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Abstract 

Propofol is the most widely used intravenous anaesthetic agent for maintenance of 

anaesthesia and sedation. Studies in varying regions of the bowel have shown 

conflicting differences on the effects of propofol on motility. There the aim of this study 

was to understand the influence of propofol on colonic function and explore by which 

mechanism any changes occur.  Functional studies were conducted using isolated 

colonic tissue from C57BL6 mice which were exposed to 5 µM propofol. Faecal pellet 

motility, colonic migratory motor complexes (CMMCs) and functional bioassays were 

utilised to monitor colonic function and nitric oxide production was monitored by 

amperometry. There was a signficant reduction in amplitude of CMMCs in the distal 

colon in the presence of 5 µM propofol, however no difference was observed in the 

proximal colon. A signficant increase in the 5-HT evoked contractions were observed 

in distal colon in the presence of 5 µM propofol. Additionally, a reduction in the NO 

production in the presence of 5 µM propofol was only observed in the in the distal 

colon. As a result, in the presence of 5 µM propofol, faecal pellet transit was increased, 

and velocity was reduced. At clinically relevant doses, propofol was shown to reduce 

colonic motility by inhibiting nitric oxide synthase in only the distal region of the colon. 

Our findings indicate that propofol has a considerable influence on colonic signalling 

mechanisms and impairs colonic motility, which may have implications in its clinical 

use especially for maintenance. 

 

Keywords: Propofol, proximal colon, distal colon, nitric oxide, colonic transit, colonic 

migratory motor complexes 

 

 

 

1. Introduction  

Propofol (2,6-diisopropylphenol) is the most widely used intravenous anaesthetic 

agent for induction and maintenance of anaesthesia and sedation. Its short elimination 
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half-life enables a faster more efficient recovery of the patient post-operatively 

compared to more volatile agents such as sodium thiopentone(Favetta et al., 2002). 

In intensive care units (ICU) it is a successful sedative in controlling delirium in critically 

ill patients(Rowe et al., 2008). Propofol circulates the body for longer periods of time 

when used as a maintenance anaesthetic for sedation and some studies have 

explored the complications associated with its use. However little focus was placed on 

gastrointestinal function(Beller et al., 1988; Venn et al., 2001). Therefore, there is 

uncertainty of the side effects of prolonged propofol use on gastrointestinal function. 

Very few studies have been conducted into the effects of propofol on the 

gastrointestinal tract. Studies have shown that propofol decreases motility in the 

duodenum(Russell et al., 1989), reduces gastric emptying and increases 

gastrointestinal transit(Inada et al., 2004). Propofol has also been shown to decrease 

ACh-dependent contractility in human gastric and colonic smooth muscle at 

concentrations within the therapeutic range for sedation and total intravenous 

anaesthesia (TIVA)(Lee et al., 1999). However, other studies have shown that 

propofol, even when given as a continuous infusion, does not alter gastrointestinal 

tract motility more than the standard isoflurane anaesthesia(Freye et al., 1998). 

Another investigation have explored the effect of propofol-fentanyl infusions on 

gastrointestinal function. They demonstrated impaired duodenal motility, however 

whether this change was due to the propofol or the opioid was unclear(Schnoor et al., 

2005). 

With all these studies little is known on the mechanism underlying changes on 

gastrointestinal motility.  Therefore, there is confusion on the precise effect of propofol 

in the gastrointestinal tract and little is known about the effects in specific regions of 

the bowel. There is also a limited understanding of the mechanisms by which propofol 

alters gastrointestinal transit. The effects of propofol on the colon are not well known 

and therefore this study aims to explore the effects of a maintenance dose of propofol 

on specific regions of the colon.  
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2. Methods  

2.1 Animals and tissue preparation 

All procedures were carried out according to U.K. Home Office regulations and the 

Animal [Scientific Procedures] Act 1986 and were approved by the University of 

Brighton Ethics Committee.  Animal studies were also reported in compliance with 

ARRIVE guidelines. Wildtype C57BL/6J male mice (6-8 weeks, Harlan UK) were group 

housed in cages with free access to food and tap water and maintained on a 12h light-

dark cycle in a temperature and humidity-controlled room. Animals were asphyxiated 

with CO2 and exsanguinated following cervical dislocation.  The whole colon was 

harvested 1 cm proximal to the anus and placed in oxygenated (95% O2 and 5% CO2) 

Krebs' buffer solution, pH 7.4 (117 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM 

MgCl2, 1.2 mM NaH2PO4, 25 mM NaHCO3 and 11 mM glucose).  

 

2.2 Measurement of colonic migratory motor complexes (CMMCs) 

Briefly the whole colon was placed in a Sylgard-lined recording chamber and a thin 

metal rod (1 mm diameter) placed through the lumen and secured at each end to the 

Sylgard. The colon was continuously perfused with Krebs buffer at 5 ml/min.  

Recordings of circular muscle contractions were made at two locations along the 

whole isolated colon, one at the proximal end and one at the distal end.  Fine suture 

silk was tied through the muscle layers at each location and connected to two separate 

isometric force transducers.  The muscle was placed initially under a low level of 

tension 0.4 g and then tension increased over the next 40 minutes until a final tension 

of 0.6 g was reached.  The signal from each force transducer then passed to a 

preamplifier and ADI Powerlab (ADI Instruments, Oxford, UK) before being stored on 

computer using LabChart 7 software (ADI Instruments, Oxford, UK).  The tissue was 

left for 30 minutes prior to recording. Post this period, recordings of spontaneous 

CMMCs were made for 60 minutes before the sequential addition of 5 µM propofol 

and 5 µM propofol + 100 µM L-NNA (all prepared in Krebs buffer).  The bath was 

equilibrated for 30 minutes with each pharmacological addition before spontaneous 

CMMCs were again recorded for 60 minutes. 
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2.3 Functional bioassay studies 

Segments of proximal and distal colon obtained from the same animal were 

suspended vertically in a 10 mL organ bath containing Krebs buffer solution at 37 ˚C.  

Tissues were initially put under 0.2 g tension and allowed to equilibrate for 30 minutes, 

in which the Krebs buffer solution was changed every 15 minutes. Concentration 

response curves were obtained using serotonin (5-HT) in the concentration range of 

30 µM to 100 nM. Tissues were exposed to 5-HT for one minute within the 10 dosing 

cycle. These concentration response curves were repeated when tissues were 

incubated sequentially for 30 minutes with 5 µM propofol in the presence and absence 

of 100 µM L-NNA). 

 

2.4 Measurement of NO production 

Longitudinal muscle myenteric plexus (LMMP) preparations were perfused with warm 

(37 °C) Krebs buffer solution at a flow rate of 2 mL min-1. Amperometric measurements 

were made using a 40 µm boron-doped diamond (BDD) microelectrode as previously 

described(Patel, 2011) and a stainless steel wire served as the counter electrode and 

a “no leak” Ag|AgCl electrode (EE009, ESA Biosciences Inc., Sunnyvale, CA) was 

used as the reference electrode. Amperometric measurements were carried out using 

a BioStat™ multimode potentiostat (ESA Biosciences). The BDD microelectrode was 

placed on a myenteric ganglion using a micromanipulator (Model 25033, Fine 

Scientific Tools, North Vancouver, BC). The electrode was held at a detection potential 

of +1.0 V vs. Ag|AgCl, which was sufficient to oxidize NO at a mass-transfer limited 

rate(MacEachern et al., 2015; Patel et al., 2008). To evoke NO release from the 

myenteric plexus, a local superfusion pipette was placed within 100 μm of the tissue, 

and the tissue superfused with 10 μM veratridine for 10 s (Sigma-Aldrich, UK).  
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2.5 Faecal pellet motility studies 

The whole colon was harvested and placed in ice cold Krebs buffer solution.  The 

mesentery was trimmed using fine scissors and the whole colon was then loosely 

pinned in a Sylgard-lined flow bath, allowing a lateral movement of approximately 0.5 

cm about the mid-line and perfused with oxygenated Krebs buffer solution at 37 ± 1 

°C at a flow rate of 8 ml min-1.  A small (2 mm) incision was made in both ends of the 

colon and the openings pinned flat to facilitate pellet insertion and its expulsion at the 

distal end. If spontaneous evacuation was not achieved, the faecal pellets were 

removed from the isolated colon after 30 minutes, by gently flushing the lumen of the 

colon with warmed Krebs buffer solution. The colon was then left to stabilise for 15 

minutes, prior to recordings of pellet motility. 

Measurements of motility were carried out using an epoxy-coated natural faecal pellet 

to prevent disintegration. The coated faecal pellet was inserted 3-4 mm into the 

proximal end of the bowel using a fire-polished glass capillary and the movement of 

the pellet was monitored using a video camera. Pellet motility was tracked using 

EthoVision XT video tracking software (Noldus). Following a successful trial, the 

experiment was repeated two further times and the average response was utilised in 

the presence and absence of 5 µM propofol.  

 

2.6 Statistical Analysis 

CMMC amplitude was measured from baseline to the peak of the contraction and the 

duration was obtained from start to end of the contraction at baseline.  The velocity of 

CMMCs was determined by dividing the distance between the two transducers by the 

time difference between the peak of proximal contraction to the peak of the closest 

distal contraction. For functional bioassay measurements, data were recorded using 

ADI Instruments bridge amplifier and Labchart 7 software. Responses were plotted as 

the integral of the 5-HT stimulated response minus the integral of an equivalent time 

period immediately preceding the stimulus. All data were normalised to the wet weight 

of the tissue, so data are presented as g.s mg-1. For the determination of NO release, 

the current responses obtained were converted to equivalent concentrations of NO 

using a calibration curve constructed using pure NO gas(Patel et al., 2006). For colonic 
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motility studies, the distance travelled over time was obtained from Ethovision tracking 

software (Ethovision XT vs7) and the resultant velocity was obtained in the presence 

and absence of propofol. 

Data on the CMMCs were statistically analysed using a one-way ANOVA, followed by 

a Tukey’s multiple comparison test. Functional bioassay measurements, faecal pellet 

colonic motility and NO measurements were analysed using a two-way ANOVA 

followed by a Bonferroni’s post-hoc test. Data was presented as mean ± St.Dev. and 

P<0.05 was taken as significant. 

 

3. Results 

3.1 Propofol alters CMMC function in the distal colon 

Representative traces of CMMC responses in the proximal and distal colon in 

response to 5 µM propofol are shown in Figure 1A. No differences in the response of 

1 µM propofol was observed. There was a signficant reduction in the propagating 

velocity of CMMCs in 5 µM propofol when compared to control (Figure 1B, p<0.001, 

n=6). No additional reduction in the propagating velocity of CMMCs in 5 µM propofol 

was observed when 100 µM L-NNA was present.   

In the proximal colon, there was no difference in the amplitude of CMMCs in the 

presence of 5 µM propofol when compared to control (Figure 2A, n=6). There was a 

signficant reduction in the CMMC amplitude in tissue perfused with 5 µM propofol + 

100 µM L-NNA when compared to 5 µM propofol alone (p<0.05, n=6). No difference 

in the duration of CMMCs was observed in the proximal colon (Figure 2B). 

In the distal colon, there was a signficant reduction in CMMC amplitude between 

control and 5 µM propofol (p<0.001, n=6, Figure 2C). No difference in the CMMC 

amplitude was observed when the tissue was exposed to 5 µM propofol alone 

compared to 5 µM propofol and 100 µM L-NNA (Figure 2C).  None of the treatments 

altered the duration of CMMCs in the distal colon (Figure 2B). 
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3.2 Alterations in serotonin concentration response curves in proximal and 
distal colon following addition of propofol  

5-HT is a major driver of colonic motility and we were interested to examine if the 

effects of propofol could be explained by its effects on 5-HT evoked muscle 

contractions. Following addition of serotonin, a biphasic response was observed 

consisting of a fast relaxation followed by a sustained contraction.  

Within the proximal colon there was no significant difference in the response in the 

presence of 5 µM propofol when compared to control (Figure 3A). However, when 

studies were conducted in the presence of 5 µM propofol + 100 µM L-NNA, there was 

a significant increase in the integral of response (p<0.01, n=6, Figure 3A). A signficant 

increase in the response in the presence of 100 µM L-NNA was observed when 

responses were evoked with 10 µM and 30 µM 5-HT (p<0.01, n=6).  

Within the distal colon, there was a significant increase in the integral of the response 

observed in the presence of 5 µM propofol when compared to control (p<0.001, n=6, 

Figure 3B). There was a significant increase in the integral of the response at 5-HT 

concentrations of 3 µM (p<0.05), 10 µM (p<0.01) and 30 µM (p<0.001, n=6). No further 

increase was seen in the presence of 5 µM propofol + 100 µM L-NNA (Figure 3B). 

 

3.3 NO production in the distal colon was decreased in the presence of propofol 

NO production was evoked with a 10 second application of 10 µM veratridine and a 

clear NO signal could be monitored on the BDD electrode (Figure 4A). No significant 

reduction in the concentration of NO production from myenteric neurons from proximal 

tissue was observed in the presence of 5 µM propofol. NO production was, however, 

significantly reduced in the myenteric neurons from the distal colon in the presence of 

5 µM propofol (p<0.001, n=4, Figure 4B).  

 

3.4 Colonic motility is reduced by propofol 

Figure 5 shows the movement of the faecal pellet from the oral to anal end of the 

isolated colon comparing control and 5 µM propofol. Under control conditions, the 

pellet migrated down the colon in step like movements, however in the presence of 5 
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µM propofol, these movements ceased on reaching the distal colon. There was a 

significant reduction in the distance moved by the artificial faecal pellet in the presence 

of 5 µM propofol (at 10 minutes p<0.01 and at 12, 14 and 16 minutes p<0.001, n=6, 

Figure 5B). The was a significant reduction in the velocity of the artificial faecal pellet 

after the addition of 5 µM propofol (p<0.01, n=6, Figure 1C).  



10 
 

4. Discussion 

4.1. Influence of propofol on colonic motility is through effects in the distal colon 

Our studies show that propofol at clinically relevant concentrations increased faecal 

pellet transit time and reduced colonic motility through reductions in NO production in 

the distal colon. Our findings clearly indicate that the effect of propofol has region-

specific effects in the colon as only reductions in CMMC amplitude and increase in 5-

HT-evoked contractions were observed in the presence of propofol only in the distal 

region of the colon. This is further strengthened by fecal pellet motility studies, where 

the artificial pellet moves through the proximal colon in a similar fashion as the control 

studies, but motility is halted at the mid point of the colon. Other published studies that 

have investigated the effect of propofol on gastrointestinal transit and human colonic 

muscle contraction have observed similar effects(Inada et al., 2004; Lee et al., 1999), 

but were unable to provide any indication as to whether these effects were region 

specific. 

 

4.2. Effects of nitrergic signalling processes  

As shown in Figure 2, propofol only decreases CMMC amplitude in the distal colon 

and overall reduced the velocity of CMMCs in the colon. Previous studies that have 

explored the effect of L-NNA on the murine colon, have shown that inhibition of NO 

production following application of nitric oxide synthase blockers NOLA (Spencer, 

2001) and L-NNA (Fida et al., 1997; Powell et al., 2001) results in a reduction in CMMC 

amplitude and velocity. This suggests that propofol is inhibiting nitrergic signalling. 

These effects were not observed in the proximal colon as the amplitude was not 

altered in the presence of propofol but was reduced when L-NNA was added, further 

supporting that the effects of propofol in the distal colon are through an inhibition of 

nitrergic signalling.  

Similar responses were observed when studies were conducted to explore the 

changes in 5-HT-evoked contractions. 5-HT is known to have biphasic effects on the 

colon, causing an initial relaxation followed by a sustained contraction. No alteration 

in the 5-HT response was observed in the presence of propofol in the proximal colon, 

but this response was significantly increased when L-NNA was added, suggestive of 
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a functional nitrergic pathway which was not altered by propofol. In the distal colon, 

however, the 5-HT evoked response was significantly increased in the presence of 5 

µM propofol and could not be further increased through the addition of L-NNA.  

Together these data indicate that propofol appears to have its effects through a 

suppression of nitrergic signalling in the distal colon. These functional changes are 

most likely due to alterations in NO production, which may occur through inhibiting 

nitric oxide synthase (NOS), guanylyl cyclase (GC) receptor or ion channels. 

Based on the observation that the veratridine-evoked NO signal is reduced by propofol 

in the distal colon, it is most likely that propofol inhibits NOS to reduce NO production, 

leading to an increased contractile state of the colon, which increases transit time. 

Previous studies in various biological regions other than the gastrointestinal tract have 

contradictory findings with some studies indicating that propofol either inhibits the 

expression and activity of NOS(Chen et al., 2003; Lv et al., 2013), whilst many others 

indicate that propofol induces relaxation by stimulating NO production in the 

endothelium(Park et al., 1992; Toda et al., 2007).  

Our results show that propofol has an effect in the distal colon and not in the proximal 

colon. This indicates that propofol may induce region-specific differences on motility. 

Nitrergic neuronal function is diverse in different regions of the colon(Toda et al., 

2005). Studies on CMMC function show L-NNA increased CMMC amplitude in the mid 

and distal regions of the colon (Brierley et al., 2001; Powell et al., 2001; Powell et al., 

2002). However, there was either no effect or decreased amplitude in the proximal 

region. These results suggest NOS signalling mechanisms along the colon are 

complex and that the proximal colon is more resilient to propofol than the distal colon. 

The central actions of propofol through its ability to bind to and stimulate GABAA 

receptor inhibitory tone (Trapani et al., 2000).  It is therefore possible that the ability of 

propofol to reduce relaxation in the GI tract are due to its well-known actions on GABAA 

receptors.  However, in the GI tract stimulation of GABAA receptors excites myenteric 

neurons rather than inhibiting them (Erdö, 1985).  Previous studies have demonstrated 

the presence of GABAA receptors on many enteric neurons and enteroendocrine cells 

including NOS positive enteric neurons (Jessen et al., 1979). Therefore, if propofol’s 

actions on the distal colon were through its ability to potentiate the GABAA receptor 



12 
 

stimulation we would predict an increased in NO-mediated relaxation in the GI tract 

rather than the reduction observed in this study. 

Additionally, propofol has been shown to inhibit 5-HT3 receptor signalling (Barann et 

al., 2008). 5-HT3 receptors are present on inhibitory nitrergic neurons and are the 

target for descending inhibitory serotonergic interneurons (Dickson et al., 2010; 

Heredia et al., 2013). A reduction in 5-HT3 receptor signalling by propofol would 

therefore reduce nitrergic signalling consistent with our study findings and explain the 

reduction in distal colon motility. 

4.3. Clinical implication of the role of propofol on colonic motility 

The results of our study showed that at clinically relevant doses, propofol reduces 

colonic motility in C57BL/6 mice through an inhibition of nitrergic signalling in the distal 

colon. Such changes would be indicative of constipation symptoms. Propofol has not 

been reported in the literature to cause constipation as it is often difficult to find a 

contribution of propofol to aetiology when there are so many possible contributors such 

as the type of anaesthesia used, surgery conducted or other factors such as post-

operative ileus(Kehlet et al., 2001).  

There have been very few clinical studies investigating the effects of propofol on 

gastrointestinal transit in hospital patients and those few have only looked at the post-

operative effects of propofol.  Although these studies propose that propofol has only a 

very minor effect on motility, diagnosis of motility disturbances can be challenging in 

the critically ill when they are on multiple medications. Propofol infusion in critically ill 

patients who were fed enterically caused an increase in gastric residual volume 

however gastric transit remained unchanged(Memiş et al., 2006).  

Understanding the mechanisms by which propofol decreases colonic motility may be 

helpful in providing treatments for possible side effects of reduced motility from 

propofol use. Finding out how long the effect on motility lasts and whether it is dose-

dependent with higher doses than used in this study may determine how propofol is 

prescribed and administered for maintenance and sedation in theatre, intensive care 

units (ICU) and the palliative care setting.  

 

4.4. Conclusion 
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At clinically relevant doses, propofol was shown to reduce faecal pellet motility by 

altering CMMC and 5-HT-induced contraction, as well as reducing NO production in 

the distal colon. Our findings indicate that propofol inhibits NOS, therefore reducing 

NO production, which leads to dysmotility. Overall our studies indicate that propofol 

has a significant influence on distal colon signalling mechanisms and impairs colonic 

motility, which may have implications in its clinical use. Further studies may help to 

determine its significance in contributing to prolonged post-op ileus in hospital patients 

and help determine treatments. 
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Figure Legends 

 

Figure 1. Recording of CMMCs. (A) Representative traces of CMMC recording in the 

proximal (P) and distal (D) region of the isolated colon. The responses to 5 µM propofol 

and 5 µM propofol + L-NNA are shown. (B) the propagating velocity of a CMMC is 

shown in the presence of 5 µM propofol and 100 µM L-NNA. Data shown as mean ± 

St.Dev., where ***p<0.001. 

 

Figure 2. Responses of CMMC amplitude and duration in the presence of 5 µM 

propofol. Response of the CMMC amplitude (A) and duration (B) from the proximal 

colon. Response of the CMMC amplitude (C) and duration (D) from the distal colon. 

Data shown as mean ± St.Dev., *p<0.05 and ***p<0.001. 

 

Figure 3. 5-HT-evoked concentration response curves. (A) proximal and (B) distal 

colon responses to 5-HT evoked contraction in the presence and absence of 5 µM 

propofol and 5 µM propofol + 100 µM L-NNA. Data shown as mean ± St.Dev., n=6, 

*p<0.05, **p<0.01 and ***p<0.001 vs control; and ‡‡p<0.01 vs 5 µM propofol. 

 

Figure 4. NO production in the presence of propofol. (A) shows responses of NO 

production evoked using 10 µM veratridine and (B) shows response of NO observed 

in proximal and distal colon in the presence of propofol. Grey bar indicates the duration 

of action of veratridine. Data shown as mean ± St.Dev., n=4, ***p<0.001 

 

Figure 5. Colonic pellet motility study (A) shows the movement of the faecal pellet 

tracked through video imaging. (B) the distance that the pellet moved down the colon 

was measured every 2 minutes in the presence and absence of 5 µM propofol. (C) 

The velocity of the pellet in the presence and absence of 5 µM propofol. Data shown 

as mean ± St.Dev., n=6, where **p<0.01 and ***p<0.001. 
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