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Abstract: Active transition alumina powders were obtained by flash calcination of
gibbsite in a reactor for pneumatic transport in the dilute, two-phase flow regime in
the temperature interval from 883 to 943 K with a residence time between 0.4 and
0.9 s. The results of X-ray diffraction analysis confirmed that the activated alumina
samples were either microcrystalline or amorphous. From nitrogen adsorption–de-
sorption isotherms, the specific surface areas of all samples were calculated by the
BET method. Using the sorption data, the fractal dimension of the surface of the alu-
mina samples was calculated according to a modified FHH method. By application
of fractal geometry, using the values of the fractal dimension of the surface and of
the specific surface area, the effective surface areas of the active aluminas were cal-
culated for the adsorption of molecules having a cross-section area greater than that
of the nitrogen molecule

Keywords: pneumatic transport, transition amorphous aluminas, X-ray diffraction,
fractal dimension.

INTRODUCTION

Transition aluminas obtained from gibbsite by flash calcination are commonly

used for the production of catalyst carriers and adsorbents. On heating gibbsite at

673–1073 K for less than 1 s, quasi-amorphous products with the general composi-

tion Al2O3¸·xH2O (where 0.2 � x � �) are obtained. The transition aluminas ob-

tained in this way are fundamentally different from the producs obtained by grad-

ual calcination of gibbsite. They are highly defective, have increased surface en-

ergy and exhibit higher chemical reactivity.

1–3 Several methods for the implemen-

tation of the thermal decomposition process have been developed: thermal decom-
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position in flue gas backflow at high temperatures, thermal decomposition in flue

gas backflow at moderate temperature and a certain pressure of steam, thermal de-

composition in fluidized beds of a catalyst or solid heat carrier and thermal decom-

position in a thin bed in flowing flue gases.4–6

Studies of the effect of temperature on the degree and kinetics of gibbsite de-

hydration as well as on its phase transformations, described in a previous paper,7

showed that the degree of dehydration of gibbsite in a reactor for pneumatic trans-

port in the dilute two phase flow regime, with a residence time of 0.4–0.9 s in the

heated zone and amorphization of the obtained activated alumina powder in-

creased with increasing temperature in the range from 883 to 943 K. As a conse-

quence of the partial dehydration of gibbsite, open micro- and mesopores isnside

the grains of the original gibbsite crystals were formed. The pores in these materi-

als were very often different from the idealized, smooth cylinders, which are usu-

ally assumed to exist when modeling porous media. Theoretical and computer sim-

ulation studies have shown that the degree of roughness of the pore surfaces

strongly influences the rate of mass transfer down the pores.8 Hence, it is important

to be able to quantify the degree of surface structural heterogeneity in transition

aluminas.9 The concept of fractals may offer a method by which apparently irregu-

lar surfaces may be both characterized and mathematically modeled. The fractal

sets are infinitely fragmented or rough mathematical objects which have detail on

all scales. They are characterized by fractal dimensions which give information

about the morphology of a set and, more particularly, about their space filling ca-

pacity. The value of the fractal dimension of a surface (Df) can vary from 2, for a

perfectly smooth surface to 3, for a very rough surface.

Analysis of a single isotherm using a modified Frenkel–Halsey–Hill (FHH) the-

ory10 allows the determination of the fractal dimension of a surface. It was found that

the use of this theory is limited by the number of adsorbed layers on the surface of an

adsorbent. The adsorption isotherm shows two different linear regions for rough sur-

faces but more than two linear regions for smooth surfaces. In the early stages of ad-

sorption (low p/p0), the effect of surface tension is negligible and the interaction be-

tween an adsorbed molecule and the surface of an adsorbent is mainly due to van der

Waals forces. However, surface tension (or capillary condensation) effects become

more pronounced later on. Hence, an iteration procedure is necessary to enable an

appropriate choice of the fractal region of the isotherm.

By applying fractal geometry, the effective surface areas of active alumina for

the adsorption of molecules having a cross-section area greater than that of the ni-

trogen molecule can be calculated,11 which is of great importance for the applica-

tion of transition active aluminas in adsorption and catalaytic processes.

The crystallographic structure of an alumina largely determines the properties

of its surface.12 X-Ray powder diffractions (XRPD) can give valuable information

about the crystal structure of a material. For example, the crystallite size, the num-
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ber of dislocations, the interlayer distance and many other parameters of the lattice

can be determined. In this work, it was not intended to obtain exact information on

atomic parameters, as the main interest lay in pseudomorphosis relations and the

principal features of the defect structure of the aluminas.

The results of studies on the effect of thermal treatment of gibbsite in a reactor

for pneumatic transport on the crystallographic characteristics and porous struc-

ture of the obtained activated alumina samples are presented in this paper.

EXPERIMENTAL

Gibbsite, obtained as an intermediate in the production of alumina according to the Bayer pro-

cess (Bira~, Zvornik), was used as the starting material for the preparation of active alumina. The ex-

periments were performed using two gibbsite samples with different particles size distributions. The

first sample was gibbsite produced on an industrial scale (sample G0). The second sample was ob-

tained by grinding the industrial gibbsite in a planetary ball mill (sample G). The particle size distri-

bution of the two samples was determined using standard sieves and a Multisizer 3 Coulter Counter.

The thermal treatment of gibbsite was carried out in a specially designed pilot scale reactor for

pneumatic transport of gibbsite powder. The gibbsite was introduced into the reaction section using

a vibrating feeding device and a pneumatic transport line with an air flowrate of 1 m3/h. Before com-

mencement of an experiment, the air flow was preheated up to the selected reaction temperature, ad-

justed by a temperature inlet controller. Four thermocouples situated at the center of the reactor al-

lowed the desired temperature profile to be achieved within the decomposition zone of aluminum

oxide trihydrate decomposition. The gibbsite attained the predetermined temperature, from 883 to

943 K, within a residence time in the heated zone of 0.4 to 0.9 s. A cold air flow was used for cooling

the outlet mixture of air and activated gibbsite. The amorphous transition aluminas obtained in the

pilot scale reactor for pneumatic transport at the optimal residence time of 0.73 s are denoted as PA1,

PA2, PA3 and PA4 for activation temperatures of 883, 903, 923 and 943 K, respectively.

The water content of the gibbsite and activated alumina samples was determined by thermo-

gravimetry. The maximum calcinations temperature was 1373 K.

X-Ray diffraction analysis (XRD) was performed on a Philips PW 1710 diffractometer, using,

CuK
�

radiation. The interlayer distance (dhk1) and the number of dislocations were calculated ac-

cording to the method described by Klug and Alexander.13

Nitrogen adsorption–desorption isotherms of the starting gibbsite and the activated alumina

samples were determined at 77 K, using a laboratory high vacuum volumetric apparatus. The sam-

ples had previously been outgassed at a pressure of 10-3 Pa for 4 h, the starting gibbsite at 383 K, and

the thermally activated samples at 523 K. The specific surface areas of the samples, SBET, were de-

termined by the BET method from nitrogen adsorption isotherms up to p/p0 = 0.3.14–16 The cumula-

tive pore volumes and the pore size distribution, i.e., the diameter of the pores, were calculated from

the desorption isotherm branch by the procedure given by Lippens et al.15

The fractal dimensions of a surface were obtained using the Frenkel–Halsey–Hill equation.10 The

fractal dimension of the surface and the specific surface area were used to calculate the effective surfaces

for the adsorption of molecules of known molecular cross-section areas. The values for the molecular

cross-section area of the adsorbates (�), using literature experimental data,

11 were as follows: methane

(0.194 nm2), ethane (0.259 nm2), benzene (0.352 nm2), n-butane (0.421 nm2), naphthalene (0.529 nm2),

anthracene (0.707 nm2), n-C22H46 (1.26 nm2), n-C28H58 (1.57 nm2) and n-C32H66 (1.78 nm2).

RESULTS AND DISCUSSION

The most important parameters affecting the sorption and crystal characteris-

tics of activated alumina synthesized by flash calcination are the particle size of the
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starting material and the residence time and temperature of calcination. In order to

study the combined effect of these factors on the characteristics of the obtained ac-

tivated alumina products, experiments were performed with different combina-

tions of these physical parameters.

The particle size distributions of the two starting gibbsite samples are given in

Fig. 1.

The first sample was gibbsite produced on an industrial scale (sample G0). The

second sample was obtained by grinding the industrial gibbsite in a planetary ball

mill (sample G).

Particle size analysis of the industrial gibbsite, G0, revealed that nearly 85 %

of the particles had diameters between 40 and 60 �m. The ground sample G, was

composed of very fine particles (< 5 �m) with 50 % of the particles having a diame-

ter less than 2.66 �m.
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Fig. 1. Particle size distribution
of gibbsite produced on an in-
dustrial scale (sample G0) and
milled industrial gibbsite (sam-
ple G).

Fig. 2. Dependence of the wa-
ter content of the activated
alumina samples, obtained
from industrial gibbsite (G0)
and milled gibbsite (G), on
the residence time.



Fine particle sizes are important for the prevention of agglomeration and crys-

tallization of the activated alumina. Under the selected conditions (temperature

923 K, residence time in the heated zone between 0.4 and 0.9 s), the gibbsite sam-

ples were partially dehydrated and the residual crystalline water content in the acti-

vated products was lower than 1.5 mol H2O/mol Al2O3 (Fig. 2).

After activation, the water content of sample G was lower by about 0.4 mol

H2O/mol Al2O3, at the tested residence time, than that of sample G0. With a resi-

dence time equal to or longer than 0.73 s, the water content of sample G was very

close to that of alumina monohydrate (horizontal line in Fig. 2).

XRD Powder diffractograms of the activated transition aluminas obtained in

the pilot scale reactor for pneumatic transport at a constant residence time of 0.73 s

within the temperature range 883–943 K are shown in Fig. 3.

For all the activated samples, only two major diffraction peaks of crystalline

gibbsite, located at 2� values of 18.31° and 20.28°, were visible. The intensity of the

gibbsite diffraction lines decreased with increasing temperature and a slight change

in other reflections also occurred, indicating that the aluminum oxide was either

microcrystalline or amorphous. No recrystallization of the gibbsite into new phases

occurred, which means that the activated alumina remained monoclinic-prismatic

with the space group P21/n over the entire employed temperature range.

The calculated crystallite size and the number of dislocation13 for the reflec-

tion (110) and (002) for all the activated samples (PA1–PA4) relative to gibbsite

(G) are listed in Table I.
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TABLE I. Crystallographic data for the reflections (002) and (110) of the starting gibbsite and the

activated alumina samples; D-mean crystallite size; �-number of dislocation per unit area (cm

2

)

Sample T/K D(002)/10-5 cm �(002) ·1010 D(110) /10-5 cm �(110) ·1010

G 383 – – – –

PA1 883 1.40 1.57 3.20 29

PA2 903 1.40 1.57 0.74 5.5

PA3 923 0.80 4.69 0.74 5.5

PA4 943 0.96 3.25 0.74 5.5

The results show that, in general, there was a slight decrease in the crystallite

size of the alumina and a slight increase in the number of dislocation with increas-

ing temperature, but the values remained within the same order of magnitude. The

values listed in Table I are meant to be used for relative comparison only.

The activated alumina samples showed a slight linear thermal expansion in the

studied temperature range. The values of the lattice interlayer distances, d002 and

d110, evaluated at each temperature are given in Fig. 4.

The calculated values of d002 and d110 for all the activated aluminas are

slightly larger than those of the starting gibbsite, indicating that thermal activation

resulted in a the small increase in the interlayer distance.

The complete nitrogen adsorption–desorption isotherms of the gibbsite and of

the activated alumina samples are shown in Fig. 5. All the isotherms are reversible at

low equilibrium pressures, whereas at higher equilibrium pressures, they exhibit a

hysteresis loop of the H3 type.15,16 This type of hysteresis loop indicates the pres-

ence of slit-shaped mesopores or pores with narrow necks and wide bodies in the ac-
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Fig. 4. d-Values derived from the XRD pat-
terns of aluminas activated in the temperature
region 883–943 K for the reflection (002) and
(110).



tivated aluminas.14–16 The entire adsorption isotherm near to p/p0 = 1 are very steep,

which is characteristic for the presence of macropores between aggregates.

The values of the specific surface area (SBET), cummulative pore volume (Vp)

and diameter of the pores (dp) of the gibbsite and the activated alumina samples,

calculated from isotherms, are given in Table II. As can be seen, upon thermal acti-

vation in the temperature range from 883 to 943 K, an increase of the specific sur-

face area up to 250 m2/g was obtained. In all the activated samples, most of the

pores had a diameter between 2.15 and 2.20 nm, which is similar to the diameter of

the pores in the starting gibbsite (2.10 nm). However, the pore volumes increased

with increasing treatment temperature in the studied range. The probable cause of

this behavior of the textural parameters of the activated aluminas was the rapid

evaporation of the water in the gibbsite which came from inside the grains to the

surface under great pressure. Taking into account that the sizes of the gibbsite crys-

tals were between 100 and 1000 nm,17 the size of the developed pores indicates

that they were formed in the interior of the grains of the original crystals.

The surface fractal dimensions, Df, of the particles were obtained from the low

p/p0 region of the N2 adsorption isotherms using a modified Frenkel–Halsey–Hill

(FHH) theory. The method is based on the analysis of multilayer adsorption on the

fractal surface of the material. Theoretical analysis leads to the expression:
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Fig. 5. Nitrogen adsorption–desorption iso-
therms of the gibbsite (G) and activated alu-
mina samples (PA1–PA4). The ordinate sca-
les are moved up by 20 cm3(NTP)/g for suc-
cessive results from PA1 to PA4.



where V is the volume of adsorbed gas at equilibrium pressure (p), Vm is the vol-

ume of a monolayer of gas and p0 is the saturation pressure. The constant C is a

pre-exponential factor, and E is a power law exponent dependent on Df, the surface

fractal dimension. The appropriate region for obtaining Df was established through

iterative calculation. In every iteration step, the fractal dimension was calculated

from the slope of the adsorption isotherms in the appropriate region of the number

of layers (1.0 ± 0.5 � n � 2.0 ± 0.5), and then new values of n were re-calculated

from the obtained Df. In the present case, only the early stages of the adsorptions

gave appropriate values of the fractal dimension (2 < Df < 3). The values of the

fractal dimensions obtained using the fractal FHH theory are given in Table II.

TABLE II. Pore structure parameters (SBET, Vp, dp) and fractal dimension (Df) of the starting

gibbsite and the activated alumina samples

Sample SBET/m2 g-1 Vp/cm3 g-1 dp/nm Df

G 19 0.031 2.10 2.24

PA1 199 0.161 2.15 2.36

PA2 215 0.201 2.20 2.41

PA3 220 0.230 2.19 2.43

PA4 251 0.273 2.20 2.46

The fractal dimension of the surface of the activated alumina samples in-

creased from 2.36 to 2.46, with increasing thermal treatment temperature, indicat-
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Fig. 6. Effective surfaces of the gibbsite (G) and activated alumina samples (PA1–PA4) in the
process of the adsorption of molecules of different size.



ing that the surface irregularities of the activated aluminas were greater than those

of the starting gibbsite (fractal dimension 2.24).

The values of the fractal dimension (Df) of the alumina samples and their spe-

cific surface area (SBET) were used to calculate the surface accessible for the ad-

sorption of molecules of know molecular cross-section area S(�). These calcula-

tions were performed using the fractal equation:

S(�) = B�(1–D
f
/2) (2)

as well as literature data11 for the cross-section area, �, of the adsorbates. The de-

pendence of S(�)/SBET, i.e., the effective surface, for all the alumina samples on

the cross-section area of the adsorbate (�) is shown in Fig. 6. As can be seen from

this diagram, the effective surface decreased for all samples with increasing

cross-section area of the adosrbate molecule. The effective surface decreased the

most in the alumina sample having the highest Df-value, i.e., the alumina obtained

at 943 K.

CONCLUSIONS

Activated alumina samples obtained from milled industrial gibbsite after a

residence time equal to or longer than 0.73 s had a water content smaller than the

stoichiometric water content of alumina monohydrate.

The X-ray diffractograms of all the activated samples showed only two major

diffraction peaks, corresponding to crystalline gibbsite. The intensity of the gibb-

site diffraction lines decreased with increasing temperature, together with slight

changes in the other reflections, indicating that the activated alumina samples were

either microcrystalline or amorphous.

For all the activated aluminas, the calculated dhkl values were slightly larger

than that of the starting gibbsite, indicating that thermal activation led to a small

increase of the interlayer distance.

Sorption structural analysis showed that the obtained active alumina samples had

slit-shaped pores in the mesoporous range and a specific surface area of 250 m2/g.

The fractal dimensions of the surface of the starting gibbsite and the activated

alumina samples, calculated by applying the FHH method, increased from 2.24 to

2.46 with increasing activation temperature, indicating the occurrence of changes

in the texture of the alumina surface during activation.

Knowledge of the fractal dimensions and specific surface areas of the surfaces of

the activated alumina samples offers the possibility of estimating, by use of fractal ge-

ometry, the effective surface area for the adsorption of molecules with cross-sectional

surface areas greater than that of the nitrogen molecule, which is of great importance

for the application of these materials in adsorption and catalytic processes.
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Kratkovremenom termi~kom aktivacijom gibsita u reaktoru za pneumatski tran-

sport ~estica na temperaturama u intervalu od 883 do 943 K i vremenu boravka od 0.4

do 0.9 s dobijen je aktivni prah aluminijumoksida. Rentgenska strukturna analiza

pokazala je da dobijeni uzorci imaju visok stepen amorfnosti i mali procenat

polaznog gibsita. Na svim uzorcima su odre|ene adsorpciono–desorpcione izoterme

azota iz kojih je po BET-metodi izra~unata specifi~na povr{ina. Na osnovu rezulta-

ta sorpciono–strukturne analize odre|ene su fraktalne dimenzije povr{ine FHH-me-

todom, koje su poslu`ile za sagledavawe efektivne povr{ine uzoraka aktivirane

alumine za adsorpciju molekula ve}e povr{ine popre~nog preseka od molekula azota.

(Primqeno 20. oktobra 2005, revidirano 3. marta 2006)
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