U. LAČNJEVAC i ...

MORFOLOGIJA PRAHOVA Fe-Ni LEGURA ELEKTROHEMIJSKIH...

UROŠ LAČNJEVAC¹, VLADIMIR D. JOVIĆ¹, BORKA M. JOVIĆ¹, ZVEZDANA BAŠČAREVIĆ¹, VESNA M. MAKSIMOVIĆ², MIOMIR G. PAVLOVIĆ³

Originalni naučni rad UDC:669.15'248.7-198-492.2

Morfologija prahova Fe-Ni legura elektrohemijski istaloženih iz citratno-sulfatnih rastvora

Elektrohemijsko taloženje prahova Fe-Ni legura ispitivano je snimanjem polarizacionih dijagrama u citratno-sulfatnim rastvorima pri različitom odnosu koncentracija Ni/Fe jona na pH 4,5. Sve polarizacione krive imaju sličan oblik i okarakterisane su prisustvom dve prevojne tačke na dijagramu. Prva prevojna tačka odgovara početku taloženja Fe-Ni legure, dok druga (\bullet) predstavlja momenat kada ukupna elektrohemijska reakcija postaje kontrolisana brzinom formiranja mehurova vodonika. Potencijali taloženja Fe-Ni legura pri svim ispitivanim odnosima Ni/Fe pozitivniji su od potencijala taloženja čistih metala, pri čemu se sa smanjenjem odnosa Ni/Fe polarizacione krive pomeraju ka malo pozitivnijim vrednostima potencijala. Morfologija čestica prahova ispitivana je korišćenjem skenirajuće elektronske mikroskopije (SEM). Zajednička karakteristika svih prahova Fe-Ni legura je prisustvo šupljina konusnog oblika. Čestice praha istaloženog pri odnosu Ni/Fe = 9/1 uglavnom su sastavljene od čvorića, glatke ili neravne površine, kod kojih se na pojedinim mestima mogu uočiti dobro definisani kristali. Sa smanjenjem odnosa Ni/Fe, prisustvo kristala na površini čvorića postaje sve izraženije, dok su kod praha sa najvećim sadržajem Fe (Ni/Fe = 1/3) na celoj površini čestica prisutni kristali različitog oblika.

Ključne reči: morfologija, prahovi legura Fe-Ni, taloženje, SEM

1. UVOD

Legure Fe-Ni ekonomski su veoma interesantne zbog njihove upotrebe kod velikog broja proizvoda [1]. Usled svojih magnetnih osobina, ove legure imaju primenu u oblasti memorijskih uređaja za kompjutere, a takođe su otporne na koroziju, lako primaju hrom, poseduju žilavost itd. [1]. Njihove mehaničke i magnetne osobine ispitivane su u velikom broju radova [2-7], dok je najpoznatiji primer Permalloy (Fe-Ni legura koja se koristi za magnetne glave čitača/pisača diskova [9-12]).

Istraživanja koja se odnose na elektrohemijsko taloženje ovih legura uglavnom su povezana sa taloženjem kompaktnih prevlaka. Parametri koji utiču na elektrohemijsko taloženje Fe-Ni legura, kao što su prisustvo sulfatnih ili hloridnih jona u rastvoru, dodatak borne, limunske ili L-askorbinske kiseline pri različitim pH vrednostima (2 i 3), ispitivani su u radovima *Kieling-*a [13] i *Yin-*a [14]. Pored anomalnog karaktera taloženja legura Fe-Ni legura sa većim sadržajem Fe odvijalo pri manjim iskorišćenjima struje [13]. Dodatkom saharina u rastvor elektrolita do koncentracije od 3 g dm⁻³, proizveden je gladak i svetao talog ravnomerne debljine u poređenju sa crnim i ispu calim talogom dobijenim iz hloridnog elektrolita [15].

Rad primljen: 8.06.2011.

Elektrohemijsko taloženje prahova Fe-Ni legura bila je tema svega nekoliko radova. Zhelibo i saradnici [17,18] predložili su metodu za proizvodnju veoma finog praha Fe-Ni legure elektrolizom u dvoslojnom elektrolitičkom kupatilu koristeći ugljovodonični rastvarač iz frakcije za rafinaciju nafte kao gornji organski sloj sa isparavanjem na 180 °C i naknadnom redukcijom u atmosferi vodonika. Ispitivan je uticaj temperature redukcionog odgrevanja [17] i temperature elektrolize [18] na formiranje, hemijski i fazni sastav, strukturu i magnetne osobine visoko disperznih prahova Fe-Ni legure i određeni su optimalni termički uslovi za proizvodnju prahova sa česticama reda veličine mikrona [17,18]. Takođe je ispitivan efekat kompleksirajućih sredstava (limunska i oksalna kiselina) na proces taloženja prahova Fe-Ni legura [19]. Pokazano je da kompleksirajući agensi utiču na kinetiku elektrohemijskog taloženja prahova, kao i na morfologiju Fe-Ni prahova. Finiji prahovi su dobijeni u prisustvu limunske kiseline u poređenju sa onim dobijenim u prisustvu oksalne kiseline [19].

U ovom radu ispitivan je proces elektrohemijskog taloženja Fe-Ni prahova iz citratno-sulfatnih elektrolita i uticaj parametara taloženja na morfologiju prahova.

Adresa autora: ¹Institut za multidisciplinarna istraživanja, Univerzitet u Beogradu, ²Institut za nuklearne nauke "Vinča", Univerzitet u Beogradu, ³Institut za Elektrohemiju IHTM, Univerzitet u Beogradu

Nukleacija i rast Fe-Ni legura iz hloridnog rastvora na pH 2 i pH 4 ispitivani su pulsnom potenciostatskom metodom, pokazujući da se u svim ispitivanim rastvorima odigrava trenutna 3D nukleacija i rast kristala [16].

2. EKSPERIMENTALNI DEO

Polarizacione krive snimljene su u standardnoj elektrohemijskoj ćeliji na temperaturi od 25 ± 1 °C. Kao kontra elektroda korišćena je Pt folija, dok je referentna elektroda bila zasićena Ag|AgCl elektroda $(E_{ref} = 0.20 \text{ V prema SVE})$. Referentna elektroda je bila povezana sa radnom elektrodom preko Luginove kapilare postavljene na rastojanju od 0,2 cm od površine radne elektrode. Radna elektroda je bila šipka od staklastog ugljenika (d = 0,3 cm) zatopljena u epoksi smolu tako da je samo površina diska od 0,071 cm² bila izložena rastvoru i postavljena paralelno kontra elektrodi u vertikalnom položaju. Pre svakog eksperimenta elektrodna površina je polirana sa abrazivnim papirima 1200, 2400 i 4000, čišćena u ultrazvučnom kupatilu 10 minuta, detaljno ispirana destilovanom vodom i preneta u elektrohemijsku ćeliju. Polarizaciona merenja su ostvarena pomoću kompiterski kontrolisanog potenciostata PAR M 273A, korišćenjem korozionog programa (PAR M352/252, verzija 2.01) pri brzini linearne promene potencijala od 1 mV s⁻¹. Sve polarizacione krive korigovane su za omski (IR) pad napona.

Svi prahovi su taloženi na sobnoj temperaturi u cilindričnoj staklenoj ćeliji (ukupne zapremine 1 dm³) sa konusnim dnom u cilju sakupljanja čestica praha. Prahovi Fe-Ni legura taloženi su pod galvanostatskim uslovima na cilindru od staklastog ugljenika (d = 0,5 cm, h = 3 cm) na odgovarajućoj graničnoj gustini struje (vidi *Slika 1*). Rastvori iz kojih je vršeno taloženje napravljeni su od p.a. hemikalija (NiSO₄, Na₃C₆H₅O₇, Na₂SO₄, Fe₂(SO₄)₃) i destilovane vode. Prah Ni je ispiran destilovanom vodom i alkoholom nakon taloženja. Kako bi se Fe iz prahova legure zaštitilo od oksidacije tokom sušenja u vazduhu na 100 °C, prahovi Fe-Ni legura ispirani su 0,1 % rastvorom natrijumovog sapuna Sap G-30 (koji ukupno sadrži 78 % masnih kiselina) u destilovanoj vodi [18].

Morfologija istaloženih prahova ispitivana je pomoću skenirajućeg elektronskog mikroskopa (SEM), Tescan VEGA TS 5130MM.

3. REZULATI I DISKUSIJA

Četiri različita rastvora elektrolita sa ukupnom koncentracijom metalnih jona od 0,1 M korišćena su za taloženje prahova legura: 1 M Na₂SO₄ + 0,2 M Na₃C₆H₅O₇ + x NiSO₄ + y Fe₂(SO₄)₃, pri čemu je xbilo 0,09 M, 0,075 M, 0,05 M i 0,025 M, a y 0,01 M, 0,025 M, 0,05 M i 0,075 M. Na taj način odnos koncentracija Ni/Fe jona bio je 9/1, 3/1, 1/1 i 1/3, dok je pH rastvora dodatkom sumporne kiseline podešen na pH 4,5. Takođe su snimljeni polarizacioni dijagrami za rastvore čistog Ni i čistog Fe. Svi prahovi za mikrostrukturnu analizu taloženi su pri vrednosti gustine struje koja odgovara prevojnoj tački (\bullet) na polarizacionim dijagramima (vidi *Slika 1*). Na datom pH 4,5 nije bilo moguće taložiti prah Fe, pošto se Fe³⁺ joni, koji su nastali disocijacijom kompleksa FeC₆H₅O₇ [21], na vrednostima pH > 2,5 trenutno talože u obliku Fe(OH)₃.

Slika 1 - Polarizacione krive taloženja prahova Fe-Ni legura pri različitim odnosima koncentracija Ni/Fe jona (označeni na slici)

3.1. Polarizacioni dijagrami

Polarizacione krive snimljene u različitim rastvorima elektrolita prikazane su na Slika 1 (odnos koncentracija Ni/Fe jona označen je za svaku krivu taloženja legure, dok su polarizacione krive za čiste prahove označene sa Ni i Fe). Sve polarizacione krive poseduju sličan oblik i okarakterisane su sa dve prevojne tačke. Prva prevojna tačka predstavlja početak taloženja legure (nagli porast gustine struje), dok druga (●) odgovara momentu kada ukupna elektrohemijska reakcija postaje kontrolisana brzinom formiranja mehurova vodonika, odnosno potencijalu na kome je dostignuta granična difuziona gustina struje taloženja praha legure (kao što je objašnjeno u našim prethodnim radovima [22,23]). Kao što se može videti sa Slika 1, gustina struje koja odgovara drugoj prevojnoj tački identična je za Ni i Ni/Fe = 9/1 i manja od one za Fe, Ni/Fe = 3/1, Ni/Fe = 1/1 i Ni/Fe = 1/3, ukazujući na to da se kod prahova dobijenih pri odnosu 3/1, 1/1 i 1/3 pretežno Fe taloži, što je posledica anomalnog tipa taloženja. Takođe je zanimljivo primetiti da su potencijali taloženja prahova Fe-Ni legura pri svim ispitivanim odnosima Ni/Fe pozitivniji od potencijala taloženja prahova čistih metala. Kako se odnos Ni/Fe smanjuje (raste koncentracija Fe jona), polarizacione krive se pomeraju ka malo pozitivnijim potencijalima, ukazujući na katalitičku aktivnost Fe na proces taloženja Fe-Ni legura.

Iskorišćenje struje taloženja Fe-Ni prahova određeno je po postupku koji je detaljno objašnjen u našim prethodnim radovima [22,23] i u svim slučajevima bilo je vrlo malo, svega 1-2 %.

3.2. Morfologija istaloženih prahova

Morfologija čestica praha istoloženih na elektrodi od staklastog ugljenika iz različitih rastvora prikazana je na *sl. 2-6.* Prah čistog Ni, *slika 2*, okarakterisan je prisustvom ljuspi, maksimalne veličine od oko 50 μm, prekrivenih čvorićima glatke površine (*slika 2a-c*). Na pojedinim česticama, *Slika 2c*, opaža se formiranje sekundarne oblasti dendrita (koje počinje stvaranjem malih kristala), tipično za taloženje praha [24].

Zajednička karakteristika svih prahova Fe-Ni legura (*Slika 3-6*) je prisustvo šupljina konusnog oblika, koje su nastale na mestima gde je došlo do formiranja mehurova vodonika [22-24]. Čestice praha istaloženog pri odnosu koncentracija Ni/Fe jona od 9/1, pored konusnih šupljina (*Slika 3c,d*), sadrže uglavnom čvoriće sa veoma glatkom (*Slika 3b*) ili neravnom površinom (*Slika 3a*). Prisustvo dobro definisanih kristala na površini čvorića (kao na *Slika 3e*) može se uočiti kod malog broja čestica.

Slika 3 - Morfologija prahova istaloženih pri Ni/Fe = 9/1

Sa smanjenjem odnosa Ni/Fe, prisustvo jasno definisanih kristala na površini čvorića postaje sve izraženije. Iako se kod prahova istaloženih iz rastvora sa odnosom Ni/Fe od 3/1 i 1/1 i dalje mogu opaziti čvorići sa relativno glatkom površinom (Slika 4a i 5a), kod praha sa najvećim sadržajem Fe (Ni/Fe = 1/3, Slika 6), dobro definisani kristali prisutni su na celoj površini svih čestica. Karakteristično za ovaj prah je da je čak i unutrašnja površina kupastih šupljina prekrivena malim, jasno definisanim kristalima. Različiti tipovi kristala se uočavaju na površini čestica prahova: kristali u obliku pagode (Slika 3e), kristali oblika dvodimenzionalnih "jelki" (Slika 4b), kristali u obliku trougla (Slika 4c, 5b,c i 6b), kristali u obliku pravougaonika (Slika 6a) i kristali oblika zasečenog poliedra (Slika 6c).

Posebno su zanimljivi kristali u obliku pagode prisutni u prahu istaloženom pri odnosu Ni/Fe = 9/1, Slika 3e. Takvi kristali uočeni su u Fe-Ni prahu sintetisanom jednostavnim hidrotermalnim postupkom bez korišćenja površinski aktivnih supstanci [25]. Prema ovom istraživanju [25], FeNi3 kristali su se obrazovali tokom opisane procedure. Proizvodi dobijeni na 120 °C predstavljaju mešavinu FeNi3 i Fe-Ni hidroksida, sastavljenu od monodisperznih mikrosfera (prosečnog prečnika 1,5 – 2,0 µm) identičnih onima prikazanim na Slika 3a. Sa povećanjem temperature na 140 °C, ove mikrosfere postaju mikropagode, veoma slične onima predstavljenim na Slika 3e. Na višim temperaturama (180 °C), ove čestice se pretvaraju u perfektne 3D FeNi3 dendritične superstrukture u određenim pravcima [25]. Stoga, poredeći kristale prikazane

U. LAČNJEVAC i ...

na *Slika 3a* i *e* sa onima dobijenim hidrotermalnim postupkom [25], čini se opravdanim pripisati ih pojedinačnim FeNi₃ kristalima. Ovde bi trebalo istaći da na datoj gustini struje taloženja dalja transformacija u dendrite najverovatnije nije bila moguća, pošto čestice praha otpadaju sa površine elektrode pre stvaranja dendrita. Takođe, mala razlika u obliku elektrohemijski istaloženih i hidrotermalno sintetisanih kristala može poticati od različitog procenta Ni u istaloženom prahu u odnosu na onaj koji je neophodan za FeNi₃ (75 at. % Ni).

Slika 6. Morfologija prahova istaloženih pri Ni/Fe = 1/3

4. ZAKLJUČAK

Polarizacione krive taloženja Fe-Ni legura iz citratno-sulfatnih rastvora sa različitim odnosom koncentracija Ni/Fe jona na pH 4,5 okarakterisane su prisustvom dve prevojne tačke na dijagramu. Prva prevojna tačka odgovara početku taloženja Fe-Ni legure, dok druga (●) predstavlja momenat kada ukupna elektrohemijska reakcija postaje kontrolisana brzinom formiranja mehurova vodonika. Potencijali taloženja Fe-Ni legura pri svim ispitivanim odnosima Ni/Fe pozitivniji su od potencijala taloženja čistih metala, pri čemu se sa smanjenjem odnosa Ni/Fe polarizacione krive pomeraju ka malo pozitivnijim vrednostima potencijala. Morfologija čestica svih prahova Fe-Ni legura okarakterisana je prisustvom šupljina konusnog oblika. Čestice praha istaloženog pri odnosu Ni/Fe = 9/1 uglavnom su sastavljene od čvorića, glatke ili neravne površine, kod kojih se na pojedinim mestima mogu uočiti dobro definisani kristali. Sa smanjenjem odnosa Ni/Fe, prisustvo kristala na površini čvorića postaje sve izraženije, dok su kod praha sa najvećim sadržajem Fe (Ni/Fe = 1/3) na celoj površini čestica prisutni kristali različitog oblika.

Zahvalnica

Ovaj rad je finansiralo Ministarstvo za nauku i tehnološki razvoj Republike Srbije u okviru projekta br. 142032G/2006.

LITERATURA

- P.C. Andricacos, L.T. Romankiw, in: H. Gerischer, C.W. Tobias (eds.), Magnetically Soft Materials: Their properties and Electrochemistry, Advances in Electrochemical Science and Engineering, vol. 3, VCH, Weinheim, 1994, pp. 227-321.
- [2] X.Y. Qin, J.G. Kim, J.S. Lee, Nanostruct. Matr. 11 (1999) 259.
- [3] J. Ebothe, S. Vilain, J. Phys. D. Appl. Phys. 32 (1999) 2342.
- [4] W.C. Grande, J.B. Talbot, J. Electrochem. Soc. 140 (1993) 669.
- [5] F. Lallemand, L. Ricq, M. Wery, P. Bercot, J. Pagetti, Surf. Coat. Technol. 179 (2004) 314.
- [6] U.Lacnjevac, V.D.Jovic, B.M.Jovic, Z.Bascarevic, M.G.Pavlovic, Zastita materijala 49(2008)41
- [7] H. Li, F. Ebrahimi, Mat. Sci. Eng. A. Struct. Mater.: Prop. Microstruct. Process 347 (2003) 93.
- [8] P.C. Andricacos, L.T. Romankiw, Advances in Electrochemical Science and Engineering, John Willey, New York, 1994, p. 226.
- [9] J. Stevanovic, B. Jugovic, J. Popoic, J. Stajic-Trosic, N. Talijan, Zastita materijala 49 (2008) 25.
- [10] K. Ohashi, M. Ito, M. Watanabe, Electrochem. Soc. Proc. 88 (1988) 525.

- [11]L. Ricq, F. Lallemand, M.P. Girander, J. Pagetti, Surf. Coat. Technol. 138 (2001) 278.
- [12] N.V. Myung, D.-Y. Park, D.E. Urgiles, T. George, Electrochim. Acta 49 (2004) 4379.
- [13] V.C. Kieling, Surf. Coat. Technol. 96 (1997) 135.
- [14]K.-M. Yin, B.-T. Lin, Surf. Coat. Technol. 78 (1996) 205.
- [15] S.-H. Kim, K.-J. Sohn, Y.-C. Joo, Y.-W. Kim, T.-H. Yim, H.-Y. Lee, T. Kang, Surf. Coat. Technol. 199 (2005) 43.
- [16] F.R. Bento, L.H. Mascaro, Surf. Coat. Technol. 201 (2006) 1752.
- [17] E.P. Zhelibo, N.N. Kravets, M.Yu. Gamarkin, S.V. Remez, Powd. Metall. Metal Ceram. 34 (1995) 113.
- [18] E.P. Zhelibo, N.N. Kravets, Powd. Metall. Metal Ceram. 36 (1997) 264.
- [19] C.-M. Chu, J. Chin. Inst. Engrs. 34 (2003) 689.
- [20] Vesna M. Maksimović, Ljubica J. Pavlović, Borka M. Jović, M.G. Pavlović, J. Serb. Chem. Soc. 73 (2008) 861.
- [21] J.A. Dean, Lange's Handbook of Chemistry, 15th Edition, McGraw-Hill Inc., New York, 1999.
- [22] V.D. Jović, B.M. Jović, M.G. Pavlović, Electrochim. Acta 51 (2006) 5468.
- [23] V.D. Jović, B.M. Jović, V. Maksimović, M.G. Pavlović, Electrochim. Acta 52 (2007) 4254.
- [24] V.D. Jović, V. Maksimović, M.G. Pavlović, K.I. Popov, J. Solid State Electrochem. 10 (2006) 373.
- [25] X.-M. Zhou, X.-W. Wei, Cryst. Growth Design 9 (2009) 7.

ABSTRACT

MORPHOLOGY OF FE-NI ALLOY POWDERS ELECTRODEPOSITED FROM CITRATE-SULFATE CONTAINING SOLUTIONS

The electrochemical deposition of the Fe-Ni alloy powders from citrate-sulfate containing electrolytes of different Ni/Fe ions concentration ratios at pH 4.5 was examined by the polarization measurements. All polarization curves have a similar shape and are characterized by the presence of two inflection points. The first inflection point reflects the beginning of alloy deposition, while the second one (\bullet) corresponds to the moment when the cathode reaction becomes determined by the rate of hydrogen bubbles formation. The potentials of Fe-Ni alloys deposition at all investigated Ni/Fe ratios are more positive than those for pure metal powders deposition. As the Ni/Fe ratio decreases, the polarization curves are placed at slightly more positive potentials. The morphology of electrodeposited powder particles was investigated using scanning electron microscopy (SEM). A common characteristic of all Fe-Ni alloy powders is the presence of cone shaped cavities. Powder particles electrodeposited at the ratio Ni/Fe = 9/1 are mainly consisted of nodules of either very flat surface or rough surface, with well defined crystals detected only on a few particles. With the decrease of the Ni/Fe ratio, the presence of well defined crystals on the nodule surface becomes more pronounced. In the powder with the highest amount of Fe (Ni/Fe = 1/3), the whole surface of all particles is covered with crystals of different shapes.

Key words: morphology, Fe-Ni alloy powders, electrodeposition, SEM

Paper received: 8.06.2011.