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Abstract: Open circuit potential measurements and cyclic voltammetry of chro-

mium in deaerated aqueous H2SO4 solution of pH 1 without and containing NaCl in

the concentration range 0.5 – 4 M revealed that chromium exhibits two stable open

circuit potentials having the character of a Wagner–Traud corrosion potential. One,

Ecorr.1, was established on the passive surface formed by exposing Cr previously to

air or passivated potentiostacially in a controlled manner, and the second one,

Ecorr,2, at the bare Cr surface obtained by prolonged cathodic activation. There is a

small difference in the Ecorr,1 values as a function of the passive layer properties. Ad-

dition of NaCl accelerates the hydrogen evolution reaction on the passive surface to

some extent, while the same reaction on the bare surface was not affected by NaCl.

On the other hand, presence of NaCl accelerates the anodic reaction on the bare sur-

face, and it activates the dissolution of the passive layer so that the passive currents

increase with addition of NaCl. This effect is so large that at concentration of NaCl

larger than 3 M, the destruction of the passive layer was so fast that in a matter of

seconds the Cr was activated, and the only one stable corrosion potential observed

was Ecorr.2. No pitting of Cr in the presence of NaCl was observed up to the

transpassive potentials.
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INTRODUCTION

The corrosion properties of metallic chromium were studied by a number of au-

thors and relevant data can be found in the corresponding publications. Heumann

and Dieköter,1 Wilde and Hodge,2 Sukhotin and Khoreva,3 Safonov et al.4 and

Popi} and Dra`i}5–7 pointed out that chromium exhibitis two fairly stable corrosion

potentials in deaerated sulfuric acid solutions. The first corrosion potential of chro-

mium in deaerated sulfuric acid solutions is formed by the hydrogen evolution reac-
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tion at the passive surface of chromium and anodic dissolution of chromium through

the passive layer, and the second one by the hydrogen evolution reaction on the acti-

vated, bare surface of chromium and active anodic dissolution. The purpose of this

communication is to report more experimental data on the influence of chloride ions

on the electrochemical behavior of chromium in deaerated sulfuric acid, and espe-

cially to the further interpretation of factors determining the open circuit potentials in

sulfuric acid containing higher concentrations of chloride ions.

EXPERIMENTAL

The experiments were performed with metalic Cr (Goodfellow, Berwin, Pa, USA). The elec-

trodes were made in the form of a piece of metal rod (Ø 5 mm) sealed in methacrylate resin (exposed

surface area 0.2 cm2). The electrochemical measurements were performed using a PINE potenti-

ostat-galvanostat set-up and a PM 8134 Philips X-Y plotter. All the experiments were performed in

aqueous mixtures of H2SO4, pH 1.0, without and with NaCl added in amounts to obtain solutions

with the NaCl concentrations indicated in the Figures. Merck p.a. chemicals and doubly distilled

water were used for the preparation of the solutions. An all-glass electrochemical cell with separated

compartments and a thermostating jacket was used. The counter electrode was a Pt wire and the ref-

erence electrode a saturated calomel electrode (SCE). All the potentials are referred to the SCE. The

solutions were continuously deaerated with purified nitrogen. The potential scan rate of the Cr elec-

trode was 2 mV s-1. This appeared to be sufficiently slow to consider that the polarization curves

were obtained under quasi-steady state conditions. Of course, this was valid only for the part of the

cyclic voltammogram relating to the bare Cr surface, while in the passive region, due to the perma-

nent growth of the passive layer, a real steady state can never be achieved. Prior to the measure-

ments, the electrodes were either activated by cathodic polarization at – 0.900 V for 2 min, since the

spontaneously formed open circuit potential of a chromium electrode which had previously been in

contact with air was about –0.250 V, which corresponds to the passive state of the chromium surface,

or just left in this condition. It appeared that the passive state was sensitive to the manner of prepara-

tion, hence that a reproducible passive layer was prepared by holding the potential at – 0.200 V for 2

min. This potential corresponds to the positive potential limit used in the voltammetric scans.

RESULTS AND DISCUSSION

As depicted in Fig. 1, the open circuit potential of chromium in sulfuric acid,

as shown elsewhere,7 achieves several stable open circuit potentials, which have

the characteristics of Wagner–Traud type corrosion potentials. Ecorr.1,(air), refers to

a chromium electrode introduced into the solution directly from air (having a spon-

taneously formed oxide layer), Ecorr.1,(–200 mV) to an electrode passivated in a con-

trolled way by holding it at – 0.200 V for 2 min, and Ecorr,2,(–900 mV), to an elec-

trode activated (i.e., oxide layer was reduced) by a 2 min cathodic polarization at

– 0.900 V. To facilitate the reading, in the further text these potentials will be used

in a shorter manner, Ecorr.1(air), Ecorr,1 and Ecorr.2, respectively.

It is important to note that at concentrations up to 3 M, the presence of NaCl

did not have any significant influence on the corrosion potential, either on a passi-

vated or an activated surface. However, at concentrations higher than 4 M, the cor-

rosion potential Ecorr,2 was established almost spontaneously, as indicated in Fig. 1

by the filled diamonds. This indicates that chloride ions attack the passive layer at a
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rate proportional to their concentration, which at high concentrations is fast

enough to activate the surface without any cathodic polarization. As there are no

signs of simultaneous pitting, this should be interpreted as a more or less uniform

chemical dissolution of the passive layer. Pitting was not observed in Cl– ions con-

taining solutions even at potentials up to the transpassive dissolution of chromium.

The cyclic voltammogram for a Cr electrode in sulfuric acid containing 1 M NaCl

is shown in Fig. 2 which resembles the voltammograms obtained for Cr in sulfuric acid

of pH 1 not containing Cl– ions.5 The obvious difference is the much higher passi-

vation peak, which was to be expected. The inset presents the small cathodic peak ap-

pearing in the range of – 0.300 V to – 0.600 V in the reverse sweep, which cannot be

seen on the main diagram since its current scale is far less sensitive. As shown else-

where,5 this cathodic current is due to the electrochemical hydrogen evolution reaction

on an oxide-covered surface, and its rate determines the open circuit, in fact, the corro-

sion potential, Ecorr,1, while the hydrogen evolution reaction on an cathodically acti-

vated surface, assumed to be bare, determines the corrosion potential, Ecorr,2.

The effects of NaCl on the electrochemical behavior of chromium in sulfuric

acid of pH 1 can be seen in Figs. 3 and 4. Figure 3 presents the potentiodynamic

curves in the positive direction for chromium electrodes in sulfuric acid (pH 1)

containing 0 – 4 M NaCl, enlarged so that only the active dissolution peak can be

seen. Five important features can be seen on this diagram.
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Fig. 1. Open circuit potentials versus time for chromium in deaerated aqueous sulfuric acid of pH
1 without and with the addition of NaCl.



(i) Similar to the case with other transition metals, the passivation current in-

creases considerably with increasing NaCl concentration (almost 10 times in the

presence of 4 M NaCl).

(ii) The "passive" current for 4 M NaCl is ca. 1 mA cm–2, i.e., the surface is not

really passive any more, and if the Cl– ion concentration would be further in-

creased, this current would probably increase and the passivation peak would dis-

appear, as is the case with iron. In other words, passivation would not be possible.

For this reason, the open circuit potential in a solution containing 4 M NaCl spon-

taneously drops to the potential Ecorr,2, i.e., the surface of the chromium activates

by itself, no cathodic activation is necessary (see Fig. 1, filled diamonds).

(iii) The cathodic current density in the presence of Cl– ions decreased to some

extent as compared to the same current density in the Cl– ion free solution. This re-

sult is not surprising since the adsorption of Cl– ions is known to inhibit both the

cathodic and anodic reaction of, e.g., iron in sulfuric acid.8,9 However, there is a

literature report10 that Cl– ions have an accelerating effect on the cathodic evolu-

tion of hydrogen on chromium in sulfuric acid, with an explanation that the accel-

eration was due to a change of the diffuse, i.e., �1 potential. It is not clear why the

effect of Cl– ions on �1 would be different for chromium and iron (i.e., accelerating

and inhibiting effect, respectively) when the potentials of zero charge for both met-
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Fig. 2. Cyclic voltammogram for a chromium electrode in deaerated sulfuric acid solution con-
taining 1M NaCl. Inset: Enlarged reversed scan in the potential range of the cathodic peak.



als are similar, ca. – 0.650 V (SCE).11 The results presented here are not in accor-

dance with this observation..

(iv) The adsorption of Cl– ions obviously have an accelerating effect on the an-

odic reaction, but above 2 M NaCl the rate does not change, obviously due to the

saturation of the surface with adsorbed Cl– ions. This accelerating effect at larger

concentration of Cl– ions (contrary to the inhibiting effects at concentrations

smaller than ca. 0.1 M NaCl) was observed long time ago for iron by Kolotyrkin et

al.12 and was the basis for his iron dissolution mechanism with the participation of

anions in the rate determining step. This model can be applied also here.

(v) The increase of the passivation current with the increasing NaCl concentra-

tion indicates an inhibition of the formation of the passivating chromium oxide in

the presence of Cl– ions, proportional with their concentration. The observed effect

of spontaneous activation of chromium in 4 M NaCl (see Fig. 1, filled diamonds) is

obviously related to the dissolution reaction of Cl– ions.

The potentiodynamic curves, as the reverse parts of the voltammograms for

different concentrations of NaCl corresponding to the inset to Fig. 2, are depicted

in Fig. 4. They show the development of cathodic peaks for solutions containing 0

– 3 M NaCl. Two main features can be noticed:
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Fig. 3. Potentiodynamic curves in the positive direction for the range of active electrochemical
dissolution of Cr in sulfuric acid (pH 1) containing different concentrations of NaCl.



(i) Cathodic peaks representing the depassivation potentials become more

positive with increasing NaCl concentration, while the peak currents simulta-

neously decrease. For the solution containing 4 M NaCl, there was no cathodic

peak and no stable corrosion potential, Ecorr,1, but the surface was spontaneously

chemically activated, as shown in Fig. 1 (filled diamonds).

(ii) The rate of the hydrogen evolution reaction on the oxide covered surface

occuring between the corrosion potential and the potential of the cathodic peaks,5

is only slightly affected by the presence of Cl– ions, even up to a concentration of 3

M. This is rather surprising since the chemical attack affecting the passive layer ob-

viously has to include the adsorption of Cl– ions on the passive layer. On the other

hand, if the coverage with Cl– ions is very high, there would be no free space for a

large adsorption of Hads, needed for the Heyrovski step as the rate determining step

in the hydrogen evolution reaction, as proposed in Ref. 5. This could mean, there-

fore, that the first, Volmer, step is rate determining, with a fast Heyrovski step.

CONCLUSIONS

From the results presented in this work, it can be concluded that the open cir-

cuit potentials which spontaneously establish on a chromium electrode in deae-
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Fig. 4. Potentiodynamic curves in the negative direction for the range of potentials where the
cathodic peaks on a passive Cr surface appear in sulfuric acid solution (pH 1) containing different

concentrations of NaCl.



rated sulfuric acid solutions without and with the addition of Cl– ions up to a con-

centration of 3 M are the real corrosion potentials of a Wagner–Traud type due to

the simultaneous occurrence of the hydrogen evolution reaction, either on an ox-

ide-covered Cr surface with the anodic dissolution of Cr through the passive layer,

establishing one stable potential, Ecorr,1, or by cathodic hydrogen evolution and

anodic dissolution of the bare surface when the Cr surface is depassivated by some

mean (cathodic activation, mechanical action, etc.). In the second case a stable cor-

rosion potential Ecorr,2 establishes. Addition of Cl– ions up to a concentration of 3

M does not affect considerably this behavior, probably because there is no inhibit-

ing effect on the cathodic evolution reaction on the passivated surface (see Fig. 4).

Cathodic hydrogen evolution on the bare surface is somewhat inhibited in the pres-

ence of Cl– ions, but the anodic dissolution of chromium in the active state is some-

what accelerated (see Fig. 3), hence the effect on the corrosion potential Ecorr,2 is

rather small. For concentrations of NaCl higher that 3.5 M, the passive Cr surface

activates spontaneously, and only one, Ecorr,2 is observed.
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UTICAJ HLORIDNIH JONA NA POTENCIJAL OTVORENOG KOLA HROMA

U DEAERISANIM RASTVORIMA SUMPORNE KISELINE
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Merewa potencijala otvorenog kola, kao i merewa primenom cikli~ne voltamet-

rije u deaerisanim vodenim rastvorima H2SO4, pH 1, bez i sa dodatkom NaCl u koncentra-

cionom opsegu 0,5 – 4 M, otkrila su da hrom pokazuje dva stabilna potencijala otvorenog

kola koji imaju osobine Wagner–Traud-ovog korozionog potencijala. Jedan korozioni

potencijal, Ecorr.1, se uspostavqao na pasiviranoj povr{ini, koja se formira prethod-

nim izlagawem Cr vazduhu, ili poteciostatskim pasivirawem na kontrolisan na~in, a

drugi, Ecorr.2, se obrazovao na goloj povr{ini Cr koja je formirana katodnom aktiva-

cijom u dovoqno dugom periodu vremena. Postoji izvesna mala razlika u vrednostima

Ecorr.1 kao funkcija osobina pasivnog sloja. Dodatak NaCl u odre|enoj meri ubrzava

reakciju izdvajawa vodonika na pasiviranoj povr{ini, dok NaCl nema uticaja na istu

reakciju na goloj povr{ini Cr. Sa druge strane prisustvo NaCl ubrzava anodnu reakciju

na goloj povr{ini hroma i aktivira rastvarawe pasivnog sloja, tako da se struja

pasivacije pove}ava sa dodatkom NaCl. Uticaj NaCl je toliko veliki, da pri koncentra-

cijama ve}im od 3 M, razarawe pasivnog sloja postaje brzo, da se Cr za vreme od nekoliko

sekundi aktivira i tada se uo~ava samo jedan stabilni korozioni potencijal Ecorr.2. Nije

uo~ena pojava pitinga u prisustvu NaCl, sve do potencijala u transpasivnoj oblasti.

(Primqeno 29. maja 2006)
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