where model simula-
tion and observation are taken from geographically far away
and climatically rather different regions. The underlying idea
is that for such cases, the model does not represent the target
variable such that a bias correction is without doubt not sen-
sible. Specifically, we consider the following two cases (see
Fig. 1): first, mapping simulated boreal summer mean pre-
cipitation from the sub-tropical Maputo area (Mozambique,
close to the South African border) to the Taiga region of the

Norwegian–Finnish boarder. Here, observed and simulated
trends are randomly similar. This example is equivalent to
that given in Maraun et al. (2017), where a non-sensible bias
correction is not identified by the validation (case 3). Second,
we map summer mean precipitation from the tropical cli-
mate at Belén in the Amazon delta to the mild and maritime
climate of northern Portugal. Here, observed and simulated
trends are randomly very different: positive in the Amazon
delta, negative in Portugal. The non-sensible bias correction
is thus correctly identified (case 4). In these two examples,
it was a priori obvious that a bias correction is not sensible.
In real applications, of course, such a priori reasoning will
be much more difficult and has to rest upon process under-
standing (see discussion above). The key point, again, is that
case 3 is a possible outcome of a bias correction.

Figure 2 shows observed and simulated time series, the lat-
ter before and after bias correction, for the four cases we con-
sidered. Figure 2a and b show the sensible examples, Fig. 2c
and d the non-sensible examples. In Fig. 2a and c, observed
and simulated trends randomly agree, and in Fig. 2b and d
they randomly disagree. As shown analytically in Sect. 3, the
residual bias vanishes in cases (a) and (c), where the relative
trends in observations and simulations are similar, and it does
not vanish in (b) and (d), where the relative trends in observa-
tions and simulations disagree. The relevant cases are (b) and
(c): in the former, the bias correction is in principle sensible,
but the holdout method would suggest that it was not sensible
(false positive). In the latter, the bias correction is not sensi-
ble, but the holdout method would suggest that it was sen-
sible (false negative). These examples clearly illustrate our
previous reasoning: the holdout method, and thus also cross-
validation, yields misleading results when it is used to assess
the sensibility of bias-corrected climate change simulations
against observations.

Hydrol. Earth Syst. Sci., 22, 4867–4873, 2018 www.hydrol-earth-syst-sci.net/22/4867/2018/
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Figure 2. Time series of boreal summer (JJA) precipitation. (a) case 1 (true negative); (a) case 2 (false positive); (c) case 3 (false negative);
(d) case 4 (true negative). Black: E-OBS; red: raw EC-EARTH; blue: bias-corrected EC-EARTH. The straight horizontal lines depict the
long-term means over calibration and validation periods, respectively.

5 Conclusions

We have demonstrated both analytically and with a mod-
elling example that cross-validation of free-running bias-
corrected climate change simulations against observations is
misleading. The underlying reasoning is as follows: the result
of a cross-validation – a significant or non-significant resid-
ual bias in the validation period – depends on the difference
between observed and simulated changes between calibra-
tion and validation periods. For typical lengths of calibration
and validation periods, these differences depend mostly on
the realizations of internal variability in the observations and
climate model. These differences therefore do not allow for
conclusions about the sensibility of a bias correction. As in
any setting of significance testing, four cases are possible:
true negative, false positive, false negative and true negative.
The actual outcome in a given application is mostly random.

The relevance of internal variability in the discussed cross-
validation context depends on the relative strength of in-
ternal variability and forced trends, and the length of the
calibration and validation period compared to the period-
icity of the dominant modes of internal climate variability.
In tropical climates, interannual variability such as that of
El Niño–Southern Oscillation dominates climate variability.
Thus, relatively short periods of a few decades may suffice
to obtain stable estimates of forced changes between calibra-
tion and validation period, and therefore to assess whether a
bias correction performs well given the observed changes. In
mid-latitude climates, however, the dominant modes of inter-
nal variability have periodicities of several decades (Mantua
et al., 1997; Schlesinger and Ramankutty, 1994) such that
stable estimates of forced changes will in general not be ob-
tained for the typical calibration and validation periods of

a few decades only. The strength of internal variability de-
pends also on the chosen variable (e.g. higher for precipi-
tation than for temperature) and index (higher for extremes
than for long-term means). Spatial aggregation will reduce
regional short-term internal variability (Maraun, 2013b), but
will not affect long-term modes of variability, which typi-
cally have coherent spatial patterns.

We have derived these conclusions for the mean and
the holdout method, where the bias correction is calibrated
against one part of the data and validated against its comple-
ment. Yet the results can in principle be transferred to other
statistics such as variances or individual quantiles, and to a
full cross-validation. The residual mean bias, however, is al-
ways zero in a full cross-validation, as long as the individ-
ual folds have the same length. The reason is that chang-
ing the calibration and validation period changes the sign of
the residual bias. When averaging the residual bias across
the different folds, it cancels out. For the variance or sim-
ilar statistics, the outcome depends on the way the cross-
validation is carried out: if the residual bias is calculated
for each fold separately and then averaged (as suggested in
the classical literature), the behaviour is as for the mean.
If the residual bias is calculated over a concatenated cross-
validated time series (as is typically done in the atmospheric
sciences), the bias correction in cases (b) and (d) will yield
extremely high residual biases (because the shift in the mean
is not removed in the variance calculation).

The consequence of these findings is that cross-validation
should not be used when evaluating bias correction of free-
running climate simulations against observations. In fact, a
framework for evaluating bias correction of climate simula-
tions is still missing and not trivial. As discussed in Maraun
et al. (2017), we propose to evaluate non-calibrated tempo-

www.hydrol-earth-syst-sci.net/22/4867/2018/ Hydrol. Earth Syst. Sci., 22, 4867–4873, 2018
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ral, spatial and process-based aspects of the simulated time
series. Whether a bias correction makes sense for climate
change projections depends in particular on the realism and
the credibility of the underlying climate model simulation.
A process-based evaluation is thus a key prerequisite for a
successful bias correction (Maraun et al., 2017).
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