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Abstract

The onset of schizophrenia is typically preceded by a prodromal period lasting several years

during which sub-threshold symptoms may be identified retrospectively. Clinical interviews

are currently used to identify individuals who have an ultra-high risk (UHR) of developing a

psychotic illness with a view to provision of interventions that prevent, delay or reduce sever-

ity of future mental health issues. The utility of bio-markers as an adjunct in the identification

of UHR individuals is not yet established. Several event-related potential measures, espe-

cially mismatch-negativity (MMN), have been identified as potential biomarkers for schizo-

phrenia. In this 12-month longitudinal study, demographic, clinical and neuropsychological

data were acquired from 102 anti-psychotic naive UHR and 61 healthy controls, of whom 80

UHR and 58 controls provided valid EEG data during a passive auditory task at baseline.

Despite widespread differences between UHR and controls on demographic, clinical and

neuropsychological measures, MMN and P3a did not differ between these groups. Of 67

UHR at the 12-month follow-up, 7 (10%) had transitioned to a psychotic illness. The statisti-

cal power to detect differences between those who did or did not transition was limited by

the lower than expected transition rate. ERPs did not predict transition, with trends in the

opposite direction to that predicted. In exploratory analysis, the strongest predictors of tran-

sition were measures of verbal memory and subjective emotional disturbance.
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Introduction

The incidence rate for onset of schizophrenia is highest during late adolescence and early

adulthood [1]. Long-term outcomes are heterogeneous across individuals. While some indi-

viduals experience sustained remission from symptoms, many others have lifetime reductions

in quality of life associated with episodes of florid positive symptoms, as well as ongoing nega-

tive symptoms and impaired cognitive function [2]. In order to develop more effective inter-

ventions and reduce disability, it is essential to better understand the onset and course of the

illness. In individuals with a confirmed diagnosis, it is usually possible to retrospectively iden-

tify a prodromal period lasting several years during which signs of poor mental health were

evident before the first onset of frank psychosis. These indications may include (a) basic symp-

toms, which refer to the individual’s subjective experience of abnormal volition, emotions,

thoughts, language, sensory perceptions, or motor actions; (b) attenuated psychotic symptoms,

which are observable symptoms normally associated with psychosis but of reduced intensity;

and (c) generalised reductions in ability to function, such as a decline in academic achieve-

ment. Internationally, a number of clinical instruments have been devised to identify individu-

als who are at risk of developing a psychotic illness. These instruments differ in the extent to

which they monitor attenuated psychotic symptoms, basic symptoms, and functional status

[3]. The Comprehensive Assessment of At Risk Mental State (CAARMS) is a structured in-

terview designed to identify individuals considered to be at ultra-high risk (UHR) of develop-

ing psychosis [4]. Initial reports estimated that 20–35% of help-seeking clients meeting the

CAARMS UHR criteria will develop schizophrenia or a schizophrenia-spectrum disorder

within 12–18 months [5]. However the figure can be as high as 50% [6] depending on the pop-

ulation sampled, the follow-up period, and the diagnostic criteria. In principle, this high transi-

tion rate provides an opportunity to study the evolving disorder in a relatively short time

frame. From a clinical perspective, improving the identification of those UHR individuals who

are more likely to make a transition to schizophrenia should allow for more targeted early

intervention in the prodromal phase of the illness and potentially better long-term outcomes

[7].

Mismatch negativity

All of the UHR screening instruments currently in use rely entirely on clinical interview [3].

The incorporation of objective, quantifiable, physiological measures might improve their

predictive power [8, 9]. Currently, one of the most reliable markers of schizophrenia is the

reduction of an electrophysiological signal recorded from the brain referred to as mismatch

negativity (MMN) [10–14]. MMN is an early negative component of the event-related poten-

tial (ERP), which is elicited by any discriminable change in a repetitive background of auditory

stimulation. The memory system underlying MMN enables the brain to process sounds with

respect to a relevant acoustic context and to automatically identify those events that might be

behaviourally relevant, prompting an attention switch for further processing [15]. This mem-

ory system incorporates a model of the acoustic context that is used to make perceptual infer-

ences about the nature of future sound events [16].

MMN is a useful index for several reasons. MMN reduction is a robust finding in schizo-

phrenia [13, 17]; while MMN reduction has been postulated to be a general index of cognitive

decline across multiple disorders [18], it has moderate specificity for schizophrenia [10, 19]

relative to disorders such as bipolar affective disorder, in which MMN is also reduced but with

a smaller effect size [14]; the MMN process is largely “automatic” in nature; it does not require

active attention and can be easily recorded in individuals while reading a book or watching a

movie [20]. Moreover, the MMN abnormality can be linked to the underlying neurochemical

Mismatch negativity in UHR

PLOS ONE | DOI:10.1371/journal.pone.0171657 February 10, 2017 2 / 26

HREC@hnehealth.nsw.gov.au; mail: Research

Ethics and Governance Office; Hunter New England

Local Health District, Locked Bag 1; New Lambton

NSW 2305, Australia.

Funding: The MinT study was supported by the

National Health & Medical Research Council of

Australia (Project 569259). RT was supported by a

University of Newcastle Post-doctoral Fellowship.

US and GC were supported by the Schizophrenia

Research Institute utilizing infrastructure funding

from the New South Wales Ministry of Health and

New South Wales Ministry of Trade and

Investment (Australia). RL was supported by an

Australian Research Council Future Fellowship

(FT110100631). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

mailto:HNELHD-HREC@hnehealth.nsw.gov.au


(e.g. glutamate hypofunction) [21–23] and neuroanatomical abnormalities (e.g. reduction in

cortical brain matter and associated cognitive deficits) [24, 25] which have been implicated in

schizophrenia. Finally, reduced MMN appears to be closely associated with poor verbal mem-

ory [26] and poor overall level of functional status across psychological, social, and occupa-

tional domains [27]. These cognitive and functional deficits are persistently present in

individuals with schizophrenia, whereas the clinically diagnostic positive symptoms, such as

auditory hallucinations or persecutory delusions, can be episodic [28].

Although MMN can be elicited by almost any perceptible change in auditory stimulus fea-

tures, MMN reduction in schizophrenia has a larger effect size for duration, rather than fre-

quency or intensity, deviant stimuli [14]. It has been suggested that MMN in response to

duration deviants may be a more reliable bio-marker for psychosis during the early phase of

the illness, whereas gradually increasing deficits in MMN to frequency deviants index progres-

sion of the illness during the chronic phase [29–31]. For example, we have previously reported

MMN deficits for both duration and frequency in individuals with a long duration of illness,

but only found duration MMN deficits in recent-onset schizophrenia [29]. However, this

proposition is challenged by recent findings of MMN amplitude reductions that are indepen-

dent of deviant type in recent onset schizophrenia [32] as well as in a clinical high risk group

[33].

During the course of the current longitudinal study, a growing number of reports have

either compared MMN in an at-risk group to healthy controls [34–41] or additionally com-

pared UHR individuals who transitioned to psychosis to those who did not transition [33, 42–

45]. Reviews of these studies [9, 11, 31, 46, 47] and a meta-analysis [48] have suggested reduced

MMN in UHR relative to healthy controls with the majority of studies reporting significant

reduction in MMN to at least one type of deviant. Furthermore, in those studies that examined

transition rates, reduced MMN, especially to duration deviants, provide some evidence which

may help predict transition to psychosis. Unfortunately, interpretation of data comparing

transition to non-transition UHR subgroups from these studies, including the current study,

has been hampered by small sample sizes in the transition groups. Transition rates have been

substantially lower than that predicted by the original CAARMS studies [5, 49]. Consequently,

data needs to be pooled across multiple studies before definitive conclusions can be drawn.

The current study is the largest to date in terms of the number of UHR participants examined.

The P3a

Deviants in an auditory stream elicit MMN followed by a positive frontal component labelled

P3a. The P3a is generally interpreted as an index of automatic reorientation of attention

towards the deviant stimulus following change detection [50–52]. However, the relationship

between MMN and P3a is not fully understood. For example, P3a amplitude is more sensitive

to attentional load than MMN and can be abolished if the primary task is cognitively demand-

ing [50, 53]. Originally, it was proposed that P3a is triggered when the change detection pro-

cess indexed by MMN exceeds a threshold, the level of which is subject to top-down control

[54]. More recently, experimental manipulations have demonstrated dissociations between

MMN and P3a, which suggest P3a may be initiated independently of MMN by lower-level

change detection/salience processes [55, 56], and query whether P3a actually indexes a shift of

attention [56, 57]. Studies of individual differences in patient cohorts with established schizo-

phrenia [58, 59] further support the dissociation of MMN and P3a, and argue that deficits in

these reflect distinct physiological abnormalities. In line with this, pharmacological studies

suggest MMN reflects glutamatergic processes [60, 61], whereas P3a amplitude is modulated

by dopamine (and hence current anti-psychotic medications) [62, 63]. Consistent with the
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findings for MMN, P3a amplitude correlates with cognitive and psychosocial functioning [59,

64, 65], and is reduced in schizophrenia [59, 66], first episode psychosis [37, 41, 64, 67], and in

at risk samples [36, 37, 39, 41]. Thus P3a might provide an additional biomarker for psychosis

but targeting different disease processes, and can be readily measured concurrently with

MMN. However, to date, only three studies have examined whether P3a predicts transition to

psychosis in UHR individuals. Two reported reduced [36, 39] and one increased [44] P3a in

those who transitioned, but in all three studies sample sizes were extremely small and the

effects not statistically significant. Thus the utility of P3a as a potential biomarker for psychosis

is yet to be determined.

Cognition

A drop in global functioning is a key indicator of risk of developing psychotic illness, including

schizophrenia [5]. There is some evidence that MMN amplitude reduction is associated with

poor functioning, while other reports suggest that MMN amplitude reduction in patients is

also related to more traditional measures of verbal memory performance and executive func-

tion subtests [26]. These more traditional cognitive measures have also been associated with

functional disability. Deficits in verbal memory, verbal fluency, and executive functioning/

working memory have been reported in UHR samples [68]. However, many past studies have

used composite test batteries and do not report data on specific deficits on individual subtests.

Where subtests have been examined, these have revealed preliminary evidence that Logical

Memory from the WMS-R and spatial working memory may be differentially impaired in

those who later develop psychosis [68]. Previous reports also suggested that olfactory identifi-

cation deficits appear to be predictive of transition to psychosis and even specific to those

UHR individuals who developed schizophrenia compared to those who developed other forms

of psychoses outside of the schizophrenia spectrum [69]. However, more recent reports sug-

gest that poor olfactory identification is associated with poor functional outcome, regardless of

transition status [70].

While real-world functional disability in schizophrenia is associated with various cognitive

deficits, to a degree, there is growing evidence that specific “socio-cognitive” impairments are

more closely associated with the poor daily social interactions that characterise schizophrenia.

“Socio-cognitive” refers to the processes that high-order primates, including human beings,

have evolved to sustain complex social interactions. One of the most important of these is The-

ory of Mind (ToM); that is the capacity to use contextual cues to reason about, predict, and

explain behaviour in terms of psychological causation (e.g., to reason that “Fred desires x and

intends y since he believes z about this situation”). ToM is severely impaired in schizophrenia

[71, 72]. ToM also better predicts real world functioning in people with schizophrenia than do

more basic cognitive abilities like attention [73]. The current study assessed ToM using three

tasks, two of which make minimal verbal demands: (1) the non-verbal False-belief Picture-

sequencing Task [74], (2) the Reading the Minds in the Eyes Task (with minimal verbal

demands) [75], and (3) the language-based Hinting Task [76].

Aims of the study

In the current longitudinal study, a cohort of help-seeking individuals identified to be at risk

of developing a psychotic illness was examined with the intention of addressing several specific

questions. Firstly, do those at risk of developing psychosis differ from a healthy cohort, partic-

ularly in their MMN response? Does MMN amplitude differ between those UHR participants

who transition to psychosis and those who do not? Is transition to psychosis associated with

further reductions in MMN amplitude after the baseline measurement? Is the reduction in

Mismatch negativity in UHR
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MMN associated with changes in functional status and cognitive impairment especially in ver-

bal memory? Finally, is MMN in response to duration-deviants a more robust predictor of

transition rates than MMN to frequency or intensity deviants? We also take the opportunity to

ask similar questions of the P3a which immediately follows the MMN during a passive audi-

tory task, and examine its relationship with MMN. Finally, we examined a battery of clinical

and cognitive measures within the UHR sample and their relationship with MMN.

Method

Ethics

Ethics approval was provided by the Hunter New England Human Research Ethics Committee

(Approval number: 08/12/17/5.17). All participants provided written informed consent. For

participants under 18 years of age, a parent or guardian also provided written informed con-

sent. Participants received monetary compensation to cover travelling expenses. At the partici-

pant’s discretion, referring clinicians received a report summarising clinically relevant test

results.

Participants

Data presented are from the Minds in Transition (MinT) project (2009–2014), which is a lon-

gitudinal study of transition to schizophrenia in UHR participants. The research was con-

ducted in collaboration with early psychosis services in metropolitan, regional, and rural

centres in NSW Australia (The Schizophrenia Research Unit, Liverpool Hospital, South West-

ern Sydney and the Early Psychosis Program, Bondi Junction Community Mental Health Ser-

vice, Eastern Sydney; The Psychological Assistance Service, Hunter New England Health and

the Centre for Translational Neuroscience and Mental Health Research, The University of

Newcastle, Newcastle; and the Centre for Rural and Remote Mental Health, Bloomfield Hospi-

tal, Orange; respectively). Participant referrals were variously obtained through the national

headspace initiative, mental health workers, general practitioners, school counsellors and self-

referrals.

UHR participants were aged 13–25 years. Inclusion criteria required a loss of functioning,

defined as a drop of 30% in Global Assessment of Functioning (GAF) in the past 12 months,

together with at least one of the following: (a) schizotypal personality traits or a first degree rel-

ative with schizophrenia; (b) attenuated psychotic symptoms; or (c) brief limited intermittent

psychotic symptoms (BLIPS). Criteria b and c are assessed on the CAARMS [4], an interview

schedule designed to assess a broad range of sub-threshold symptoms commonly reported in

prodromal psychosis. Exclusion criteria for the study included pre-existing psychosis with

symptoms exceeding the CAARMS psychosis threshold, antipsychotic pharmacotherapy, diag-

nosis of drug abuse or dependence as assessed by either the Structured Clinical Interview for

DSM-IV Axis I Disorders–Clinical Version (SCID-CV) or the Kiddie Schedule for Affective

Disorders and Schizophrenia for School-aged Children—Present and Lifetime version

(K-SADS-PL), head injury with loss of consciousness for more than 15 mins, organic brain

impairment, estimated pre-morbid IQ of less than 70, impaired hearing (>20dB SPL), or his-

tory of nasal trauma.

Cohorts of healthy comparison participants were recruited from the general community at

each of the three research sites (i.e. Sydney, Orange and Newcastle) using a variety of proce-

dures including research volunteer registers; newspaper, website and notice board adverts; and

word of mouth advertising within hospital and educational institutions. We did not actively

recruit friends or relatives of UHR participants. Recruitment procedures were aimed to pro-

vide Control and UHR groups with similar age and gender profiles. Additional exclusion

Mismatch negativity in UHR
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criteria for Controls included having a first-degree family member with schizophrenia, or a

history of treatment for depression or anxiety.

After initial screening, 102 UHR and 61 healthy comparison participants were recruited.

Some participants did not complete a baseline EEG recording (18 UHR) or their EEG record-

ing was excluded due to data quality issues (4 UHR, 3 Control). The remaining participants

consisted of 80 UHR (42 females, mean age 18.6 yrs) and 58 controls (28 females, mean age

19.1 yrs) ranging in age from 12 to 26 years.

General procedure

At baseline, over the course of 2–3 days, all participants undertook a battery of clinical and

neuropsychological tests, an EEG recording whilst performing a passive and an active auditory

task, and a structural MRI session. Controls did not participate in any follow-up testing. UHR

participants were contacted every three months for the first year to assess their clinical status.

At the 12-month follow-up, the clinical tests, a subset of the neuropsychological tests, the EEG

recording, and the MRI session were repeated. A sub-group of UHR participants, excluding

those at the rural test centre, were monitored at six-monthly intervals for a further two years.

At the conclusion of the longitudinal study, participants were classified as either healthy com-

parison participants (Control); UHR participants who were lost to follow-up prior to the

12-month follow-up session (LTFU); UHR who had not transitioned to psychosis (UHR-NT);

or UHR who had transitioned to psychosis (UHR-T). Transition to psychosis was confirmed

by a DSM-IV diagnosis on either the SCID-CV or K-SADS-PL.

Clinical assessment

At baseline, clinical assessment began with a patient history, including family mental health,

past treatments, and prescription medications. Current diagnosis was assessed using the

SCID-CV [77] for participants 18 years or older, or the K-SADS-PL [78] for participants

under 18 years. Current mental health status and symptoms were assessed using the Compre-

hensive Assessment of At Risk Mental States–Monthly Version 2006 (CAARMS) [4], and the

Brief Psychiatric Rating Scale (BPRS) [79]. The impact of mental health problems was assessed

using the Global Assessment of Functioning (GAF) from the DSM-IV, the Social and Occupa-

tional Function Assessment Scale (SOFAS) [80], and the Global Functioning: Social (GF:

Social) and Global Functioning: Role (GF: Role) scales [81]. Substance use was assessed with

the Alcohol Use Disorders Identification Test (AUDIT) [82], the Cannabis Use Disorders

Identification Test (CUDIT) [83], and the Opiate Treatment Index: drug use all types (OTI)

[84]. Other clinically relevant assessments included the Schizotypal Personality Questionnaire

(SPQ) [85], the Rosenberg Self Esteem Scale (RSES) [86], the Beck Depression Inventory II

(BDI-II) [87], the Beck Anxiety Inventory (BAI) [88], the Eysenck Personality Questionnaire–

Revised (EPQ-R) [89], and the Pittsburgh Sleep Quality Index (PSQI) [90].

Follow-up assessments conducted every 3 months for the first year, and 6 monthly thereaf-

ter, included current medication and treatment, symptom ratings using the BPRS, global func-

tioning (GAF, SOFAS, GF: Social, GF: Role), alcohol and drug use, AUDIT and CUDIT. The

full battery of clinical assessments was repeated at the 12-month follow-up.

Neuropsychological assessment

At baseline, Premorbid IQ [91] was estimated with the two subtest (Vocabulary and Matrix

Reasoning) version of the Wechsler Abbreviated Scale of Intelligence (WASI) [92]. Working

memory was assessed with the Digit Span and Letter Number Sequencing sub-tests from the

Wechsler Memory Scale (WMS-III) [93] for participants 17 years or older, and from the
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Wechsler Intelligence Scale for Children (WISC-IV) [94] for participants under 17 years. Epi-

sodic verbal learning and memory was assessed with the California Verbal Learning Task

(CVLT-II) [95] for participants 16 years or older, or the California Verbal Learning Test for

Children (CVLT-C) [96] for participants under 16 years. Short-term visual memory was

assessed with the Visual Patterns Test (VPT) [97]. Executive function was assessed with the

Trail Making, Verbal Fluency, Colour Word Interference, and Tower Tests of the Delis-Kaplan

Executive Function System (D-KEFS) [98]. Social cognition was assessed with the False-Belief

Picture-Sequencing Task (FBPST) [75], Reading the Mind in the Eyes Task, revised version

(RMET) [76], and the Hinting Task [99]. Integrity of olfactory perception was assessed with

the University of Pennsylvania Smell Identification Task (UPSIT) [100].

Passive auditory task

For the passive auditory task, participants watched a video with muted audio while binaural

auditory stimuli were presented using calibrated headphones. There were four auditory stimuli

including a standard tone (50 ms, 80 dB SPL, 1 kHz sine wave, 10 ms rise and fall times), and

three deviant tones that differed from the standard in one physical feature: duration (100 ms),

frequency (1.2 kHz) or intensity (90 dB). Stimuli were presented with 500 ms stimulus onset

asynchrony in 3 blocks of trials each lasting approximately 9 minutes, with rest breaks between

blocks. Each block began with 3 sub-blocks of 80 trials of one of the three deviant types, pre-

sented as a control for physical features of the deviant stimuli. This was followed by an oddball

sequence of 860 tones consisting of the standard (82%) and three deviants (6% each) in a

pseudo-random order, such that each deviant was preceded by a minimum of two standards.

The passive auditory task was always followed by an active auditory task, the results of

which will be presented elsewhere.

EEG acquisition

EEG data were acquired from nine scalp sites (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4) and both mas-

toids, referenced to the tip of the Nose, using an electrode cap (Quick Cap, Neuroscan). Verti-

cal EOG was recorded from electrodes above and below the left eye. Horizontal EOG was

recorded from electrodes adjacent to the outer canthi of both eyes. A ground electrode was

located at AFz. Data were sampled at 500 Hz.

EEG data were recorded on one of two EEG Amplifier systems, either a Neuroscan Quick-

Amps or Neuroscan Synamps II. These EEG systems have different digital filtering characteris-

tics. Consequently, after acquisition, EEG data from both systems were additionally filtered to

compensate for these differences, such that the final EEG from both systems was identically

stimulus-locked, calibrated, and band pass filtered (0.5 to 30 Hz; 50 Hz notch).

ERP processing

ERP extraction was performed using Neuroscan Edit v4.5 software. Visual inspection was per-

formed to exclude gross artifact and identify bad channels. Bad channels were replaced by

interpolation of adjacent sites. Blink related artifact was reduced using a linear regression pro-

cedure with regression weights derived from an averaged blink [101].

For the passive auditory task, the EEG was low-pass filtered at 30 Hz and epoched from 100

ms pre-stimulus to 450 ms post-stimulus. Within the oddball sequence, the first 10 stimuli and

the first standard following each deviant were excluded. Trials with EEG artifact exceeding ±
150 μV were excluded. Trials were baseline corrected relative to the 100 ms pre-stimulus interval;

re-referenced to the average of both mastoids; and averaged by stimulus type to produce ERPs to

the Common Standard (STD), Duration Deviant (DEVDur), Frequency Deviant (DEVFrq) and
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Intensity Deviant (DEVInt) stimuli. For each of the three deviant types, MMN difference waves

(MMNDur, MMNFrq, MMNInt) were computed by subtracting the STD from the corresponding

Deviant ERP. The MMN difference waves were additionally low-pass filtered at 20 Hz.

ERP measures

Preliminary analysis indicated significant age related shifts in ERP peak latencies. Hence we

estimated peak amplitude and latency measures rather than computing mean amplitudes

across fixed time intervals. Peak latencies were estimated at Fz for all ERP components using

the search intervals listed in Table 1. Search intervals were centred on the peak response within

the grand average ERP across all participants and were broad enough to capture peaks for all

individuals as confirmed by visual inspection. For each participant, peak latency was estimated

using the 50% fractional area latency (FA-latency) method. FA-latency is more robust than

simple peak measures [102]. Peak amplitude measures were then defined at that latency, as the

mean across a 50 ms window centred on the peak.

Statistical procedures

Each ERP measure was analysed independently. To assess differences between UHR and con-

trols at baseline, ANCOVA was performed with factors group (Control, UHR) and deviant-

type (Duration, Frequency, Intensity) co-varied for age. For comparability with previous stud-

ies, tables present results of separate ANCOVAs for each deviant type including means, stan-

dard deviations and effect sizes reported as Cohen’s d. To assess UHR sub-groups at baseline,

the ANCOVA was repeated, but with four groups (Control, LTFU, UHR-T, UHR-NT), co-var-

ied for age, followed by planned comparisons between UHR-T and each of the other three

groups. Only effects involving group are reported. To look at differential changes in ERP com-

ponents over time, a longitudinal ANCOVA was performed across the two groups who pro-

vided data at both baseline and the 12-month follow-up (UHR-T, UHR-NT), with Session

(Baseline, Follow-up) as an additional repeated measures factor, co-varied for age. Only effects

involving group are reported. Greenhouse-Geisser correction was performed for repeated

measures factors. An alpha of 0.05 (two-sided) was accepted as statistically significant for

hypothesis testing. Where relevant, the term MMNmean refers to the simple average of

MMNDur, MMNFrq and MMNInt. Similarly for P3amean.

Items in the battery of clinical and neuropsychological measures were contrasted across

groups using ANCOVA co-varied for age. The relationships between MMN and P3a with clin-

ical measures were examined using partial correlations controlling for age. To control for mul-

tiple comparisons, all results with uncorrected p< .005 were accepted as significant, we then

applied a false discovery rate of α = .05 to the remaining variables.

Table 1. Peak Latency of ERP Components in the Passive Auditory Task.

Component Condition Peak Latency Search Window

MMN Duration 186 116–256

Frequency 168 98–238

Intensity 158 88–228

P3a Duration 282 192–372

Frequency 272 182–362

Intensity 268 178–358

Peak latency for each ERP component of interest in the grand average ERP (across all participants at baseline) and the intervals searched when measuring

each participant’s peak amplitude and latency for statistical analyses.

doi:10.1371/journal.pone.0171657.t001
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Results

Transition to psychosis

At the conclusion of the longitudinal study, participants were classified as either healthy com-

parison participants (Control, n = 61); UHR participants who were lost to follow-up prior to

the 12-month follow-up session (LTFU, n = 35); UHR who had not transitioned to psychosis

(UHR-NT, n = 60); or UHR who had transitioned to psychosis (UHR-T, n = 7). Transition to

psychosis was confirmed by a DSM-IV diagnosis on either the SCID or KSADS. DSM-IV diag-

noses included 1 x Paranoid Schizophrenia, 2 x Psychotic Disorder (NOS), 1 x Schizoaffective

Disorder, 2 x Bipolar I Disorder with Psychotic Features, and 1 x Major Depressive Disorder

with Psychotic Features.

Demographic, clinical, and neuropsychological measures at baseline

A summary of key demographic measures contrasting controls and UHR are presented in

Table 2. The full set of demographic, clinical and neuropsychological measures and statistical

Table 2. Key demographic measures contrasting UHR and controls at baseline.

Measure Sub-Measure Control UHR Statistic Significance Cohen’s d

n 61 102

Age 19.1 (3.19) 18.6 (2.71) t(161) = 1.04 n.s. 0.168

Gender Male 32 47 χ 2(1) = .62 n.s. 0.124

Female 29 55

Handedness Right 48 83 χ 2(2) = .30 n.s.

Left 5 7

Ambidextrous 6 8

Employment Employed/Student 57 67 χ 2(1) = 21.9 p < .001 ** 0.799

Unemployed 1 34

Years of Education 11.9 (2.62) 10.0 (2.54) F(1,160) = 26.0 p < .001 ** 0.807

Medication Any Medication † 4 46 χ 2(1) = 26.6 p < .001 ** 0.922

Nil 52 50

Previously Treated Mental Health Problems Any 2 90 χ 2(1) = 114.2 p < .001 ** 3.193

Nil 57 10

Family History (First Degree) Schizophrenia †† 24 χ 2(1) = 16.7 p < .001 ** 0.685

Nil 59 76

Cannabis Use Have Used 19 58 χ 2(1) = 12.8 p < .001 ** 0.596

Have Never Used 42 38

Age First Used 16.5 (1.81) 14.8 (2.27) F(1,73) = 7.60 p = .007 ** 0.645

Age Regular Usage 16.6 (3.21) 15.2 (1.72) F(1,39) = 1.78 p = .193 0.425

Duration Use (users) 2.58 (2.59) 3.50 (2.62) F(1,74) = 6.61 p = .012 * 0.598

Duration Use (all) 0.80 (1.86) 2.12 (2.66) F(1,154) = 17.0 p < .001 ** 0.664

WASI 2 Subscale IQ 118 (12.0) 104 (16.5) F(1,153) = 34.2 p < .001 ** 0.946

Global Assessment of Functioning 85.7 (6.12) 55.5 (12.2) F(1,145) = 260 p < .001 ** 2.678

Means (Standard Deviation) and statistical significance of the difference between Controls and UHR after co-varying for age. For clarity, p values >.1 listed

as n.s. Effect size reported as Cohen’s d.

† Antipsychotic medication was one of the exclusion criteria. 4 Controls and 13 UHR were taking non-psychotropic/non-specified medications.

†† 1st degree family history of schizophrenia was an exclusion criteria for controls.

* p < .05 uncorrected.

** p < .01 uncorrected.

doi:10.1371/journal.pone.0171657.t002
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comparisons are presented in S1 Table. As expected, controls and UHR differed substantially

on a wide range of measures after controlling for effects of age. Controls and UHR did not dif-

fer on age, gender or handedness. However, UHR were significantly (FDR < .05) less likely to

be engaged in employment, secondary or tertiary education; had two years less education than

controls; had a greater chance of having a relative with mental health issues; had poorer gen-

eral functioning; substantially higher rates of previous mental health issues, especially depres-

sion (72%), anxiety (56%), drug/alcohol related problems (35%), self-harm (37%) and

attempted suicide (27%); were substantially more likely to be using prescription medications

(52%), especially antidepressants (33%); were more likely to have a history of tobacco or illegal

drug usage; had first used cannabis two years earlier; and reported greater impacts from both

alcohol and cannabis use. 61% of UHR self-reported having tried one or more illicit drugs and

45% reported a history of regular drug use; compared to 31% and 8% of controls respectively.

25% of UHR and 7% of controls reported consuming an illicit drug in the week preceding test-

ing. Cannabis was the most frequently consumed drug, accounting for approximately half of

all reports, though poly drug use was also high. UHR were significantly different from controls,

in the expected direction, on clinical measures using the SPQ, RSES, BDI-II, BAI, EPQ-R, and

PSQI.

Results were mixed on tests of neuropsychological performance (S1 Table). Relative to con-

trols, UHR had lower IQ (WASI), working memory (letter-number sequencing, digit span),

short term visual memory (VPT), and verbal memory (CVLT). On tests of executive function

(D-KEFS), UHR were impaired on the verbal fluency, colour-word interference, and trail mak-

ing tasks but not on the tower-test. Results for tests of social cognition were mixed, with

impaired performance on the Hinting Task, but not on the False-Belief Picture Sequencing

task or Reading the Mind in the Eyes Task. Finally, UHR were not impaired on the University

of Pennsylvania Smell Identification Task.

There were relatively few differences between UHR-T (n = 7) and UHR-NT (n = 60) sub-

groups. S2 Table lists statistical comparisons on all measures, including mean (SD) and effect

size. There were no effects of age or gender. After adjusting for age, UHR-T differed from

UHR-NT in the expected direction, on the CAARMS Subjective Emotional Disturbance sub-

scale (Intensity�Frequency; MUHR-T = 17.8, SD = 7.22, MUHR-NT = 7.53, SD = 6.85), F(1,63) =

11.4, p = .001, d = .85; and the CVLT-II Item Recognition sub-scale (MUHR-T = -1.29, SD =

1.82, MUHR-NT = -.242, SD = .696), F(1,62) = 8.29, p = .005, d = .73. Additionally, there were

trends (uncorrected p< .05) in the same direction for the CVLT-II Delayed Recall and the

Global Functioning Role scales.

Event-related potentials: UHR vs healthy controls

At baseline, EEG data was obtained from 58 Control and 80 UHR. There were no significant

differences between groups on age or gender. Fig 1 contrasts the ERP waveforms for the con-

trol and UHR groups.

An omnibus ANCOVA across the three deviant types (Duration, Frequency, Intensity),

co-varied for age, revealed no significant differences between UHR and Control groups on any

of the ERP amplitude [MMN: F(1,135) = .02; P3a: F(1,135) = .02] or latency measures [MMN:

F(1,135) = .09; P3a: F(1,135) = 1.09]. There were no interaction effects between group and

deviant type. For both ERP components, increasing age was significantly associated with ear-

lier peak latency [MMN: F(1,135) = 14.6, p< .001; P3a: F(1,135) = 5.43, p = .021] and larger

peak amplitude [MMN: F(1,135) = 6.37, p = .013; P3a: F(1,135) = 5.72, p = .018]. Means,

standard deviations and effect sizes for the corresponding ERP measures are presented in

Table 3.

Mismatch negativity in UHR

PLOS ONE | DOI:10.1371/journal.pone.0171657 February 10, 2017 10 / 26



Event-related potentials: UHR-T vs control, UHR-NT and LTFU

In total, there were 61 Controls, 7 UHR-T, 60 UHR-NT, and 35 LTFU. Of these, baseline EEG

data was available for the passive auditory task from 58 Control, 6 UHR-T, 55 UHR-NT, and

19 LTFU. There were no age or gender differences between groups. Given the small sample

size in the UHR-T group, statistical comparisons need to be interpreted with caution due to

low statistical power.

Fig 2 presents ERP waveforms contrasting the UHR-T and UHR-NT groups at baseline.

Contrary to expectations, UHR-T tended to have larger MMN responses than UHR-NT.

Means, standard deviations and effect sizes for ERP measures in Control, LTFU, UHR-NT

and UHR-T groups at baseline are provided in Table 4.

For MMN peak amplitude, an omnibus ANCOVA across the three deviant types (Dura-

tion, Frequency, Intensity) co-varied for age, revealed no overall significant effect of group,

F(3,133) = .86, n.s. The interaction between deviant type and group was not significant,

F(6,266) = 1.44, n.s. Contrary to predictions, the UHR-T group had the largest MMN, but

there were no significant differences in planned comparisons between UHR-T and the Con-

trol, t(133) = 1.35, p = .18, d = .58; LTFU, t(133) = .96, p = .34, d = .45; or UHR-NT, t(133) =

1.51, p = .13, d = .65, groups. There were no group effects for MMN latency.

For P3a peak amplitude, there was no significant effect of group, F(3,133) = .37, n.s., or inter-

action between group and deviant type. F(6,266) = .47, n.s. For P3a peak latency, there was an

overall effect of group, F(3,133) = 3.05, p = .031. The UHR-T and LTFU groups had slower

P3a than the Control and UHR-NT groups, but trends in the planned comparisons between

UHR-T (M = 290.8, SD = 30.0 ms) and UHR-NT (M = 277.7, SD = 18.1 ms, t(133) = 1.94, p =

.054, d = .835); Control (M = 277.4, SD = 16.3 ms, t(133) = 1.88, p = .062, d = .807); or LTFU

(M = 288.1, SD = 16.8 ms, t(133) = .45, p = .65, d = .212) groups failed to reach significance.

To permit direct comparison of these ERP data with previous reports, Table 4 presents the

means and standard deviations of each ERP measure for controls, UHR-T, UHR-NT and

LTFU groups, with contrasts and effect sizes computed independently for each deviant type.

These contrasts suggest that UHR-T had larger MMNInt than both UHR-NT and controls; and

UHR-T had slower P3aFrq than both UHR-NT and Controls. However, these effects were not

significant when corrected for multiple comparisons.

Fig 1. Comparison of Control and UHR Groups. ERP waveforms for the passive auditory task at baseline

contrasting the response from the Control and UHR groups.

doi:10.1371/journal.pone.0171657.g001
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Event-related potentials: Longitudinal analysis of UHR-T vs UHR-NT

For the longitudinal analysis, EEG data was available at both baseline and 12-month follow-up

from 5 UHR-T and 44 UHR-NT. Again, the small sample size of the UHR-T group means that

statistical comparisons are under-powered and results should be interpreted with due caution.

Table 3. Comparison of UHR and Control ERPs for the passive auditory task.

Control UHR Statistic p Cohen’s d

n 58 80

Age 19.1 (3.18) 18.6 (2.68) t(136) = .96 .34

Male/Female 30/28 38/42 χ2(1) = .24 .62

MMNAmplitude

Duration -4.80 (2.12) -4.49 (2.28) F(1,135) = .32 .57 .098

Frequency -3.00 (1.66) -3.13 (1.58) F(1,135) = .33 .57 .099

Intensity -3.01 (1.52) -3.14 (1.96) F(1,135) = .30 .58 .095

MMNLatency

Duration 183.6 (13.3) 185.5 (16.9) F(1,135) = .32 .58 .097

Frequency 164.3 (19.8) 163.3 (24.0) F(1,135) = .29 .59 .093

Intensity 160.1 (27.9) 159.3 (26.4) F(1,135) = .12 .74 .059

P3aAmplitude

Duration 3.27 (2.17) 3.32 (1.93) F(1,135) = .15 .70 .066

Frequency 2.59 (1.68) 2.54 (2.01) F(1,135) < .01 .99 .003

Intensity 1.82 (1.78) 1.79 (1.75) F(1,135) < .01 .96 .010

P3aLatency

Duration 287.9 (18.3) 286.8 (21.2) F(1,135) = .18 .67 .074

Frequency 274.8 (21.8) 277.3 (21.2) F(1,135) = .19 .67 .075

Intensity 269.4 (27.5) 279.4 (31.5) F(1,135) = 3.42 .07 .318

Means, standard deviations and effect sizes for the comparison of ERP measures in UHR and controls at baseline. Mean (SD) are raw scores in μV or ms.

F, p and d statistics are from an ANCOVA co-varied for age (performed separately for each deviant type for MMN and P3a measures). There are no

statistically significant differences between UHR and control groups in this table.

doi:10.1371/journal.pone.0171657.t003

Fig 2. Comparison of UHR-T and UHR-NT Groups. ERP waveforms for the passive auditory task at

baseline contrasting the response from the UHR-T and UHR-NT groups.

doi:10.1371/journal.pone.0171657.g002
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ANCOVA with repeated measures for session (baseline, follow-up) and deviant type (Dura-

tion, Frequency, Intensity) co-varied for age, indicated that MMN peak amplitude was unex-

pectedly larger in the UHR-T (M = -5.18, n = 5, SD = 2.16) than UHR-NT group (M = -3.36,

n = 44, SD = 1.44), F(1,46) = 6.40, p = .015. The predicted interaction between group and ses-

sion was not significant, F(1,46) = 2.25, p = .14. There were no group effects for MMN peak

latency, P3a peak amplitude or P3a peak latency.

12-month test-retest correlations for each ERP measure in the UHR group are provided in

Table 5. All peak amplitude and latency correlations were significant with medium to large

effect sizes.

Relationship between MMN, P3a and clinical measures in UHR at

baseline

Given the large number of variables examined, there were no relationships between MMN or

P3a and clinical measures that survived correction for multiple comparisons. Within the UHR

group, as a trend, MMNmean was smaller in individuals who meet the CAARMS attenuated

psychosis UHR criterion (M = -3.39, S.D. = 1.56, n = 62) than those who did not (M = -4.25,

S.D. = 1.62, n = 18), F(1,77) = 4.46, p = .038, d = .482. There was no relationship between

MMNmean amplitude and CAARMS Vulnerability or BLIP inclusion criteria, family history of

psychosis (Control, UHR with, or UHR without 1st degree relative with psychosis), or primary

SCID or KSAD diagnosis (Control, Mood Disorder, Anxiety Disorder, No Diagnosis). Within

Table 4. Comparison of UHR sub-groups’ ERPs for the Passive Auditory Task.

Control LTFU UHR-NT UHR-T UHR-T—Control UHR-T—UHR-NT

Stats p d Stats p d

N 58 19 55 6

Age 19.1 (3.19) 18.8 (2.97) 18.4 (2.62) 19.8 (1.96) t134 = .39 .70 .166 t134 = .91 .37 .391

Male/Female 30/28 10/9 25/30 3/3 χ2(1) = .006 .94 χ2(1) = .05 .83

MMN Amplitude

Duration -4.80 (2.12) -4.54 (2.32) -4.43 (2.28) -4.95 (2.41) t133 = .07 .95 .029 t133 = .33 .74 .142

Frequency -3.00 (1.66) -3.09 (1.91) -3.07 (1.38) -3.77 (2.21) t133 = 1.07 .29 .460 t133 = .91 .37 .390

Intensity -3.01 (1.52) -3.67 (1.76) -2.78 (1.94) -4.81 (1.69) t133 = .2.37 .019 * 1.014 t133 = 2.61 .010 * 1.121

MMN Latency

Duration 183.6 (13.3) 189.1 (15.8) 184.8 (17.3) 181.1 (17.3) t133 = .32 .75 .136 t133 = .41 .69 .174

Frequency 164.3 (19.8) 166.8 (23.1) 160.9 (24.6) 173.8 (19.2) t133 = 1.15 .25 .493 t133 = 1.67 .10 .716

Intensity 160.1 (27.9) 155.4 (21.4) 160.4 (29.0) 162.2 (16.5) t133 = .25 .80 .107 t133 = .32 .75 .138

P3a Amplitude

Duration 3.27 (2.17) 3.26 (1.66) 3.43 (1.92) 2.46 (2.88) t133 = 1.06 .29 .455 t133 = 1.39 .17 .595

Frequency 2.59 (1.69) 2.40 (1.36) 2.60 (2.06) 2.43 (3.38) t133 = .26 .79 .113 t133 = .35 .73 .152

Intensity 1.82 (1.78) 1.42 (1.41) 1.90 (1.87) 1.97 (1.66) t133 = .18 .86 .077 t133 = .05 .96 .022

P3a Latency

Duration 287.9 (18.3) 290.8 (21.0) 285.2 (19.6) 289.2 (35.6) t133 = .21 .84 .088 t133 = .59 .56 .252

Frequency 274.8 (21.8) 280.8 (21.8) 274.2 (19.8) 294.4 (25.0) t133 = 2.36 .020 * 1.01 t133 = 2.57 .011 * 1.11

Intensity 269.4 (27.5) 292.8 (34.0) 273.8 (27.9) 288.8 (45.2) t133 = 1.58 .12 .677 t133 = 1.28 .20 .551

Means, standard deviations and effect sizes for the comparison of ERP measures in UHR-T to UHR-NT, control and LTFU groups at baseline. Means (SD)

are raw scores in μV or ms. t, p and Cohen’s d statistics are from planned contrasts following an ANCOVA co-varied for age performed separately for each

deviant type. Data in this table are presented only for comparison with prior studies. Statistical analysis within the text is based upon an omnibus ANCOVA

which includes deviant type as a factor.

* p < .05.

doi:10.1371/journal.pone.0171657.t004
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the UHR group, we examined partial correlations, adjusting for age, between MMNmean and

clinical measures (S3 Table). There were trends for smaller MMNmean to correlate with

increased impact from cannabis use (CUDIT), ρ = .249, p = .028; and larger MMNmean with

higher depression scores (BDI-II), ρ = -.240, p = .035. There were no other correlations

between MMNmean and functional status as assessed by the GAF, SOFAS, GF-Social, or

GF-Role; clinical status as assessed by the CAARMS, BPRS, SPQ, RSES, BAI, EPQ-R or PSQI;

current medication; or illicit drug use including cannabis.

There was no relationship between P3amean amplitude and CAARMS inclusion criteria,

family history of psychosis, primary SCID or KSAD diagnosis, or the clinical measures pre-

sented in S4 Table. The exception being a trend for smaller P3amean to be associated with larger

CAARMS total Positive Symptoms, ρ = -.275, p = .014. Further exploratory analysis revealed a

similar relationship between P3amean and the BPRS Hallucination subscale, ρ = -.325, p = .005.

Relationship between MMN and P3a

The partial correlation between MMNmean and P3amean, adjusted for age, was significant in the

UHR group, ρ = -.423, n = 79, p< .001; but not in Controls, ρ = -.060, n = 57, n.s. After apply-

ing Fisher’s r to z transform [103], the two group correlations were significantly different,

z = 2.2, p = .028. Examining MMN and P3a separately for each deviant type, again there were

no significant correlations within the Control group. In UHR, the correlation was significant

for duration deviants, ρ = -.362, n = 79, p = .001; a trend for frequency deviants, ρ = -.209,

n = 79, p = .064; and not significant for intensity deviants, ρ = -.068, n = 79, n.s. Applying a test

for dependent correlations [103], the correlation for duration deviants was significantly larger

than for intensity deviants, z = 2.18, p = .029. The correlation for frequency deviants was inter-

mediate between but not significantly different from that for duration and intensity.

Follow-up: Dropout rates

There were 102 UHR at baseline. Baseline testing was spread across several days with some

UHR withdrawing after the neuropsychological tests, but before completing the first EEG ses-

sion (n = 10). Additional UHR withdrew or became uncontactable before the 12-month fol-

low-up (n = 25). Additionally, some EEG recordings were not conducted (Baseline: n = 7;

Follow-up: n = 7) or were rejected on technical or data quality issues (Baseline: n = 6; Follow-

Table 5. Test-Retest Correlations for the Passive Auditory Task.

Correlation

Component Amplitude Latency

Duration

MMN .67 ** .53 **

P3a .49 ** .62 **

Frequency

MMN .56 ** .41 *

P3a .62 ** .76 **

Intensity

MMN .73 ** .54 **

P3a .39 * .78 **

Pearson test-retest correlations for ERP measures from baseline and follow-up sessions for UHR participants. n = 49 for the Passive Auditory Task.

* p < .01.

** p < .001.

doi:10.1371/journal.pone.0171657.t005
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up: n = 8). In all, 67 UHR (66%) participated at the 12-month follow-up, with 49 providing

usable EEG data at both baseline and follow-up sessions.

S5 Table provides detailed statistical comparisons of UHR who were lost to follow-up prior

to the 12-month follow-up. LTFU did not differ from participating UHR on age or gender, but

at baseline had lower functional status [GF-Role: F(1,94) = 11.1, p = .001; GF-Social: F(1,94) =

5.87, p = .017; SOFAS: F(1,96) = 4.80, p = .031]; were more likely to have tried various drugs

[cannabis: χ 2(1) = 8.71, p = .003; tobacco: χ 2(1) = 7.05, p = .008; heroin: χ 2(1) = 4.93, p = .026;

amphetamines: χ 2(1) = 4.18, p = .041]; and had some cognitive impairments [D-KEFS Verbal

Fluency: F(1,93) = 8.71, p = .004; D-KEFS Trail Making: F(1,93) = 4.15, p = .045; CVLT Imme-

diate Recall: F(1,88) = 4.02, p = .048]. There were no differences on clinical measures including

CAARMS, BPRS, or primary diagnosis. There were no differences in ERP amplitude measures

[MMN: F(1,77) = .25, n.s.; P3a: F(1,77) = .46, n.s.].

Discussion

Although control and UHR groups differed on a wide range of clinical and neuropsychological

measures, there was no group difference in MMN or P3a amplitude. Previous studies that have

compared healthy controls to UHR, without differentiating those who do or do not transition,

had effect sizes for MMN reduction ranging from -.21 [41] to 1.19 [37]. Our effect sizes are cer-

tainly at the lower end of this range, but should not be considered outliers. Of the previous

studies, eight reported reduced MMN in UHR relative to healthy controls [33–36, 39, 43, 45,

104], four reported no significant difference [40–42, 44], and one found a difference for dura-

tion but not frequency MMN [37]. The only modest replicability in previous studies of

reduced MMN in UHR should not be too surprising. Of the UHR group a recent meta-analysis

[105] estimates that less than 30% will transition to psychosis within 1–2 years, and of these,

only three quarters will actually develop a schizophrenic psychosis (schizophrenia, schizophre-

niform disorder, or schizoaffective disorder); with another 11% developing an affective psy-

chosis (depression with psychotic features, bipolar disorder with psychotic features); and the

remainder developing other psychoses (psychosis NOS, brief psychotic episode, delusional dis-

order). MMN reduction shows some specificity for the cognitive deficits seen in schizophrenia

relative to both bipolar affective disorder and major mood disorders irrespective of presence of

psychotic symptoms [106], so the proportion of UHR expected to have reduced MMN may be

relatively small and may depend strongly upon how the UHR sample are recruited. Further,

even in those UHR who do transition the effect size for MMN reduction in first episode psy-

chosis is lower than that seen in schizophrenia with a longer duration of illness [14].

None of the ERP measures provided support for our primary hypothesis that reduced

MMN would be present during the prodromal period preceding onset of a first episode of psy-

chosis. Trends in the data were either not significant or in the opposite direction to that pre-

dicted. Participants who transitioned to psychosis did not have smaller MMN 12 months

before diagnosis than UHR who did not transition, nor were they smaller than those in a

healthy comparison group. Our results differ from the conclusions of a recent meta-analysis

[48] which found tentative support for reduced MMN in UHR who transitioned to psychosis

compared to those who did not. However, our results are based upon an extremely small sam-

ple of only 6 UHT-T who provided EEG data at baseline. A power analysis, assuming a moder-

ate effect size (0.5) and a transition rate of 10%, indicates that a sample of at least 35 UHR-T

and 346 UHR-NT would be required to reliably detect a difference. Of previous reports, three

found significantly reduced MMN in UHR-T compared to UHR-NT [33, 43, 44], one found a

non-significant difference [45], and one found a difference for duration but not frequency

MMN [42]. While the cumulative evidence to date appears to support the notion of reduced
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MMN in UHR-T, we agree with Bodatsch et al. [48] who argue more data are required before

a definitive conclusion is drawn, especially with respect to the relative utility of different devi-

ant types as predictors of transition in UHR groups.

We made two further predictions. First, that MMN to duration deviants would be more

likely to predict transition to psychosis than MMN to frequency or intensity deviants. There

were no interactions between deviant-type and group to support this prediction. This is the

first study of UHR-T and UHR-NT to directly examine intensity MMN, and the third to exam-

ine frequency MMN [33, 42]. If we examine (non-significant) trends in our data, the unexpect-

edly larger MMN in UHR-T that UHR-NT was primarily due to differences in intensity,

rather than duration MMN. To that extent, duration MMN was more consistent with the

expectation of reduced MMN in UHR-T than was intensity MMN. Secondly, we predicted

that MMN amplitude would show different developmental trajectories over time in those who

did or did not transition to psychosis. Again, there were no significant effects in support of this

assertion. However, our statistical power to detect any such change was even more severely

limited by the small sample size (n = 5) of UHR-T who provided EEG data at both baseline

and follow-up sessions.

Contrary to expectations, in our data, MMN tended to be of similar amplitude in UHR and

controls, and larger in UHR-T than UHR-NT, with this latter difference reaching statistical

significance when baseline and follow-up data were analysed together. These trends are incon-

sistent with the majority of MMN studies in UHR groups, but not with that from a study of

MMN in 9–12 year old children considered to be at-risk [107]. This at-risk group consisted of

children who presented with multiple putative antecedents of schizophrenia including speech

or motor development problems; social, emotional, or behavioural problems; and psychotic-

like experiences. Relative to matched controls, the at-risk group had larger duration MMN

amplitudes. This similarly unexpected result was speculatively associated with abnormal

neuroanatomical findings in an overlapping sample who had larger than expected grey matter

and white matter volume in the left-temporal lobe [108], whereas volume reductions are more

typically associated with schizophrenia [109]. We are currently undertaking a similar analysis

of MRI structural data from the participants in this study.

MMN and P3a amplitude and latency were all affected by age. Our sample had an age range

from 12 to 26 years. MMN and P3a amplitude increased and latency decreased with age most

likely due to maturational changes during the teenage years. Other studies in healthy adoles-

cents have found similar age effects for frequency MMN [110, 111], but in older age groups

there are consistent reports of MMN amplitude reductions with age [29, 59] with maximal

amplitudes seen in 20–30 year old adults. Within the UHR literature, age effects have been

poorly reported, but some studies have reported adjusted MMN effects assuming a linear rela-

tionship between age and MMN amplitude [33, 41, 43]. For samples comprising adolescents

and young adults, such as the present study, a linear model is adequate. However for samples

spanning a larger age range, if the relationship between age and MMN is nonlinear, with

amplitudes reaching a maximum in young adults, then linear corrections may not be the most

appropriate. If MMN or P3a were to be adopted clinically as part of an at-risk assessment pro-

tocol, then standardisation of the measures for demographic variables, especially age, will be

required [59].

There were no significant correlations between MMN and clinical measures within the

UHR group at baseline that survived correction for multiple comparisons. As a trend, there

was a reduction in MMN in UHR who meet the CAARMS criteria for attenuated psychotic

symptoms relative to UHR who did not. Given that we observed no relationship between

MMN and family history of mental illness, then this would be consistent with MMN reduction

being a state marker of illness progression rather than a risk factor for schizophrenia per se.
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In particular, MMN did not correlate with functional status or symptoms. The lack of rela-

tionship with positive or negative symptoms was not unexpected. Although in schizophrenia a

weak correlation has been demonstrated within a particularly large sample [59], a meta-analy-

sis by Umbricht and Krljes [13] reported that most studies found no correlation between

MMN and either positive or negative symptoms. However, the relationship between MMN

and functional status, especially GAF scores, is a well-replicated finding within schizophrenia

[27, 112]. Other studies have reported no significant correlation between duration MMN and

GAF in UHR [35, 39, 43, 104], but see [34]. The absence of this correlation within the UHR

sample challenges the notion of UHR individuals being a homogenous group representative of

those in an early stage of psychosis.

Unlike the MMN, there was a correlation between P3a amplitude and positive symptoms

assessed by the CAARMS and with hallucinations assessed by the BPRS [37]. This dissociation

between MMN and P3a appears consistent with the differential impact of current anti-psy-

chotic medications on ERPs, which have minimal impact on MMN [113] but do modulate P3a

amplitude [62, 63]. Anti-psychotics target dopaminergic pathways and primarily relieve posi-

tive symptoms [22]. While MMN may index NMDA receptor function within the glutamater-

gic neurotransmitter system [11, 22], the correlation between P3a and positive symptoms is

consistent with reduced P3a being an index of dopaminergic dysfunction [62, 114].

Apart from the ERP measures, UHR and healthy controls differed on a broad range of

demographic, clinical and neuropsychological measures. In particular, UHR had lower pre-

morbid IQ, working memory, verbal memory, and executive functions. These results are

consistent with a recent meta-analysis confirming cognitive deficits in UHR on multiple

dimensions [115]. It suggests that the cognitive deficits linked to schizophrenia may be pre-

existing risk factors for developing the disorder rather than symptoms of the disease progres-

sion. In contrast, there were relatively few differences between the transition and non-transi-

tion groups. Given the relatively small sample size in the UHR-T group and the large number

of tests administered, these differences need to be interpreted with caution. UHR-T had poorer

scores than UHR-NT for the CVLT-II verbal memory and CAARMS subjective emotional dis-

turbance scales. Impairment of verbal memory as assessed by the CVLT, is recognised as a pos-

sible endophenotype for schizophrenia [116], but is also associated with cannabis use [116,

117]. Verbal memory has been demonstrated as one of the most impaired cognitive domains

in UHR who transition to psychosis [115], in first-episode psychosis [118], and in schizophre-

nia [119], with impairments remaining stable over the course of the illness [120]. The other

measure, subjective emotional disturbance, is one of six CAARMS sub-scales derived from

Huber’s concept of basic symptoms [121]. Basic symptoms refer to a patient’s self-awareness of

psychological impairments such as blunted or inappropriate affect, but differ from the concept

of negative symptoms which refer to observable signs of impaired behaviours. Gross and Huber

[122] argue that onset of basic symptoms precedes negative symptoms during the prodromal

period whilst the patient retains sufficient cognitive resources to compensate for the self-per-

ceived impairment. It has been reported that clusters of basic symptoms are highly predictive

of transition to psychosis [122, 123]. However, reports on the predictive utility of subjective

emotional disturbance are mixed with some studies showing some prognostic value [122, 124]

and others none [123, 125]. Our data provide tentative support for greater inclusion of basic

symptoms in the definition of UHR criteria as suggested by Nelson et al. [126] and supported

by a recent meta-analysis of at-risk criteria [105].

Transition rates were lower than anticipated. Only seven of the 67 UHR available at the

12-month follow-up (10.4%) transitioned to psychosis. This is substantially lower than the

original reports of ~40% transition rates reported in initial studies, but is consistent with a

number of recent reports [105]. Wiltink et al. [49] have argued that there have been steadily
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declining transition rates in UHR studies which recruit using CAARMS criteria. In part, this

reflects a selection bias. As more widespread mental health services become available to target

youth at risk, individuals referred for UHR screening are being drawn from a broader commu-

nity source with more heterogeneous symptomology, and individuals identified as UHR are

being recruited earlier within the progression of their disorder. This seems consistent with the

present study in which a moderately proactive recruitment strategy was adopted.

However, we need to acknowledge the relatively high drop-out rate in the study. Of the

original 102 UHR participants, 34% withdrew or were lost to follow-up within the first 12

months with a quarter of these failing to complete baseline testing. We partly attribute this

high drop-out rate to the extensive nature of the testing performed which required several

days of commitment from participants. The LTFU group differed from other UHR on a num-

ber of measures at baseline. In particular they had higher rates of cannabis use, lower func-

tional status and lower executive function, all of which are risk factors for transition to

psychosis. Additionally, we noted a number of individuals who had especially poor functional

status in their most recent assessment preceding being lost from the study. This suggests that

some drop-outs were due to exacerbated clinical symptoms, possibly including a transition to

psychosis. Other longitudinal studies have reported similar impairments in early psychosis

groups who withdraw prior to follow-up testing [25, 127]. While it is not possible to determine

the proportion of the LTFU group who may have transitioned to psychosis, it is likely that the

overall transition rate was higher than that observed in the sub-sample who participated in

both baseline and follow-up testing. However, baseline ERP amplitudes did not differ in the

LTFU group compared to UHR who participated at follow-up, suggesting that drop-out rates

may have had minimal effect on the ERP analyses.

The UHR group had a high rate of comorbidity for non-psychotic disorders, anxiety and

depression being of primary concern. Irrespective of the relatively low transition rate to psy-

chosis, this sub-group of help-seeking youth clearly appear to be in need of assistance from

the mental health community. Notably, a quarter of the UHR sample had a history of

attempted suicide or suicidal ideation. However, a significant portion of the sample were

deemed to be in remission of UHR status one year after entry into the study, and even

within those deemed to be still at risk, general measures of psychopathy, for example total

BPRS scores, suggested substantive improvements in mental health as a general trend in

most participants. In line with these observations, recent treatment guidelines for clients

with an at risk mental state [128] emphasises treatment as usual for comorbid symptoms;

recommends caution when applying this criteria to younger adolescents; and argues that

pharmacological treatment specifically to prevent transition to psychosis is not justifiable

based on current evidence.

In summary, we conducted a longitudinal prospective study into whether reduced MMN

or P3a predicts transition to psychosis in youth at risk of developing psychosis as assessed with

the CAARMS. Transition rates to psychosis were low within the limited time frame of the

study. Consequently, the results need to be interpreted with caution and ideally combined

with data from similar studies. Contrary to other recent studies and our predictions, MMN

amplitudes tended to be larger in the transition than non-transition groups. There were rela-

tively few correlations between MMN and clinically relevant measures, the exception being

age, which should be treated as a confound when examining UHR and first episode psychosis

samples. Although the majority of currently published studies support the finding of reduced

MMN in UHR groups, our data suggests that the prognostic value of this deficit is still an open

question and highlights some of the complexities associated with introducing this measure

into clinical practice [129].
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