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Abstract: A series of heteropentanuclear oxalate-bridged
Ru(NO)-Ln (4d–4f) metal complexes of the general formula
(nBu4N)5[Ln{RuCl3(m-ox)(NO)}4] , where Ln = Y (2), Gd (3), Tb
(4), Dy (5) and ox = oxalate anion, were obtained by treat-

ment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lan-
thanide salt in 4:1 molar ratio. The compounds were charac-
terized by elemental analysis, IR spectroscopy, electrospray
ionization (ESI) mass spectrometry, while 1, 2, and 5 were in
addition analyzed by X-ray crystallography, 1 by Ru K-edge
XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction

showed that in 2 and 5 four complex anions [Ru-
Cl3(ox)(NO)]2¢ are coordinated to YIII and DyIII, respectively,
with formation of [Ln{RuCl3(m-ox)(NO)}4]5¢ (Ln = Y, Dy). While

YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with
an additional coordination of an EtOH molecule. The nega-

tive charge is counterbalanced by five nBu4N+ ions present
in the crystal structure. The stability of complexes 2 and 5 in

aqueous medium was monitored by UV/Vis spectroscopy.
The antiproliferative activity of ruthenium-lanthanide com-
plexes 2–5 were assayed in two human cancer cell lines
(HeLa and A549) and in a noncancerous cell line

(MRC-5) and compared with those obtained for the
previously reported Os(NO)-Ln (5d–4f) analogues
(nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln = Y (6), Gd (7), Tb (8), Dy (9)).
Complexes 2–5 were found to be slightly more active than

1 in inhibiting the proliferation of HeLa and A549 cells, and
significantly more cytotoxic than 5d–4f metal complexes 6–

9 in terms of IC50 values. The highest antiproliferative activity
with IC50 values of 20.0 and 22.4 mm was found for 4 in HeLa
and A549 cell lines, respectively. These cytotoxicity results

are in accord with the presented ICP-MS data, indicating
five- to eightfold greater accumulation of ruthenium versus

osmium in human A549 cancer cells.

Introduction

Quite recently we became interested in ruthenium and
osmium nitrosyl complexes with the prospect to create pro-
drugs able to release clinically effective levels of NO and metal

complex within cancer cells.[1–3] This took into account the fact
that several classes of, mostly mononuclear, ruthenium and
osmium coordination compounds have demonstrated promis-
ing anticancer potential both in vitro and in vivo.[4] Moreover,
the role of nitric oxide in several biological processes is well es-
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tablished and depends on its
concentration in the cells.[5, 6] It is

beneficial at low level (<mm) but
it may cause cell apoptosis at

higher concentration of NO.[7] In
addition, ruthenium nitrosyl

complexes are known for their
electron-transfer properties and/
or catalytic activity in organic

synthesis, which are mainly
based on the non-innocent char-

acter of the nitrosyl (NO)
ligand.[8] These complexes may

also photo-release NO.[9] Recently, we synthesized ruthenium
and osmium nitrosyl complexes with azole heterocycles that

were shown to undergo the cis–trans isomerization through

a dissociative mechanism.[3] We also evidenced much lower an-
tiproliferative activity of the osmium complexes, in stark con-

trast to previous studies, where either smaller[10, 11] or similar cy-
totoxicity[12, 13] has been observed for related ruthenium and

osmium complexes. Further, we investigated the effect of in-
corporating oxygen donors in the coordination sphere of the

metal–nitrosyl complexes, starting with a series of osmium

complexes with amino acids.[2]

Theranostic agents combining a targeted therapeutic drug

and a diagnostic unit that fit the dose requirement for both
the therapy and imaging would be ideally suited for cancer

treatment allowing monitoring the therapy and response to
therapy at the cellular level.[14] Several imaging techniques are

well used clinically for cancer diagnosis now, such as magnetic

resonance imaging (MRI), single photon emission computed
tomography (SPECT) or positron emission tomography (PET).[15]

Optical fluorescence imaging possesses a number of advantag-
es such as high sensitivity, availability, excellent spatial and

very fast temporal resolution allowing visualization and moni-
toring of the tumor cell biology in real time.[16, 17] For in vivo

purposes the use of MRI or PET is preferred to overcome prob-

lems of background fluorescence and photobleaching typical
for fluorescence imaging, and, high absorption (e.g. , hemoglo-
bin) in the mid-visible range.[18] Exploitation of photophysical
properties of lanthanides (luminescence), and, in particular, of

terbium and europium, characterized by long-lived (millisec-
onds timescale) excited states, is another way to avoid con-

cerns related to fluorescence imaging. The long lifetimes pro-
vide an increase of a signal-to-noise ratio, since time-resolved
fluorescence spectroscopy and microscopy can be used.

With this in mind, we turned our attention to lanthanide-la-
beling of ruthenium and osmium complexes with biologically

active organic ligands. The use of luminescence emission from
the lanthanide complexes in combination with ruthenium-

based anticancer therapeutic drugs is indeed appealing for the
design and synthesis of new potential cancer theranostics. At
the early stage of development lanthanide labeling may allow

the monitoring of subcellular distribution of potential drugs. In
addition, lanthanide(III) salts themselves were found to exhibit

moderate antiproliferative activity in vitro[19, 20] as well as in
vivo.[21] These properties are related to their similarity to calci-

um ions, whereby lanthanide ions are higher charged and
therefore show a strong affinity towards biological calcium

binding sites.[19, 21, 22] The anticancer activity could be further en-

hanced by complexation of lanthanide ions with various che-
lating and macrocyclic ligands such as chrysin (A),[23] texaphyr-

ins (B)[24] or phenantroline derivatives (C).[25]

La(phen)3(NCS)3 (phen = 1,10-phenanthroline) was found to

overcome drug resistance and has proved to be highly effec-
tive against the DLD-1 colon cancer model in vivo,[26–28] which

is resistant to several chemotherapeutics amongst others due

to oncogene mutations.[29] Moreover, attempts to generate re-
sistant to La(phen)3(NCS)3 cell models failed in contrast to

many other investigated metallodrugs.
Herein we report on the syntheses of lanthanide-labeled

ruthenium–nitrosyl complexes as potential anticancer drugs.
The lanthanide has been coupled to the ruthenium by a bridg-

ing oxalate, which is a well-known bioligand incorporated in

the anticancer agent oxaliplatin.[31] The complexes of the gen-
eral formula (nBu4N)5[Ln{RuCl3(ox)(NO)}4] , where Ln = Y (2), Gd

(3), Tb (4), Dy (5 ; Scheme 1), have been characterized by ele-
mental analysis, ESI mass spectrometry and IR spectroscopy

and, in case of 2 and 5 by X-ray diffraction. Their antiprolifera-
tive activity along with that of the precursor (nBu4N)[RuCl3(m-

ox)(NO)] (1) have been investigated in the two human cancer

cell lines HeLa (cervical cancer) and A549 (non-small cell lung
cancer) and the noncancerous cell line MRC-5 (lung fibroblasts)
and compared with that for the osmium analogues 6–9
(Scheme 1), which were reported recently.[30]

In addition, the effect of Ru versus Os as well as of the differ-
ent lanthanide ions on the biological activity of the com-

pounds is discussed and compared to that for the mononu-
clear ruthenium–nitrosyl complex 1. The antiproliferative activi-

Scheme 1. Compounds studied in this work. Underlined numbers indicate
complexes investigated by X-ray diffraction. The synthesis of the osmium
compounds 6–9 has been reported previously.[30]
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ty of Ru(NO)–Ln (4d–4f) and Os(NO)–Ln (5d–4f) complexes has
been correlated with their accumulation in human A549

cancer cells.

Experimental Section

Materials

Solvents were obtained from commercial sources and were used
as received. The starting compound Na2[RuCl5(NO)]·6 H2O was pre-
pared as described in the literature.[32] RuCl3·3 H2O was purchased
from Johnson Matthey and the lanthanide salts were from Sigma–
Aldrich. All chemicals were used as received. The respective
osmium–lanthanide complexes 6–9 were synthesized as reported
recently.[30]

Synthesis of complexes

(nBu4N)2[RuCl3(ox)(NO)] (1): To a solution of Na2[RuCl5(NO)]·6 H2O
(0.3 g, 0.6 mmol) in water (2.5 mL) a solution of oxalic acid (0.12 g,
1.3 mmol) in water (2.0 mL) was added. The pH value was adjusted
to 3 using an aqueous solution of KOH. The reaction mixture was
refluxed for 3 h and the pH of the solution was kept at 3. nBu4NCl
(0.36 g, 1.3 mmol) was added to the hot solution. The oil obtained
was separated using a separation funnel and dissolved in water
(20 mL). The solution generated purple crystals upon standing at
room temperature. Yield: 0.20 g, 41 %; elemental analysis calcd (%)
for C34H72Cl3N3O5Ru (Mr = 810.38 g mol¢1): C 50.39, H 8.96, N 5.18;
found: C 50.24, H 8.87, N 5.12; ESI-MS in MeOH (negative): m/z
568.9 [M¢nBu4N]¢ (mtheor = 569.1) ; ESI-MS in MeOH (positive): m/z
241.8 [nBu4N]+ (mtheor = 242.3); MIR (solid state ATR): ~n= 2961,
2874, 1842 (NO), 1685, 1475, 1358, 1029, 887, 798, 745 cm¢1;
13C NMR ([D6]DMSO, 125.82 MHz): d= 13.97, 19.58, 23.62, 58.06,
164.14, 166.64 ppm.

(nBu4N)5[Y{RuCl3(m-ox)(NO)}4] (2): YCl3·3 H2O (13 mg, 0.043 mmol)
was added to a solution of 1 (100 mg, 0.13 mmol) in acetonitrile
(1.2 mL) and 2-propanol (0.65 mL) and the reaction mixture was re-
fluxed for 1.5 h. The reaction mixture was cooled to room tempera-
ture and filtered. The solvent was removed under reduced pressure
and the residue was dissolved in ethanol (2.0 mL). The product
crystallized upon slow evaporation of the solvent at room temper-
ature. Yield: 40 mg, 31 %; elemental analysis calcd (%) for
C88H180Cl12N9O20Ru4Y (Mr = 2603.02 g mol¢1): C 40.60, H 6.97, N 4.84;
found: C 40.87, H 7.32, N 4.77; ESI-MS in MeOH (negative): m/z
568.4 (nBu4N)[RuCl3(NO)(ox)]¢ (mtheor = 569.1); ESI-MS in MeOH (pos-
itive): m/z 241.9 [nBu4N]+ (mtheor = 242.3); MIR (solid state ATR): ~n=
2962, 2874, 1857 (NO), 1624, 1467, 1379, 1030, 883, 809, 739 cm¢1;
13C NMR ([D6]DMSO, 125.82 MHz): d= 13.96, 19.69, 23.5, 58.04,
165.06, 167.56 ppm.

(nBu4N)5[Gd(EtOH){RuCl3(m-ox)(NO)}4] (3): GdCl3·6 H2O (16 mg,
0.043 mmol) was added to a solution of 1 (100 mg, 0.13 mmol) in
ethanol (2.0 mL) and the reaction mixture was refluxed for 1.5 h.
The solution was cooled to room temperature and filtered. The sol-
vent was removed under reduced pressure and the residue was
dissolved in ethanol (2.0 mL). The product crystallized upon slow
evaporation of the solvent at room temperature. Yield: 53 mg,
51 %; elemental analysis calcd (%) for C90H186Cl12GdN9O21Ru4·2 H2O
for (Mr = 2753.48 g mol¢1): C 39.18, H 6.94, N 4.57; found: C 38.95,
H 7.07, N 4.58; ESI-MS in MeOH (negative): m/z 289.1
[RuCl2(NO)(ox)]¢ (mtheor = 289.8), m/z 568.2 (nBu4N)[RuCl3(NO)(ox)]¢

(mtheor = 569.1), 1618.6 [M¢3(nBu4N)¢[RuCl3(NO)(ox)]¢EtOH]¢

(mtheor = 1618.9); ESI-MS in MeOH (positive): m/z 241.8 [nBu4N]+

(mtheor = 242.3) ; MIR (solid state ATR): ~n= 2962, 2874, 1857 (NO),
1639, 1617, 1474, 1380, 1335, 884, 808, 738 cm¢1.

(nBu4N)5[Tb(EtOH){RuCl3(m-ox)(NO)4}] (4): TbCl3·6 H2O (16 mg,
0.043 mmol) was added to a solution of 1 (100 mg, 0.13 mmol) in
ethanol (2.0 mL) and the reaction mixture was refluxed for 1.5 h.
The solution was cooled to room temperature and filtered. The sol-
vent was removed under vacuum and the residue was dissolved in
ethanol (2.0 mL). The product crystallized upon slow evaporation
of the solvent at room temperature. Yield: 41 mg, 44 %; elemental
analysis calcd (%) for C90H186Cl12N9O21Ru4Tb (Mr = 2719.11 g mol¢1):
C 39.75, H 6.89, N 4.64; found: C 39.67, H 7.28, N 4.64; ESI-MS in
MeOH (negative): m/z 569.0 (nBu4N)[RuCl3(NO)(ox)]¢ (mtheor =
569.1); ESI-MS in MeOH (positive): m/z 241.9 [nBu4N]+ (mtheor =
242.3); MIR (solid state ATR): ~n= 2962, 2874, 1857 (NO), 1625, 1465,
1380, 882, 809, 739 cm¢1.

(nBu4N)5[Dy(EtOH){RuCl3(m-ox)(NO)}4] (5): DyCl3·6 H2O (16 mg,
0.043 mmol) was added to a solution of 1 (100 mg, 0.13 mmol) in
acetonitrile (1.2 mL) and 2-propanol (0.65 mL) and the reaction
mixture was refluxed for 1.5 h. The solution was cooled to room
temperature and filtered. The solvent was removed under reduced
pressure and the residue was dissolved in ethanol (2.0 mL). The
product crystallized upon slow evaporation of the solvent at room
temperature. Yield: 70 mg, 50 %; elemental analysis calcd (%) for
C90H186Cl12DyN9O21Ru4 (Mr = 2722.67 g mol¢1): C 39.70, H 6.89, N
4.63; found: C 39.71, H 7.21, N 4.64; ESI-MS in MeOH (negative):
m/z 289.1 [RuCl2(NO)(ox)]¢ (mtheor = 289.8), m/z 568.2
(nBu4N)[RuCl3(NO)(ox)]¢ (mtheor = 569.1), 1622.3 [M¢Ru-
Cl3(ox)(NO)¢3(nBu4N)¢EtOH]¢ (mtheor = 1622.9) ; ESI-MS in MeOH
(positive): m/z 241.7 [nBu4N]+ (mtheor = 242.3) ; MIR (solid state ATR):
~n= 2962, 1857 (NO), 1629, 1464, 1381, 1048, 881, 809, 739 cm¢1.

Physical measurements

Elemental analyses were performed by the microanalytical service
of the Faculty of Chemistry of the University of Vienna on
a Perkin–Elmer 2400 CHN Elemental Analyzer. UV/Vis spectra were
recorded at 25 8C using a Perkin–Elmer Lambda 650 spectrometer
equipped with an optical cell of 1 cm path-length in the wave-
length range of 200 to 800 nm in combination with a Perkin–Elmer
PTP-6 Peltier System. Electrospray ionization (ESI) mass spectrome-
try measurements were conducted on a Bruker HCT ion trap
(Bruker Daltonics GmbH) by using methanol as a solvent. MIR spec-
tra were recorded on a Perkin–Elmer 370 FTIR 2000 instrument
using an ATR (attenuated total reflection) unit in the range of
4000–400 cm¢1. Phosphorescence emission spectra were recorded
with a Horiba FluoroMax-4 spectrofluorimeter and the data were
processed using the FluorEssence v3.5 software package.

X-ray crystallography

X-ray diffraction measurements were performed on a Bruker X8
APEXII CCD diffractometer. Single crystals were positioned at 35,
40 and 40 mm from the detector, and 950, 1964 and 4113 frames
were measured, each for 10, 30 and 10 s over 18 scan width for 1,
2 and 5, respectively. The data were processed using SAINT soft-
ware.[33] Crystal data, data collection parameters, and structure re-
finement details are given in Table 1. The structures were solved
by direct methods and refined by full-matrix least-squares tech-
niques. Non-hydrogen atoms were refined with anisotropic dis-
placement parameters. Hydrogen atoms were inserted in calculat-
ed positions and refined with a riding model. The following com-
puter programs and hardware were used: structure solution,
SHELXS-97 and refinement, SHELXL-97;[34] molecular diagrams,
ORTEP;[35] computer, Intel CoreDuo. Disorder observed for tetrabu-
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tylammonium cation(s) in 2 and 5 was resolved by using SADI and
EADP restraints and DFIX constraints implemented in SHELXL.
CCDC 951636, 1402056 and 1402057 contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre.

XAS sample preparation

The Ru model compounds were diluted in BN (boron nitride,
Sigma–Aldrich, CAS 10043-11-5, 99.5 %), filled into aluminum
sample holders and sealed with Kapton foil. The BN samples were
prepared for a calculated theoretical absorption of about 1 absorb-
ance unit according to standards methods.[36]

XAS data collection and analysis

The XAS experiment was carried out at beamline BM26A at the Eu-
ropean Synchrotron Radiation Facility (ESRF) in Grenoble
(France).[37] At beamline BM26A (ESRF, Grenoble; France) three low
noise ion chambers from Oxford Instruments were used for meas-
urements in transmission mode. The absolute energy calibration
was performed using a ruthenium powder (Sigma–Aldrich, CAS
7440-18-8, 99.9 %) BN preparation optimized for an absorption
edge jump of 1 abs, measured at the same time between ioniza-
tion chambers two and three. The model compound was mea-
sured in transmission mode. An Oxford CCC 1204 cryostat provid-
ed a sample environment of 20 K. The ESRF storage ring was oper-
ated at 6 GeV in the 7/8 + 1 filling mode. The beamline BM26A
was equipped with a double crystal Si(111) monochromator and
a bending magnet source giving an energy range of 5–30 keV (flux
of 1 Õ 1011 ph s¢1). Higher harmonics were rejected using two mir-
rors with Pt and Si coatings.

The XAS spectrum was measured at the Ru K-edge with a pre-
edge region from 21 869 to 22 083 eV with a step size of 10 eV, an
edge region from 22 099 to 22 161 eV with a step size of 1.3 eV.
The k-space was measured from 3 to 14 A¢1 with a step size of

0.05 A¢1. The scanning times per measurement point were 1 s in
the pre-edge, 5 s in the edge and 5–25 s (22 161–22 917 eV), in-
creasing according to a predefined curve, in the post-edge region.
The spectrum of the model compound is the average of 2 scans.

The program packages ATHENA,[38] ARTEMIS,[38] IFEFFIT,[39] FEFF,[40–42]

PySpline,[43] DL-EXCURV[44–47] were applied for XAS data analysis.

XANES and EXAFS analysis and the interpretation applying the
concept of the coordination charge have been performed as de-
scribed recently.[48]

Cell culture

Human cervical carcinoma (HeLa), human alveolar basal adenocar-
cinoma (A549), and normal human fetal lung fibroblast cell line
(MRC-5) were maintained as monolayer culture in the Roswell Park
Memorial Institute (RPMI) 1640 nutrient medium (Sigma Chemicals
Co, USA). RPMI 1640 nutrient medium was prepared in sterile ion-
ized water, supplemented with penicillin (192 IU mL¢1), streptomy-
cin (200 mg mL¢1), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic
acid (HEPES) (25 mm), l-glutamine (3 mm) and 10 % of heat-inacti-
vated fetal calf serum (FCS; pH 7.2). The cells were grown at 37 8C
in 5 % CO2 and humidified air atmosphere, by twice weekly subcul-
ture.

MTT assay

Antiproliferative activity of the ruthenium and osmium complexes
was determined using 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetra-
zolium bromide (MTT, Sigma–Aldrich) assay.[49] Cells were seeded
into 96-well cell culture plates (Thermo Scientific Nunc), at a cell
density of 3000 cells per well (HeLa), 7000 cells per well (A549),
and 5000 cells per well (MRC-5), in 100 mL of culture medium. After
24 h of growth, cells were exposed to the serial dilutions of the
tested complexes. Complexes were dissolved in 1 % DMSO: com-
plex 1 at a concentration of 4 mm, complexes 2–5 at a concentra-
tion of 1 mm, complexes 6–9 at a concentration of 0.6 mm, as
stocks immediately prior use, and afterwards diluted with nutrient
medium to desired final concentrations (in range up to 200 mm).
Each concentration was tested in triplicate. After incubation peri-
ods of 48 h, 20 mL of MTT solutions (5 mg mL¢1 in phosphate buffer
solution, pH 7.2) were added to each well. Samples were incubated
for 4 h at 37 8C, with 5 % CO2 in a humidified atmosphere. Forma-
zan crystals were dissolved in 100 mL of 10 % sodium dodecyl sul-
fate (SDS). Absorbances were recorded after 24 h, on an ELISA
reader (ThermoLabsystems Multiskan EX 200–240 V), at the wave-
length of 570 nm. The IC50 values, defined as the concentrations of
the compound causing 50 % cell growth inhibition, were estimated
from the dose-response curves.

Inductively coupled plasma mass spectrometry (ICP-MS)

Sample preparation for the measurement of intracellular Ru/Os
accumulation using ICP-MS : Ru/Os accumulation was analyzed in
A549 cells with ICP-MS using Thermo Scientific iCAP Qc ICP-MS
(Thermo Scientific, Bremen, Germany).[50] A549 cells were seeded
into a 25 cm2 dish (Thermo Scientific NuncÏ) and treated with the
complexes 4 and 8 at concentrations equal to 0.5 Õ IC50. After 6
and 24 h, cells were harvested by scraping, washed with ice-cold
PBS and collected by centrifugation at 778 g for 10 min.

Sample preparation for the measurement of Ru/Os binding to
DNA and proteins using ICP-MS : Binding of Ru/Os to cellular DNA
and proteins was analyzed in A549 cells, using ICP-MS. A549 cells
were prepared and collected using the same procedure as de-
scribed above. Total DNA and protein were isolated using TRI Re-

Table 1. Crystal data and details of data collection for 1, 2 and 5.

Comp. 1 2 5

formula C34H72Cl3N3O5Ru C88H180Cl12N9O20Ru4Y C90H189Cl12DyN9O22.5Ru4

Fw 810.37 2603.00 2749.68
space
group

P1̄ P4̄21/c Cc

a [æ] 11.8503(7) 18.4268(4) 17.9596(12)
b [æ] 18.0124(11) 18.4268(4) 27.2143(12)
c [æ] 21.2370(14) 18.4008(6) 27.0644(16)
a [8] 99.345(2)
b [8] 104.935(3) 92.962(4)
g [8] 98.681(2)
V [æ3] 4232.5(5) 6247.9(3) 13 210.3(13)
Z 4 2 4
l [æ] 0.71073 0.71073 0.71073
1calcd

[g cm¢3]
1.272 1.384 1.383

size [mm3] 0.30 Õ 0.30 Õ 0.20 0.18 Õ 0.18 Õ 0.16 0.30 Õ 0.20 Õ 0.16
T [K] 150(2) 100(2) 100(2)
m [mm¢1] 0.598 1.247 1.307
R1

[a] 0.0403 0.0278 0.0639
wR2

[b] 0.1039 0.0746 0.1611
GOF[c] 1.033 1.052 1.129

[a] R1 =S j jFo j¢ jFc j j /S jFo j . [b] wR2 = {S[w(Fo
2¢Fc

2)2]/S[w(Fo
2)2]}1/2.

[c] GOF = {S[w(Fo
2¢Fc

2)2]/(n¢p)}1/2, where n is the number of reflections
and p is the total number of parameters refined.
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agentÒ (Sigma–Aldrich) according to the manufacturer’s procedure
and concentrations were determined spectrophotometrically by
measuring absorbances (Eppendorf BioPhotometer 6131).

Microwave digestion

The digestion of the samples for ICP-MS studies was performed on
an advanced microwave digestion system (ETHOS 1, Milestone,
Italy) using HPR-1000/10S high pressure segmented rotor. The
pressure-resistant PTFE vessels (volume 100 mL) used in this study
consisted of fluoropolymer liner. Before use, the PTFE vessels were
acid cleaned and rinsed with deionized water. This type of vessel
permitted a maximum temperature of 240 8C and a maximum
pressure of 100 bar to be applied. Maximally ten PTFE vessels
could simultaneously be mounted on the rotor. The internal tem-
perature was monitored only with one vessel equipped with
a sensor unit, and this vessel had a sensor-protecting tube that di-
rectly contacted the digested solution, differing from the other
common PTFE vessels. In the digestion, samples were mixed in
each clean vessel with 4 mL HNO3 (65 %, Suprapure, Merck, Germa-
ny) and 4 mL ultrapure water and then heated with microwave
energy for 10 min. The temperature was controlled with a predeter-
mined power program. Digestion of the samples was carried out
for 10 min at a constant temperature of 180 8C, with a prior warm-
up linearly over 10 min to 180 8C. After cooling and without filtra-
tion, the solution was diluted to a fixed volume into a 10 mL volu-
metric flask and made up to volume with ultrapure water. Ultra-
pure water was prepared by passing doubly deionized water from
Milli-Q system (Millipore, Bedford) to a resistivity of 18.2 MW cm.

Instrumental analysis

ICP-MS measurements were performed using Thermo Scientific
iCAP Qc ICP-MS (Thermo Scientific, Bremen, Germany) spectrome-
ter with operational software Qtegra. For Ru determination the in-
strument was adjusted for optimum performance in He KED (kinet-
ic energy discrimination) mode using the supplied autotune proto-
cols. For Os determination the instrument was adjusted for opti-
mum performance standard no gas mode using the supplied auto-
tune protocols. The instrumental operating conditions for ICP-MS
are shown in Table 2.

Analytical blanks were run in the same way as the samples, and
concentrations were determined using standard solutions prepared
in the same acid matrix. The standard for the instrument calibra-
tion was prepared on the basis of ruthenium, plasma standard so-
lution, SpecpureÒ, Ru 1000 mg mL¢1 and osmium, plasma standard

solution, Specpure, Os 1000 mg mL¢1 certified reference solutions
ICP standard purchased from Alfa Aesar GmbH & Co KG (Germany).

Abbreviations

XAS, X-ray absorption spectroscopy; XANES, X-ray absorption near
edge structure; EXAFS, extended X-ray absorption fine structure;
ESRF, European Synchrotron Radiation Facility; FT, Fourier trans-
form.

Results and Discussion

Synthesis and characterization

As mentioned in the Introduction we were interested in label-

ing our ruthenium and osmium–nitrosyl complexes with lan-
thanide ions. A suitable strategy to accomplish such a combina-

tion was inspired by a previous report on a heteropentanuclear
oxalate-bridged [ReIV

4GdIII] complex.[51] Quite recently we re-

ported the synthesis of the osmium–nitrosyl analogues 6–9
(Scheme 1).[30] The ruthenium–nitrosyl analogues 2–5
(Scheme 1) were synthesized following a similar procedure. An

aqueous solution of Na2[RuCl5(NO)] was treated with 2 equiv
oxalic acid to give rise to [RuCl3(ox)(NO)]2¢, which was isolated

as a tetrabutylammonium salt 1 in 47 % yield by addition of
nBu4NCl to the reaction mixture. This complex proved to be

suitable for the synthesis of pentanuclear heterometallic com-
plexes 2–5 by treatment with 0.3 equiv of the respective lan-
thanide(III) or yttrium(III) salt in 4:1 molar ratio either in etha-

nol or in a mixture of acetonitrile and 2-propanol. All these
4d–4f metal complexes were obtained as crystalline solids in

31–51 % yield. The formation of pentanuclear assemblies was
confirmed by elemental analysis, ESI mass spectrometry and X-
ray diffraction of complexes 2 and 5. ESI mass spectra of com-
plexes 1, 2, and 5 showed only a signal for the ruthenium frag-

ment [RuCl3(NO)(ox)]¢ (m/z 569) in the negative ion mode,

while for 3 and 4 signals with a higher m/z ratio were ob-
served, which could be attributed to tetranuclear species con-

taining the respective lanthanide ion. 13C NMR spectroscopic
measurements of the diamagnetic compound 2 revealed no

significant influence of the YIII coordination on the chemical
shifts of the oxalato carbon atoms.

Photophysical properties

The luminescence of the reported compounds was investigat-

ed using complex 4 as an example, since this property is most
evident and often studied for europium or terbium ions. Emis-

sion spectra (lex = 365 nm) of aqueous solutions of 4 at differ-
ent concentrations ranging from 0.1 to 400 mm were mea-

sured between 450 and 700 nm using a slit width of 10 nm.

Even at the highest concentration level, only a very weak phos-
phorescence signal was found after ten flash counts (data not

shown). To be able to observe the complete emission pattern
typical for a terbium ion consisting of four peaks, up to 200

flash counts had to be applied (Figure S1 in the Supporting In-
formation). These attempts indicate that complexes of the

Table 2. Experimental conditions used on ICP-MS equipment to deter-
mine Ru and Os in samples.

Parameter Experimental conditions

radio frequency power (RF)
nebulizer argon flow rate
auxiliary argon flow rate
Coolant argon flow rate
CCT1-Helium
dwell time
extraction
Sample uptake rate
spray chamber
nebulizer
number of readings per replicate
software
Isotopes

1550 W
0.95 L min¢1

0.80 L min¢1

14.0 L min¢1

6.0 mL min¢1

10 ms
¢5000 V
0.40 mL min¢1

cyclonic
Meinhard ESI MicroFlow PFA-ST
3
Qtegra
101Ru, 189Os
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type 2–5 are not suitable for further development as potential
diagnostic agents.

X-ray diffraction analysis

The results of X-ray diffraction studies of complexes 1, 2 and 5
are shown in Figure 1, Figure 2 and Figure 3. Note that the X-
ray diffraction structure of [RuCl3(ox)(NO)]2¢ was reported pre-

viously as a cesium salt and [NiL]2 + complex, where L =

1,4,8,11-tetraazacyclotetradecane.[52] In the present work the

complex (nBu4N)2[RuCl3(ox)(NO)] (1) was studied since it served
as a starting material for further complexation reactions with
lanthanide salts. In addition, we used this compound for deter-

mination of the oxidation state of ruthenium coordinated to
a non-innocent NO ligand (vide infra). In 2 four complex

anions [RuCl3(ox)(NO)]2¢ are coordinated to yttrium(III) via un-
bound oxygen atoms of the oxalates which act as bridging li-

gands with formation of the complex [Y{RuCl3(m-ox)(NO)}4]5¢.
The negative charge is counterbalanced by five nBu4N+ ions

present in the crystal structure. Like (nBu4N)5[Y{OsCl3(m-

ox)(NO)}4][30] the complex crystallizes in the tetragonal space
group P4̄21c. The yttrium atom and the nitrogen atom of one

of the tetrabutylammonium cations lie on the fourfold rotation
axis running along the c axis. So the asymmetric unit consists

of one [RuCl3(ox)(NO)]2¢ unit bound to YIII in a special position,
one nBu4N+ cation in a general position and a quarter of

nBu4N+ in a special position. The whole complex forms

a sphere the radius of which is of approximately 8.5 æ. The
shortest Ru···Ru separation is of 7.469 æ, while Y···Y distance is

of 15.951 æ.

Selected bond lengths and bond angles in the coordination
spheres of Ru and Y are quoted in the legend to Figure 2. The

Ru¢Cl bonds in 2 are well-comparable to those in the precur-
sor 1, while the Ru¢O bonds are by approximately 0.03–0.04 æ
longer in 2 compared to those in 1. The Ru¢N1 bond in 2 is

very similar to that in 1, as also are the N1¢O1 bond and the
Ru1-N1-O1 angle in both complexes.

The complex (nBu4N)5[Dy(EtOH){RuCl3(m-ox)(NO)}4]·1.5 H2O
crystallizes in the monoclinic non-centrosymmetric space

group Cc. The whole structure is severely affected by the disor-
der, which was mainly resolved in an isotropic model. There-

fore, a comparison of the metric parameters in 1 with those in

5 has not much sense. The asymmetric unit consists of one
complex anion [Dy(EtOH){RuCl3(m-ox)(NO)}4]5¢ and five nBu4N+

cations. While YIII is eight-coordinate in 2, the DyIII ion is nine-
coordinate in 5 with an additional coordination of an EtOH

molecule, as was also found for the corresponding Os–Dy
counterpart.[30] Complexes 3 and 4 were found to crystallize in

Figure 1. ORTEP view of the complex anion [RuCl3(ox)(NO)]2¢. Thermal ellip-
soids are drawn at the 50 % probability level. Selected bond lengths [æ] and
bond angles [8]: Ru1¢Cl1 2.3482(7), Ru1¢Cl2 2.3599(7), Ru1¢Cl3 2.3674(7),
Ru1¢N1 1.714(2), Ru1¢O2 2.0440(18), Ru1¢O3 2.0037(16), N1¢O1 1.150(3) ;
Ru1-N1-O1 177.0(3), O2-Ru1-O3 80.73(7).

Figure 2. ORTEP view of the complex anion [Y{RuCl3(m-ox)(NO)}4]5¢. Thermal
ellipsoids are drawn at the 50 % probability level. Selected bond lengths [æ]
and bond angles [8]: Ru1¢Cl1 2.3202(9), Ru1¢Cl2 2.3642(10), Ru1¢Cl3
2.3412(10), Ru1¢N1 1.716(3), Ru1¢O2 2.075(2), Ru1¢O3 2.046(2), Y¢O4
2.329(2), Y¢O5 2.387(2), N1¢O1 1.151(4) ; Ru1-N1-O1 176.8(3), O2-Ru1-O3
80.24(9), O4-Y-O5 69.41.

Figure 3. Ball and stick view of the complex anion [Dy(EtOH){RuCl3(m-
ox)(NO)}4]5¢.
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the monoclinic non-centrosymmetric space group Cc, and are
affected by severe disorder. Therefore, only the parameters of

the unit cells are given in Table S1 in the Supporting Informa-
tion for the two compounds. In addition, crystallization of 4
from a CHCl3 solution yielded crystals isostructural to that of 2
(see Table S1, entry 4’ for the respective unit-cell parameters).

NO in complexes 1–5 acts as a non-innocent ligand[53] ren-
dering the description of the exact electronic structure of the
Ru(NO) entity difficult. According to Enemark and Feltham no-

tation[54] and taking into account the diamagnetism of 1, the
close to linearity Ru-N-O angle and the IR n(NO) vibration
(1842 cm¢1) it can be described in our case as {Ru(NO)}6. How-
ever, it does not reveal the actual physical and formal oxida-

tion state[55] of the ruthenium and NO ligand. Therefore,
XANES experiments were performed to determine the physical

oxidation state of ruthenium in 1.

XAS analysis

The XAS spectra of the Ru reference compounds have been

published recently.[48] The method has been proven highly val-
uable for determining the oxidation state and coordination

charge for metal complexes in vivo and in vitro.[56, 57]

In this study they formed the basis for the oxidation state

assignment of ruthenium in 1. The structural formulas are
shown in Figure S2 in the Supporting Information. The prefix

“R” has been added to the labeling and numbering of the ref-

erence compounds is preserved to avoid overlaps. The figure
includes the following model compounds: indazolium trans-

[tetrachloridobis(1H-indazole)ruthenate(III)] R1 (with first coor-
dination shell RuIIICl4N2),[58] tris(pentan-2,4-dionato)rutheniu-

m(III) (R3, RuIIIO6, Sigma–Aldrich, CAS 14284-93-6, 97 %),[59] hex-
ammineruthenium(III) trichloride (R4, RuIIIN6, Sigma–Aldrich,

CAS 14282-91-8, 99 %),[60] mer,trans-aquatrichloridobis(indazo-

le)ruthenium(III) (R5, RuIIICl3N2O),[61] trans,trans-dichloridotetra-
kis-(indazole)ruthenium(III) chloride (R6, RuIIICl2N4),[62] mer-tri-

chloridotris(indazole)-ruthenium(III) (R7, RuIIICl3N3),[63] hexammi-
neruthenium(II) dichloride (R8, RuIIN6, Sigma–Aldrich, CAS

15305-72-3, 99.9 %),[64] mer,trans-trichlorido(dimethylsulfide)-
bis(indazole)-ruthenium(III) (R9, RuIIICl3N2S),[65] trans,trans-
dichloridotetrakis(indazole)ruthenium(II) (R10, RuIICl2N4),[62]

mer-trichloridotris(ethylphenylsulfide)ruthenium(III) (R11,

RuIIICl3S3),[66] trans,trans,trans-dichloridobis(dimethylsulfide)bi-
s(indazole)ruthenium(II) (R12, RuIICl2N2S2).[62]

The XANES spectra and their corresponding first derivatives

for 1, R1 (first shell coordination: RuIIICl4N2), R5 (RuIIICl3N2O) and
R3 (RuIIIO6) exhibiting a mixed chloride, nitrogen/oxygen first

coordination sphere are shown in Figure 4. The edge position
for 1 (RuCl3NO2) was determined as 22 125.9 eV. In comparison

to R7 (Ru3 +Cl3N3) and R5 (Ru3 +Cl3N2O), 1 displays an edge shift

of + 2.2 and + 1.9 eV, respectively. The edge position for R3
(RuIIIO6) has been determined to be 22 126.6 eV and appears

0.7 eV above that for 1. In the previous study on ruthenium
complexes it was shown that model compounds with the

same first shells show an edge shift of about + 2 eV on going
from RuII to RuIII.[48] Like models R1, RuIIICl4N2, R3, RuIIIO6, and

hexammine compounds R8, RuIIN6 and R4, RuIIIN6 complex
1 (RuCl3NO2) exhibits a characteristic edge shoulder.[48]

In Figure 5 the calculated coordination charges versus the
experimental determined Ru K-edge positions are shown. The

edge energy of R1 RuIIICl4N2 in boron nitride (BN) was set as an
arbitrary origin. A regression line with a coefficient of determi-

nation R2 = 0.95 could be aligned to the calculated coordina-

tion charges and the observed edge positions of RuII and RuIII

model compounds with varying absorber–ligand environ-

ments, thereby proving the linear correlation between the co-
ordination charge and the edge positions.[48] The compounds

containing RuII and/or S are on the left (lower energy) side,
and the compounds containing RuIII, N, and O are on the right

(higher energy) side. The edge position of 22 125.9 eV for

(nBu4N)2[RuCl3(ox)(NO)] clearly falls in the range of Ru3+ com-
pounds with a mixed nitrogen/oxygen/chloride coordination
sphere.

Figure 4. Normalized XANES spectra of 1 and the model compounds R1, R3,
and R5 (top), and their corresponding first derivatives (bottom).

Figure 5. The calculated coordination charge hAR according to the Allred–
Rochow scale in comparison to the observed edge energies of the XANES
spectra. The edge energy of R1 RuIIICl4N2 in boron nitride (BN) was set as an
arbitrary origin.
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The k3-weighted EXAFS spectra and the Fourier transforms
(FT) of 1 are shown in Figure 6. For compounds with mixed N/

O/Cl first shells and increasing number of N and/or O ligands
a splitting of the first peak in the FT is observed. The backscat-

tering amplitudes of the heavy scatterers like S and Cl and the
light scatterers, like N and O are out of phase.[67] For 1 this can-
cellation leads to a node between 8 and 11 æ¢1 shown in
Figure 6 (top; black curve). The fitting analysis using FEFF[41, 42]

was restricted to the first coordination shell extracted from the

first peak in the FT. The identity and numbers of back-scatter-
ers were fixed not to exceed the number of fitting parameters
and the known crystallographic distances were taken as a start-
ing point for the fitting analysis.

The results of the first shell fit of 1 using theoretical ampli-
tudes and phases provided by the FEFF code are presented in

Table 3, as well as the results for the DL-EXCURV fit (Table 4).[47]

The distances are given as the average fitted distances for

each atom type/shell (Cl, O/N and N/C). The curve fitting re-
sults obtained by FEFF and DL EXCURVE are both in
good agreement with the crystallographic values.

The only other Ru–NO compound, the oxidation
state of which has been investigated by XANES spec-

troscopy, is mer,trans-[RuCl3(1H-indazole)2(NO)].[32] The
authors compared the edge position of mer,trans-

[RuCl3(1H-indazole)2(NO)] with the one of R5 (Ru3 +

Cl3N2O), and R10 (Ru2+Cl2N4) and concluded the oxi-
dation state of 3.4(3) + for Ru in mer,trans-[RuCl3(1H-

indazole)2(NO)] . The oxidation state of 3.4 + might be
slightly overestimated owing to the lack of data for

RuIV reference compounds indicating that the physi-
cal oxidation number,[53, 55] which is a measurable

quantity derived from a known dn configuration of a metal ion,
in that case is 3 + (d5 electron configuration). It differs from

the formal oxidation state 4 + or 2 + of ruthenium in this mon-

onuclear complex, which is a non-measurable integer defined
as the charge left on the metal after all ligands in [RuCl3(1H-in-

dazole)2(NO)] have been removed in their normal, closed-shell
configuration.[55] In the case of non-innocent ligand NO its

closed shell configurations can be represented as NO¢ or NO+ .

Stability in aqueous media

The stability of the heteropentanuclear complexes 5 and 9 in

aqueous solution has been investigated by UV/Vis spectrosco-
py over 96 h. There was no change in the optical spectra ob-

served (Figures S3 and S4 in the Supporting Information),
which indicates a high stability of the complexes under applied

conditions.

To exclude immediate dissociation of the pentanuclear as-
sembly with release of a metal–oxalate fragment an aqueous

solution of 5 was evaporated to dryness after standing for 24 h
in air and the IR spectra of the residue and freshly prepared

compound 5 were compared. There were no differences in the
spectra observed.

Cytotoxic activity

The antiproliferative activity of the ruthenium and osmium lan-
thanide complexes 1–9 was evaluated for 48 h of continuous

drug action, using colorimetric MTT assay. The study was per-
formed in two human neoplastic cell lines (HeLa, A549), and

human fetal lung fibroblast cell line (MRC-5), which was used

Figure 6. The k3-weighted extracted fine structures (top) and Fourier trans-
forms (bottom) of 1 and the model compound R5.

Table 3. First-shell fit of the model compounds using theoretical ampli-
tudes and phases provided by the FEFF code.[a]

Comp. Path Nfix R
[æ]

Rcryst

[æ]
DR
[æ]

s2

[æ2 Õ 10¢3]
E0

[eV]
Fit
index [%]

1 Ru-N 1 1.74(2) 1.714 0.026 1.73�0.36 6.1�1.0 0.7
Ru-O 2 2.07(3) 2.024 0.045
Ru-Cl 3 2.39(3) 2.358 0.032

[a] Nfix is the fixed coordination number, R is the average distance, Rcryst is
the crystallographic value, DR is the difference between R and Rcryst, s2 is
the Debye–Waller factor, E0 is the residual shift of the edge energy.

Table 4. DL-EXCURV EXAFS fit of the model compounds.[a]

Comp. Path Nfix R
[æ]

Rcryst

[æ]
DR
[æ]

s2

[æ2 Õ 10¢3]
E0

[eV]
Rfit

[%]
Fit
index [%]

1 Ru¢N 1 1.753(7) 1.714 0.039 1.44�0.80 ¢4.7�0.6 18.66 0.24
Ru¢O 2 2.032(6) 2.024 0.008 2.25�0.24
Ru¢Cl 3 2.374(3) 2.358 0.016
Ru¢C 2 2.73(2) 2.826 ¢0.096 2.56�1.76

[a] Nfix is the fixed coordination number, R is the average distance, Rcryst is the crystallo-
graphic value, DR is the difference between R and Rcryst, s2 is the Debye–Waller factor,
E0 is the residual shift of the edge energy, Rfit is the quality of the fit, fit index is the
sum of the square of the residuals.
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as noncancerous model for in vitro toxicity evaluation. The re-

sults are shown in Table 5 in terms of IC50 values for 48 h incu-
bation period. IC50 values are calculated as mean values ob-

tained from two to three independent experiments and are
presented with their standard deviations.

The results showed that all tested ruthenium compounds

exhibited dose-dependent cytotoxicity in the range of concen-
trations up to 200 mm, being up to 10-times more active than

their osmium analogues, especially in A549 cells, where
osmium compounds did not reach their IC50 values in the ex-

amined range of concentrations. Concentration-effect curves
for each cell line are depicted in Figure S5 in the Supporting

Information, illustrating the pronounced differences in activity

between complexes containing ruthenium and osmium. These
differences are of special note, since osmium compounds were

reported to be either as active as or even more potent than
their ruthenium analogues.[10, 12, 68–70] Exceptions have only been

reported for a pair of RuIII/OsIII tetrazole complexes[13] and
a series of ruthenium and osmium complexes containing azole
and NO ligands,[1] where the ruthenium complexes were found

to be significantly more active.
Higher IC50 values obtained after treatment of A549 com-

pared to HeLa cells were expected, because of decreased sen-
sitivity and slower response to treatment of A549 cells. Com-

plex 4 exhibited the highest antiproliferative activity in general,
with that against A549 cells in the range of activity obtained in

HeLa cells (20.0(�2.4) vs. 22.4(�3.1) mm, respectively), which is
a promising result.

Cell-type selectivity is also noted in the analysis of the effect

of tested compounds (ruthenium and osmium analogues) in
MRC-5 normal cell line. While osmium compounds exhibited

cytotoxic activity in MRC-5 comparable to cytotoxicity in HeLa
cells, ruthenium complexes showed high cytotoxic potential in

vitro in MRC-5 cell line, which may be considered as the major

drawback in the preliminary studies of these complexes.
Comparison of antitumor activity of 2–5 with that of 1 indi-

cates slightly higher activity of the former species. Dissociation
of 2–5 with release of LnIII would generate 4 equiv of 1 and ap-

proximately a fourfold increase of cytotoxicity would be ex-
pected. Indirectly, these data provide further evidence about

the stability of the complexes under the conditions used for
MTT assays. Enhancement of antiproliferative activity by coordi-
nation of organic biologically active species to the LnIII ion is
well-documented in the literature.[71]

Intracellular distribution/accumulation of investigated com-
plexes

Discovery and development of new metal-based anticancer

agents is largely based on cell viability assays (IC50 values), in-
tracellular accumulation and distribution studies. Considering
the obtained IC50 values, complexes 4 and 8 were chosen for
the ICP-MS analysis in order to investigate intracellular distribu-

tion and accumulation of Ru/Os in A549 cells.
In particular, we separately analyzed metal (Ru/Os) distribu-

tion among the DNA and protein fractions, as well as total in-

tracellular accumulation, using ICP-MS analysis, after 6 and
24 h treatment with 0.5 Õ IC50 of the investigated complexes.

Each analyzed metal compound was found in the cells, al-
though exhibiting different levels of accumulation and various

affinities for protein and DNA binding. Ruthenium exhibited

greater (five- to eightfold) total intracellular accumulation than
osmium, with time-dependent increase of accumulation char-

acteristic for both metals (Figure 7 A). The results also show
that osmium complex 8 was bound to cellular DNA more effi-

ciently than Ru complex following 6 h treatment (139.5(�9.4)
vs. 63.4(�1.8) pg metal mg¢1 DNA, respectively). With prolonged

incubation time, complex 4 induced more DNA binding, while
complex 8 exhibited the opposite behavior, although at the

lesser extent (Figure 7 B). Analyses of metal content in protein

cell fractions indicated that after 6 h treatment both complexes
induce a similar level of metal binding to cellular proteins, but

with the treatment prolongation the level of Os–protein bind-
ing decreased twofold, while Ru–protein binding increased to

a great extent (Figure 7 C).
Low Os intracellular accumulation compared to Ru, as well

as time-dependent decrease of protein/DNA binding, indicate

a reversible nature of interactions of complex 8, which all may
be a reason for its low cytotoxic action. Higher cytotoxicity of

4 compared to 8 may be attributed to its ability to bind DNA
and proteins more efficiently, to increase the number of inter-
actions with these biomolecules over time, and possibly to
form different DNA and protein conformational distortions and

lesions. As a result of these differences in cellular accumulation
and DNA/protein binding, potential differences in cellular re-
sponse to Ru/Os treatment arise.

Conclusions

Following our interest in ruthenium and osmium nitrosyl com-

pounds with promising biological properties, we have success-

fully synthesized a series of pentanuclear ruthenium lanthanide
complexes of the general formula (nBu4N)5{Ln[RuCl3(NO)(m-

ox)]4(EtOH)n} (n = 0 for Ln = Y (2), n = 1 for Ln = Gd (3), Tb (4),
Dy (5)) from the treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with

the respective lanthanide salt in ethanol or in acetonitrile/2-
propanol mixture.

Table 5. Results of MTT assay presented as IC50 [mm] values obtained after
48 h treatment.[a]

IC50 [mm]
HeLa (3000 c per w) A549 (7000 c per w) MRC-5 (5000 c per w)

1 55.9�5.6 55.0�1.6 18.1�6.5
2 17.9�0.4 56.3�1.1 12.0�0.3
3 29.1�0.8 26.5�4.0 11.1�0.1
4 20.0�2.4 22.4�3.1 11.9�0.4
5 20.0�2.1 47.0�6.7 13.2�0.4
6 152.1�24.0 >200 114.9�10.7
7 152.7�19.9 >200 151.1�0.7
8 118.1�2.9 >200 133.3�3.5
9 147.2�3.5 >200 139.9�6.8

[a] IC50 values are calculated as mean values obtained from three inde-
pendent experiments and quoted with their standard deviations; c per
w = cells per well.

Chem. Eur. J. 2015, 21, 13703 – 13713 www.chemeurj.org Ó 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim13711

Full Paper

http://www.chemeurj.org


Investigations on the luminescence properties of the report-

ed compounds revealed only a very weak phosphorescence
signal for the terbium complex 4, rendering this compound
class unsuitable as theranostic agents. Nevertheless, the idea in

our opinion deserves further attention and can be verified
when using other types of nd–4f metal complexes with more

appropriate organic ligands.
Detailed analysis of the in vitro antitumor activity concern-

ing complexes 2–5 showed a cytotoxicity enhancement of the

synthesized compounds compared to the starting compound
(1). Lower activity of the previously reported osmium ana-

logues 6–9 in all tested cell lines leads to the conclusion that
the presence of the ruthenium center in heteronuclear nd–4f

metal complexes enhances their cytotoxicity. Moreover, the cy-
totoxic potential of investigated complexes 2–5 is in accord

with a five- to eightfold greater cellular accumulation of ruthe-
nium compared to osmium obtained from ICP-MS investiga-

tions of complexes 4 and 8. Further studies on elucidating
mechanisms underlying different anticancer activity and cellu-

lar accumulation of these compounds are required in order to
ascertain their potential for the development as anticancer

agents.
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