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Dynamic properties of a nonlinear five-dimensional stoichiometric model of the hypothalamic-

pituitary-adrenal (HPA) axis were systematically investigated. Conditions under which qualitative

transitions between dynamic states occur are determined by independently varying the rate con-

stants of all reactions that constitute the model. Bifurcation types were further characterized using

continuation algorithms and scale factor methods. Regions of bistability and transitions through

supercritical Andronov-Hopf and saddle loop bifurcations were identified. Dynamic state analysis

predicts that the HPA axis operates under basal (healthy) physiological conditions close to an

Andronov-Hopf bifurcation. Dynamic properties of the stress-control axis have not been character-

ized experimentally, but modelling suggests that the proximity to a supercritical Andronov-Hopf

bifurcation can give the HPA axis both, flexibility to respond to external stimuli and adjust to new

conditions and stability, i.e., the capacity to return to the original dynamic state afterwards, which

is essential for maintaining homeostasis. The analysis presented here reflects the properties of a

low-dimensional model that succinctly describes neurochemical transformations underlying the

HPA axis. However, the model accounts correctly for a number of experimentally observed proper-

ties of the stress-response axis. We therefore regard that the presented analysis is meaningful,

showing how in silico investigations can be used to guide the experimentalists in understanding

how the HPA axis activity changes under chronic disease and/or specific pharmacological manipu-

lations. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944040]

Stress is a physiologic reaction by an organism to an exter-

nally imposed demand for change. It manifests itself

through the release of a flood of hormones, including corti-

sol, in the blood circulation, which rouse our body for

action. These changes occur through numerous molecular

interactions that take place in distinct parts of our body,

most notably in several brain regions, the pituitary and ad-

renal glands. Through these molecular interactions, a vast

network of interaction is formed that is known as the

Hypothalamic-Pituitary-Adrenal (HPA) axis. Normally,

stress is beneficial and helps us to stay focused, attentive,

and active, but when persistent and exceeding an individu-

al’s threshold, stress stops being helpful and starts causing

major damage to our mind and body. Despite intensive

research, we still do not understand fully how this exten-

sive network of interactions is controlled and how this pro-

tective mechanism, whose main function is to respond to

stimuli while maintaining the normal physiologic balance,

turns into its opposite and becomes harmful. In this study,

we use mathematical modelling and numerical simulations

to examine how the dynamics of this complex network is

controlled in humans. In order to accomplish this, we have

developed a stoichiometric model to concisely describe

neurochemical transformations that occur in the HPA

axis. Stoichiometry is a branch in chemistry that quantita-

tively describes the relationships between reactants and

products in a chemical reaction. In a stoichiometric model

of a biological system, biochemical pathways are described

by stoichiometric relations. In this representation, substan-

ces that initiate, i.e., enter a pathway are regarded to

behave as reactants, substances that are generated in a

pathway are regarded to behave as products, and the rates

at which products of a pathway appear are jointly propor-

tional to the amounts of the reactants. In this way, a math-

ematical framework is developed to describe on chemical

and kinetic basis the integration of biochemical pathways

that constitute the HPA axis. Such model allows us to

describe the changes in the concentration of implicated

biomolecules in the form of a system of ordinary differen-

tial equations (ODEs) and to use numerical simulations to

investigate how the underlying biochemical pathways are

intertwined to give an integral HPA axis response at the

organism level. By examining theoretically how dynamic

properties of the HPA axis are changing when the rates of

individual pathways change, we can help the experimen-

talists to understand how the stress-response is changed in

chronic diseases or under the effect of drugs, such as sys-

temically used corticosteroid medications commonly

employed to decrease inflammation and reduce the activity

of the immune system, or statins, commonly used to reduce

blood cholesterol levels. Giving that the HPA axis is a
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nonlinear dynamical network, such behaviour cannot be

intuitively predicted. We show in our work how important

dynamic properties of the HPA axis are—functioning in

the close vicinity to an Andronov-Hopf (AH) bifurcation

provides the advantage of fast and controlled response to

stress. It gives living organisms the necessary flexibility to

adequately respond to stimuli from the surroundings while

maintaining their internal balance. Departure from this

state results in the reduction of dynamic control and the

organism’s response to environmental challenge becomes

inadequate (too fast, too slow, too strong, or too weak).

Mathematical modelling suggests that this may be one way

how stress turns into distress.

I. INTRODUCTION

Living organisms tightly control the concentration of bio-

active molecules and their capacity to uphold specific dynamic

states, such as stable steady-states, regular sustained, and

mixed-mode oscillations; intermittency or chaos is essential for

proper biological functioning.1–14 The HPA axis is a dynamical

integrator of the nervous and endocrine systems’ functions that

is of vital importance for maintaining homeostasis in mamma-

lian organisms under normal physiological conditions and

under stress.8,9 This nonlinear system is characterised by a

complex oscillatory dynamics of steroid and peptide hormones

with two principal frequencies—ultradian oscillations with a

period of 20–120 min that are superimposed on circadian oscil-

lations with a period of about 24 h.10–12 Mechanisms giving

rise to ultradian oscillations remain still elusive. Targeted ex-

perimental studies have for many years been unsuccessful in

identifying the anatomical origin of ultradian rhythms.15

However, recent work by the Lightman group suggests that an

additional level of glucocorticoid autoregulation may exist

within adrenal glands,16 further strengthening the view that bir-

hythmic oscillatory changes in blood glucocorticoid levels

reflect the integrated activity of pulsatile hypothalamic forcing

on an endogenously rhythmic pituitary-adrenal system. The

ultradian oscillatory dynamics in HPA axis was previously

described in several models assuming different feedback mech-

anisms,17–35 most recently reviewed by Hosseinichimeh

et al.,36 and also in a five-dimensional nonlinear stoichiometric

model37 where we used instability criteria38–40 derived by stoi-

chiometric network analysis (SNA)41,42 to identify the narrow

range of kinetic parameters (i.e., rate constants) where oscilla-

tions in hormone concentrations occur in physiologically rele-

vant levels. In this model, ultradian oscillations arise

spontaneously, as a consequence of nonlinear interactions

between reactive species, most notably ones that comprise the

feedback loop at the pituitary-adrenal level, and the diurnal reg-

ulation is dictated externally through a periodic forcing func-

tion that imitates the circadian clock synchronized to the daily

cycle of light and darkness.38 Consequently, in the absence of

the external forcing function, an ultradian rhythm at the mi-

nute/hour timescale in adrenocorticotropic hormone (ACTH)

and cortisol concentration is observed in the model, while it is

not observed in corticotropin-releasing hormone (CRH) (see

Fig. 2 in Ref. 38), in line with the experimental studies.15 In the

literature related to mathematical modelling of HPA axis dy-

namics, endogeneity of ultradian oscillations has been regarded

as a dominant and practically unanimously accepted stance

(see Table I in Ref. 36).

For a faithful characterization of the repertoire of dynami-

cal states available in the HPA axis, both circadian and (on

them superimposed) ultradian oscillations should be included

in the models of HPA dynamics. However, depending on the

research goal, some models exclude from their description the

lower-frequency circadian oscillations18,29,30 when focusing

on processes that take place at shorter time scales. Similarly,

higher-frequency ultradian oscillations may be omitted when

processes of interest occur at longer time scales.

In this paper, we focus on the analysis of ultradian oscil-

lations employing our five-dimensional stoichiometric model

of the HPA axis,37 without incorporating the external forcing

function that describes the coupling with circadian oscilla-

tions. We systematically analyze conditions under which

ultradian oscillations arise or disappear, characterize dynami-

cal states inherent to the system and the manner of their trans-

formation, and investigate the impact that rates of individual

reactions between key chemical species included in the model

exert on these dynamical states. In particular, we present a

more detailed numerical analysis of bifurcations observed in

that model, systematically considering the effects of all rate

constants one at a time by the method of numerical continua-

tion.43–47 Furthermore, some bifurcations are characterized

using the analysis of transitions between different dynamic

states, comprehensively described by Maselko.48

II. METHODS

All numerical simulations were executed in MATLAB by

employing the ode15s solver based on the Gear algorithm for

integration of stiff differential equations.49 In all simulations,

absolute and relative tolerance errors were 1� 10�17 and

1� 10�14, respectively. Values of kinetic rate constants (ki,

i¼ 1–13) were as in Table I, unless otherwise stated. If not dif-

ferently emphasized, the initial conditions for integration of the

model’s ODE equations were in all numerical simulations as

follows: x1,0¼ 3.4� 10�4 M, x2,0¼ 1.0� 10�12 M, x3,0¼ 8.0

� 10�8 M, x4,0¼ 4.0� 10�8, and x5,0¼ 1.5� 10�9 M, where

x1,0, x2,0, x3,0, x4,0, and x5,0, stand for initial concentration val-

ues of intermediary chemical species of the model, cholesterol,

CRH, ACTH, cortisol, and aldosterone, respectively.

Bifurcation analysis was carried out by the pseudo-arc

length continuation,50 which is based on tracing evolution of

the steady-state concentration with variation of the control

parameter.

III. MODEL

As shown in our previous paper,37 the dynamics of ultra-

dian HPA oscillations can be faithfully described by 13 reac-

tion steps that concisely represent nonlinear interactions

between the 5 most important dynamic variables: cholesterol

(X1), CRH (X2), ACTH (X3), cortisol (X4), and aldosterone

(X5) (Table I). In this model, stoichiometric relations are used

to describe the complex neurochemical transformations under-

lying the HPA axis. Reaction steps (R1), (R2), and (R3)
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describe the biosynthesis of cholesterol, CRH, and aldoste-

rone, respectively.51–53 Reaction steps (R9)–(R13) describe

the elimination of all species. Reaction steps (R4)–(R8) sym-

bolize the main biochemical processes together with feedback

effects of cortisol.53–55 Particularly, reaction step (R7)

describes the complex cortisol-mediated positive feedback

(feed-forward) regulation of the HPA axis, whereas reaction

step (R8) describes the cortisol-mediated negative feedback

regulation of the HPA axis, both found experimentally.56–58

The temporal dynamics of this five-dimensional stoichi-

ometric model of HPA axis self-regulation is described by a

system of ODE derived from the model’s mechanism based

on mass action kinetics59,60

d x1

d t
¼ v1� v5 þ v6ð Þ–v9; (1a)

d x2

d t
¼ v2�ðv4 þ v10Þ; (1b)

d x3

d t
¼ v4� v5 þ v6ð Þ�v7�v11; (1c)

d x4

d t
¼ v5 þ v7�v8�v12; (1d)

d x5

dt
¼ v3 þ v6�v8�v13; (1e)

where xn denotes the concentration of species Xn, n¼ 1–5,

and vm is the reaction rate of reaction step Rm, m¼ 1–13 that

can be expressed as a function of related rate constant km

and the concentrations of species taking part in that particu-

lar reaction. Expressions for vm are given in Table I.

Solutions of this system of ODEs (Equations (1a)–(1e))

describe the temporal evolution of the concentrations (xn) of

all investigated species (Xn) for a given set of parameters,

which include the rate constants (km) and initial concentra-

tions of reactants (xn,0).

IV. NUMERICAL STABILITY ANALYSIS OF THE MODEL

Dynamic state of the considered model depends on

selected values of rate constants. Bifurcation points, i.e., spe-

cific values of rate constants where a qualitative change in the

dynamic state is observed, e.g., transition from a stable steady

state to an oscillating state, need to be identified by bifurcation

analysis. At the same time, distinction can be made between

steady states of different stability (stable or unstable) and

character (node, saddle, focus, etc.). Hence, different types of

bifurcations (Andronov-Hopf, saddle node, etc.) can be identi-

fied. However, since bifurcations and particular dynamic

states are mostly determined by the steady state properties, as

a first step of this analysis, steady states need to be identified.

Here, steady state must be identified from five nonlinear

algebraic equations

v1�ðv5 þ v6Þ�v9¼ 0; (2a)

v2�ðv4 þ v10Þ¼ 0; (2b)

v4�ðv5 þ v6Þ�v7�v11¼0; (2c)

v5 þ v7�v8–v12¼0; (2d)

v3 þ v6�v8�v13¼0; (2e)

where reaction rates are nonlinear functions of the steady

state concentrations (see also Table II)

v1;ss ¼ k1; (3a)

v2;ss ¼ k2; (3b)

v3;ss ¼ k3; (3c)

v4;ss ¼ k4x2;ss; (3d)

v5;ss ¼ k5x1;ssx3;ss; (3e)

v6;ss ¼ k6x1;ssx3;ss; (3f)

v7;ss¼ k7x3;ssx
2
4;ss; (3g)

v8;ss¼ k8x5;ssx
2
4;ss; (3h)

v9;ss¼ k9x1;ss; (3i)

v10;ss¼ k10x2;ss; (3j)

v11;ss¼ k11x3;ss; (3k)

v12;ss¼ k12x4;ss; (3l)

v13;ss¼ k13x5;ss: (3m)

A system of ODE of this complexity cannot be solved ana-

lytically, but it is a more or less an easy task to find numeri-

cal solution for an arbitrary set of selected rate constants.

The character of the steady state is evaluated from the

eigenvalues of the corresponding Jacoby matrix

J ¼

@ _x1

@ x1

@ _x1

@ x2

@ _x1

@ x3

@ _x1

@ x4

@ _x1

@ x5

@ _x2

@ x1

@ _x2

@ x2

@ _x2

@ x3

@ _x2

@ x4

@ _x2

@ x5

@ _x3

@ x1

@ _x3

@ x2

@ _x3

@ x3

@ _x3

@ x4

@ _x3

@ x5

@ _x4

@ x1

@ _x4

@ x2

@ _x4

@ x3

@ _x4

@ x4

@ _x4

@ x5

@ _x5

@ x1

@ _x5

@ x2

@ _x5

@ x3

@ _x5

@ x4

@ _x5

@ x5

2
66666666666666664

3
77777777777777775

; (4)

TABLE I. Model of the hypothalamic-pituitary-adrenal (HPA) axis.

!k1
X1 v1 ¼ k1 k1¼ 1.380� 10�4 M min�1 ðR1Þ

!k2
X2 v2 ¼ k2 k2¼ 1.830� 10�8 M min�1 ðR2Þ

!k3
X5 v3 ¼ k3 k3¼ 6.090� 10�11 M min�1 ðR3Þ

X2!
k4

X3 v4 ¼ k4x2 k4¼ 1.830� 104 min�1 ðR4Þ
X1þX3!

k5
X4 v5 ¼ k5 x1 x3 k5¼ 11.94M�1 min�1 ðR5Þ

X1 þ X3!
k6

X5 v6 ¼ k6 x1 x3 k6¼ 9.552� 10�2 M�1 min�1 ðR6Þ
X3 þ 2X4!

k7
3X4 v7 ¼ k7 x3 x2

4 k7¼ 1.260� 1014 M�2 min�1 ðR7Þ
X5 þ 2X4!

k8
X4 v8 ¼ k8 x5 x2

4 k8¼ 7.050� 1012 M�2 min�1 ðR8Þ
X1!

k9
v9 ¼ k9x1 k9¼ 4.500� 10�2 min�1 ðR9Þ

X2!
k10

v10 ¼ k10x2 k10¼ 1.100� 10�1 min�1 ðR10Þ
X3!

k11
v11 ¼ k11x3 k11¼ 5.350� 10�2 min�1 ðR11Þ

X4!
k12

v12 ¼ k12x4 k12¼ 4.100� 10�1 min�1 ðR12Þ
X5!

k13
v13 ¼ k13x5 k13¼ 1.350� 10�1 min�1 ðR13Þ
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where _xi ¼ dxi

dt , and all partial derivatives are calculated using

the concentrations in specified steady state. If any eigenvalue

of the Jacoby matrix (4) has a positive real part, the steady

state is unstable. Conversely, if all eigenvalues have negative

real parts, it is stable.38–40 The same results are obtained

when a somewhat different form of the linearized operator is

derived by stoichiometric network analysis.41,42 In the pres-

ent paper, Equation (4) is used for numerical evaluation

only.

V. RESULTS AND DISCUSSIONS

A. Numerical simulations

Solution of the system of ODE (1.a–1.e) obtained by nu-

merical integration gives the temporal evolution of the con-

centrations of species X1–X5. Under conditions considered

here, the concentrations of all species except CRH change

oscillatory, with a period of about 25 min. In Fig. 1, Cortisol

(X4) oscillations are shown as an example. Bifurcation anal-

ysis was performed in order to identify in the parameter

space conditions under which qualitative transitions in the

HPA axis dynamics occur.

B. Bifurcation analysis

In order to investigate the contribution of individual

reaction steps to the overall dynamics and characterize bifur-

cation types in the model, two methods were applied: the

method of numerical continuation43–47 and the method pro-

posed by Maselko48 and other authors61–75 for examination

of bifurcations in oscillatory chemical reaction systems. The

numerical continuation method was applied to each rate con-

stant separately, keeping all other rate constants fixed. From

this analysis, limiting values of rate constants at which oscil-

lations appear or disappear were determined (Table II).

From Table II, we can see that rate constants can be di-

vided into three groups based on their impact on the system’s

dynamics. The first group consists of rate constants that have

no impact on the emergence of oscillations (at least for the

given referent values of other constants). Those rate con-

stants are k8 and k13, and their values can be arbitrarily var-

ied without affecting the appearance or disappearance of

oscillatory dynamics. Although these rate constants do not

contribute to the emergence of oscillations, they have con-

siderable influence on hormone levels, shape of oscillations,

correct oscillatory dynamics, and response to perturbations

with endogenous and exogenous compounds (Figure 2).

The second group contains rate constants k2, k3, k4, k6,

k7, k10, k11, and k12, which all have significant impact on the

oscillatory dynamics in the model. By varying these rate

constants, transitions between a stable and an unstable steady

state were observed and the emergence/disappearance of a

stable limit cycle through a supercritical AH (SAH) bifurca-

tion was detected. Bifurcation diagrams for rate constants k2,

k4, k11, and k12 are given in Figure 3. Bifurcation diagrams

obtained by varying rate constants k2, k7, or k12 are structur-

ally identical, showing both lower and upper critical value at

which oscillations appear/disappear (Table II, Figs. 3(a) and

3(d)). Bifurcation diagrams obtained by varying rate con-

stants k3, k4, k6, k10, or k11 are structurally similar, having ei-

ther a lower or an upper critical value (Table II, Figs. 3(b)

and 3(c)). The impact of these rate constants was first ana-

lysed by numerical continuation methods, by which AH

bifurcations were detected. The critical value at which the

AH bifurcation occurs was determined as a point at which a

pair of purely imaginary eigenvalues appeared in the Jacoby

matrix (Equation (4)).

In order to determine if the AH bifurcation is supercriti-

cal/subcritical, we examined how the oscillation amplitudes

change as a function of the rate constant value.40 Thus, for

example, the linear relationship between the square of the

amplitude of small-amplitude limit cycle oscillations (A2)

and rate constant (k2) as the control parameter in the vicinity

of the lower critical value, i.e., lower bifurcation point, is a

proof that a SAH bifurcation is observed (Fig. 4(a)). By

extrapolation of this interdependence to zero amplitude, the

TABLE II. Values of the rate constants at which oscillations appear (lower

critical value) and disappear (upper critical value).

Rate

constants

Lower critical value

(type of bifurcation)

Upper critical value

(type of bifurcation)

k1 1.42521� 10�5 (SL) 1.4492� 10�4 (SAH)

k2 1.6123� 10�8 (SAH) 1.9440� 10�8 (SAH)

k3 0a 1.2974� 10�8 (SAH)

k4 8.1500� 10�1 (SAH) þ1b

k5 1.2495 (SL) 1.2343� 101 (SAH)

k6 0a 2.8701 (SAH)

k7 9.1526� 1013 (SAH) 1.4467� 1014 (SAH)

k8 0a þ1b

k9 4.2841� 10�2 (SAH) 4.3575� 10�1 (SL)

k10 0a 2.4699� 103 (SAH)

k11 0a 6.3039� 10�2 (SAH)

k12 3.9739� 10�1 (SAH) 5.1733� 10�1 (SAH)

k13 0a þ1b

aThe value zero is given as the lower limit of the physically meaningful

range of rate constant values and does not correspond to the actual value at

the bifurcation point.
bThe value þ1 is given here to indicate that an upper bifurcation point was

not found. Values up to 1� 10150 were tested in numerical simulations.

FIG. 1. Time-series showing the temporal dynamics of X4 (cortisol)

obtained by numerical integration of ODE (Equations (1a)–(1e)) for the val-

ues of kinetic rate constants given in Table I. Time is given in hours and

molar concentration in M¼mol dm�3. (These units were used throughout.)
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precise value of the rate constant at the bifurcation point was

determined (Table II).

The third group is made of rate constants k1, k5, and k9,

which exert complex impact on the dynamics of the exam-

ined model (Fig. 5). The same types of dynamical transitions

were observed for all three parameters, but for increasing

values of k1 and k5 (exemplified for k1 in Fig. 5(a)) and

decreasing values of k9 (Fig. 5(b)). As can be seen from

Figure 5, for low values of k1 and high values of k9, three

steady states exist simultaneously, two of them being unsta-

ble (dashed and dashed-dotted lines) and one being stable

(solid line). For low values of k1 or high values of k9, the

steady state characterised by the lowest concentration of cor-

tisol (x4) is a stable node (solid line), for which all eigenval-

ues of the Jacoby matrix in the steady state (Equation (4))

are negative real numbers. When increasing the value of k1

or decreasing the value of k9, the stable node becomes a sta-

ble focus, characterised with two complex-conjugate eigen-

values with negative real parts (dots). At the critical point,

this stable focus merges with an unstable steady state and

annihilates, giving rise to a saddle with one eigenvalue with

a positive real part (dashed line). The steady state with the

highest concentration of cortisol (x4) is a focus. It exists in

the whole range of rate constant values and is unstable for

low values of k1 or high values of k9, characterised by two

complex-conjugate eigenvalues with positive real parts

(dashed-dotted line), and stable for high values k1 or low val-

ues of k9, characterised by two complex-conjugate eigenval-

ues with negative real parts (dots).

Multiplicity of steady states leads to emergence of com-

plex bifurcations. In the case of the rate constant k1, in the vi-

cinity of the lower bifurcation point (k1,c1¼ 1.4252� 10�5 M

min�1), large-amplitude oscillations suddenly appear. The pe-

riod of the large-amplitude limit cycle oscillations (T) expo-

nentially increases when approaching the bifurcation point

k1,c1 as evident from the linear dependence of T on the loga-

rithm of the control parameter k1 expressed in its dimension-

less form as d¼ (k1 � k1,c1)/k1,c1 (Figure 4(b)). Further

analysis showed that the appearance of large-amplitude

oscillation depends on the initial conditions. Thus, for exam-

ple, stable steady state (Figure 4(c)) and sustained large-

amplitude oscillations (Figure 4(d)) were obtained for the

same value of the control parameter, k1¼ 1.42525� 10�5 M

min�1, but different initial concentrations of cholesterol:

x1,0¼ 1� 10�4 (Figure 4(c)) M, and x1,0¼ 3.4� 10�4 M

(Figure 4(d)), respectively. Initial concentrations of all other

dynamic variables were the same: x2,0¼ 1.0� 10�12 M,

x3,0¼ 8.0� 10�8 M, x4,0¼ 4.0� 10�8 M, and x5,0¼ 1.5

� 10�9 M. The fact that the dynamics of the system depends

on the initial conditions is a clear indication of multistability,

FIG. 2. Different small limit cycle

oscillations and distinct responses to

perturbations performed by addition of

the same amount of X2 (CRH) when

different values of the rate constant k13

are used in the HPA axis model: (a)

k13¼ 0 min�1 and (b) k13¼ 1.350

� 10�1 min�1. Perturbations were car-

ried out with the same concentration of

X2, x2¼ 1.2839� 10�8 M.

FIG. 3. Bifurcation diagrams showing

changes in HPA axis dynamics as a

function of the rate constant varied: (a)

k2; (b) k4; (c) k11; and (d) k12. Values

of all other rate constants were

unchanged, as given in Table I.

Dashed-dotted lines represent unstable

foci. Dots represent stable foci.

Oscillatory states are represented by

open circles, indicating the minimal

and maximal cortisol concentration of

sustained oscillations with constant

amplitude and frequency, which are

established for the indicated value of

the control parameter. The exact posi-

tion of the AH bifurcation point is indi-

cated by the triangle.
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which is also accompanied by hysteresis, typical for a saddle

loop (SL) bifurcation where a stable periodic orbit disappears

as it becomes a homoclinic loop of a saddle-node.64 In the vi-

cinity of the higher bifurcation point, k1,c2¼ 1.4485� 10�4 M

min�1, small-amplitude limit cycle oscillations with linear

dependence between the square of the amplitude of small-

amplitude limit cycle oscillations and the control parameter

were observed. The lack of hysteresis was evident at this

point. Thus, we have all proofs that this is a SAH bifurcation.

The intercept of A2¼ f (k1) was obtained at the above men-

tioned value k1,c2¼ 1.4485� 10�4 M min�1. Similar dynamic

transition scenarios were previously detected and character-

ized by Bar-Eli and Brøens in several chemical oscillator

models (see, for example, Figure 2(c) in Ref. 75 and referen-

ces therein). Identical behaviour was also observed in the case

of rate constants k5 and k9, except that in the case of k9,

saddle-loop was detected at the higher critical value, while

SAH bifurcation was detected at the lower critical value.

C. Relevance of dynamical transition analysis
for applications in biomedicine

Even though it is well established that HPA axis activity

is birhythmic, that dynamic self-regulation is at the core of

the neuroendocrine system function, and that dysregulation

of HPA axis activity is associated with numerous diseases,80

dynamical transitions in this complex system have not been

systematically characterised. However, important progress in

relating disease states with changes in HPA axis dynamics

was made in several recent studies,36,81 where it was shown

that healthy and disease states may be distinguished through

differences in dynamical properties of HPA axis activity.

Importance of dynamical transition analysis for understand-

ing disease development in several important rhythmic phys-

iological systems was also underlined in a recent review on

dynamical diseases.82

The model investigated here suggests that basal

(healthy) physiological dynamic state of the HPA axis is

close to a SAH bifurcation.37,76 While stringent experimental

confirmation of this prediction is still awaited, its implica-

tions are obviously relevant. The proximity of a SAH bifur-

cation, with its special geometry of the stable manifold and

FIG. 4. (a) The square of the amplitude

of cortisol oscillations as a function of

the control parameter k2 at the vicinity

of SAH bifurcation (k2,c1¼ 1.6123

� 10�8 M min�1). (b) Period of large-

amplitude oscillations (T) as a function

of distance from the SL bifurcation

point (k1,c¼ 1.42521� 10�5 M min�1)

expressed as the logarithm of the con-

trol parameter D¼ (k1 � k1,c)/k1,c. (c)

Steady state and (d) sustained large-

amplitude oscillations obtained for the

same value of the control parameter k1

(k1¼ 1.42525� 10�5 M min�1), but

different initial concentrations of cho-

lesterol (x1,0): x1,0¼ 1� 10�4 M in (c)

and x1,0¼ 3.4� 10�4 M in (d). Initial

concentrations of all other dynamic var-

iables were the same: x2,0¼ 1.0� 10�12

M, x3,0¼ 8.0� 10�8 M, x4,0¼ 4.0 � 10�8

M, and x5,0¼ 1.5� 10�9 M.

FIG. 5. Bifurcation diagrams showing changes in HPA axis dynamics as a

function of the rate constant varied: (a) k1 and (b) k9. Values of all other rate

constants were as given in Table I. Solid lines represent stable nodes.

Dashed lines represent saddle nodes. Dashed-dotted lines represent unstable

foci. Dots represent stable foci. Oscillatory states are represented by open

circles, indicating the minimal and maximal cortisol concentration of sus-

tained oscillations with constant amplitude and frequency, which are estab-

lished for the indicated value of the control parameter. The exact position of

the SAH bifurcation point is indicated by the triangle.
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the shape and orientation of the limit cycle, gives the HPA

axis exceptional capacity to respond to a challenge and

return to its original dynamic state afterwards. Factors that

act on the HPA axis can drive it away from the SAH bifurca-

tion and bring the HPA axis towards dynamic states that are

less controllable.77 For example, in the vicinity of the SL

bifurcation, the local geometry is complex and because of

bistability the system need not necessarily return to its origi-

nal dynamic state after a perturbation. From the perspective

of efficient homeostasis maintenance, such dynamic struc-

ture is clearly unfavourable.

Numerical simulations and dynamical systems theory

may be deployed to anticipate dynamical transitions in ultra-

dian HPA axis activity in diseases where the turnover of

HPA axis hormones (Fig. 3) or cholesterol (Fig. 5) is altered,

or to characterize dynamical transitions in ultradian HPA

axis activity induced by medications. For example, glucocor-

ticoids8 or statins,78 drugs that are widely prescribed in rou-

tine medical practice for their anti-inflammatory/

immunosuppressive or cholesterol-level regulating effects,

respectively, are representative examples of external pertur-

bators of the HPA axis dynamics. Glucocorticoids are effec-

tive in the treatment of many inflammatory conditions, but

also as replacement therapy.83 However, despite their enor-

mous beneficial effects, glucocorticoid pharmacotherapy

remains to be challenging due to, among other issues, the

negative side-effects associated with inadequate delivery.84

In an effort to moderate these side effects, a portable subcu-

taneous infusion pump was recently developed to enable

complex timing of drug delivery.85 Mathematical models

that veritably mimic the complex daily dynamics of gluco-

corticoid secretion, with gradually changing amplitudes of

ultradian oscillations during the day,37 may be of great value

for programming such medical devices to deliver the treat-

ment in accordance with the innate personal rhythm of hor-

monal secretion that is specific for an individual, leading to

prospective clinical applications such as those seen in the

field of chronopharmacology.79

Furthermore, bifurcation analysis clearly shows how dif-

ficult it is to correctly predict changes in HPA axis activity,

which is a multidimensional nonlinear dynamical system, by

monitoring only one dynamical variable at a single time

point during the day, as it is often done in experimental stud-

ies and clinical practice. For example, in a recent meta-

analysis of randomized placebo-controlled trials on the

effects of statins on plasma cortisol concentrations,86 it was

shown that lipophilic statins (atorvastatin, simvastatin, and

lovastatin) increase plasma cortisol concentrations, whereas

hydrophilic statins (rosuvastatin and pravastatin) do not, an

effect that was allegedly due to a direct action of the tested

lipophilic statins on the adrenal gland. While the authors

conclude that treatment with hydrophilic statins does not al-

ter plasma cortisol concentrations, implying that HPA axis

activity is therefore unaltered by these drugs, our numerical

simulations clearly reveal the fallacy of this implication.

While mean cortisol concentration remains largely unaltered

when cholesterol levels are reduced by cholesterol removal

(Fig. 5(b)), changes in ultradian HPA axis activity take

indeed place, but in the form of altered amplitude and

frequency of ultradian oscillations, and dynamical transitions

will occur if cholesterol levels are reduced below the critical

point (Fig. 5(b)).

Finally, we would like to underline that bifurcation anal-

ysis provides a mathematical framework to quantitatively

describe allostasis and measure the allostatic load in a physi-

ological system. The concept of allostasis, introduced in the

late 1980s to depict the dynamic process of maintaining

functional stability under lasting aversive conditions that

drive the physiological system away from its normal func-

tional range,87 is often used to describe adaptive transforma-

tions in chronic disease states,88,89 and the term allostatic

load describes the “wear and tear” that a physiological sys-

tem experiences when undergoing repeated cycles of allosta-

sis. While these concepts are intuitively understandable, they

remain impractical, as it is very difficult to assess allostasis

and measure the allostatic load. Bifurcation diagrams, like

the ones shown in Figs. 3 and 5, clearly show how the HPA

axis can self-adjust its underlying dynamics in order to adapt

to the effect of an enduring challenge, and the allostatic load

in the system can be measured in terms of distance of the

actual dynamical state from a bifurcation point. In this way,

by introducing concepts from dynamical system theory in

neuroendocrinology, one can develop quantitative criteria

that objectively characterize states that we can presently

describe only subjectively.

VI. ACRONYMS AND NOTATION

CRH Corticotropin-releasing hormone

ACTH Adrenocorticotropic hormone

ODE Ordinary differential equations

xn Concentration of species Xn

ki Rate constant of the reaction i

vi Rate of the reaction i

VII. CONCLUSION

Dynamic states of ultradian HPA axis activity were

examined using a five-dimensional model where the oscilla-

tory states arise from the intrinsic nonlinearity of the under-

lying biochemical interactions and the entanglement of the

investigated species: cholesterol, CRH, ACTH, cortisol, and

aldosterone via feedback mechanisms. Numerical continua-

tion algorithms and scaling factor methods developed by

Maselko and other authors43–48 were applied to the consid-

ered model in order to examine its dynamical states.

Although applied methods are essentially different, the

obtained results are the same.

Bifurcation analysis presented in this paper revealed that

rate constants can be classified into three groups based on

their impact on the dynamics of the presented model. The

first group consists of rate constants k8 and k13, for which it

was determined that they do not contribute to the emergence

of the Andronov-Hopf bifurcation but they have a big impact

on the oscillatory dynamics, as shown in Figure 2. The sec-

ond group consists of rate constants k2, k3, k4, k6, k7, k10,
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k11, and k12, whose varying leads to the appearance of a

supercritical Andronov-Hopf bifurcation. The third group

consists of rate constants k1, k5, and k9, whose impact on the

model’s dynamics is most complex. Varying values of these

rate constants can lead to the appearance of two types of

bifurcations: supercritical Andronov-Hopf bifurcation and

saddle-loop bifurcations. While in the case of the rate con-

stants k1 and k5, supercritical Andronov-Hopf bifurcation

appears at the lower critical values and saddle-loop bifurca-

tion appears at the higher critical value, in the case of the

rate constant k9, it is the opposite. Here, bistability is identi-

fied, indicating the possibility of the HPA axis to acquire ei-

ther stable oscillations or a stable steady state, depending on

initial conditions.

Our work shows that approaches from dynamical sys-

tems theory provide an efficient tool for examination of self-

regulation in a model of the neuroendocrine system. The

work presented here is useful for understanding how chronic

deviations induced by internal or external substances affect

the HPA axis dynamics and its capacity to respond to stress-

ful stimuli. Furthermore, this work may be useful for under-

standing how pharmacotherapeutic treatment of chronic

conditions influences the HPA axis activity. At present, there

are, to our best knowledge, no experimental data that probe

the HPA axis dynamics in a systematic way with sufficiently

high temporal resolution. The results of our theoretical inves-

tigations may therefore be used as a lead for designing such

experiments.
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and Mech. 8, 43 (2016).
41B. L. Clarke, in Adv. Chem. Phys., edited by I. Prigogine and S. A. Rice

(John Wiley & Sons, Inc., 1980), pp. 1–215.
42B. L. Clarke, Cell Biophys. 12, 237 (1988).
43E. J. Doedel, W. Govaerts, and Y. A. Kuznetsov, SIAM J. Numer. Anal.

41, 401 (2003).
44E. Doedel, H. B. Keller, and J. P. Kernevez, Int. J. Bifurcation Chaos

Appl. Sci. Eng. 01, 493 (1991).
45J. P. Abbott, Bull. Aust. Math. Soc. 17, 307 (1977).
46E. Allgower and K. Georg, Introduction to Numerical Continuation

Methods (SIAM, 2003).
47A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics:

Analytical, Computational and Experimental Methods (John Wiley &

Sons, New York, 1995).
48J. Maselko, Chem. Phys. 67, 17 (1982).
49C. W. Gear, Numerical Initial Value Problems in Ordinary Differential

Equations. Englewood Cliffs (Prentice-Hall, Inc., New Jersey, 1971).
50H. B. Keller, in Appl. Bifurc. Theory, edited by P. H. Rabinowitz

(Academic Press, 1977), pp. 359–384.
51R. A. DeBose-Boyd, Cell Res. 18, 609 (2008).
52K. Lu, M.-H. Lee, and S. B. Patel, Trends Endocrinol. Metab. 12, 314

(2001).
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