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A B S T R A C T

Despite wide evidence suggesting anatomical and functional interactions between cortex, cerebellum and basal
ganglia, the learning processes operating within them –often viewed as respectively unsupervised, supervised
and reinforcement learning– are studied in isolation, neglecting their strong interdependence. We discuss how
those brain areas form a highly integrated system combining different learning mechanisms into an effective
super-learning process supporting the acquisition of flexible motor behaviour. The term “super-learning” does not
indicate a new learning paradigm. Rather, it refers to the fact that different learning mechanisms act in synergy
as they: (a) affect neural structures often relying on the widespread action of neuromodulators; (b) act within
various stages of cortical/subcortical pathways that are organised in pipeline to support multiple sensation-to-
action mappings operating at different levels of abstraction; (c) interact through the reciprocal influence of the
output compartments of different brain structures, most notably in the cerebello-cortical and basal ganglia-
cortical loops. Here we articulate this new hypothesis and discuss empirical evidence supporting it by specifi-
cally referring to motor adaptation and sequence learning.

1. Introduction

It has been proposed that three different learning mechanisms op-
erate within the brain: unsupervised learning, supervised learning, and
reinforcement learning (Doya, 2000, 1999). Unsupervised learning is
used by the brain to generate a mapping of the statistical regularities of
the perceived environment (Hinton and Sejnowski, 1999). It can detect
correlations in the input, and can be used to explain, for example, de-
velopmental processes such as the formation of receptive fields (Brito
and Gerstner, 2016). Unsupervised learning can be implemented
through Hebbian mechanisms so that related sensory or motor events
become associated. Hebbian learning produces a persistent strength-
ening of synapses while weakening others, based on recent patterns of
co-activity. For example, according to the Spike Timing Dependent
Plasticity (STDP) protocol, strengthening occurs at a synapse if the
postsynaptic neuron fires just after the presynaptic one (Abbott and
Nelson, 2000; Markram, 1997). This process induces an increase in the
excitatory postsynaptic potentials that lasts for minutes or hours (long
term potentiation, LTP). If the relative timing is reversed so that the

presynaptic neuron fires after the postsynaptic one, the protocol pro-
duces a long-lasting decrease in synaptic strength (long term depres-
sion, LTD). STDP is only one example of a broader class of stimulation
protocols that are all able to induce LTP and LTD (Artola et al., 1990;
Frey and Morris, 1998; Ngezahayo et al., 2000).

In supervised learning, some internal neural component or an ex-
ternal agent supplies a desired output pattern (e.g., a desired action
plan) that a network has to give in response to a certain input pattern.
Based on the error between the desired pattern and the current output
of the network, the instructed network learns to produce the desired
output (Knudsen, 1994). The learning process is based on the mini-
mization of the error: what makes this challenging is to ensure that
changes over time reduce the average error over the whole training set.
An important difference between supervised and unsupervised learning
is that in the first the connectional strengths are not affected by the
activity per se in the postsynaptic neurons, but only by the current
discrepancy between their activity and the teaching signal. The mod-
ifiable synapses that are active concurrently with the teaching signals
are strengthened, LTP, or weakened, anti-Hebbian LTD, in the direction
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that reduces the current discrepancy. The transformation signalled by
the teacher may be “learned” in the sense that, once established, it will
be carried out by the network in the absence of the teaching signal
activity.

Reinforcement learning aims at maximizing the value of future action
choices. Each action outcome is evaluated on the basis of the reward (or
punishment) it (eventually) produces. The system selecting the different
actions is hence modified depending on the reward obtained (Niv,
2009). However, reward may be intermittent, and temporal difference
learning (Sutton, 1988; Sutton and Barto, 2018) provides a way of
adjusting synapses involved in current actions to take account of
eventual reward (or punishment), based on reward prediction error. In
contrast to supervised learning, in the reinforcement learning the
feedback given to the learning system is scarce. For example, if we take
the task of riding a bicycle, in supervised learning the supervisor might
signal the desired firing of the neurons that control deviation of the bike
from vertical, at every moment in time, whereas in reinforcement
learning the feedback might only signal failure (i.e., it hurts when you
fall). In unsupervised learning, which is suitable to detect correlations
in the input, there is no notion of success or failure, reward or pun-
ishment, and instead regular associations such as between upright
riding and speed might be learned.

For almost two decades, disentangling these learning processes and
trying to assign their implementation to distinct brain areas has been an
important challenge for research in the neurosciences (Miall and Galea,
2016). Building on several empirical data, Kenji Doya proposed that
unsupervised learning mainly operates within cerebral cortical areas,
supervised learning in the cerebellum, and reinforcement learning in
the basal ganglia (Doya, 2000, 1999). In support of this, we note that
the anatomical organization of the thalamo-cortical circuits is critical to
learning through unsupervised mechanisms forms of categorization of
static and time-varying signals (Chandrashekar and Granger, 2011;
George and Hawkins, 2009; Riesenhuber and Poggio, 1999; Rodriguez
et al., 2004). The neural substrate of supervised learning mechanisms
operating within the cerebellum could pivot on the LTD of parallel fiber
synapses with the error signal provided by the climbing fibers (Ito,
1984; Kitazawa et al., 1998). Several data suggest that the neuromo-
dulator dopamine provides basal ganglia target structures with phasic
signals that convey a reward prediction error and that can influence
reinforcement learning processes (Houk and Wise, 1995; Schultz,
1997). Therefore, in computational terms it is possible to characterize
the functionality of the basal ganglia as an abstract search through the
space of possible actions, guided by dopaminergic feedback.

A conundrum related to the cortico-cerebellar-basal ganglia system
is its seemingly redundant nature: why are there three systems for
producing one apparent function, namely the change of body-config-
urations in space? This problem is exacerbated by existing computa-
tional systems proposed as solutions to implement such function both
by the neurorobotics literature (Barto and Rosenstein, 2004; Caligiore
et al., 2014; Eliasmith et al., 2012; Spoelstra and Arbib, 2001) and the
brain-modelling research (Arbib and Bonaiuto, 2016; Caligiore et al.,
2016b; Prescott et al., 2006). In most cases, the models are based on
one, sometimes two, principles/components (e.g., models of basal
ganglia or cerebellum learning to capture the acquisition and produc-
tion of motor behaviour). Why has evolution solved the motor problem
using three different systems? The three brain systems are necessary as
they act at different time scales (the cerebellum may operate at a fast
scale, the basal ganglia and cortex at a slower scale) and at different
space scales (the cerebellar vs. basal ganglia different granularity, and
the cortex operating at multiple scales) (Chen et al., 2014; DeLong and
Strick, 1974; Edelman, 2001). Moreover, the three systems are neces-
sary as they have some degree of specialisation with respect to the three
learning mechanisms, in line with the initial proposal by Doya (Doya,
1999). Several scholars have elaborated on this perspective, specifying
different functions implemented by these brain areas during motor
learning. For example, it has been suggested that the basal ganglia learn

rewards associated with cortical sensory states and then estimate the
“cost-to-go” during the execution of motor tasks, whereas the cere-
bellum builds on supervised learning processes to acquire internal
models of the controlled system (Shadmehr and Krakauer, 2008). These
comprise forward models, predicting the sensory outcome of motor
commands performed in a given condition, and inverse models,
learning to produce motor commands in order to accomplish a given
goal in a given condition (Wolpert et al., 1998). Houk and colleagues
proposed that during motor learning the basal ganglia-thalamo-cortical
system learns how to regulate selection and initiation of a motor pattern
within the cortical areas, whereas cerebello-thalamo-cortical circuits
learn how to refine that pattern. According to this view, the cerebellum
does not provide a full inverse model, but rather acts as a sidepath to
compensate crude or incomplete commands from cerebral cortex to
yield accurate movements that can support swift confident behaviour
(Houk et al., 2007).

Despite a large amount of data suggesting anatomical and functional
interactions between cortex, cerebellum and basal ganglia (Alexander
et al., 1986; Bostan et al., 2010; Middleton and Strick, 2000), the dif-
ferent forms of learning implemented within these brain areas are often
studied in isolation, neglecting mechanisms that underlie their dyna-
mical interplay during skill acquisition (Caligiore et al., 2016b, 2013b).
Studying unsupervised, supervised and reinforcement learning sepa-
rately makes it necessary to isolate from the environment the training
information used by the single process (e.g., the regularities of the
perceived environment for unsupervised learning or the reward for
reinforcement learning). It also prevents comprehension of how the
brain manages the richness of training information in realistic learning
problems, in which combinations of all three learning mechanisms are
the rule rather than the exception. For example, when we learn to ride a
bike, we may simultaneously learn the sequence of movements needed
to accomplish the task through explicit supervised training (e.g.,
someone instructs us to perform the task), implicit means (e.g., we
practice by ourselves), and with both trial and error and unsupervised
association co-occurring during each attempt.

In this article, we discuss how cortex, cerebellum and basal ganglia
might operate in an integrated fashion on the basis of a close interaction
between unsupervised, supervised and reinforcement learning pro-
cesses. We propose that the key features of these forms of learning sy-
nergise in different ways according to the specific task to be learned,
thus giving rise to a super-learning process involving the whole cortical-
cerebellar-basal ganglia system. This process builds on two critical
features: (i) the cortical-subcortical hierarchical organization of neural
pattern selection operating at different levels of spatial and temporal
granularity, and (ii) the combined action of different neuromodulators
which regulates the concurrent learning in the three areas. The term
“super-learning” does not refer to any new learning paradigm. Rather, it
indicates the boost in learning obtained when many different learning
mechanisms work together across multiple brain regions.

In the rest of the paper, we discuss how the super-learning hy-
pothesis might explain the seemingly redundant nature of the cortico-
cerebellar-basal ganglia system to solve motor learning problem. In
particular, we first discuss how the anatomo-physiological features (i-ii)
underlie the emergence of computational processes which foster the
synergistical interplay between unsupervised, supervised and re-
inforcement learning (Section 2). We also set the stage for a deeper
analysis of super-learning processes by presenting the overall anato-
mical architecture of two main brain hierarchies within which super-
learning takes place: the hierarchy formed by the cerebral cortical
pathways, and the hierarchy involving the basal ganglia-thalamo-cor-
tical loops and the cerebello-thalamo-cortical loops (Section 3). For the
sake of focus, we then discuss this hypothesis with reference to two
widely studied motor learning problems: sequence learning and adap-
tation (Diedrichsen and Kornysheva, 2015; Penhune and Steele, 2012;
Shmuelof et al., 2012) (Section 4). We discuss (Section 5) how the
super-learning hypothesis is supported by recent evidence studying the
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reciprocal influences between the three learning processes. Finally, we
discuss how the proposed super-learning hypothesis furnishes answers
to several open issues in motor learning literature (Section 6), and draw
the conclusions of our analysis (Section 7).

2. Overview of the super-learning elements

Super-learning involves an integrated operation of unsupervised,
supervised, and reinforcement learning processes. This integration can
take place in several different ways that can be grouped in three dif-
ferent general classes now considered in detail (see Fig. 1).

A first class of processes through which different learning me-
chanisms can interact is the cooperation of supervised, reinforcement,
and unsupervised learning signals and processes over the same neural
structures (Fig. 1a). This means that, for example, aside from driving
reinforcement learning, reward-related signals could also modulate the
effectiveness of supervised learning (Doya, 2002), or that unsupervised
learning process could be effective to maximize information transfer
during supervised learning processes (Schweighofer et al., 2001). The
mutual interaction of learning signals could be regulated by the diffused
action of neuromodulators, mainly dopamine, noradrenaline, serotonin,
and acetylcholine, within cortex, basal ganglia and cerebellum. For
example, dopamine and serotonin are important to drive reinforcement
learning (Fischer and Ullsperger, 2017; Schultz, 1997) but also to reg-
ulate the interplay between supervised and reinforcement learning
processes (Schweighofer et al., 2004). Noradrenaline further supports
this interaction by regulating the exploration/exploitation components
of trial-and-error behaviour (Doya, 2002), whereas acetylcholine con-
tributes to consolidate the interaction between unsupervised and re-
inforcement learning processes (Fonollosa et al., 2015; Hasselmo,
1995).

A second class of mechanisms supporting super-learning is the pi-
peline organization of different brain systems, possibly partially over-
lapping, undergoing unsupervised, supervised and reinforcement
learning processes (Fig. 1b). The order of the learning mechanisms
taking place in the pipeline depends on both contextual information
(e.g., the task at hand) and on the body state (e.g, the currently pre-
vailing needs and motivations). The cortical-subcortical hierarchical

organization of neural pattern selection operating at different levels of
spatial and temporal granularity supports the pipeline organization of
different learning processes. For example, the basal-ganglia input stage,
the striatum, uses the information received by the cortical areas to se-
lect (through disinhibition) target portions of the thalamo-cortical loops
(Alexander et al., 1986; Houk and Wise, 1995). In this architecture, the
cortex, for example parietal associative areas, might use unsupervised
mechanisms to extract suitable information from percepts and send it to
the basal ganglia that then use reinforcement learning to acquire the
capacity to select suitable actions executed at the level of motor cortex
(Gurney et al., 2001).

A third class of mechanisms supporting super-learning involves the
reciprocal influence of different brain components (e.g., basal ganglia,
cerebellum) using different learning mechanisms, through their output
interaction (Fig. 1c). In particular, they happen when the output com-
partment of a certain network is activated by the output of a second
network, and this influences the learning processes of the first compo-
nent. The influence is due to the fact that the output of a neural
structure is critical to guide its learning processes through both re-
inforcement and supervised learning. The reciprocal influence of the
two neural circuits can take place either because (a) the two compo-
nents share a common output compartment, or (b) because the output
of one circuit reaches the output of the other through suitable neural
connections. Again, which circuit learns from which, and when, might
depend both on contextual information and on needs/motivations. As
an example, consider the possible interaction between the basal
ganglia-cortical loops and the cerebellar-cortical loops in the case of
motor adaptation. Motor adaptation leads to update of an existing
motor skill when the conditions in which it was initially acquired
change. In this case, reinforcement learning involving basal ganglia
might be critical to quickly acquire a gross solution to the perturbation,
improving performance but below the baseline level. Then a supervised
learning process, possibly involving cerebellum, might contribute to
refining this initial solution, thus gradually recovering the baseline
level of performance (Doyon et al., 2003a; Shadmehr and Holcomb,
1999).

The three classes of interactions can involve each of the three pos-
sible pairs of learning mechanisms (Fig. 2). For each pair, cooperation
can happens only in one way, e.g. with supervised learning (SL) and

Fig. 1. Three main classes of mechanisms through which super-learning can
take place. (a) Different learning signals and processes from supervised, re-
inforcement, and unsupervised learning (respectively SL, RL, and UL) concur to
modify the same neural structures, either at the same time or at different times.
(b) Different brain components using different learning mechanisms influence
each other by performing computations in a pipeline. (c) Different brain com-
ponents using different learning mechanisms influence the learning of each
other by sharing their output neural layers.

Fig. 2. The possible interactions between supervised learning (SL), reinforce-
ment learning (RL), and unsupervised learning (UL). The three classes of pos-
sible interactions supporting super-learning (co-occurrence of different learning
mechanisms; link of structures in pipeline; influence via the output) can involve
each pair of learning mechanisms.
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reinforcement learning (RL) processes updating the synapses of the
same neural area (Fig. 1a); although, the two learning processes might
have a different relative intensity. Instead, the interactions based on the
pipeline organisation (Fig. 1b) can take place in two ways depending on
which learning process influences which other learning process. Also
the interaction based on output relationships can happen in two forms
depending on which output uses a certain learning process to guide the
learning of another component using a different learning process. The
combinations of the five interaction modalities with the three possible
pairs of learning mechanisms give rise to fifteen (5× 3=15) different
possibilities. We give here some examples of a subset of these to show
the capacity of this framework to capture interesting learning processes,
that might involve either brain networks or artificial neural networks.
Some of these examples will be expanded in the rest of the paper to
show their biological detail and importance (see for example, Sections 4
and 5). The cases for which concrete examples are not yet known might
furnish “predictions by symmetry” representing heuristic hypothesis to
investigate with empirical experiments, in biological or artificial neural
network models.

Regarding first SL-RL cooperation, the cerebellum might implement
SL and at the same time some forms of dopamine-based RL (Ikai et al.,
1992; Wagner et al., 2017). Regarding SL-RL organised in pipeline,
during action sequence learning (Section 4.2) the cerebellum might
support RL by providing the timing information needed from the basal
ganglia-cortical system to properly chunk different motor acts. The
connections between cerebellar nuclear outputs and the striatum of the
basal ganglia might be important to convey such timing signal to the
basal ganglia (Bostan et al., 2010). Regarding SL-RL output interaction,
in the case of motor adaptation considered above initially basal ganglia
might use RL to find a coarse-grained solution and cerebellum SL pro-
cesses might be guided by it. Then the cerebellum might refine the
found solution using SL (Houk et al., 2007; Houk and Wise, 1995), and
basal-ganglia use RL to “copy” such solution (Barto and Rosenstein,
2004).

Regarding UL-RL cooperation, these processes might for example
coexist at the level of learning of striatum in basal ganglia, as also
shown with computational models (Mannella and Baldassarre, 2015).
Pre-processing of sensorial information is indeed very important for an
effective functioning of RL (Lesort et al., 2018). Regarding UL-RL or-
ganised in pipeline, in the example considered above cortex might use
UL to find suitable representations of sensory inputs, and then pass it to
basal ganglia that might implement RL. In turn, the basal ganglia (RL)
select thalamo-cortical representations that might in turn involve other
UL processes (Baldassarre et al., 2013; Dominey and Arbib, 1992;
Gurney et al., 2001; Yin and Knowlton, 2006). Regarding UL-RL output
interactions, it has been proposed on the basis of substantial empirical
evidence that associative processes involving different areas of cortex
might link neural populations selected in those areas by basal ganglia
(Hélie et al., 2015). We do not have examples of UL guiding RL pro-
cesses.

Regarding UL-SL cooperation, the current revolution of machine
learning started around 2006 with the proposal of the technique to use
UL to pre-train deep neural networks (neural networks formed of many
stacked layers of neurons) before training them with SL (Goodfellow
et al., 2016). This allowed a solution to the “vanishing gradient pro-
blem” that prevented successful training of deep neural networks with
UL alone. Although this problem is now commonly solved in other ways
(most notably with the use of “rectified linear units”), it suggest a
powerful computational mechanism that might also operate in the brain
(Dahl et al., 2013; Jiang et al., 2018). The brain can indeed be con-
sidered a deep neural network if it uses SL, e.g. at the level of cere-
bellum, it might use UL mechanisms to support it. Regarding UL-SL
organised in pipeline, some examples come from the cerebellar loops
with cortex, analogous to basal ganglia-cortical loops. In this case the
cortex, putatively hosting UL processes, furnishes inputs to cerebellum
that might refine motor behaviour on the basis of SL processes and then

influence motor cortex and sub-cortical areas (Schweighofer et al.,
2001). Last, regarding UL-SL output interactions we do not have direct
examples, but it would be interesting to investigate if cerebellar output
could guide the associative learning processes taking place in cortex, as
proposed for basal ganglia (Hélie et al., 2015).

The different classes of possible interactions between the three
forms of learning processes are embedded in the system-level macro
architecture of brain. In particular, the two classes of pipeline interac-
tions and output-based interactions are manifest within the hierarchical
pathways and closed loops of the basal ganglia-cortical and cerebellar-
cortical loops, performing action selections at different time/space
scales. The remaining class - cooperation interactions - takes place
within the neural stages of such pathways and loops. The next section
thus considers these pathways and loops more in detail.

3. Neural mechanisms producing super-learning

Fig. 3 summarises the brain macro anatomy within which super-
learning takes place. The figure shows how the anatomy integrates two
important brain hierarchies. By “brain hierarchy” we refer to two or
more partially segregated systems where one system exerts control over
the other systems, that is stronger than the control that the latter ones
exert on the former. The first hierarchy involves the ventro-dorsal or-
ganization of cortical pathways that process sensorimotor information
at increasingly levels of complexity and abstraction, from sensorimotor
execution, to affordance-based motor preparation, to goal-directed be-
haviour driven by motivations (Bonaiuto and Arbib, 2015; Caligiore
et al., 2013a, 2010; Thill et al., 2013). The second hierarchy involves
basal ganglia-thalamo-cortical loops and cerebellar-thalamo-cortical
loops performing selections at different levels of space and time

Fig. 3. The cortical and subcortical system where super-learning takes place.
Abbreviations: Amg: Amygdala; Cau: Caudatum; Cbl ctx: cerebellar cortex;
dlPFC: dorsolateral prefrontal cortex; Hip: Hippocampus; Hyp: Hypothalamus;
ITC: inferotemporal cortex; MC: motor cortex; NAcc: nucleus accumbens; OFC:
orbitofrontal cortex; PPC: parietal cortex; PMC: premotor cortex; Put: putamen;
SMC: supplementary motor cortex; SSC: somatosensory cortex; VC: visual
cortex; vmPFC: ventromedial prefrontal cortex.
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granularity (Alexander et al., 1986; Baldassarre et al., 2013; Middleton
and Strick, 2000; Sakai, 2013; Sakai and Grofovà, 2002). In the fol-
lowing sections we consider these two hierarchies more in detail.

3.1. Cortical hierarchies where super-learning operates

Fig. 3 shows how the first hierarchy – the ventro-dorsal organization
of cortical pathways – processes sensorimotor information at increas-
ingly levels of complexity and abstraction. We consider the functions of
these cortical pathways by solely referring to cortex but as we shall see
in the next section most cortical areas form highly integrated sub-sys-
tems with different portions of basal ganglia and cerebellum. These
subsystems actually underlie all the functions we now consider.

The apex of the first hierarchy is formed by cortical frontal regions,
in particular OFC and vmPFC (see Figs. 3,4 for the meaning of the
abbreviations) (Fuster, 2015; Passingham and Wise, 2012), that
strongly communicate with important subcortical areas, in particular
Amg, Hip, Hyp, NAcc, a set of areas once called the “limbic brain”
(Mogenson et al., 1980). The latter areas are directly and indirectly
connected with the visceral body and can so collect information on the
organism’s current needs, for example for energy and nutrition, pain
avoidance, and fatigue containment. Based on this information, and on
a close interplay with the subcortical nuclei important for neuromo-
dulation (e.g., VTA, SNc, LC), this system can attribute a biological
valence to stimuli and action outcomes related to the resources in the
environment that can satisfy those needs (Mannella et al., 2016; Mirolli
et al., 2010). The limbic system and various areas of PFC also support
the processes related to intrinsic motivations related to the acquisition of
knowledge and competence rather than material resources (Baldassarre
and Mirolli, 2013). For example, novel objects or novel object relations
are detected by Hip that activates both the NAcc and the dopaminergic
system to foster exploration and learning processes targeting those
objects (Lisman and Grace, 2005; Mannella et al., 2013).

Within the second level of the hierarchy, formed by the VC-ITC
“ventral pathway” (Goodale and Milner, 1992) and the downstream
PFC regions (most notably dlPFC), motivational information influences
the representations of objects in the environment (Mannella et al.,
2013). For example, the need of caffeine might activate the goal of
“drinking coffee” and drive the formulation of a motor plan to achieve
it, for example to prepare a mug of coffee (Giovannetti et al., 2007;
Goldenberg and Iriki, 2007). The working memory and episodic
memory for which dlPFC and Hip play a major role can host informa-
tion that is elaborated to assemble the plan, and then to store it for
execution (Miller and Cohen, 2001; Thill et al., 2013). If instead there is
an already available mug with coffee, a motor sequence might be
triggered to accomplish the desired goal: “reach and grasp handle; lift
mug; bring it to the lips; drink.” In both cases, the preparation of the
single motor acts and their assembling into suitable sequences takes
place at the lower level of the hierarchy.

The third level of the hierarchy is formed by the “dorsal pathway”,
including the VC and the PPC (Goodale and Milner, 1992) encoding
affordances; that is, they process visual information such as object lo-
cation, orientation and size to support different possible motor actions
(Caligiore et al., 2010; Fagg and Arbib, 1998; Fogassi, 2005). This in-
formation reaches the PMC, where it fuels the preparation of motor acts
such as reaching and grasping (Bonaiuto and Arbib, 2015), and the
SMC, where it contributes to assemble the motor acts into sequences
(Nachev et al., 2008).

The lowest, fourth, level of the hierarchy, relying on the highly
dynamical circuit formed by the SSC, receives information on the state
and dynamics of the skeleto-muscular system. This information, sui-
tably integrated with motor plans from PMC, is sent to the MC to
contribute to issuing motor commands to muscles in order to perform
the desired motor acts, for example to reach a mug (Churchland et al.,
2012).

3.2. Subcortical hierarchies where super-learning operates

We now focus on the second hierarchy – formed by cortical-basal
ganglia loops and cortical-cerebellar loops, performing action selections

Fig. 4. Sketch of the main anatomical features of the cortico-cerebellar-basal
ganglia system supporting super-learning. The figure shows the basal ganglia-
and cerebellar- thalamo-cortical loops involved in the selection of biologically
relevant goals based on body states and emotional processing (a), in the se-
lection of motor plans (b), and in motor preparation and execution (c).
Abbreviations: c: caudal; Cau: Caudatum; Cer ctx: cerebellar cortex; cl: cau-
dolateral; D: dentate nucleus; dlPFC: dorsolateral prefrontal cortex; dm: dor-
somedial; GPi: internal globus pallidus; ITC: inferotemporal cortex; mdm:
medial dorsomedial; LS: limbic system; MC: motor cortex; MDmf: pars multi-
forms mediodorsal thalamic nuclei; NAcc: nucleus accumbens; OFC: orbito-
frontal cortex; PC: parietal cortex; PMC: premotor cortex; PPN: pedunculo
pontine nuclei; Put: putamen; rd: rostrodorsal; RTN: reticulo tegmental nucleus;
SMC: supplementary motor cortex; SNc: substantia nigra, pars compacta; SNr:
substantia nigra pars reticulata; SSC: somatosensory cortex; Th: thalamus;
VAmc: ventral anterior medial part; VApc: ventral anterior pars principalis; vl:
ventrolateral; VC: visual cortex; VLcc: ventral lateral caudal portion of tha-
lamus; vm: ventromedial; vmPFC: ventromedial prefrontal cortex; VTA: ventral
tegmental area; VS: visual cortex; r: rostral.
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at different granularities of space and time. As already observed, the
sensorimotor transformations performed by the cortical pathways are
strongly supported by cortical-subcortical loops involving basal ganglia
(BG) and cerebellum (Cbl). A notable anatomical feature supporting
this view is that the BG and Cbl loops are partially segregated into
“macro-loops,” each connected with specific macro-areas of cortex
(Fig. 4). These areas tend to correspond to the different levels of the
cortical hierarchy illustrated in the previous section, but they also ex-
hibit some exceptions reflecting the fact that both BG and Cbl have a
gradient of connectivity strength with Ctx that increases moving from
the lower to the higher levels of the cortical hierarchy, and from the
sensory/input areas with no connections to the primary sensory areas
towards the motor/output areas with dense interconnections.

We can distinguish three Ctx-BG and Ctx-Cbl macro-loops
(Baldassarre et al., 2013; Gurney et al., 2001; Middleton and Strick,
2000; Yin and Knowlton, 2006). The first (Fig. 4a) is linked to the apex
of the cortical hierarchy subserving the motivational processes. The
second (Fig. 4b) mainly involves the areas of the ventral pathways (ITC,
vmPFC), but the perceptual areas of the dorsal pathway (PPC), are also
important for selecting goals and formulating plans to achieve them.
And the third (Fig. 4c) involves all the motor areas, in particular those
of the dorsal pathway (PMC, SMC) and those of the somatosensory-
motor pathway (SSC-MC). We next highlight the internal anatomy of
these loops and how they support the selection of cortical contents at
different levels of granularity and then consider how the BG and Cbl
implement specific functions and complement each other within each of
the three macro-loops.

3.2.1. Computational views of the micro-anatomy of basal-ganglia and
cerebellum: selection at different granularities of time and space

The selection of patterns within cortex is often attributed to its in-
trinsic computational properties (Cisek and Kalaska, 2010; Diedrichsen
and Kornysheva, 2015; Kappel et al., 2014). However, these cortical
selection processes are strongly supported by both BG-Th-Ctx loops
(Baldassarre et al., 2013; Graybiel, 1998; Gurney et al., 2001; Mannella
and Baldassarre, 2015; Yin and Knowlton, 2006) and Cbl-Th-Ctx loops
(Gurney et al., 2001; Houk et al., 2007; Houk and Wise, 1995;
Middleton and Strick, 1998). In the BG, the striatum and the sub-
thalamic nucleus (STN) are the primary input structures and receive
projections from most regions of cortex. The striatum sends GABAergic
inhibitory connection to the GPi and SNc (the “direct pathway”)
forming the BG output stage (Hikosaka et al., 1993; Liu and Basso,
2008). These nuclei are also reached by the glutamatergic excitatory
connections of the STN (the “hyperdirect pathways”). The striatum also
inhibits the GPe which in turn inhibits the STN (the “indirect
pathway”). The BG output nuclei send GABAergic inhibitory projec-
tions to the thalamus which in turn exchanges excitatory connections
with the cortex thus creating parallel cortico-striato-pallidal/nigro-
thalamo-cortical loops (DeLong, 1990; Feingold et al., 1996). A widely
accepted model of the BG proposes that the double inhibition me-
chanism of the BG direct pathway, modulated by the indirect and hy-
perdirect pathways and VTA/SNpc dopamine, represents a major me-
chanism the brain uses to select cortical patterns (Chevalier and Deniau,
1990; Frank, 2005; Gurney et al., 2001). In particular, based on the
pattern of input from Ctx, each BG macro-loop can disinhibit different
BG-Th-Ctx channels, thus allowing the corresponding cortical pattern to
be activated. This model also posits that neuromodulators, mainly do-
pamine, regulate these channels in correspondence to certain external/
internal contexts (Gurney et al., 2001; Houk and Wise, 1995).

Alongside BG-Ctx loops, the Cbl-Ctx loops are also considered to
give an important contribution to the selection of cortical patterns
(Bostan and Strick, 2018; Houk et al., 2007). The mossy fibers bring
excitatory input to the Cbl, in particular to the granule cells. The
granule cells in turn project to Purkinje cells through excitatory parallel
fibers. The Purkinje cells send inhibitory projections to the Cbl deep
nuclei which also receive excitatory signals from the mossy fibers.

Based on the difference of the two inputs, the deep nuclei send in-
hibitory projections to cells of the inferior olive that in turn project to
Purkinje cells through excitatory climbing fibers. Within the cerebellar
cortex, parallel fibers also activate basket and stellate cells that inhibit
Purkinje cells, and activate Golgi cells that inhibit the granule cells
themselves. A classic view of cerebellar function (Albus, 1971; Marr,
1969) proposes that the Purkinje cells implement a predictor of the
mossy fiber signal, adjusting its prediction based on a prediction error
encoded by the climbing fibers. In particular, when the prediction is
correct, the net input to the deep-nuclei cells from a Purkinje cell
(predictor) and the mossy fibers (signal to predict) is zero. Instead, if
the Purkinje cell output is too high, the deep-nuclei cells disinhibits the
inferior olive cells so that the climbing fiber signal causes a depression
of the parallel fiber-Purkinje cell synapses, the Purkinje cell output is
decreased, and the error is adjusted towards zero. Vice versa if the
Purkinje cell prediction is too low. Depending on the input and the
desired output to predict, this circuit can learn to implement either
forward models, useful to anticipate future events, or inverse models,
useful to produce the control commands needed to achieve desired ef-
fects. In particular, in the case of forward models the input is the cur-
rent state of a system (e.g., the body and/or the world) and a pro-
grammed action, and the desired output is the future state to predict. In
the case of inverse models the input is the current state and the future
goal state of a system, and the desired output is the action to perform to
achieve the goal state. Similarly to the basal ganglia, the cerebellum
also receives VTA/SNc dopaminergic projections that regulate its
learning processes (Ikai et al., 1992; Melchitzky and Lewis, 2000;
Panagopoulos et al., 1991).

The micro-features of the anatomy of the BG and Cbl loops is at the
basis of their operation at different time and space scales. The output
stages of the BG contain far fewer neurons than the input from the
cortex (Felleman and Van Essen, 1991) thus making the BG channels
ideally suited for coarse-grained selection of whole neural assemblies
within the Th-Ctx targets (Graybiel, 1998; Mannella and Baldassarre,
2015; Redgrave et al., 1999). This allows the BG to, for example, select
specific predictions of the future (dlPFC), or action sequences (SMC),
actions (PMC), and coarse-grained movement via-points (MC) to be
performed. This however does not ensure accuracy and graceful ex-
ecution. The Cbl instead provides the necessary modulation, for ex-
ample to refine predictions at fine time scales, to smoothly link motor
acts in sequences, or to execute accurate motor trajectories by working
on fine timing and co-articulation (Ito, 2013; Spoelstra and Arbib,
2001).

This role is supported by the Cbl organization into microcomplexes
each comprising a set of Purkinje cells and cerebellar nuclei neurons
(Ito, 1997). Inhibitory cells within the cerebellar cortex may play a role
in sculpting which microcomplexes are active (Arbib and Spoelstra,
1997). Each set of Purkinje cells might then modulate the performance
of an action selected by BG-Ctx via a cerebellar nuclei cell assembly that
in turn tunes the parameters of a motor pattern generator outside the
cerebellum, for example in the spinal cord or in the motor cortex; this
broadly fits with the concept of inverse model considered above. Motor
pattern generators might be located in the spinal cord, brainstem or
cortex, thus affecting the selection of neural patterns that produce
movement features such as force, velocity, timing and co-articulation
(Arbib and Spoelstra, 1997; Ito, 2013; Schweighofer et al., 1996a). In
this way, the Cbl refines the details of the movement trajectory. The
basal ganglia is also involved in the regulation of these dynamical as-
pects of movement (Turner and Desmurget, 2010; Yttri and Dudman,
2016). These mechanisms allow the improvement of the quality of
movements, gradually recovering the baseline level of performance.
The Cbl also acts at a finer time scale, down to milliseconds, with re-
spect to BG that operates at the level of up to tens of seconds (Bareš
et al., 2018a; Petter et al., 2016a). Schweighofer and colleagues pro-
posed computational models that operationalise this view by showing
how the Cbl may help to ensure the accuracy of the saccade brainstem

D. Caligiore, et al. Neuroscience and Biobehavioral Reviews 100 (2019) 19–34

24



generator compensating for the nonlinearities in the movement pattern
generator. They also show that a cerebellar model based on the mi-
crocomplex hypothesis could improve coordination of different joint
movements during reaching (Schweighofer et al., 1998, 1996a,1996b).

3.2.2. The cortical hierarchies where super-learning operates
3.2.2.1. The motivational loop. The first BG-Ctx macro-loop is the
“motivational loop” (Yin and Knowlton, 2006). This loop involves the
ventral part of the striatum (or nucleus accumbens, NAcc) which
receives important information on the innate or acquired value of
stimuli from various subcortical components of the limbic system (LS)
such as the Amg, Hip and Hyp. Based on this information, this portion
of the BG helps select biologically relevant stimuli and goals encoded in
OFC/vmPFC. The NAcc is also at the apex of a “motivational hierarchy”
that, through “dopaminergic spirals” involving different portions of
striatum and VTA/SNpc, transmits information on stimulus value to
downstream BG-Ctx macro loops and hence helps regulate BG learning
(Haber, 2003; Haber et al., 2000).

Cbl also connects with subcortical structures including Amg, Hip,
and Hyp, on which basis it plays a role in emotional processing (Blatt
et al., 2013). In particular, by contributing to control the VTA dopa-
minergic release, the Cbl exerts an indirect influence on NAcc, and on
OFC/vmPFC (Fig. 4a)(Rogers et al., 2013), for example affecting
memory consolidation (D’Ardenne et al., 2012; Puig et al., 2014).

3.2.2.2. The associative loop. The second BG macro-loop is the
“associative loop” shown in Fig. 4b (Yin and Knowlton, 2006) which
involves important temporo-parieto-frontal cortical regions involved in
goal-directed behaviour (Passingham and Wise, 2012). The loop is in
particular formed by the dorsomedial part of the striatum (caudate
nucleus - Cau) and contributes to select cortical patterns related to the
currently valuable goals (dlPFC) (Mannella et al., 2013), and the
relevant objects (ITC) and possible actions (the affordances in PPC) to
pursue them (Miller and Cohen, 2001).

Cbl shares a set of discrete parallel loops with various parts of the
fronto-parietal cerebral network (Fig. 4b). In particular, visual area
within the dorsal pathway (PPC) projects to pons, whereas cortical
regions within the ventral pathway, such as vmPFC and OFC, do not
have pontine projections (Schmahmann and Pandya, 1997). Moreover,
the output channels of the Cbl ventral dentate project to dlPFC con-
tributing to working memory and planning processes (Middleton and
Strick, 2000). The Cbl-PPC loops support the coordination of actions
(Ramnani et al., 2001). Information coming from the ventral dentate
output of the cerebellum might support the coordination between the
dorsal areas of the PPC and dlPFC areas to represent high-level goals,
i.e. representations of desirable possible future states of the environ-
ment (Thill et al., 2013), in particular taking into account the temporal
relationship between task-relevant events (D’Angelo and Casali, 2012).
In this respect, by working with the Cbl the dlPFC might acquire the
capacity to anticipate future events based on Cbl forward models (Ito,
2008; Wolpert et al., 1998). This view is in line with the “timing hy-
pothesis” according to which the cerebellum is crucial for representing
the temporal relationship between task-relevant events by working as a
general “timing co-processor” whose particular function depends on the
targeted brain regions (D’Angelo and De Zeeuw, 2009).

3.2.2.3. The sensorimotor loop. The third and last BG-Ctx macro-loop is
the “sensorimotor loop” (Yin and Knowlton, 2006). This loop involves
the dorsolateral part of striatum (putamen - Put) of the BG that
contribute to selection of suitable motor patterns within the PMC in
correspondence to specific stimuli (habits). This selection is influenced
by a top-down bias from the higher level BG-Ctx associative loop
(Mannella et al., 2016). The selected motor patterns are then specified
by selective processes involving the MC forming highly dynamic motor
circuits with the somatosensory regions of the PPC (Churchland et al.,
2012).

The dorsal dentate nucleus of the Cbl projects to PMC, SMC and MC
(Fig. 4c) (Middleton and Strick, 2000). In addition, the output channels
in the ventral dentate nucleus of the cerebellum project to pre-SMA
(Akkal et al., 2007). These connections play a crucial role in detailing
the motor trajectories issued by MC, and reaching the skeletomuscular
motor plant through the descending motor pathways. For example, the
loops with MC are presumably involved in adjusting motor commands
to compensate for movement dynamics, whereas the loops involving
SMC and PMC may be involved in predicting the immediate con-
sequences of intended movements, e.g. to overcome the delays of sen-
sory feedback (Botzer and Karniel, 2013). These processes thus ensure
that graceful movements are executed (Arbib and Spoelstra, 1997;
Spoelstra and Arbib, 2001).

4. Super-learning during motor adaptation and sequential
learning

4.1. Reinforcement learning supports supervised learning in motor
adaptation

Motor adaptation is usually distinguished from skill learning. Motor
adaptation involves the update of an existing motor skill when there is a
change of the conditions in which it has been initially acquired, for
example when learning to drive a new car or adapting to physical
changes following an injury (Wolpert et al., 2011). We focus on motor
adaptation as it involves the learning of the basic behaviour building
blocks, the motor acts, and at the same time there is a relevant amount
of empirical evidence on it. These processes happen especially in early
stages of motor development (see Section 6) or even in adults, for ex-
ample, during learning of a new tool-use task with the transition from
conscious feedback control of the hand based on viewing the movement
of the tool-tip to automatized motion of hand and tool experienced as a
unified effector (Arbib et al., 2009; Borghi et al., 2013; Iriki et al.,
1996). Motor adaptation involves learning processes driven by a sen-
sory prediction error, based on sensory expectations acquired while
performing the skill, and has been shown to depend on the integrity of
the cerebellum (Diedrichsen et al., 2005; Smith and Shadmehr, 2005).

We propose that in the early phase of motor adaptation, the basal
ganglia select a coarse-grained motor pattern within the motor cortex
which represents a quick but approximative solution to the new con-
dition. This process may engage both trial-and-error exploratory
changes in the behaviour, and cognitive strategies that can direct the
search towards a solution. The cerebellum and several cortical regions
mainly belonging to the dorsal pathway are critical to signal that it is
necessary an adaptation process. The cerebellum updates the percep-
tual predictions about the sensory consequences of one’s own action.
This function is accomplished by comparing internal predictions about
the sensory consequences of our own actions with the actual afference
encoded by the somatosensory cortex, thereby isolating the afferent
component that is externally produced. The cerebellum might mediate
the updating of predictions about the sensory consequences of actions,
ensuring both precise action performance and truthful perceptual in-
terpretation of external events, including actions (Wolpert et al., 1998).
The afference is compared with an internal prediction about the sensory
consequences of one’s own action generated by the cortical-cerebellar
forward model circuit. The internal prediction is based on signals re-
lated to movements, including efference copy of the motor command
and sensory information of the state of the body (Wolpert et al., 2003).
In case of a match between the internal predictions about the sensory
consequences of one’s own actions and afference, the afference can be
interpreted as a result of self-action (reafference). In the case of a
mismatch between the internal predictions about the sensory con-
sequences of one’s own actions and afference, the difference corre-
sponds to an external sensory event due for example to an unexpected
perturbation of the movement. Thus, the mismatch between the in-
ternal predictions about the sensory consequences of one’s own actions
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and afference might supply a “go signal” to inform the basal ganglia-
cortical system that the adaptive process could start to work. Spatial
working memory involving prefrontal and parietal areas could be relied
upon for processing mismatch information, especially for visuomotor
adaptation, to modulate the rate of motor learning for sensorimotor
adaptation (Seidler et al., 2012).

Thanks to their capacity to react to the received feedback, basal
ganglia can generate the final posture (e.g., through the selection of the
motor program within premotor areas) and a gross movement trajec-
tory that bring performance towards the baseline level (Dudman and
Krakauer, 2016; Houk et al., 2007). The cerebellum might acquire this
solution with supervised learning by using the basal ganglia output as a
desired action plan. The thalamo-cortical-cerebellar circuits and the
recently discovered connection linking the basal ganglia with the cer-
ebellum, the subthalamic-pons-cerebellar circuit (Bostan et al., 2010),
may be useful to convey the information about the desired action plan.
The cerebellum might then further refine the movement based on
feedback-error corrections. In addition, neural noise may support the
finding of the finer solution by allowing a neural exploration among
several similar neural patterns located around the gross pattern selected
by the basal ganglia (Faisal et al., 2008; Thorp et al., 2017). Perfor-
mance could thus fully recover towards baseline levels.

These neural mechanisms are supported by substantial empirical
data. In this respect, the proposed early involvement of the basal
ganglia followed by a subsequent involvement of the cerebellum agrees
with data showing that during motor adaptation there is an early ac-
tivation of the striatal regions followed by an activation of cerebellar
areas (Doyon et al., 2003a; Shadmehr and Holcomb, 1999). Similarly,
fMRI studies of visuomotor adaptation have reported activation in basal
ganglia, premotor, dorsolateral prefrontal and parietal regions during
the early stages of adaptation (Anguera et al., 2007; Inoue et al., 1997;
Seidler et al., 2006), with late learning activation observed at the cer-
ebellum (Graydon et al., 2005; Miall et al., 2001). PET studies of force-
field adaptation demonstrate bilateral activation at the dorsolateral
prefrontal cortex and parietal regions early in learning, while later in
learning activation shifts towards left premotor and right cerebellar
regions (Krebs et al., 1998; Shadmehr and Holcomb, 1997).

Recent evidence shows that inhibition of somatosensory cortex after
partial adaptation blocked further adaptation, supporting the critical
involvement of this cortical area in sensorimotor adaptation (Mathis
et al., 2017). In addition, there is evidence suggesting that dopami-
nergic signals based on reward could mark the coarse-grained neural
patterns (which might for example represent the final goal of a move-
ment) within the basal ganglia, at the same time furnishing a learning
signal to the cerebellum (Doya, 2002; Schweighofer et al., 2004). The
teaching signal used by the supervised learning mechanism operating in
the cerebellum might be given by the combination of the motor noise
signal (Thorp et al., 2017) and the dopamine signal (i.e., the reward
signal), the latter correlated with the goal of the action (Doya, 2002).
This teaching signal might be conveyed by the subthalamic-pontine-
cerebellar connection and might modulate the cerebellum’s sensitivity
to incoming error signals. In this way, the basal ganglia and the do-
paminergic system might drive the cerebellum to update its forward
(and perhaps inverse) models based on predicted reward or punish-
ment. This perspective is also supported by recent data showing that
cerebellar granule cells encode expected reward (Wagner et al., 2017),
and that reward and punishment differentially influence motor adap-
tation (Galea et al., 2015).

The learning rate of the cerebellum could be modulated by the ex-
pected utility of the actions. Hence, playful exploration of a novel en-
vironment or novel actions within an environment, driven by action
selection in the basal ganglia, could potentially disrupt the internal
models within the system formed by the cerebellum, cortex and basal
ganglia. The learning rate should be reduced to protect existing motor
skills. However, if the novel actions are associated with high reward (or
punishment), then the cerebellar learning could be enhanced, to

optimise the execution of these actions. In other words, the basal
ganglia would prime the cerebellum to update its forward models based
on predicted reward or punishment (Miall and Galea, 2016).

4.2. Supervised and unsupervised learning support reinforcement learning
during acquisition of motor sequences

Motor skill learning generally refers to neuronal changes that allow
an organism to accomplish a motor task more accurately or faster than
before (Diedrichsen and Kornysheva, 2015). In contrast to adaptation,
skill learning typically involves the generation of a novel movement
pattern, and can be quantified by improvements in accuracy or speed
(shifts in the speed-accuracy relationship, (Shmuelof et al., 2012)) in a
wide variety of tasks, including, for example, fast sequential finger
tapping (Kami et al., 1995), serial reaction time (Willingham, 1998),
motor synergy tasks (Waters-Metenier et al., 2014), sequential force
control (Reis et al., 2009) and visual tracing (Shmuelof et al., 2012).
Among these tasks, motor sequence learning is a well studied re-
presentative type of skill learning consisting in the acquisition and
optimization of a novel sequences of interrelated movements.

Here, we propose that during the initial phase of motor sequence
learning the cerebellum selects fine-granularity neural patterns in the
thalamo-motor cortical circuits involving cortical motor areas. These
patterns are critical to recall the single movement elements (i.e., the
features of the motor acts) already learned and stored in the internal
models managed by the cerebello-thalamo-cortical system involving
premotor and dorsal-prefrontal areas (Caligiore et al., 2013b; Wolpert
et al., 1998). By selection between similar fine-grained patterns, the
cerebellum optimises their execution. The well-executed actions lead to
reward. Thus, the cerebellum gradually contributes to the involvement
of the basal ganglia that, through the cortico-striatal-thalamo-cortical
loops, are essential to glue the single motor acts into a sequence, for
example a coordinated reaching-grasping sequence, where preshaping
occurs as the reach proceeds and the reach slows down as the hand
encloses the object (Arbib, 2011). The basal ganglia learn to assemble
the motor acts by means of reinforcement learning (Graybiel, 1998).
The output of the basal ganglia, indeed, depends on synaptic projec-
tions from the cortex to medium spiny neurons in the striatum. These
projections are plastic and their efficacy changes depending on dopa-
minergic inputs from substantia nigra pars compacta, which code the
reward prediction error and underlie the reward of the motor act se-
quence (Frank, 2005; Schultz, 1997).

We suggest that the cerebellum might support this reinforcement
learning process by providing the timing information needed from the
basal ganglia and cortex to properly combine the motor acts. In more
detail, the recently discovered disynaptic connection linking cere-
bellum with striatum through thalamus, the cerebello-thalamo-striatal
pathway (Hoshi et al., 2005), might be important to convey such timing
signal to the basal ganglia alongside to information provided to cortex.
The cerebellum is essential for proper sensory and motor timing in the
range of milliseconds up to a second (Ivry et al., 1988a; Lusk et al.,
2016a). The cerebellar granular layer appears especially well-suited for
timing operations required to confer millisecond precision for cere-
bellar computations. This may be most evident in the manner the cer-
ebellum controls the duration of the timing of agonist-antagonist EMG
bursts associated with fast goal-directed voluntary movements. In
concert with adaptive processes, interactions within the cerebellar
cortex are sufficient to support sub-second/second timing. However,
supra-second timing seems to require cortical and basal ganglia net-
works, perhaps operating in concert with cerebellum. Additionally,
sensory information such as an unexpected stimulus can be forwarded
to the cerebellum via the climbing fiber system, providing a temporally
constrained mechanism to adjust ongoing behavior and modify future
processing (Bareš et al., 2018b). Multiple lines of evidence have shown
striatal involvement in millisecond timing (Merchant et al., 2013;
Pastor et al., 2006) and there is increasing evidence supporting its
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involvement in durations ranging from seconds-to-minutes (Harrington
et al., 2010; Jones and Jahanshahi, 2014; Koch et al., 2009). The
striatum likely acts as an integrator capable of detecting specific
durations based on cortical oscillation patterns (Allman and Meck,
2011; Meck and Malapani, 2004; Miall, 1989; Yin et al., 2016). The
cerebellum timing mechanisms feed into these striatal-thalamo-cortical
circuits, with a expertise that allows for error correction and priming of
the striatal system (Schwartze et al., 2016). In this way, the cerebellum
could reduce variability, through the detection of stimulus onsets and
the sub-division of longer durations, thus contributing to both sub-
second and supra-second timing. This sensitivity of the cerebellum to
stimulus dynamics and subsequent integration with motor control al-
lows it to accurately measure intervals within a range of 100–2000ms.
For intervals in the supra-second range (e.g., > 2000ms), the cerebellar
output signals from the dentate nucleus pass through thalamic con-
nections to the striatum, where cortico-thalamic-striatal circuits sup-
porting higher-level cognitive functions take over (Petter et al., 2016b).
As a task is learned the need for motor and temporal adjustments de-
creases as does the reliance on the cerebellum. In line with models for
sequential motor learning (Doyon et al., 2009), one could posit that if
the same sequence analogous to ‘duration-based’ timing was presented
multiple times, cerebellum activity would gradually decrease as the
temporal sequence is learned and timing responsibility is shifted to the
striatum. This view is in line with the timing hypothesis of cerebellar
function discussed in Section 3. Moreover, the results of recent ex-
periments in mice conducted by Chen and colleagues further support
our hypothesis. The authors show that the cerebellum rapidly mod-
ulates the activity of the striatum via the cerebello-thalamo-striatal
pathway. Under physiological conditions this short latency pathway is
capable of facilitating optimal motor control by allowing the basal
ganglia to incorporate time-sensitive cerebellar information and by
guiding the sign of cortico-striatal plasticity (Chen et al., 2014).

Along the cerebello-thalamo-striatal and the cerebello-thalamo-
cortical pathways, the cerebellum might work as a supervisor supplying
a signal that might contribute to scheduling the salient learning events
(e.g., to switch between two motor acts), improving the effectiveness of
the dopamine signal during reinforcement learning. This hypothesis is
in line with some machine learning proposals about possible interaction
between supervised and reinforcement learning mechanisms where the
supervisor supplies an additional source of information that essentially
simplifies the task faced by the reinforcement learning system (Barto
and Dietterich, 2004; Barto and Rosenstein, 2004). Driven by the timing
signal supplied by the cerebellum and by the reward signal supplied by
the dopamine input, the basal ganglia learn to select gross thalamo-
cortical neural patterns corresponding to group of motor acts combined
in a sequence.

This perspective agrees with several data collected in humans and
animals and showing that managing of action sequences learning and
performing involve cortical areas working in concert with cerebellum
and basal ganglia (Cattaneo et al., 2011; Jin et al., 2014; Penhune and
Steele, 2012; Tanji, 2001). Doyon and colleagues used fMRI during
motor sequence learning paradigm in humans to show an experience-
dependent shift of activation from the cerebellar cortex to the dentate
nucleus during early learning, and from a cerebellar-cortical to a
striatal-cortical network with extended practice (Doyon et al., 2002).
Similar data has been found in experiments with monkeys (Graybiel,
1995; Miyachi et al., 2002) where it has been also shown that after
extensive training on motor sequence tasks, neurons in the vicinity of
supplementary motor area, SMA, come to represent those sequences
(Tanji, 2001). Different neurons in pre-supplementary motor area (pre-
SMA) and in SMA contribute to encoding the conditional links between
the previous and the upcoming actions as well as where in a sequence
the action is (Nachev et al., 2008). The cerebellum, which is anatomi-
cally linked to both pre-SMA and SMA through the thalamus (Akkal
et al., 2007), could assist these cortical areas by supporting the an-
ticipatory activation of their cells during learning and performing of

action sequences. In particular, the cerebellum might support pre-SMA
and SMA to acquire the capacity of anticipating future events at fast
temporal scales based on forward models (Caligiore et al., 2016b,
2013b; Strick et al., 2009). SMA and pre-SMA are also linked with the
basal ganglia subthalamic nucleus through the hyperdirect pathway.
This pathway conveys the signal from motor-related cortical areas (in
this case pre-SMA and SMA) to the globus pallidus, bypassing the
striatum, with shorter conduction time than the signal conveyed
through the striatum (Nambu et al., 2002). Through this pathway, the
activation of pre-SMA and SMA neurons could regulate, in an antici-
patory fashion with respect to the next movement, the activation of the
subthalamic nucleus. The anticipatory activation of the subthalamic
nucleus could, in turn, support the anticipatory activation of the next
movement of the sequence by fostering the movement selection pro-
cesses through the direct pathway of the basal ganglia (Gurney et al.,
2001) thus favouring the concatenation of motor acts into sequences.

Unsupervised learning processes, based on the action of neuromo-
dulators acting at cortical level, might also contribute to consolidate the
connection between different neural patterns (i.e., different motor acts)
sequentially activated during action execution (Fonollosa et al., 2015;
Nambu et al., 2002). In more detail, it has been shown that acet-
ylcholine and noradrenaline could contribute to shifting the dynamics
of cortical activation of neural pattern from the influence of external
stimulation to a predominant influence of intrinsic activity (Hasselmo,
1995). This evidence suggests that the action of acetylcholine and
noradrenaline might be important to schedule the sequence of motor
acts by distinguishing movements mainly triggered by external stimuli
from the environment from those mainly caused by other motor acts
within the sequence. Similarly, serotonin, which controls the balance
between short-term and long-term prediction of reward (Doya, 2002),
might support motor sequence learning by regulating the balance be-
tween the learning signal necessary to connect two subsequent motor
acts (short-term prediction of reward) and the learning covering the
whole motor sequence (long-term prediction of reward).

Fig. 5 summarises some key neural and neuromodulation processes
involved in super-learning that involve the interplay and reciprocal
influence of unsupervised, supervised, and reinforcement learning
processes.

Fig. 5. Interplay of super-learning neural mechanisms (coloured text and ovals)
considered in this work. These processes involve several brain areas and com-
putational mechanisms (black text), and diverse neuromodulators supporting
them (black text in Italics). Ctx: cortex; BG: basal ganglia; Cbl: cerebellum. SL,
UL, RL: supervised, unsupervised, and reinforcement learning, respectively.

D. Caligiore, et al. Neuroscience and Biobehavioral Reviews 100 (2019) 19–34

27



5. Evidence relevant to refining the super-learning hypothesis

5.1. Cerebellum and basal ganglia: interactions between supervised and
reinforcement learning

An increasing number of researchers have started to investigate how
unsupervised, supervised and reinforcement learning processes may
work through parallel and interacting mechanisms operating in specific
cortical, cerebellar and basal ganglia areas. Several works support the
involvement of cerebellum in reinforcement learning processes.
Experiments with animals show that in classical conditioning tasks (i.e.,
reinforcement learning tasks) the inferior olive, which conveys signals
to the cerebellum to regulate motor coordination and learning, is en-
gaged early in the learning process and habituates as task performance
improves, increasing activity only in the instance of performance errors.
In this way, the inferior olive serves as an evaluative feedback me-
chanism to promote optimal performance for maximum reinforcement
(Thompson and Steinmetz, 2009 for a review). Bauer and colleagues
show that lesions of the dentate nucleus in rats (a cerebellar output
nucleus) reduce motivation, resulting in depressed responding for ap-
petitive reward (Bauer et al., 2011). Similar data has been found in
humans where focal cerebellar lesions selectively impair reward-based
reversal learning in an associative learning paradigm (Thoma et al.,
2008). Building on the results of their experiments with monkeys in-
volved in motor sequence learning, Hikosaka and colleagues proposed
that learning of kinematics and dynamics aspect of motor sequence
proceeds in parallel, but have different times courses and are controlled
by different cortico-striatal and cortico-cerebellar loop circuits. The
kinematic component, expressed in terms of accuracy, is learned more
quickly. This component is dependent on circuits linking frontal, par-
ietal and premotor regions with caudate and lateral cerebellar asso-
ciation areas. By contrast, the dynamic component, expressed in terms
of changes in speed and other motor parameters, occurs more slowly.
Learning of this component is controlled by circuits linking motor
cortical regions with the putamen and midline cerebellar regions. In
addition, they propose that reward-based learning involving corticos-
triatal circuits and error-based learning involving cortico-cerebellar
loops would contribute to shaping these processes (Hikosaka et al.,
2002, 1995; Lu et al., 1998).

Several authors have also investigated the relationship between
supervised and reinforcement learning mechanisms by studying the
interplay between two forms of prediction error produced within the
brain by comparing predicted and observed consequences of motor
commands: the sensory prediction error computed as the difference be-
tween the effective and predicted sensory feedback (observed in terms
of activity in primary sensory organs, e.g., touch, vision or proprio-
ception); the reward prediction error calculated as the difference between
the expected value of an action (in terms of its utility or usefulness) and
the value achieved. Supervised learning processes mainly pivot on the
minimization of sensory prediction errors while reinforcement learning
processes are mainly based on the minimization of the reward predic-
tion error. Izawa and Shadmehr studied the interplay between the two
forms of prediction error in a reach adaptation protocol, which is the
form of supervised learning that has been studied most extensively.
They found that when high-quality sensory feedback is available,
adaptation of motor commands is driven almost exclusively by sensory
prediction errors (i.e., by supervised learning mechanisms). In contrast,
as the quality of the sensory feedback degrades, adaptation of motor
commands become more dependent on reward prediction errors (i.e.,
by reinforcement learning processes). In another study, Izawa and
colleagues compared performance of cerebellar patients and healthy
controls in a reaching task with a gradual perturbation schedule. The
results of the experiment show that cerebellar subjects can counter a
gradual visuomotor rotation and generalize the new reach pattern to
other targets when they learn with concurrent sensory feedback (online
visual cursor feedback) and binary reward feedback. The authors

suggest that cerebellar patients rely on a reinforcement mechanism
because they did not change the perceived location of their hand in a
proprioceptive recalibration test (Izawa et al., 2012). Such proprio-
ceptive recalibration is thought to be a hallmark of sensory prediction
error-based adaptation tasks (Synofzik et al., 2008). It is however also
possible that these results are based on complex interactions among
systems, for example reinforcement learning processes might indirectly
affect cerebellum learning by biasing attention which in turn might lead
to repetition and associative learning. In this line, Tan and colleagues
show that post-movement beta activity (13–30 Hz) over sensorimotor
cortex-basal ganglia network in healthy subjects relates with the eva-
luation of uncertainty in feedforward estimation. The authors suggest
that the amplitude of this activity signals the need for maintenance or
adaptation of the motor output, and if necessary, exploration to identify
an altered sensorimotor transformation. These results suggest that the
prediction error signals in the basal ganglia during motor adaptation
are dependent on reliability (Tan et al., 2016).

Recently, Therrien and colleagues proposed that cerebellar damage
indirectly impairs reinforcement learning by increasing motor noise.
The authors devised two experiments with participants involved in an
error-based adaptation task. The first experiment involved healthy
young adults, the second one involved patients with cerebellar damage
and age-matched controls. In both cases, the participants either re-
ceived error-based feedback (a cursor feedback) or a binary reward
signal (i.e., success or failure) at the end of a reaching movement, in-
dicating good performance if they reached a position close to the target.
The authors found that participants with cerebellar damage and healthy
controls show learning under both error-based and reward feedback
conditions (Therrien et al., 2016). Interestingly, the normal learning
with error feedback in the cerebellar group is inconsistent with the
proposals in which supervised learning based on error feedback are the
exclusive responsibility of the cerebellum (Doya, 2000, 1999). How-
ever, cerebellar patients varied in their learning performance in the
reinforcement condition, with some showing only partial learning
ability. The authors developed a computational model of the re-
inforcement condition and used it to show that learning could be de-
pendent on the balance between motor noise and exploration varia-
bility. In Therrien’s study, the patient group had greater motor noise
and hence learned less. The authors also found that the reward feed-
back led to optimal retention of the learned behaviour during a post-
learning test phase, whereas the error feedback learning was not re-
tained, and decayed in the test phase. These results agree with previous
findings showing that in the absence of error feedback adapted beha-
vior can be stabilized by binary reward feedback (Shmuelof et al.,
2012).

5.2. Basal ganglia and cortex: interactions between reinforcement and
unsupervised learning

The influence of reward-based processes operating in the basal
ganglia in unsupervised learning has been recently studied by Wong
and colleagues (Wong et al., 2013). The authors showed that basal
ganglia activity can affect unsupervised learning processes during a
spatial learning task where the participants develop internal re-
presentations of the environment through self-exploration without ex-
plicit feedback or instruction. In particular, they examined whether
intrinsic fluctuations of resting-state functional magnetic resonance
imaging (rsfMRI) signal in the basal ganglia can be used to predict the
participant’s ability to learn in a virtual-reality unsupervised spatial
learning environment. The results show that better performers have
higher rsfMRI signal amplitudes in the basal ganglia. In this line, it has
been recently suggested that cortical networks on their own may also
support reinforcement learning (Wang et al., 2018). Kim and colleagues
proposed a computational model of the basal ganglia-cortical system
showing that motor adaptation could involve cortical Hebbian learning
mechanisms with basal ganglia that modulate the activity of thalamo-
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cortical relay neurons based on reinforcement learning mechanisms
pivoting on dopaminergic signals (Kim et al., 2017). Bar-Gad and col-
leagues proposed that the functions implemented by basal ganglia in-
volve dimensionality reduction (i.e., the compression of extended cor-
tical neural patterns into small neural codes), and that interaction
between reinforcement and unsupervised learning mechanisms might
support it (Bar-Gad et al., 2003). This idea is also supported by anatomy
showing a high convergence of cortical connections into the relatively
small striatum nuclei (Feingold et al., 1996). Pivoting on this perspec-
tive, Bonaiuto and Arbib proposed a neurorobotic model that uses a
modulation of cortical learning by a reinforcement signal in order to
extract combinations of object features that afford successful grasps
(affordances) (Bonaiuto and Arbib, 2015). Mannella and Baldassarre
proposed a neural model showing how in some conditions unsupervised
learning processes acting within basal ganglia are sufficient to support
the selection of different thalamo-cortical dynamical patterns sup-
porting the acquisition of multiple variants of very different motor
patterns (Mannella and Baldassarre, 2015). The computational model
proposed by Ashby and colleagues suggests that the subcortical path-
ways projecting to the premotor area via the striatum, globus pallidus,
and thalamus has greater neural plasticity because of a dopamine-
mediated learning signal from the substantia nigra. In contrast, the
cortical-cortical path learns more slowly via (dopamine independent)
Hebbian learning. Because of its greater plasticity, early performance is
dominated by the subcortical path, but the development of automaticity
is characterized by a transfer of control to the faster cortical-cortical
projection (Ashby et al., 2007).

5.3. Cerebellum and cortex: interactions between supervised and
unsupervised learning

Spampinato and Celnik use non-invasive brain stimulation to ex-
plore cerebellar and primary motor cortical mechanisms during early
and late motor skill learning in humans. Their findings indicate that
early in motor skill learning, cerebellar-dependent learning mechan-
isms (i.e. error-based processes) are needed to learn the task dynamics
before the primary motor cortex, incorporating other forms of learning
(i.e. reward-based or use-dependent), is engaged. These findings in-
dicate a distinct temporal dissociation in the physiological role of the
cerebellum and cortex when learning a novel skill (Spampinato and
Celnik, 2017).

Based on anatomical and physiological data supporting cerebro-
cerebellar interactions, Molinari and colleagues propose that the cere-
bellum could control cortical plastic changes by modulating cortical
excitability in a discrete topographic manner and that this mechanism
could induce the coupling between specific sensory inputs and motor
outputs (Molinari et al., 2002). The organization of cerebellum in mi-
crocomplexes, each comprising a set of Purkinje cells and neurons in
the cerebellar nuclei, and the long length of the parallel fibers over-
lapping different coupling of microcomplexes (Arbib et al., 1995) sup-
port this mechanism. Similarly, Kishore and colleagues note that cere-
bellar cortical excitation leads to an enhancement of the normal
inhibition of dentate nucleus by the Purkinje cells. This reduces the
normal excitatory control of dentate nucleus on the afferent inflow to
primary motor cortex, thus, they suggest, blocking the sensorimotor-
plasticity within it. The authors suggest that the functional relevance of
such cerebellar modulation of cortical plasticity could be to prevent the
selection of unsuited or new motor programs by sources external to the
cortex and to provide stability to motor maps (Kishore et al., 2014).
From a computational perspective, a modern view of the function of the
cortex is building on probabilistic models able to predict sensory inputs
(Friston, 2010). Such models can not only build representations, but
also predict one modality, e.g. an auditory representation, on the basis
of the other modality, e.g. visual input. In this way, the cortex can
perform also supervised learning, if an “input pattern” is presented to
one modality, while the “output pattern” to the other modality

(O’Reilly and Munakata, 2000). Within this line, a lot of papers have
been recently published suggesting how during such associative
learning the cortical networks can approximate the back-propagation
algorithm, which is a very effective algorithm for supervised learning
(for review see Whittington and Bogacz, 2019).

Finally, Schweighofer and colleagues proposed a bio-inspired com-
putational model to study how unsupervised learning mechanisms
could boost the cerebellar supervised learning performance. They ar-
gued that cerebellar motor learning is enhanced by a sparse code (i.e. a
neural code in which the fraction of active neurons is low at each time)
that simultaneously maximizes information transfer between mossy fi-
bers and granule cells, minimizes redundancies between granule cell
discharges, and re-codes the mossy fibers inputs with an adaptive re-
solution such that inputs corresponding to large errors are finely en-
coded. The authors propose a set of physiologically plausible un-
supervised learning rules that might operate within the cerebellar
cortex to produce such a code (Schweighofer et al., 2001). They show
that unsupervised learning of granule cell sparse codes greatly improves
adaptive motor control producing fast, accurate and stable learning in
comparison to traditional cerebellar models where these mechanisms
are not considered.

6. Super-learning addresses some open issues

This section discusses how the super-learning hypothesis can help to
deal with some open issues in motor learning research.

6.1. What are the differences and commonalities of early motor learning
and adaptation?

While motor adaptation considered here is much studied as it in-
volves the modification of existing motor skills in the presence of
changes that can be produced in the lab, the initial acquisition of most
basic motor skills takes place at an early developmental age and so
poses difficulties to the study of its underlying neural processes.
Behaviourally, the development of basic movements, for example for
reaching and grasping (Bonaiuto and Arbib, 2015; Caligiore and
Baldassarre, 2018; Oztop et al., 2004), is studied in early infancy in
developmental-psychology longitudinal experiments (Berthier and
Keen, 2006; Carlson and Harris, 1985). It has been proposed with
computational models that these acquisition processes involve trial-
and-error learning mechanisms (see (Caligiore et al., 2014), for a re-
view and a model). How does super learning relates to these studies?
These studies show that early motor learning, for example involving
reaching, builds on the performance of distinctive “sub-movements”
detectable as multiple acceleration-deceleration phases of the whole
movement (Berthier and Keen, 2006; Carlson and Harris, 1985). In
different stages of development, sub-movements progressively decrease
in number until they lead to a single harmonious movement. Sub-
movements have been ascribed to motor noise and the active attempts
to correct the movement trajectory based on the feedback on the ac-
complishment of the desired target (Berthier and Keen, 2006; Caligiore
et al., 2014).

The presence of sub-movements is predicted by the super-learning
hypothesis stating that when facing a new motor challenge basal
ganglia initially search coarse-grained solutions to it. The information
acquired by trial-and-error is progressively transferred to the cortical-
cerebellar system, forming an internal model, which is acquired on the
basis of “supervised associative processes” under the initial “instruc-
tion” (supervision) by the basal ganglia. This view is supported by
empirical evidence showing that when behaviour is first acquired and
then automatized (becoming “habitual”) the basal ganglia show a high
initial activation that then decreases with the progress of learning
(Ashby et al., 2010). However, the super-learning also states that the
refinement of movements also involves the fine-grained operation of
cerebellum. Indeed, we have seen that empirical data on motor
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adaptation support this view. The difference with motor learning, jus-
tifying its faster course, might be that adaptation can also rely on in-
ternal models that furnish information on “what to expect” usable for
supervised (re-)learning. The super-learning hypothesis thus proposes
an integrated view of initial learning and later adaptation, and hence a
basis to empirically investigate the mechanisms they share or possess
exclusively.

6.2. Why does the striatum activate before cerebellum during motor
adaptation?

During motor adaptation, one typically sees striatal activation
during the early phase of learning and more prominent cerebellar ac-
tivation during the later acquisition process (Doyon et al., 2003a;
Shadmehr and Holcomb, 1999). These findings have suggested that, in
contrast to motor sequence learning, during motor adaptation there is a
transfer of plasticity from a striatal-cortical to a cerebellar-cortical
network. At present, however, the mechanisms underlying this transfer
need to be explained and supported by further theoretical and empirical
research (Doyon et al., 2002).

According to the super-learning mechanisms described in Section
4.1 the early striatal activation might be necessary to allow the basal
ganglia to select a gross motor pattern within the motor cortex, re-
presenting a quick solution to the perturbed motor task. The cerebellum
could subsequently work on this gross solution to gradually improve it
through a transfer of plasticity from a striatal-cortical to a cerebellar-
cortical network. In this way, the subject can gradually recover the
baseline level of performance.

6.3. What does fine regulation of learning processes in the granule cells
depend on?

It is still not fully clear how the activation of specific granule cells
during LTP and LTD processes in the cerebellum contribute to the fine
tuning of motor behaviour (D’Angelo and De Zeeuw, 2009). The super-
learning mechanisms described above suggest that the neuromodula-
tory system might contribute to this tuning. In particular, the sub-
thalamic-pons-cerebellar circuit might make specific granule cells sen-
sitive to dopamine reward signals to boost their activation during LTP/
LTD processes. Wagner and colleagues have recently reported sub-
stantial reward-related signals in the granule cell activity (Wagner
et al., 2017). As we have seen in Section 3, a fine regulation of the
granule cells activation may be important to drive, in turn, the re-
cruitment of cerebellar microcomplexes during learning of fine-granu-
larity neural patterns selection. The recruitment of cerebellar micro-
complexes might also be modulated by the action of another
neuromodulator, the serotonin, which might contribute to driving the
responsibility of each cerebellar microcomplex during these learning
processes (Schweighofer et al., 2004).

6.4. What is the encoding of sensorimotor parameters in cerebellar internal
models?

We have seen that motor control relies on internal models, i.e.
forward models predicting the effects of action in the current state, and
inverse models producing the action to achieve a goal from a starting
state. It is widely accepted that the cerebellum is a critical part of the
cortical-subcortical system involved in the acquisition and use of in-
ternal models (Wolpert et al., 1998). A key open issue highlighted by
recent literature on motor learning regards the identification of the
sensorimotor parameters encoded by the cerebellar internal models.
This would require experiments examining cerebellar contributions to
learning-related changes in movement parameters such as force, velo-
city, timing and coarticulation. Some experiments related to this have
been conducted in animals, but relatively few have been carried out
with humans (Penhune and Steele, 2012).

In agreement with the super-learning mechanisms, the cerebellum
might manage the sensorimotor parameters represented by the cere-
bellar internal models through the fine-granularity selection of neural
patterns within the thalamo-cortical circuits. In more detail, the fine
regulation of the granule cells activation due to the dopamine signal
activate a subset of Purkinje cells that, in turn, modulate a group of
cerebellar nucleus. This group regulates the parameters of a motor
pattern generator outside the cerebellum (Arbib and Spoelstra, 1997),
which may be located in spinal cord, midbrain, or even cerebral cortex
and this regulation might affect an elemental movement by producing
changes in movement parameters such as force, velocity, timing and
coarticulation (Ito, 2013).

6.5. What are the mechanisms underlying the managing of different cortical
time-scales during action sequences?

During the production and learning of action sequences, it is still not
clear how the brain manages the huge gap of time scales between the
response of single neurons, which is on the order of tens of milliseconds,
and common behaviors, which usually span several seconds and min-
utes. To address these issues, it has been proposed that the organization
of cortical anatomy might reflect the temporal hierarchy that is in-
herent in the dynamics of environmental states (Baldassarre et al.,
2013; Kiebel et al., 2008). According to this perspective, the lowest
level of this hierarchy corresponds to fast information processing in-
volving, for example, somatosensory and primary motor information
processing below the second. Premotor/supplementary motor levels
support motor preparation and sequences in the range of seconds. And
finally the highest levels involving prefrontal regions encode slow
contextual changes in the environment under which faster representa-
tions unfold. This hierarchical organization depends on forward and
backward connections within the cortical regions. Backward connec-
tions, targeting NMDA receptors in the supra-granular layers, tend to
produce a modulatory effects on neuronal responses (Sherman and
Guillery, 1998), and show synaptic dynamics having slower time con-
stants (Sherman, 2007). This suggests that forward connections elicit an
obligatory response in higher levels, whereas backward connections
have modulatory effects and operate over greater spatial and temporal
scales (Kiebel et al., 2008).

The cortical-subcortical interactions underlying super-learning
could have a critical role in these issues. Both basal ganglia and cere-
bellum, indeed, form anatomical loops with lower and higher levels of
this cortical hierarchy and might support the managing of timing issues
in different ways (Section 3). As we have seen, basal ganglia might
contribute to select thalamo-cortical neural patterns at the different
levels of the hierarchy on the basis of their partially specialised macro-
loops involving the putamen/caudate/accumbens portions of striatum
(Mannella and Baldassarre, 2015; Yin and Knowlton, 2006). Regarding
the higher levels of the hierarchy, empirical evidence shows that the
synapse-specific differences in striatal NMDA receptor content could
differentially modulate the signal transmission in the basal ganglia-
thalamo-cortical circuits (Sil’kis, 2003; Smeal et al., 2008). This mod-
ulation might support the work of the backward cortical connections
targeting NMDA receptors and operating over greater spatial and
temporal scales. Conversely, the cerebellum might mainly contribute to
the functioning of the lower levels of the cortical hierarchy, those re-
lated to the regulation of the fast fluctuations of sensorimotor proces-
sing. In particular, the cerebellum might be involved in the fast com-
putation of the sensory prediction error that should alter the internal
models that predict the sensory consequences of motor commands
(Chen et al., 2014; DeLong and Strick, 1974; Edelman, 2001). Although
basal ganglia and cerebellar neural networks have a degree of specia-
lization, accurate and precise timing likely requires that both systems
act as a cohesive unit (Doyon et al., 2003b; Muller and Nobre, 2014;
Teki et al., 2011). In this respect, the high degree of connectivity and
the hierarchical organization that exists between the cerebello-thalamo-
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cortical and the cortico-striato-thalamo-cortical loops suggests that
these neural networks work in conjunction across both sub- and supra-
second time scales as a unified entity. Several lines of evidence indicate
that the cerebellar system could be principally involved in initiation of
the timing process and adjustment during acquisition of tasks (Lusk
et al., 2016b; Petter et al., 2016c). Adjustment refers to the modulation
of on-going neural processes in order to decrease variability through
error correction mechanisms. By contrast, the striato-thalamo-cortical
network could be more involved in the continuation and termination
phases of timing, where continuation refers to mechanisms associated
with tracking or accumulating the passage of time during intervals
where external stimuli are absent or constant, and termination refers to
the discontinuation of temporal processing following the off-set of the
stimulus being timed or the presentation of an explicit ‘stop’ signal
(Petter et al., 2016d). Although there are clear neurophysiological
distinctions between the striatum and cerebellum in sub- vs. supra-
second timing (cf., Section 4), the differentiation in temporal mechan-
isms may additionally depends by the task at hand. Each circuit may
play a role in temporal initiation depending on whether explicit or
implicit timing mechanisms are being used. Furthermore, the degree to
which external cues can be used to help increase temporal precision
throughout the interval being timed may be reflected in the degree of
activation in the cerebellar and striato-thalamo-cortical pathways.

There is still much work to be done in order to fully understand the
connectivity between certain areas thought to be essential in timing.
Implementation of optogenetics stimulation using retrograde viral
vectors paired with recording techniques will be invaluable in further
elucidating network interactions. Simultaneous in vivo recordings from
both the cerebellum and striatum will also be essential in determining
how communication between these regions allows organisms to mod-
ulate internal timing mechanisms. Specifically, simultaneous recordings
in the striatum as well as the cerebellum, SMA or other cortical areas
would prove informative (Gu et al., 2011; Schirmer et al., 2016).

7. Conclusions

In this article, we discussed how the interaction between cortex,
cerebellum and basal ganglia might produce a super-learning mechanism
that, by integrating unsupervised, supervised and reinforcement
learning mechanisms, supports the acquisition of flexible motor beha-
viour. We considered empirical evidence supporting this hypothesis and
proposed specific mechanisms related to the dynamical interplay be-
tween these different forms of learning during motor sequential
learning and motor adaptation.

Our proposal could be extendable to learning processes involving
different domains, including the solution of cognitive tasks, since the
neural mechanisms underlying super-learning are applicable to neural
pattern formation in general. This latter claim is in line with increasing
evidence supporting the involvement of basal ganglia and cerebellum in
non-motor functions (Caligiore et al., 2016b; Kotz et al., 2009; Strick
et al., 2009). Higher-level functions of the cortex are expressed through
its interactions with “lower level” systems which, in turn, are critical in
modulating cortical functions (Koziol and Budding, 2009). For example,
it has been proposed that the hierarchical organization and interaction
between basal ganglia and cortical structures underlines a hybrid un-
supervised and reinforcement learning algorithm that can perform a
number of distinct high-level operations, including classification, object
and feature localization, and hierarchical memory organization (Ashby
et al., 2005; Chandrashekar and Granger, 2011; O’Reilly and Frank,
2006). Furthermore, based on evidence demonstrating an effective
connectivity between basal ganglia, cerebellum and cortical regions
involved in phonological processing (i.e. left inferior frontal gyrus and
left lateral temporal cortex), it has been suggested that in decision
making basal ganglia engage in cortical initiation while the cerebellum
amplifies and refines this signal (Booth et al., 2007). In the same line,
building on the data showing the critical role of the cortical-cerebellar

network for managing predictive mechanisms during language pro-
cessing (Lesage et al., 2012) and on activation at finer spatial and
temporal granularity within the cerebello-thalamo-cortical circuits
(Ivry et al., 1988b; Lusk et al., 2016c), it has been proposed that this
circuit could be important to accurately discriminate phonemic and
syllabic contrasts. These, in turn, are essential to the development of
speech perception (Ackermann et al., 2004; Vias and Dick, 2017).

Future versions of the super-learning hypothesis may focus on the
neural processes underlying the interactions of key brain areas im-
portant to manage the relationship between episodic and procedural
memory learning such as amygdala, hippocampus, thalamus, and pre-
frontal cortex (Arbib and Bonaiuto, 2012; Franklin and Grossberg,
2017). For example, the circuits linking hippocampus and the cere-
bellum which mediate recently acquired memory, and the circuits in-
cluding the medial prefrontal cortex and the cerebellum, important to
manage remotely acquired memories (Grossberg and Kishnan, 2018), or
the neural mechanisms according to acetylcholine, projecting to cortex,
amygdala, hippocampus and thalamus, controls the balance between
memory storage and memory update (Doya, 2002).

The hypothesis discussed in this paper is in line with the system-level
approach to the study of brain according to which different classes of
behaviours are generated by the interplay of different subsets of com-
ponents of the nervous system rather than by specific components in
isolation (Arbib and Bonaiuto, 2016; Caligiore et al., 2016b, 2010;
Caligiore and Fischer, 2013). We have recently shown how using a
system-level approach could be crucial to explaining in radically new
ways the origin of different dysfunctions of the cortical-cerebellar-basal
ganglia system related to Parkinson’s disease (Caligiore et al., 2016a)
and Tourette’s syndrome (Caligiore et al., 2017). Similarly, in this ar-
ticle we have discussed how pivoting on the super-learning hypothesis,
which is a system-level hypothesis, could advance the study of motor
learning in light of a new, more integrated perspective.
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