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Band-stop filter with suppression of
requested number of spurious stopbands

dusan a. nesic
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Design method for band-stop filters (BSFs) that suppress a requested number of spurious bandstops and reduce ripples in the
passbands below �1 dB is proposed. BSF is designed in a form of a cascade of cells, each consisting of steps of equal electrical
length, where the number of steps is used to control the number of suppressed spurious bandstops. Analytical formulas are
developed that enable initial design of BSF for a given central frequency, depth, and bandwidth of the stopband. Varying
the minimum characteristic impedances of initial cells, through an optimization using circuit simulation, the ripples in pass-
bands are reduced below �1 dB. Using the proposed theory, three filters in microstrip technology, with suppression of 3, 5, and
7 spurious stopbands respectively, were designed, fabricated, and measured. Good agreement between simulated and mea-
sured results has been observed. The proposed design can be recommended for filters having broad stop bandwidths,
between 40 and 100%.
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I . I N T R O D U C T I O N

Bandstop filters (BSFs) realized in microstrip technology re-
present important building blocks in modern RF/microwave
communication systems. Conventional all-transmission line
BSFs have spurious stopbands repeated at odd multiples of
the fundamental stopband center frequency, f0 [1]. In practice,
however, much wider upper passbands may be required.

The method most frequently used to extend the upper
passbands of BSFs is to shift the higher-order resonances
higher in frequency utilizing parallel coupled line, stepped-im-
pedance or lumped element-loaded resonators [2–8]. Using
these techniques upper passbands extended up to 6 f0 are
reported for narrow band and moderate band BSFs.

Alternatively, the upper passbands can be extended by sup-
pressing the higher-order resonances. One way to suppress
spurious resonances is based on using a constructive interfer-
ence technique [9]. Using this technique the upper passband
extended up to 9 f0 is reported for noch filters. Another way
to suppress the spurious resonances is based on application
of periodically nonuniform microstrip lines.

In general, periodically nonuniform microstrip lines
exhibit bandstops repeated at multiples of f0 [10–12].
Sinusoidal and triangular patterns etched in the ground
plane of a microstrip line can substantially suppress the spuri-
ous bandstop at 2 f0 [13]. A sinusoidal variation of the width of
the microstrip line [14, 15], results in similar suppression. If

sinusoidal variation is applied to microstrip characteristic im-
pedance, spurious stopbands around 2 f0 and 3 f0 can be fully
suppressed [16]. Simulations and measurements above 3 f0,
which are not presented in the paper, show that higher-
order stopbands are only partially suppressed. Starting from
the coupled mode theory, an analytical solution for periodic-
ally nonuniform transmission lines that are free of spurious
stopbands is proposed [17–19]. The validity of the theory is
demonstrated on the example of moderate band BSF with
measured results showing full suppression of spurious band-
stops at 2 f0 and 3 f0.

All of the above mentioned BSFs, which are based on peri-
odically nonuniform microstrip lines, suffer from relatively
deep ripples in the passbands. The depth of these ripples
increases up to �5 dB near the stopband. It is shown that in
the case of a cascade of four trapezoidally shaped cells,
which eliminates spurious stopbands at 2 f0 and 3 f0, the
depth of these ripples can be reduced down to �1 dB by
simple tapering, i.e. narrowing outer cells and widening the
inner cells [20]. Similar technique for reducing ripples is
used in the case of BSFs made of cells consisting of cascades
of uniform transmission lines (steps) [21, 22]. In the case
where cell consists of six steps, suppression of three spurious
bands is confirmed by measurement, while in the case where
cell consists of nine steps, the suppression of six spurious
bands is confirmed by EM simulation.

The paper proposes a design method for BSFs that sup-
presses a requested number of spurious bandstops and
reduces ripples in the passbands below �1 dB. On one
hand, the design method represents the generalization of pro-
cedures presented in [21, 22]. On the other hand, it leans on
the theory of periodically nonuniform transmission lines
that are free of spurious stopbands [17–19]. Construction of
unit cell is described in Section II. Design method is proposed
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in Section III. Three-dimensional (3D) EM simulation, fabri-
cation, and measurement of three typical filters are presented
in Section IV.

I I . U N I T C E L L

Consider 1D periodic structure in the form of infinite cascade
of identical cells, where each cell represents a cascade of n
steps without losses, of equal angular length u, and of different
characteristic impedances, Zi, i ¼ 1,. . .,n, as shown in Fig. 1.
(Adopting equal angular length for all steps decreases the
flexibility of a unit cell, but enables derivation of analytical
design formulas.)

Following the general theory of periodic structures [23] the
cell can be characterized in two ways: (1) with ABCD matrix,
and (2) with its physical length l and equivalent propagation
coefficient g ¼ a + jb, where a is equivalent attenuation co-
efficient and b is equivalent phase coefficient. In the case
(A + D)/2
∣∣ ∣∣ ≤ 1, the wave propagates along infinite periodic
structure without attenuation (a ¼ 0, b = 0), while in the
case (A + D)/2

∣∣ ∣∣ . 1 the wave attenuates along the structure
(a = 0, b ¼ 0). If infinite structure is truncated, the attenu-
ation in stopbands is limited by number of cells, while propa-
gation in passbands is disturbed due to reflection in planes of
truncation. In order to minimize the reflections, the Bloch im-
pedance in planes of truncation should be as close as possible
to reference impedance Z0 in whole passband of interest. The
first step in designing the BSF is to determine the unit cell that
provides desired stopbands and the Bloch impedance as close
as possible to Z0 in passbands.

ABCD matrix of the cell having i steps can be represented
as a product of ABCD matrix of the cell having i-1 steps and
ABCD matrix of ith step as

Ai Bi

Ci Di

[ ]
= Ai−1 Bi−1

Ci−1 Di−1

[ ]
·

cos u jZi sin u

j
Zi

sin u cos u

⎡
⎣

⎤
⎦. (1)

A and D parameters of unit cell are obtained after (1) is
repeated n–1 times (A ¼ An and D ¼ Dn). In general case
(A + D)/2 is obtained in the form of polynomial in terms of
cosu

An + Dn

2
=

∑[n/2]

k=0

p(n)k (cos u)n−2k, (2)

where [n/2] represents integer part of n/2 and coefficients p(n)k
depends only on characteristic impedances Zi, i ¼ 1,. . .,n. In
the following text this polynomial will be referred to as disper-
sion polynomial.

Dispersion polynomial is a periodic function in u, with
period of 2p. Since it is either even or odd function with
respect to u ¼ 0, it is sufficient to explore the properties of
this polynomial in range 0 ≤ u ≤ p. Using (1), it is easy to
show that at boundaries of the range the polynomial
always has values +1, which means that u ¼ 0 and u ¼ p

always belong to the passband. In a general case, inside the
range the polynomial may have up to n zeros and n–1
extrema. If magnitudes of all extrema are .1, there are n–1
stopbands in the range. Finally, having in mind that
cos(p –u) ¼ 2cos(u), both, the stopbands and passbands,
are symmetrical with respect to u ¼ p/2.

By numerical experiment it is found that random choice of
n characteristic impedances of a unit cell most often results in
all n–1 stopbands [21, 22], with the centers of stopbands, uk,
k ¼ 1,. . .,n–1, almost uniformly distributed. It is also found
that, for specific values of characteristic impedances, one or
more pairs of stopbands symmetrical to u ¼ p/2 can be elimi-
nated. Since the 1st stopband is coupled with the (n–1)-st
stopband, the maximum number of stopbands that can be
eliminated is

p = n − 3. (3)

The first stopband is located at u1 ¼ p/n, and the total elec-
trical length of the cell is n u1 ¼ p.

To eliminate these stopbands we apply the multi-minima
optimization method, which enables finding a set of local
minima in a single run [24]. The characteristic impedance
values of all steps are varied between given Zmin and Zmax.
For each set of characteristic impedances, the extrema of dis-
persion polynomial are determined, excluding the extrema
related to the first and the last stopband. The functional that
is minimized by optimization procedure is obtained as mean
square value of extrema whose magnitudes are .1.
Theoretically, the solution is found when the value of the
functional decreases to one. In practice we consider that the
solution is found when value of functional decreases below
1.001.

At the beginning we varied all impedances independently.
Common for all solution was that width of the stopband
depends on ratio Zmax/Zmin. We also found that Bloch imped-
ance in the whole passband is closest to

Z0 =











ZmaxZmin

√
, (4)

if characteristic impedances in the first half of cell are lower
than or equal to Z0, while in the second half they are greater
than or equal to Z0. When these constraints are applied, it
has been found that characteristic impedances in the first
and second half of cell are related as

ZkZn−k+1 = Z2
0 . (5)

In particular, for odd n, according to (5), the impedance of
central step is Z0. It has also been shown that minimum char-
acteristic impedance occurred at 2nd step for n ¼ 5, 6, 7, and

Fig. 1. Unit cell: n steps of equal angular length u and different characteristic
impedances Zk
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8, 3rd step for n ¼ 9, 10, 11, and 12, etc. Thus, the number of
independently varied impedances was more than halved.

As a result of imposing the constraints as above, and fixing
the step with minimum characteristic impedance to given
Zmin, a practically unique solution has been obtained for
each n. “Practically” means that in all optimizations repeated
for the same Zmin and n, different solutions for characteristic
impedances differed on the 4th significant digit, or higher.
Having this in mind we systematically changed Zmin/Z0

from 0.2 to 1.0 for n ¼ 5, 6, 7, 8, 9, and 10. The results
obtained in this manner are interpolated using 2nd order
polynomials. The corresponding analytical expressions are
given in Table 1. These expressions together with equation
(5) completely define unit cells.

In order to illustrate the proposed theory let us consider
BSF in the form of a cascade of four identical unit cells.
Electrical length of unit cell is set to p at frequency of
3 GHz, so that center frequency of the 1st stopband falls at
f0 ¼ 3 GHz. Minimal characteristic impedances of cells con-
sisting of n ¼ 5, 6, 7, 8, 9, and 10 steps are set to Zmin ¼

25.7 25.1, 25.8, 26.8, 25.6, and 25.6 V, respectively, for the
nominal impedance of ports set to Z0 ¼ 50V, so that
minimum S21 is adjusted to approximately 230 dB. Figure 2
shows S21-parameter versus frequency for various number of
steps of unit cell, n ¼ 5, 6, 7, 8, 9, and 10. It is seen that for
n steps the number of suppressed higher bandstops is n–3,
as predicted.

Generally, it is shown that by increasing number of steps
the shape of cascade of unit cell approaches the periodic non-
uniform transmission line that does not have any spurious
stopband [17–19]. It means that solution proposed in this
paper represents a kind of step approximation of such non-
uniform line. Another way to obtain step approximation of
the line is to uniformly subdivide the line into n segments
and replace each segment with the step whose characteristic
impedance corresponds to the center of the original
segment. Starting from formula for characteristic impedance
of nonuniform line from [17–19], the characteristic impe-
dances in step approximation can be written as

Zk = Z(xk) = Z0
Zmin

Zmax

( )1/2 sin(2p/lxk)
xk =

2k − 1
n

l k

= 1, ..., n. (6)

It is shown that values for Zk, k ¼ 1,. . .,n, obtained by equa-
tion (6) are similar to those given in Table 1, and the similarity

is improved with increasing n. If these values are applied to
obtain results for the above defined BSF, results similar to
those presented in Fig. 2 are obtained. Exception is that
minimum S21 value is increased (from 230 dB) for 2.1, 1.4,
0.9, 0.6, 0.4, and 0.3 dBs for n ¼ 5, 6, 7, 8, 9, and 10 steps,
respectively. It is obvious that accuracy of equation (6)
improves for higher n. Accordingly, Table 1 contains formulas
up to n ¼ 10.

I I I . D E S I G N O F B S F

It is shown that stopband of a truncated periodic nonuniform
transmission line, which is free of spurious stopbands, and the
first stopband of its step approximation practically coincide.
Starting from formulas given in [17–19], the minimum
value of S21 of the stopband can be expressed as
S21| |min= sech[mp/4 ln(Zmin/Zmax)], where m is the number

of unit cells. For m . 2, and using (4) the approximation of
|S21|min is obtained in the form

S21| |min� 2
Zmin

Zmax

( )mp/4

= 2
Zmin

Z0

( )mp/2

. (7)

Starting from formulas given in [17–19], the bandwidth of
a stopband measured between its zeros can be expressed as
BW = f0

































[ln(Zmax/Zmin)/2]2 + (2/m)2

√
. Using (7) the ex-

pression for bandwidth is obtained in an approximate form as:

BW = f0
2
m
























1 + 1

p
ln

2
S21| |min

( )2
√

. (8)

The design procedure based on formulas (3)–(8) and
Table 1 is established as follows. Input data for a design are:
central frequency of the stopband, f0, bandwidth of the stop-
band, BW, the maximum permissible value of |S21|min, the
nominal impedance Z0, and number of spurious bandstops
that should be suppressed, p. The basic output data for the
design are: number of steps, n, number of unit cells, m, and
minimum characteristic impedance Zmin. These data are
determined using following steps:

1) for given p the number of steps n is determined from (3);
2) for given f0, BW, and the maximum permissible |S21|minthe

number of unit cells m is determined from (8); as a result is

Table 1. Analytical expressions for characteristic impedances of unit cell in terms of Zmin.

n Analytical formulas for characteristic impedances Zk, k 5 1, [n/2]

5 0.0056 · Z0 + 0.3195 · Z1 + 0.6955 · Z2
1

Z0
= Z2 = Zmin

6 Z1 = Z3 =









ZminZ0

√
Z2 = Zmin

7 Z1 = 0.3466 · Z0 + 0.9063 · Zmin − 0.2610 · Z2
min

Z0
Z2 = Zmin Z3 = 0.0824 · Z0 + 1.0488 · Zmin − 0.1340 · Z2

min

Z0

8 Z1 = Z4 = 0.3786 · Z0 + 0.8750 · Zmin − 0.2610 · Z2
min

Z0
Z2 = Z3 = Zmin

9 Z1 = 0.4565 · Z0 + 0.7821 · Zmin − 0.2450 · Z2
min

Z0
Z2 = 0.0519 · Z0 + 1.0158 · Zmin − 0.0655 · Z2

min

Z0
Z3 = Zmin

Z4 = 0.1639 · Z0 + 1.0628 · Zmin − 0.2345 · Z2
min

Z0

10 Z1 = Z5 = Z2







Z0

Zmin

√
Z2 = Z4 = 0.0777 · Z0 + 1.0558 · Zmin − 0.1370 · Z2

min

Z0
Z3 = Zmin
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generally not an integer, the final value of m is adopted to
be a value of the first higher integer;

3) for given f0, BW, and m calculated from previous step,
|S21|min is determined from (8); value of such obtained
|S21|minis higher than given maximum allowed value;

4) from the given Z0 and values for m and |S21|min as calcu-
lated above, the value for minimum characteristic imped-
ance Zmin is determined.

Once we know these data, characteristic impedances of all
steps are determined using equation (5) and Table 1 for n ≤

10 and equation (6) for n . 10. In particular, this design pro-
cedure can be applied to a unit cell in the form of the segment
of periodically nonuniform transmission line free of spurious
stopbands [19], which length is equal to one period of this line.
Note that such a cell is obtained from the unit cell proposed in
this paper when number of steps n tends to infinity.

Using the unit cell of arbitrary n instead of cell, which n
tends to infinity gives additional flexibility in choosing
which harmonics should be suppressed. For example, sup-
pression of the 1st and the kth harmonic can be performed
using a cell of n ¼ k + 1 steps. Besides that, suppression of

Fig. 2. S21-parameter versus frequency for BSF made of four identical unit cells, for various number of unit cell steps, n ¼ 5, 6, 7, 8, 9, and 10.
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a given number p of higher spurious stopbands can be per-
formed using unit cell having any number of steps n . p +
2, which gives additional flexibility in choosing the geometry
of the filter. For example, it is often easier to fabricate the
cascade of steps then continuously nonuniform transmission
line.

Major drawback of such designed BSF is appearance of
ripples, up to 5dBs deep, around the first stopband.
Generally, these ripples can be reduced by optimizing values
of characteristic impedances of all n steps for each of m
cells. In addition, such optimization should preserve initial
BW and |S21|min. However, an optimization based on so
many variables is extremely time-consuming and can easily
fail to significantly improve the initial solution. It is found
that such optimization is much more effective if only values
of minimum characteristic impedances of all cells are varied,
i.e., Z(i)

min, i ¼ 1,..,m. Note that by varying minimum character-
istic impedance of the ith cell, Z(i)

min, the characteristic impe-
dances of all other steps in the cell are automatically varied
according to either formula (5) and Table 1, or formula (6).
Therefore, the number of optimization variables is reduced
to the number of cells m. It is also found that cells positioned
symmetrically to the center of the filter should have equal
values of minimum characteristic impedances

Z(m−i+1)
min = Z(i)

min. (9)

Thus the number of optimization variables m is practically
halved. Finally, we found that initial BW and |S21|min are

practically preserved if geometric mean of all minimum char-
acteristic impedances is also preserved, i.e.










∏m

i=1

Z(i)
min

m

√
= Zmin. (10)

In the case of m ¼ 3 and m ¼ 4 cells, there is only one op-
timization parameter Z(1)

min. In the case of m ¼ 5 and m ¼ 6
cells, there is only two optimization parameter Z(1)

min and
Z(2)

min, etc.
In order to illustrate the effectiveness of the procedure for

suppression of ripples in the vicinity of stopbands as
explained, let us consider BSF filters made of 3, 4, 5, 6, 7,
and 8 cells, each cell made of 10 steps, whose minimum
value of S21 is equal to 230 dB with respect to the nominal im-
pedance of ports set to Z0 ¼ 50 V. After the optimization,
minimum characteristic impedances are obtained as given in
Table 2. Figure 3 shows S21-parameter for optimized filters.
The values of the maximum ripple S21 before and after the op-
timization are also given in Table 2. Before the optimization
these values are approximately 23 dB, while after the opti-
mization these values are .21 dB.

It is also seen from Fig. 3 that by reducing width of the
bandstop a number of cells must be increased to maintain
given S21. Consequently, the proposed design is less suitable
for very narrow bandstops, as a relatively high number of
cells is required in this case. On the other hand, by increasing
width of the bandstop, the ripples in its vicinity become more
pronounced. Having all above in mind, the proposed design
can be recommended for filters having broad stopband
widths, between 40 and 100% with respect to the central band-
stop frequency. It also means that such design is complemen-
tary to other designs referenced in this paper. Namely, designs
from references [2, 7, and 9] enable narrow stop bandwidths,
up to 10%, while designs from references, [3–6] and [8] enable
stop bandwidths up to 40%.

Fig. 3. S21-parameter versus frequency for optimized BSFs made of various number of cells, m ¼ 3, 4, 5, 6, 7, and 8, where each cell is made of 10 steps.

Table 2. Optimized minimum characteristic impedances Z(i)
min for filters

made of various number of unit cells m, with each unit cell comprises
n ¼ 10 steps. The maximum ripple S21 is given before and after the opti-
mization. (Note that [(m + 1)/2] represents integer part of (m + 1)/2.)

Maximum ripple (dB)

m Z(i)
min, i = 1, ...,

m + 1
2

[ ]
[V]

Before
optimization

After
optimization

3 21.9 18.6 23.17 21.60
4 28.3 23.5 23.09 20.94
5 32.5 28.0 26.8 23.01 20.59
6 36.2 31.4 29.4 22.95 20.42
7 38.7 34.7 31.6 31.2 22.82 20.32
8 40.4 37.3 33.5 33.2 22.86 20.34

Table 3. Optimized values of minimum impedances of unit cells, for filter
made of four cells, where each cell consists of n steps.

n 6 8 10

Z(1)
min = Z(4)

min V 27.60 29.27 27.90
Z(2)

min = Z(3)
min [V] 22.82 24.53 23.49
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I V . 3 D E M S I M U L A T I O N ,
F A B R I C A T I O N , A N D
M E A S U R E M E N T

Three BSFs are designed starting from the following input
data: f0 ¼ 3 GHz, BW ¼ 2.5 GHz, |S21|min ¼ 2 30 dB, Z0 ¼

50 V, and number of spurious stopbands that should be sup-
pressed, p ¼ 3, 5, and 7. Note that the total electrical length of
each cell p corresponds to lg/2, where lg is wavelength in
microstrip line. According to the proposed procedure, the
numbers of steps of unit cells of these filters are n ¼ 6, 8,
and 10, respectively, the number of cells is m ¼ 4, and the cor-
responding optimized values of minimum impedances for
these cells are given in Table 3.

These BSFs are realized in microstrip technology, on the
CuFlon substrate of relative permittivity 1r ¼ 2.1, loss
tangent tand ¼ 0.0004, thickness h ¼ 0.508 mm, metalliza-
tion thickness t ¼ 17mm, and metallization conductivity
s ¼ 58 MS/m. The properties of the CuFlon substrate are
used to determine the physical widths and lengths of the
steps so that their characteristic impedances and electrical
lengths correspond to the design values at the central fre-
quency of the stopband. Since the major part of the current
flow in microstrip lines is placed near their edges, and the
edge of the step discontinuity belongs to the wider microstrip
line, the total electrical length of the current path in the wider
line is slightly longer than its initially determined electrical
length. In order to adjust the electrical lengths of this
current path to the design value it is found by numerical ex-
periment that the wider line should be shortened for about
5% of the difference in width between the wider and the nar-
rower line. Geometrical models of filters, as analyzed in
WIPL-D Pro 3D EM solver [25], are shown in Fig. 4(a). For

Fig. 4. Optimized BSFs made of four cells, each cell of n ¼ 6, 8 and 10 steps: (a) geometrical models for 3D EM simulation, (b) photo of the prototypes

Fig. 5. S21 parameters of BSF made of four cells, each consisting of n ¼ 10 steps: (a) comparison of circuit and 3D EM simulation, and (b) measurement and 3D
EM simulation

Fig. 6. Measured S21-parameter for nominal 50 V line and three BSFs made of
four cells, each cell of n ¼ 6, 8 and 10 steps.
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simulation purposes, to take into account the surface rough-
ness of metallization, the conductivity has been set to s ¼

18 MS/m. The filters are fabricated and measured using the
extended-frequency SMA connectors at both ends. Photos
of the fabricated prototypes are shown in Fig. 4(b). (The
results for filter with n ¼ 6 steps have been presented in
[21], and are repeated here for the sake of completeness.)
The total length of these filters is �150 mm. It is shown
that the maximum filter dimension can be reduced up to 4
times by bending or meandering without significant degrad-
ation of its performance (see Appendix).

Figure 5 shows results for S21-parameter of the filter with
unit cells made of n ¼ 10 steps. Unlike 3D EM simulation,
the circuit simulation does not take into account losses. The
results obtained using EM simulations are in excellent agree-
ment with measurement.

Figure 6 shows measured S21-parameter for all three BSFs,
compared with measured S21-parameter of microstrip line of
nominal characteristic impedance Z0 ¼ 50 V. It can be con-
cluded that in the passbands the filters practically behave as
a 50 V line with negligible extra losses. A value of the insertion
loss of the filters is comparable with the published results of
similar filters.

V . C O N C L U S I O N

Design method for a BSF that suppresses a requested number
of spurious bandstops is proposed. Initially, BSF is set in the
form of a cascade of identical cells, where each cell consists
of steps (uniform transmission lines) of equal electrical
length. The characteristic impedances of the cell steps are
uniquely determined by the ratio of maximum and
minimum characteristic impedance of the cell, where the geo-
metric mean of these two impedances is equal to the nominal
impedance. A number of suppressed spurious bandstops p is
directly related to the number of steps in unit cell n, i.e.,
p ¼ n - 3. Bandstop width of the filter and attenuation at
the central frequency of the stopband are related to the ratio
of maximum and minimum characteristic impedance of the
cell and the number of cells. Varying the minimum character-
istic impedances of all cells, keeping the geometric mean of the
impedances at the initial value, the ripples in passbands can be
reduced below �1 dB.

The number of steps in a cell can go up to infinity, in which
case this cell represents a segment of periodically nonuniform
transmission line free of spurious stopbands [19], whose
length is equal to one period of this line. Using the unit cell
of arbitrary n instead of cell whose n tends to infinity gives
additional flexibility in choosing harmonics suppression
(e.g., the 1st and the kth harmonic can be suppressed using
a cell of n ¼ k + 1 steps, or suppression of a given number
p of higher spurious stopbands can be performed using unit
cell having any number of steps n . p + 2). Besides that, it
is often easier to fabricate the cascade of steps then continu-
ously nonuniform transmission line.

Using the proposed theory, three filters in microstrip
technology suppressing 3, 5, and 7 spurious stopbands re-
spectively, are designed, fabricated, and measured. Excellent
agreement between simulated and measured results is
observed, confirming that proposed method can be efficiently
used for design of a BSF that suppresses a requested number of
spurious bandstops

The proposed design can be recommended for filters
having broad stop bandwidths, between 40 and 100% with
respect to the central bandstop frequency.
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A P P E N D I X

R E D U C T I O N O F F O O T P R I N T A R E A

The maximum dimensions of the filters, which are �150 mm,
as shown in Fig. 7(a), can be reduced in two ways: (1) by
rounding, as shown in Fig. 7(b), and (2) by meandering as
shown in Figs 7(c) and 7(d). Figure 7(e) shows results for cor-
responding S21-parameter obtained by 3D EM simulation. It is
seen that rounded filter has practically the same characteristics
as the linear one, while meandering results in much higher
loss. Namely, the excessive loss is due to bending of transmis-
sion lines. The wider a transmission line, the higher is the loss
due to bending. In the case of rounded filter, the three narrow-
est lines are bent, while in the case of meandered filter bending
is applied to six lines of different widths. Particularly, in the
case of narrow meandering, the characteristic is further
degraded, which can be explained by an increase of the coup-
ling between neighboring unit cells.

1002 dusan a. nesic and branko m. kolundzija
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