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Summary 

Iron/zinc deficiencies cause extensive health problems in developing countries and 

contribute to a loss of human potential. Many who suffer from micronutrient 

deficiencies are dependent on staple crops to meet their dietary requirements. Thus, 

the biofortification of crop cultivars with elevated levels of grain micronutrients is 

becoming increasingly attractive and is largely facilitated by genetics/genomic 

platforms. Pearl millet is an excellent candidate for biofortification as it is accessible 

to many populations suffering with micronutrient malnutrition. It contains naturally 

high levels of micronutrients and thrives in dry, semi-arid regions where farming 

conditions are often unfavourable; therefore it is considered climate change ready.  

The aim of this project was to utilise natural genetic variations, present in a 

germplasm diversity panel of pearl millet to identify genes associated with iron/zinc 

uptake, with potential to contribute to the development of micronutrient-rich 

varieties. Iron/zinc levels were quantified in 230 lines by Inductively Coupled 

Plasma-Atomic Emission Spectroscopy (ICP-AES) and ranged between 29.18–

135.27mg/kg and 22.07–93.28mg/kg, respectively. Anti-nutritional factors affecting 

mineral bioavailability were also considered, including phytate and metal-chelating 

soluble phenolics. STRUCTURE analysis using Single Nucleotide Polymorphisms 

(SNPs), generated by Genotyping by Sequencing (GBS) revealed insignificant 

population structure, further supported by principal component analysis. The extent 

of Linkage Disequilibrium (LD) was also assessed among all pairs of loci and was 

found to be prominent on chromosomes 3 and 5. Genome Wide Association Studies 

(GWAS) resulted in hundreds of significant marker-trait-associations for grain 

iron/zinc content with p-values ranging from 3.99 E-06–7.54 E-07. Using the 4kb 

region surrounding the 35 most significant SNPs, a BLAST search of the NCBI 

database revealed 6 candidate genes associated with iron/zinc uptake. The most 

significant was YUCCA11, which drives zinc efficiency via auxin biosynthesis. 

Additionally, haplotypes covering the YUCCA11 gene were identified and their 

association with trait data was assessed.  
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Chapter 1: Introduction 

Disclaimer: Significant portions of this chapter were used in the publication of:  

Manwaring, H.R., Bligh, H.F.J. and Yadav, R., 2016. The challenges and 

opportunities associated with biofortification of pearl millet (Pennisetum glaucum) 

with elevated levels of grain iron and zinc. Frontiers in Plant Science, 7, p.1944. 

1.1 Micronutrient Malnutrition of Iron and Zinc 

On a global scale, over three billion people suffer from chronic micronutrient 

malnutrition (Chasapis et al., 2012), which refers to extended durations of 

inadequate intake of food /micronutrients. This is a vast and persistent challenge for 

global development (Maestre et al., 2017), the consequences of which mostly apply 

to nutritionally vulnerable populations within developing countries. The economic 

cost of micronutrient malnutrition due to human capital losses is estimated to be 

around USD 3.5 trillion per year (Hoddinott, 2013), therefore prevention and 

treatment is perceived as a desirable worldwide goal.  

Even though micronutrient malnutrition encompasses the lack of a wide range of 

essential vitamins and minerals, deficiencies in iron (Fe) and zinc (Zn) are two of the 

most common and widespread micronutrient deficiencies (MNDs). These result in; 

poor health, increased mortality, low work productivity, learning disabilities in 

children and poor national economic development (Welch & Graham, 2004). At an 

individual level, children require up to 10 mg of Fe and Zn per day (8 mg for adults). 

This amount is essential to sustain life and to ensure optimal physiological function. 

Dietary Fe is available in two forms: haem and non-haem Fe. Fe is complexed as 

Fe2+ (ferrous Fe) to haemoglobin in the haem form, which is available from flesh-

food sources (Hyder et al., 2004) and non-haem Fe (Fe3+ or ferric Fe) is avialiable 

from plant-based foods (dark leafy vegetables, brown rice, beans, nuts, and seeds, 

etc). Haem Fe contributes approximately 15% of total Fe intake in meat-eating 

populations, but because it has a better absorption rate, estimated to be up to 35% 

better than non-haem Fe, it can account for up to 40% of total absorbed Fe (Hurrel & 

Egli, 2010). In developing countries within Africa and Asia, the intake of flesh 

foods, which are abundant in readily available haem Fe and Zn is at best limited due 

to economic, cultural, or religious constraints. Instead, staple diets are primarily 

plant based (Gibson et al., 2000), from which non haem Fe and Zn are obtained. 
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These are more widely available and are the source of most Fe and Zn in the diet 

world-wide. People living in poverty stricken areas have limited access to even these 

foods. Instead, they largely depend on grain from staple crops, which they eat on a 

daily basis (Manwaring et al., 2016). 

Anaemia affects almost one third of the global population and nearly half of cases 

are due to Fe deficiency (Lopez et al., 2016). Fe deficiency anaemia is a major and 

global health problem that can lead to several chronic diseases, most notably chronic 

kidney disease, chronic heart failure, cancer, and inflammatory bowel disease (Lopez 

et al., 2016). The World Health Organisation (WHO) estimates that the prevalence 

of Fe deficiency varies hugely around the world and mostly affects children aged 0–

5 years, women of childbearing age and pregnant women in resource poor areas 

(Bailey et al., 2015). Severe Fe deficiency is associated with increased maternal 

mortality, premature delivery and miscarriage (Carriaga et al., 1991). Fe deficiency 

also contributes substantially to maternal deaths from dystocia (obstructed labour) 

and is associated with low offspring birth weight (<5.5lb). These deficits lead to poor 

health and low productivity in adulthood as the detrimental effects often persist from 

childhood. On a global scale, the lowest rate of anaemia associated with Fe 

deficiency was observed in the USA and Canada (2.9% of the population). However, 

in several poorer regions, including Central Asia (64.7%), South Asia (54.8%), and 

Andean Latin America (62.3%) a significantly higher proportion of  anaemia is 

caused by Fe deficiency (Kassebaun et al., 2014). Some biological components of 

diet directly affect Fe bioavailability. For example, phytate (a phosphorus storage 

compound found in cereals and vegetables), polyphenols (most notably certain 

flavonoids due to their metal chelating activity) and some proteins inhibit Fe 

absorption (Tako et al., 2015). By contrast, ascorbic acid and muscle tissue enhance 

Fe absorption. 

Zn is another key micronutrient of particular importance during childhood and 

pregnancy. Moderate Zn deficiency has been linked to an increased rate of infection, 

growth stunting in children and is a risk factor for adverse pregnancy outcomes and 

premature delivery (Lamberti et al., 2016), poor immune function and increased 

incidence of diarrhoeal diseases and acute respiratory infections, which are major 

causes of mortality (Hambidge, 2000; Bailey et al., 2015). Organ systems clinically 

affected by advanced Zn deficiency include the epidermal, gastrointestinal, central 
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nervous, immune, skeletal and reproductive systems (Hambridge, 2000). Zn 

deficiency is most prevalent in Africa and South-East Asia (Caulfield and Black, 

2004) and many studies have demonstrated a relationship between low plasma Zn 

levels during pregnancy and low birth weight within these areas (Neggers et al., 

1990; Black et al., 2013). This leads to stunted growth and impaired physical/neural 

development, which is often irreversible. Despite the serious health implications, Zn 

deficiency has received much less attention than other MNDs (Manwaring et al., 

2016).  

1.2 Acute and Long-term Management 

The aim of MND treatment is to supply enough Fe and Zn to replenish and maintain 

Fe and Zn stores. This would have a positive impact on quality of life, symptoms, 

and the prognosis of many chronic disorders (Lopez et al., 2016). Two mitigation 

strategies include; prevention plans targeted at the populations at risk and Fe and Zn 

supplementation approaches in confirmed Fe and Zn deficient patients. 

On a global level, food-based approaches including the promotion of access to and 

consumption of Fe and Zn rich foods are strongly recommended by the WHO. In 

addition to this, nutritional dietary supplementation is intended to provide adequate 

nutrients that may otherwise not be consumed in sufficient quantities through diet 

alone. Combined Fe and Zn supplementation is perceived to be a logical MND 

prevention strategy (Lind et al., 2004) and is used to prevent Zn/Fe deficiency in at-

risk populations, or as treatment for those with proven deficiency (Lopez et al., 

2016). Even though studies show significant improvements to human health 

including weight gain, improved development and a reduction in the incidence of 

diarrheal disease and lower respiratory infection in children, as measured by the 

Bayley Scales of Infant Development, these positive effects are often not 

experienced without adverse side effects such as vomiting and fever (Lind et al., 

2004). For example, Lind et al. (2004) investigated the effects of Fe/Zn 

supplementation in Indonesian infants over a period of 6 months. The supplements 

were administered orally as sugary syrup containing either 10mg of Fe as ferrous 

sulphate, 10mg of Zn as Zn sulphate or both (20mg in total). Results showed that 

severe vomiting as a side effect was observed in 33% of children who took the 

combined treatment of Fe and Zn, whereas when Fe was taken as an individual 
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supplement, only 18% reported vomiting and 21% reported vomiting for Zn 

individual supplementation (Lind et al., 2004). The study also considers the 

possibility of  negative biochemical interactions between Fe/Zn in the human body. 

For example, it has been proven that high concentrations of inorganic Fe may inhibit 

the absorption of Zn (Solomans & Jacob, 1981) and Zn given with water may also 

inhibit Fe absorption (Rossander-Hulten et al., 1991). In terms of critical levels 

where one mineral would affect the other, Solomans and Jacob (1981) found that 

25mg Fe given in water with 25mg Zn decreased total plasma Zn levels. However, 

lower amounts of minerals (10mg Fe + 5mg Zn, ratio 2:1) had no effect on Zn 

concentration. Other studies including one conducted by Sandstrom et al., (1985) 

reported no effect on Zn absorption when the ratio was 1:1, however Zn absorption 

was affected when the ratio of Fe:Zn was 25:1. 

The process of food fortification involves the addition of micronutrients and 

vitamins to food sources to improve nutritional quality with minimal risk to health 

(WHO, Food and Agricultural Organization of the United Nations, 2006). However, 

limiting drawbacks are often experienced as the fortified compounds at elevated 

levels may alter taste, appearance and have a negative effect on shelf-life, thus 

making the product unacceptable to the consumer. For example, the most 

bioavailable Fe compounds, which are freely water soluble are the most likely to 

cause adverse effects to colour and taste (Hurrell, 1997). For example, a noticeable 

precipitation reaction, can be observed when Fe fortified sugar is added to beverages, 

such as tea (Hurrell, 1997). Additionally, many Fe compounds are coloured and 

cause a noticeable change in appearance, especially when added to lighter coloured 

foods. For example, infant cereals have been found to turn grey/green upon addition 

of a ferrous sulphate and salt fortified with Fe will turn yellow/brown in colour. 

Negative effects on taste are often reported as a ‘metallic’ taste when Fe is used to 

fortify foods, which is more noticeable in beverages (Hurrell, 1997). 

Enrichment of food with micronutrients is effective in improving human nutritional 

status (Lopez et al., 2016). For example, many governments in the west have taken 

the decision to fortify white wheat flour, for example in the United Kingdom the 

Bread and Flour regulations act of 1998 make fortification of white flour with Ca, Fe 

and thiamine compulsory. While this option is available to countries with a 

population dependent on purchased and convenience foods, in those countries where 
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a far larger population is more directly dependent on the land, this is neither 

practicable nor affordable (Manwaring et al., 2016). 

Agronomic practices that positively influence the nutritional status of farm produce 

show huge potential via better fertilisation (to improve soil quality) and watering 

systems. However, systems reliant on water may not be available to regions which 

often suffer with severe drought. There are also a wide range of factors that influence 

the soil and in turn nutrient uptake, such as light intensity, temperature and rainfall. 

These are difficult to control in an agricultural environment; therefore control of 

nutrient uptake may not be reliable and reproducible. There are other variables 

relating to the soil that are difficult to control, such as the proportion of sand, silt, 

clay, and organic matter, which in turn has a direct effect on mineral composition 

and uptake by the plant (Hornick, 1992). 

While many of these interventions are proven to be successful in the short term, for 

the individuals reached by them, they have proved to be unsustainable and incapable 

of reaching all of the people afflicted by micronutrient malnutrition; and are unlikely 

to reach those most at risk, namely resource-poor women, infants and children that 

live in remote communities that are either far away from a clinic or that do not have 

ready access to processed and fortified foods (Graham et al., 2001). Improving Fe 

and Zn content in staple foods through biofortification is considered to be the most 

cost effective, sustainable and consumer friendly solution in meeting target levels of 

Fe and Zn in human populations (Velu et al., 2007). The aim of biofortification is to 

make crops more nutritious as they grow, rather than adding nutrients when 

processing them into foods. This is largely facilitated by natural cross breeding and 

genetic improvement methods which rely on natural genetic variation, the use of 

modern tools for selection and the identification of new genes and gene 

combinations that can be used to improve levels of Zn and Fe. These techniques can 

be utilised for the production of elite crop varieties with increased micronutrient 

densities (Figure 1.1) for those even in remote areas as the problem of MND is 

tackled at the source. 
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Figure 1.1: Biofortified crops are bred or engineered to produce increased levels of 

micronutrients (derived by author). 

1.3 Pearl Millet (Pennisetum glaucum) ~ A Suitable Candidate for 

Biofortification 

Pearl millet (family: Poaceae, subfamily: Panicoideae) is a multi-purpose cereal 

crop which provides food, fodder and fuel on more than 31 million hectares 

worldwide (ICRISAT, 2016). It has a 2530 Mb genome size and a diploid 

chromosome number of 7, (2n = 14) (Bennett et al., 2000). Pearl millet is the 6th 

most important cereal crop after wheat, rice, maize, sorghum and barley (Singh et al. 

2003) and has evolved under the pressures of infertile soils, heat and drought, thus it 

has a natural ability to thrive in low moisture, nutrient deprived soils and at 

temperatures in excess of 40°C. It is cultivated throughout the arid and semi-arid 

regions of West and East Africa and in many parts of India (Oumar et al., 2008). In 

these regions pearl millet constitutes up to 75% of the total cereal production and 

therefore represents an important part of local diets (Lestienne et al., 2005). Pearl 

millet grains are naturally nutritious as compared to rice, maize and wheat. In light of 

this, nutrient-rich millets including pearl millet are being introduced to the mid-day 

meal schemes for many government aided schools in Karnataka and Telangana by 

the The Akshaya Patra Foundation on a pilot basis, with the aim of enhancing the 

nutritional intake of the students (Mahadevan et al., 2013). This is because the millet 

based meals are considered more nutritious than wheat/rice based meals. Growing 



25 
 

pearl millet generally requires few chemical inputs; thus, investments in production 

tend to be low and more suitable for areas that have not benefited from dominant 

agricultural growth trajectories (Jalaja et al., 2016). Pearl millet is a major source of 

energy, proteins, vitamins and micronutrients for millions of people living in poverty 

(Yadav & Rai, 2013). In addition, grains are reported to be rich in resistant starch, 

dietary fibre and antioxidants (Ragaee et al., 2006). Pearl millet currently holds an 

orphan crop status, where it is acknowledged as regionally important, but scientific 

research in terms of nutritional enhancement is still somewhat limited. For example, 

pearl millet did not have a reference genome assembly until September 2017 

(Varshney et al., 2017).  

Pearl millet is a monocot, short cycled and small seed size cereal crop (Ullah et al., 

2016). The growth and phenology of pearl millet is divided into three phases defined 

by growth stages GS1, GS2 and GS3 (Figure 1.2). GS1 includes seedling, root and 

leaf establishment, which takes 3-4 days at optimum conditions and with low 

rainfall. Tillering and panicle initiation takes place at around 20-25 days. Elongation 

of leaves, floral initiation in tillers and stem elongation take place at GS2, which 

usually occurs between 45-59 days. Pearl millet is a protogynous species, where the 

female reproductive organs mature before the male parts. Furthermore, the wind is a 

major mode of pollination, though several insects may also play a less significant 

role (Kaur & Soodnan, 2017). GS3 starts with fertilisation of florets, seed setting and 

grain filling and finally, maturity of the plant (Ullah et al., 2016). Seed setting/grain 

formation occurs 60–65 days after germination and is usually completed within 10 

days. The crop reaches physiological maturity 90–95 days after germination if 

optimal weather criteria are met. 
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Figure 1.2: The growth stages of pearl millet (Khairwal et al., 2007) 

Crop production is particularly vulnerable to climate change because meteorological 

factors including UV radiation and rainfall determine resource availability and 

control the majority of processes concerned with plant growth and development 

(Meza and Silva, 2009). Increases in temperature and rainfall, associated with 

greenhouse gas emissions will cause significant changes in land suitability and crop 

yield (Schmidhuber & Tubiello, 2007). Climate change adversely affects food 

security on a global scale, with the biggest impact on developing countries where the 

majority of the population is fronting food insecurity and severe micronutrient 

malnutrition. Recently, Knox et al. (2012) noted that the average yield for all crops 

is predicted to reduce by 8% by 2050 with robust variations among type of crop and 

region; this highlights the importance of pearl millet, as it grows in areas where 

crops, considered to be of more economic importance, such as wheat and maize are 

unable to grow. Therefore, since pearl millet is adapted to harsher conditions, the 

crop and any associated research to do with harnessing and further improving its 

nutritional value becomes more valuable for populations afflicted with the 

consequences of food insecurity. 

1.4 Biofortified Pearl Millet – Human Trials 

The literature reports success from biofortified pearl millet. For example, 

Cercamondi et al.’s (2013) field trial was conducted on 20 African women from 

Benin to evaluate the potential of Fe-biofortified pearl millet as a source of 
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additional bioavailable Fe. Results showed that upon the consumption of two Fe 

biofortified pearl millet meals per day for 5 days, the total amount of Fe absorbed 

from Fe-biofortified pearl millet was up to three times higher than that from regular 

pearl millet. This suggests that biofortification of pearl millet is a valuable strategy in 

increasing bioavailable Fe to those living in millet consuming communities with 

limited access to conventional post-harvest fortified foods (Cercamondi et al., 2013). 

These findings coincide with another recent study conducted in Karnataka, India. In 

this study by Kodkany et al. (2013), 40 Fe deficient children (aged 2 years) were fed 

pearl millet biofortified with both Zn and Fe. Findings revealed that the amount of 

Fe and Zn absorbed from the biofortified pearl millet meals was significantly greater 

than that from the non-biofortified pearl millet meals and the absorption of both Fe 

and Zn from the biofortified meals exceeded the minimum physiological requirement 

for children aged 2 years of 0.54 and 2.5 mg/d, respectively. These findings suggest 

that increased concentrations of Zn and Fe in pearl millet as a result of 

biofortification are more than sufficient in meeting the minimum physiological 

requirements of Zn and Fe in young children and biofortification is effective in 

eliminating MNDs without unpleasant side effects (Kodkany et al., 2013). 

1.5 Understanding Iron and Zinc Uptake- From Root to Seed 

Any attempt to increase Fe and Zn concentrations in pearl millet grains using 

traditional breeding methods or genetic engineering must first consider how Fe and 

Zn are obtained from the environment, distributed and stored in edible parts (see 

Morrissey and Guerinot, 2009 for a comprehensive review). Even a small increase in 

bioavailable nutrient metals in pearl millet grains would have a significant impact on 

human health, particularly for those living in developing countries. It is also proven 

that biofortified crops can produce nutrient rich grains even when grown in relatively 

poor soils as long as target nutrients fall within the critical range. The critical soil 

levels of Fe and Zn are 2.6 to 4.5 mg/kg and 0.6 to 1.0 mg/kg, respectively (Kanatti 

et al., 2014). Pearl millet can be grown successfully on clay, clay loam, or sandy 

loam soils. However, it does not grow well under calcareous soils (soils with 

moderate to excess lime). 

Initial high levels of nutrient metals from the soil can be toxic. For example, 

unregulated high affinity binding of Zn to S-, N-, and O-containing functional 
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groups in certain biological molecules and uncontrolled displacement of essential 

metal cations, for example Mn2+ and Fe2+, can cause significant damage to the plant 

(Palmgren et al., 2008). Because of this, the activity of metal ion transporters is 

selective and highly regulated (Philpott, 2014). This is in part achieved through 

membrane transporters such as metal tolerance proteins (MTPs) (Ricachenevsky et 

al., 2013). Elucidating the mechanisms behind cation selectivity and regulation is 

necessary in understanding plant metabolism and development. If these pathways 

can be fully understood, they can be improved through biotechnological 

manipulation. A variety of platforms including, but not limited to, phylogenetic 

analysis, transcriptomics, gene expression analysis and sequence manipulation are 

available to help elucidate these mechanisms (see Ricachenevsky et al., 2013 for a 

comprehensive review). 

Fe availability in plants is dictated by a wide variety of factors including soil redox 

potential and pH. In soils that are at high pH, Fe is readily oxidised and presents 

itself as insoluble ferric oxides, however, at lower pH, ferric Fe is released from the 

oxide, making it available for root uptake via the activity of a ferric chelate 

reductase, FRO2 (Marschner and Rimmington, 1988). Fe is transported into the root 

epidermal cells by IRT1, a divalent metal transporter which is a member of the Zrt- 

and Irt-like protein (ZIP) family of transporters. AtIRT1 also transports Zn, Mn, Cd, 

Co and Ni (Morrissey and Guerinot, 2009). Unknown phenolics then control the 

extraction of Fe from the negatively charged cell walls, which allows transport into 

the root symplast (Morrissey and Guerinot, 2009).  Fe is then bound by unknown 

chelators or chaperones, and moves symplastically through the connected cytoplasm 

of the root (Marschner & Rimmington, 1988). At the pericycle, Fe is effluxed into 

the xylem and moves towards the shoot via transpiration. When Fe enters the xylem, 

it complexes with citrate, without which, Fe will not move efficiently through the 

xylem and won’t be utilised by the shoot (Curie et al., 2009). Fe is then transported 

into the phloem by nicotianamine (NA) and Yellow Stripe Like (YSL) transporters 

(Morrissey and Guerinot, 2009). YSLs play an important role in the long distance 

transport of Fe complexes and in seed delivery (Inoue et al., 2009). NA serves as a 

transporter that facilitates the movement of Fe in and out of the phloem via YSLs 

(Morrissey and Guerinot, 2009). It also complexes with Fe2+ and Fe3+ and binds 

readily to Cu2+, Ni2+, Co2+, Zn2+, and Mn2+ (Curie et al., 2009). NA also plays an 
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important role in metal homeostasis (Takahashi et al., 2003). Movement within the 

phloem occurs via Iron Transport Proteins (ITPs) (Morrissey and Guerinot, 2009). 

Fe moves into the seed via the phloem, and seeds in the early stages of development 

receive Fe from roots and senescent leaves. The loading of Fe into the seed occurs by 

NA and YSLs and is stored in the endosperm (Morrissey and Guerinot, 2009). A 

large abundance of Fe may be toxic to the seed embryo, therefore plants possess two 

damage preventing mechanisms; Fe can either be stored in large plastids with 

ferritins, which are able to store up to 4500 Fe atoms (Grillet et al., 2014) or can be 

stored as phytate complexes. 

Despite the importance of Zn as an essential micronutrient, there is a significant lack 

of literature detailing the mechanisms of Zn uptake compared to that of Fe. In the 

soil, Zn is taken up into the root epidermal cells in its water soluble +2 oxidation state 

and unlike Fe2+
, it is redox stable (Broadley et al., 2007). Several metal transporters 

of the ZIP family are considered to be the primary uptake systems for Zn (Guerinot, 

2000). After uptake, Zn is present in living cells with a neutral pH; therefore it is 

prone to binding to a wide range of organic molecules. This restricts its movement 

and limits travel between living cells. Zn and Fe are thought to compete for the same 

uptake systems; therefore NA is also thought to be utilised as a transporter (Olsen 

and Palmgren, 2014). Transport from epidermal cells into the root xylem occurs via 

a symplastic pathway through a cytoplasmic continuum of cells, which are linked by 

plasmodesmata. The movement of Zn is then facilitated into the stellar apoplast 

(Lasat and Kochian, 2000). As discussed previously in the case of Fe, the chelator 

NA also contributes to long distance transport of Zn from the roots into shoots and 

seed. NA also modulates the vacuolar sequestration capacity, an essential mechanism 

controlling the way plant vacuoles provide temporary storage for micronutrients 

(Sperotto et al., 2014). Zn uses the transporter Heavy Metal ATPASE 4 (HMA4) in 

shoot loading and once in the xylem, it is transported in aqueous form (Olsen and 

Palmgren, 2014). How Zn enters the phloem is not yet known, however, YSL 

proteins are likely to play a role in the process. In cereal grains, high concentrations 

of Zn are found in the embryo and the aleurone layer of the endosperm. A summary 

of the above can be seen in Figure 1.3.  
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Figure 1.3, Zinc and iron uptake from soil to seed (Manwaring et al., 2016). 

 MTPs, metal tolerance proteins; FRO2, ferric chelate reductase; ZIP, zinc regulator 

transporter proteins; IRT1, divalent metal transporter; NA, nicotianamine; YSLs, 

yellow stripe like transporters; ITPs, iron transport proteins; HMA4, heavy metal 

ATPASE 4. 

There are a variety of factors that affect the efficiency of Fe and Zn uptake including 

genotype, nutrition, soil type and climatic conditions. For example, plant-associated 

microorganisms present in the soil can stimulate growth and influence yield and 

quality of edible parts by affecting nutrient mobilisation and transport (Pii et al., 

2016). Because of this, the root rhizosphere microbiome, which consists of the area 

of soil surrounding the root where complex ecological and biological processes 

occur (Bais et al., 2006), is considered to be one of the key determinants of 

productivity and plant health. Pii et al. (2016) showed using non-metric 

multidimensional scaling analysis, the presence of the different plant species coupled 

with nutritional status could promote a differentiation of the rhizosphere 

microbiome, which in turn has a significant effect on micronutrient uptake. More 

specifically, a study conducted by Borde et al., (2010) showed that arbusculal 

mycorrhizal fungi (Glomus fasciculatum) inoculated pearl millet plants resulted in 

increased growth and nutrient uptake capacity. Root exudates are also thought to 

play a significant role in efficient micronutrient uptake, including that of Fe and Zn. 
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For example, a variety of low and high molecular weight organic compounds are 

triggered if plants are exposed to certain abiotic stressors (Dakora and Phillips, 2002) 

and due to their solubilising, chelating, redox capacities, they play a fundamental 

role in enhancing nutrient bioavailability, uptake, translocation and allocation. In 

recent decades it has also been proven that since Fe bioavailability is reduced in 

aerated and calcareous soils (Kobayashi and Nishizawa, 2012), plants have 

developed different mechanisms to compensate for Fe shortage including; (i) 

retrieving soluble Fe from the soil via the acidification of the rhizosphere through the 

release of protons, which causes the reduction of Fe3+ to Fe2+ by FRO2 and (ii) 

exudation of non-proteinogenic amino acids and uptake with the aid of YSL 

transporters (Kobayashi and Nishizawa, 2012). 

1.6 Biofortification of Pearl Millet  

Biofortification is the process of increasing the content and bioavailability of 

essential vitamins/minerals in staple crops, through traditional plant breeding or 

genetic engineering, with the aim of improving nutritional status (Bouis et al., 2011). 

Modern agriculture has been largely successful in reducing poverty and meeting the 

energy needs of poor populations within developing countries. However, due to the 

global expanding population, plant breeders of staple crops have previously focused 

more on delivering calories, leaving nutritionists to cope with the need for dietary 

diversity to achieve well balanced nutrition. Recently, exploring the potential of 

improving the micronutrient quality of staple food crops, without compromising 

yield has become a key focus of scientific research. In order to achieve this, 5 key 

criteria need to be met including; (i) initial useful genetic variation for exploitation, 

(ii) traits need to be manageable within breeding programmes (simple screening and 

high heritability), (iii) phenotypes must be stable across a wide range of 

environments (for increased impact), (iv) nutrition related traits need to be 

combinable with traits for high yield to ensure farmers chose the elite lines and 

above all, (v) elite lines must significantly improve the health of those afflicted by 

MND’s and the extra nutrients need to be bioavailable to the gut. The first 4 criteria 

have been proved extensively in the literature and it is now widely accepted that 

biofortification for nutritional quality is a practicable and cost-effective strategy. 

However, there are still gaps in the literature regarding to what extent crops can 
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contain increased amounts of bioavailable micronutrients and how effective these 

lines are in alleviating micronutrient malnutrition (Graham et al., 2001).  

There has been a remarkable amount of success relating to Fe biofortification in 

pearl millet in recent decades. Most notably, scientists at International Crops 

Research Institute for the Semi-Arid Tropics (ICRISAT), Patencheru, India initiated 

a breeding programme in 2003 to develop high Fe hybrids with stable yields and 

good Fe performance for different agroecological zones in India. Scientists screened 

pearl millet germplasm accessions for Fe content and a range of 30 – 76ppm was 

revealed. High Fe genotypes were then selected to initiate crosses and as a result, 

breeding lines with more than 90ppm were identified and validated. As a result of 

this research an Fe open pollinated variety, ICTP 8203 was released in Maharashtra 

in 2013 and went on to become available to all pearl millet growing states in India by 

February 2014 (Bouis, 2014). 

Biofortification is largely facilitated by drilling down into the genomes of crops to 

seek genes of interest and breeding these genes into new, improved varieties. Despite 

the lack of a reference genome until recently, genetic improvement of pearl millet 

previously resulted from the use of genetic resources including maps and sets of 

markers, which facilitated the selection and breeding of elite cultivars with high 

nutritional value. Genetic and genomic technologies drive the way forward for the 

discovery and transfer of genes and quantitative trait loci (QTL) associated with an 

improved nutritional profile from the diverse genetic resources of millets 

(Muthamilarasan et al., 2016). A pearl millet sequencing consortium have since 

developed a ~1.79 Gb draft whole genome sequence of reference genotype Tift 

23D2B1-P1-P5, which contains an estimated 38,579 genes and over 29 million 

SNPs. Findings became publically available as of September 2017 

(http://ceg.icrisat.org/ipmgsc/).  

1.7 Germplasms, Core and Mini Core Collections - A Good Place to Start 

Continuous crop improvement largely depends on the discovery of new sources of 

genetic variation, accurate identification of lines with beneficial traits and their 

judicious use. Developing core collections to be made available to researchers 

globally has been recognised as “International Public Good” (Upadhyaya et al., 

2009). Managed core germplasm collections are available for pearl millet, and as is 

http://ceg.icrisat.org/ipmgsc/
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the case within any plant breeding program, characterisation of genetic diversity 

within these collections is a necessary prelude to their efficient use (Varshney et al., 

2009). A wide variety of pearl millet germplasm collections exist, including the Pearl 

Millet inbred Germplasm Association Panel (PMiGAP) developed at ICRISAT. The 

PMiGAP has been drawn from a global core collection of pearl millet accessions, 

landraces and cultivars grown across three continents (Sehgal et al., 2015). ICRISAT 

has also developed other regional collections including the Iniari germplasm, which 

uses landraces from West Africa. These have superior grain filling abilities under 

terminal drought stress, larger seeds, thicker panicles, and broader leaves (Ito et al., 

1999). Other collections include The USDA National Plant Germplasm System Pearl 

Millet Collection, which is maintained at the Plant Genetic Resources Conservation 

Unit located in Griffin, Ga, USA. It contains 1297 unique genotypes from 31 

countries (https://scisoc.confex.com/scisoc/2015am/webprogram/Paper95640.html). 

Germplasm collections contain a wide genetic base and promote plant diversity. 

However, it is often the case that these collections are impractically large in size (at 

ICRISAT there are currently 21,594 accessions of pearl millet from 50 countries), 

therefore there is a need to capture genetic variation from existing collections at a 

more manageable level. A core collection contains a subset of accessions from the 

entire collection that captures the majority of the available diversity within the 

species. This is usually about 10% of the entire collection and this promotes 

enhanced utilisation of germplasms in crop breeding. However, even these can be 

too large, thus not economically viable to analyse. A solution is the creation of mini 

core collections, which are generally about 10% of the core collection or 1% of the 

entire collection. These represent >80% variability from the core collection. Patterns 

of diversity are usually evalutated using descriptors developed especially for pearl 

millet. For example, in the last decade diversity in 21,954 accessions from <50 

countries was assessed for 23 morphoagronomic traits of interest that revealed large 

genetic variability for flowering time, plant height, tiller number, panicle length and 

1000-seed-weight (as a measure of yield). The core collection does not require equal 

cluster representation of the entire collection or for it to contain the largest possible 

diversity (if this were the case, the core would be biased towards vast numbers of 

distant wild relatives). Instead, the diversity should be as high as what would be 

consistent with the core being a representative genetic resource of practical use to 

https://scisoc.confex.com/scisoc/2015am/webprogram/Paper95640.html
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scientific researchers (Upadhyaya et al., 2009). When developing a core/mini core 

collection a wide range of criteria must be met (Figure 1.4). 
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Figure 1.4: Flow diagram to establish core and mini core collections in a crop 

species (adapted from Upadhyaya et al., 2009). EC, entire collection; CC, core 

collection; MCC, mini core collection. 

In pearl millet, the mini core collection (PMiGAP) consists of 238 accessions 

selected from 2094 entries present in the core collection. These represent 46 

countries. The composition of the mini core collection predominantly represents 

accessions from India and North West Africa, both representing dry, semi-arid, 

tropical ecology. It also captures 90% range variation of the core collection. 
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Characterise and evaluate EC for complete data set. 
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together. 
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1.8 Traditional Breeding Methods 

Traditional breeding methods would involve the selection of two parental lines with 

high Fe and Zn content and crossing them to create a hybrid that expresses the traits 

of interest. Successful crop improvement via plant breeding largely depends on the 

existence of genetic variation for the target traits within the gene pool. When 

breeding for elevated levels of Fe and Zn in edible parts, the task is further 

complicated by the fact that the grain micronutrient concentration is highly 

dependant on environmental conditions, including soil mineral composition (Feil et 

al., 2005). Genotype Environment Interactions (GEI) are therefore a major factor in 

the development of stable and high-nutrition cultivars of pearl millet (Moghaddam 

and Pourdad, 2009). In light of this, multi-environmental trials are required to 

confirm the stability of phenotype data. The presence of GEI may reduce the validity 

of any downstream analysis, restrict the significance of findings, and limit the 

efficiency of selecting elite lines (Gurmu et al., 2009). However, many studies have 

also reported in relation to Fe and Zn traits in pearl millet that although the 

environmental effect is strong, the genotype effect is fairly consistent across 

environments, implying the GEI interaction is not as serious as previously believed 

(Graham et al., 2001). 

1.9 A Stable Phenotype and Maintaining Yield 

Many studies have identified potential high Fe and Zn lines with stable phenotypes 

in pearl millet. Velu et al. (2007) analysed a diverse range of genetic materials 

developed at ICRISAT for grain Fe and Zn content. Based on the average 

performance in two growing seasons, large genetic variability among the entries was 

found for both Fe and Zn. Most notably, well-adapted, highly utilised genotypes and 

their progenies from the Iniari germplasm contained high levels of grain Fe and Zn 

and the correlation between Fe and Zn content was found to be positive and highly 

significant. This suggests that the simultaneous selection for elevated levels of both 

micronutrients is possible, and selection within the Iniari germplasm is likely to 

provide excellent candidates for the development of elite varieties with increased 

grain Fe and Zn content (Velu et al., 2007). 

When considering traditional methods of biofortification for reducing MNDs, it is 

important to consider sustainability coupled with socioeconomic factors for 
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smallholder farmers – the people that will directly benefit from this research. For 

example, genes associated with micronutrient uptake and their relationship with 

grain yield has a direct bearing when formulating effective strategies for breeding 

elite lines (Kanatti et al., 2014). In terms of increasing micronutrient content whilst 

keeping high yield, the study by Velu et al. (2007) also proved a highly significant 

positive correlation of 1000-grain weight with Fe and Zn content in pearl millet 

grain, indicating that breeding for elevated levels of these micronutrients is possible 

without compromising yield. 

Kanatti et al. (2014) demonstrated, using 196 hybrids and their 28 parental lines of 

pearl millet, that in order to breed successful hybrids that express elevated grain Fe 

and Zn levels, the same genes for Fe and Zn content should be incorporated into both 

parents (Velu et al., 2011). Hybrids were found to express no better-parent heterosis 

as barely any hybrid was found transgressing the parental lines for increased grain Fe 

content. The study showed that the underlying physiological processes that 

determine grain Fe and Zn content are primarily under additive genetic control 

(Govindaraj et al., 2013; Kanatti et al., 2014) and a large amount of the mid-parent 

heterosis values were in the negative direction. This indicates that the involvement of 

genes, with the exception of those with additive gene action, where alleles 

determining lower Fe and Zn densities, are partially dominant. However, when 

considering additive gene action, if the same source is used to transfer the genes 

associated with Fe and Zn content in both parental lines, this would cause the 

amount of genetic diversity between lines for other traits to be reduced. This may 

lead to a reduction in heterosis for yield, which is controlled by non-additive gene 

effects (Kanatti et al., 2014). It was also found that Fe and Zn content from inbred 

lines and their general combining ability were positively correlated and highly 

significant. This suggests that recurrent selection could be used to significantly 

improve breeding populations for grain Fe and Zn content and breeding lines 

selected for high Fe and Zn levels are more likely to include those with high general 

combining ability for these micronutrients (Govindaraj et al., 2013). 

1.10 End Use Quality 

The acceptability of a cultivar by farmers and consumers is highly based on how the 

grain is processed and the end-use quality (Ortiz-Monasterio et al., 2007). 
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Additionally, the concentration and bioavailability of micronutrients in pearl millet, 

as in other cereal crops, may be enhanced or reduced by various methods of 

processing; this is achieved by fortification with certain ingredients as well as meal 

preparation techniques (Welch & Graham, 2004). Therefore, end-use quality traits 

including protein content, grain hardness and baking properties must be considered 

when creating elite lines in pearl millet. For example, in maize grain hardness and 

factors affecting the gelatinisation and pasting properties of starch are considered 

when determining end-use quality (Ramirez-Wong et al., 1994). Micronutrient-

enhanced lines should also be screened for desirable end-use quality traits. For 

example, various processing treatments of pearl millet including germination, 

autoclaving, and debranning are known to be effective in reducing levels of phytate 

(Sharma & Kapoor, 1996). However, some studies suggest that certain methods of 

processing raw pearl millet grain may result in decreased levels of Fe. For example, 

soaking grains may result in up to 25% loss of Fe (Eyzaguirre et al., 2006). In light 

of this, methods of processing should be considered that are not detrimental to the 

levels of these micronutrients. 

1.11 Deleterious Effects – Toxicity and Antinutrients 

Any potential products of biofortification should be carefully evaluated under real 

conditions. This can be achieved via the assessment of trace element bioavailability 

to humans and investigation into any drawbacks such as enhanced uptake of toxic 

metals from the soil (e.g., Cd, which is deleterious to all organisms). Toxic metals 

such as Cd share the same transporters as some micronutrient metals (e.g., Fe and 

Zn) (Zhao & McGrath, 2009). Several studies have investigated the possible 

unwanted side effects of biofortification, for example the enhancement of ZIPs. In 

addition to aiding Zn uptake by roots, ZIPs can also aid the uptake for other, non-

specific cations such as Cd. Two well-characterised ZIP family proteins, IRT1 and 

IRT2, represent the main Fe2+ uptake systems in Arabidopsis thaliana root cells. 

IRT1 also facilitates the uptake of Zn and Cd (Guerinot, 2000). If this pathway were 

enhanced by biofortification, this could potentially cause the plant to become toxic 

and dangerous for consumption. 

The improvement of Fe and Zn levels would also need to include the reduction of 

antinutrient compounds such as phytate. Due to high phytate content within the 
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endosperm of pearl millet seed, this often limits the bioavailability of many 

important micronutrients such as Fe and Zn upon human consumption 

(Shanmuganathan et al., 2006). The deleterious effect of phytate on mineral 

bioavailability has been confirmed by Egli et al. (2004) whose in vivo radioactive 

and stable isotope studies demonstrate that, absorption of Fe, Zn, and Ca are 

significantly lower from diets with a high content of phytate than from diets that 

contain low levels of phytate. 

Phytate exists as a phosphorylated myo-inositol ring which strongly chelates metal 

cations, including Fe2+ and Zn2+ (Urbano et al., 2000). When Fe and Zn bind to 

phytate, an insoluble precipitate is formed. This is not efficiently absorbed by the 

intestines due to the absence of intestinal phytase enzymes (Nielsen et al., 2013). 

This poor absorption can therefore exacerbate Fe and Zn deficiencies (Hurrell, 

2003). The adverse effect of phytate on Fe and Zn absorption is dose-dependent 

(Gibson et al., 2010). For example, studies have proved a negative relationship 

between Zn absorption and phytate over a wide range of phytate:Zn molar ratios 

(Hambidge et al., 2004). With respect to Fe, the inhibitory effect of phytic acid is 

still strong at very low phytate levels, when ratios are as low as 0.2 Phytate:1.0 Fe 

(Hallberg et al., 1989). 

Although indigestible to humans, phytic acid plays several key roles in the 

development of seedlings. For example, phytic acid acts as the principal storage form 

of P and also acts as a source myoinositol, which is required for cell wall 

development (Reddy et al., 1982). Because of this, phytate can never be completely 

eliminated from the crop. However, conscious efforts should be made to 

significantly reduce phytate so that it does not become a limiting factor in 

micronutrient absorption. A possible solution is the development of low phytate 

varieties of pearl millet. For example, a study by Shanmuganathan et al. (2006) 

showed that many parents and crosses can be successfully exploited for the 

development of pearl millet genotypes with low phytate content. The study involved 

crossing 11 pearl millet genotypes to create 55 hybrids and measuring the hybrids for 

phytate content in order to understand the nature of gene action and to evaluate the 

parents and hybrids for combining ability with respect to low phytate content. 

Several crosses were identified as having low phytate content by measuring negative 

specific combining ability. 
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Multiple pearl millet lines have been associated with low phytate content, for 

example in a study by Simwemba et al. (1984), two lines (TIFT 2 23 DAE X 656 + 

653) were identified to have lower phytate content as compared to certain varieties 

of wheat. It was also found that the environment (as well as genetics) also plays an 

important role in determining phytate content (Simwemba et al., 1984). There also 

appears to be a significant gap in the literature as no genes/markers have been 

associated with low phytate content in pearl millet. It is hoped that using synteny 

studies with other crops may facilitate the discovery of markers/QTLs/genes 

associated with low phytate content (Rawat et al., 2013). For example, QTL 

mapping for phytate content has been extensively accomplished in rice (Stangoulis et 

al., 2007), soy bean (Walker et al., 2006), and bean (Cichy et al., 2009). It has also 

been proved that loci affecting phytate content are different to loci affecting grain 

micronutrient content, this suggests that the simultaneous increase of grain 

micronutrient content and a decrease in phytate content is possible (White & 

Broadley, 2011). For example, in the case of Stangoulis et al.’s (2007) rice study, 

QTLs for grain phytate, Zn and Fe concentration were identified in several rice lines 

from an IR64 × Azucena doubled haploid population. Findings showed that there 

were significant positive correlations between phytate levels and Fe/Zn 

concentrations. Since the QTLs of phytate are located on different chromosomal 

regions as compared to those found for Fe and Zn, this suggests that they are 

genetically distinct and it should be possible to use molecular markers for breeding 

and selection purposes to modify the phytate concentration without affecting grain 

micronutrient content (Stangoulis et al., 2007). Following these studies, further 

population improvement could be implemented using recurrent selection to breed for 

low phytate content, whilst keeping yield and micronutrient uptake high. 

A wide variety of polyphenolic compounds including flavonoids are present in pearl 

millet, and like phytate, many of these are found to have adverse effects on mineral 

bioavailability via their metal chelating properties (Al-Sa'aidi, 2003, Cook & 

Samman, 1996, Tako et al., 2015). For example some, including apigenin and 

luteolin interfere with Fe absorption by forming insoluble complexes in the 

gastrointestinal lumen thus reducing Fe/Zn bioavailability (Brune et al., 1989). The 

relationship between polyphenolic compounds and bioavailability of micronutrients 

has been reported extensively in the literature. For example, using the Caco-2 Fe 
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uptake assay, Miret et al., studied different food matrices containing a variety of Fe 

forms. Results suggested that Fe uptake was significantly reduced by the food 

matrices which contained a rich source of polyphenols. A possible explanation why 

Fe bioavailability was reduced could be attributed to the polyphenols causing an 

increase in pepsin activity, which may influence the digestion of haemoglobin and 

the solubility of the released heme. For example, extensive digestion of the peptides 

could decrease heme solubility and consequently, heme-iron bioavailability. 

Polyphenols have also been known to inhibit proteolytic enzymes, whose function 

include catalysing hydrolysis of proteins, and amylolytic enzymes, which are 

involved in starch degradation. This significantly reduces the digestibility of proteins 

and starch (Knuckles, 1985, Sharma et al., 1978). 

1.12 Tools that Harness the Potential of Pearl Millet in the Fields of Genetics 

and Genomics 

1.12.1 Genetic Maps 

In recent decades, the potential of pearl millet and a vast number of genetic 

variations associated with useful traits has been extensively documented. However, 

the utilisation of molecular breeding technologies for the genetic improvement of 

pearl millet is still limited and progress has been slow due to insufficient numbers of 

PCR compatible co-dominant markers (Senthilvel et al., 2008). In genetic mapping, 

the location and distance between genetic markers on chromosomes are determined. 

Recent advances in biotechnology have facilitated the creation of high-density maps 

that consist of thousands of molecular markers (Hyten & Lee, 2016). Recently, the 

use of an F2 population of 93 progenies and 9 cultivated pearl millet crosses has 

facilitated the production of a genetic map with higher density and better uniformity 

of markers than previously published maps. This was achieved using a modified 

Genotyping by Sequencing (GBS) platform, which involved the use of two 

restriction enzymes (Pst1–Msp1) and PCR amplification with primers including 

three selective bases. These efforts resulted in 3,321 SNPs generated for public use 

(Moumouni et al., 2015). The availability of large numbers of SNP markers and 

high-density genetic maps will enhance the progress of gene and QTL mapping in 

bi-parental populations significantly and also facilitate association analyses on 

panels of diverse and unrelated lines. The progress of this entails different techniques 
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such as QTL mapping and Genome Wide Association Studies (GWAS) as discussed 

below and observed in Figure 1.5. 
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Figure 1.5: QTL mapping vs GWAS – key differences. LD: linkage disequilibrium; TOI: trait of interest (derived by Author). 

 



44 
 

1.12.2 Genome Wide Association Studies and Association Mapping 

In GWAS, phenotypic data is combined with marker data in order to identify 

genomic regions controlling traits of interest. GWAS have expanded into a powerful 

tool for investigating the genetic architecture of many staple crops. GWAS exploits 

the natural diversity generated by multi-generational recombination events that occur 

in a population or in germplasm panels (Deschamps et al., 2012). This approach 

results in increased mapping resolution as compared to linkage mapping populations. 

Genetic sources of phenotypic variation are an essential component of plant genetics. 

Taking on the lessons learned from model species, such as rice and maize, future 

developments are being applied to staple crops as well as orphan crops. 

Comprehensive maps of genome variations will facilitate GWAS of complex 

agriculture benefitting traits. The result of which will greatly accelerate crop 

improvement via genomics-assisted breeding (Huang & Han, 2014). The recent pearl 

millet genome sequence together with the resequencing of the entries of the various 

germplasm populations will certainly assist in such endeavours. Findings from 

GWAS will be the catalyst in the mining of candidate genes. These candidate genes 

can be verified through Transfer (T)-DNA mutants or genetic transformation, which 

will then facilitate the genetic modification or marker assisted selection (MAS) for 

validated genes. These steps will then lead to more nutrient rich, improved varieties 

(Huang & Han, 2014). 

Even though research has been previously limited, the first attempt to mine 

favourable alleles for grain Fe and Zn content through association mapping in pearl 

millet was conducted by Anuradha et al., (2017), using a total of 267 polymorphic 

markers, of which 250 were SSR markers and 17 were genic markers. Using an 

association mapping panel of 130 diverse pearl millet lines that represent three 

agroclimatic zones in India, favourable alleles and promising lines were identified 

across multiple and specific environments. Alleles having positive effect were 

considered as favourable for both Fe and Zn content. A total of six alleles were 

detected for grain Fe content, and five alleles were detected for grain Zn content 

(Anuradha et al., 2017).  
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1.12.3 Synteny Studies and Resources from Major Crop Species 

Synteny studies among the cereal family set the stage for a comparative study of 

millets and non-millet cereals to trace common genes associated with nutrition 

biosynthesis pathways (Muthamilarasan et al., 2016, Gale and Devos, 1998). When 

these genes, alleles and QTLs are discovered, they can then be incorporated into elite 

lines through the use of molecular marker assisted breeding or transgene based 

methods. Synteny studies may also facilitate the introgression of these traits of 

interest from the major cereals into millets. This will largely be achieved with the 

role of genomics, bioinformatics, transcriptomics, proteomics, metabolomics, and 

ionomics (Muthamilarasan et al., 2016). The genomic resources that have 

characterised most major cereal crops is going to benefit pearl millet directly. The 

high throughput and low cost of Next Generation Sequencing (NGS) technologies 

has made it possible to sequence orphan crops for the development of elite cultivars 

with desirable traits. Because significant genomic collinearity has been reported in 

many cereal crops (Devos, 2005), comparative genomics methods that are facilitated 

by the use of genomic resources and bioinformatics tools will allow the transfer of 

genes from model/major crops to minor crops (Varshney et al., 2006). The benefits 

include: (i) Improved analysis of cereal biodiversity and the identification of useful 

variants; (ii) MAS of alleles and allele combinations of interest; and (iii) Cloning and 

efficient transfer of useful alleles among members of the cereal family (Nelson et al., 

2004). Resources from well sequenced species will enable functional definition of 

many key genes and pathways (Chen et al., 2016). For example, Chen et al. (2016) 

studied the metabolic and phenotypic GWAS (mGWAS and pGWAS) in rice grain 

and maize kernels and identified new candidate genes that could be the cause of 

variation in traits such as grain colour and size. It was found that distinct and 

overlapping aspects of genetic control of metabolism exist within and between 

species and the mGWAS analysis indicated that rice and maize are likely to share 

common genetic control strategies for a variety of metabolites. A search for 

homologous loci mapped by the same metabolites (or metabolites with similar 

structures) identified 42 loci underlying the 23 co-detected metabolic features 

between maize and rice. This data suggests that there is potential for the 

identification of genes associated with traits of interest between other cereals using 
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mGWAS and pGWAS and genetic analysis of the metabolome could improve what 

is currently known about these complex traits. 

1.12.4 QTL Fine Mapping 

QTL associated with increased Zn and Fe accumulation in pearl millet are an 

important asset for targeting candidate genes associated with these traits and have 

driven biofortification research for many years. Focus should be made on what 

resources could provide potential candidates for the identification of QTLs. As 

discussed, there are several germplasm panels that hold lines associated with high 

micronutrient accumulation that cover global diversity. Potential candidates for QTL 

fine mapping exist within these germplasm banks. For example, in the Iniadi and 

PMiGAP germplasms, certain lines have been found to be particularly high in Fe and 

Zn, with a highly significant and high positive correlation between these two 

micronutrients, as previously discussed. One of these lines, ICTP 8203 has been 

released in India and was cultivated on more than 0.8 million hectares (Rai et al., 

2013) and as of today, has been marketed to more than 70,000 farmers, 

predominantly within Maharashtra, India (Andersson et al., 2017). Simultaneous 

accumulation has been reported in a wide variety of crops, including pearl millet and 

these positive correlations could be due to common and overlapping QTLs for grain 

Fe and Zn densities (Kumar, 2011). 

Research into identifying QTLs and candidate genes for elevated levels of Fe and Zn 

in pearl millet is limited at present, perhaps due to resource constraints such as lack 

of a reference genome until recently. The fact that QTLs associated with increased 

Fe and Zn content have been identified in other crops will benefit QTL fine mapping 

in pearl millet through synteny studies. For example, QTLs for grain Fe and Zn 

densities are reported in wheat (Peleg et al., 2009), rice (Stangoulis et al., 2007), and 

bean (Cichy et al., 2009). In a tetraploid wheat population of 152 RILs, 82 QTLs 

were mapped for 10 minerals, including Fe and Zn with LOD score range of 3.2–

16.7. These were located in 32 non-overlapping genomic regions. A strong 

association was found between QTLs conferring Zn and QTLs for Fe, which is 

indicative of a strong genetic association between mechanisms affecting grain Zn 

and Fe levels (Peleg et al., 2009). 
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1.12.5 The Pearl Millet Genome Sequence 

Thanks to Varshney et al., (2017), the recent ~1.79Gb whole genome sequence of 

pearl millet, which contains 38,579 genes can be used as an important resource to 

greatly accelerate the improvement of this far-reaching cereal crop on a larger scale 

than what was previously thought possible. It is hoped that the current status of 

‘orphan crop’ will soon be shifted to ‘staple crop’ as there is now increased 

awareness of how vital this crop is, not only for those already dependant on it but on 

a global scale owing to its growth, concurrent with climate change. This is 

paramount because global temperatures are expected to increase from 1-6°C by 2100 

(NRC, 2011). Prior to its release in 2017, the foxtail millet genome (Zhang et al., 

2012) was considered the genome of choice for pearl millet genetic analysis 

requiring a reference genome, due to its close relationship with pearl millet. A 

comparison of how the two were achieved can be seen in Figure1.6. 

 

 

 

 

 

 

 

 

Figure 1.6 Details of the foxtail millet and pearl millet genome sequences (WGS = 

whole genome shotgun, BAC = bacterial artificial chromosome, NGS = next 

generation sequencing), derived by Author. 

The whole pearl millet genome was sequenced using whole genome shotgun (WGS) 

and bacterial artificial chromosome (BAC) sequencing from reference genotype Tift 

23D2B1-P1-P5 (Varshney et al., 2017) and 1.56 Gb was assembled into 7 

pseudomolecules. Additionally, 994 pearl millet genotypes were also resequenced, 

including 963 inbred lines and 31 wild accessions to gain insight into the population 

structure, genetic diversity and domestication. 88,256 simple sequence repeat (SSR) 
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motifs from the pearl millet genome sequence and 32,901,665 SNPs from PMiGAP 

lines were identified.  

In terms of population structure, using 450,000 filtered, high quality SNPs, principal 

component analysis (PCA) and phylogenetic trees revealed 4 main clusters; 3 

contained wild accessions and separated into East, Central and West African 

clusters, and 1 represented the PMiGAP ~ cultivated lines. Strong population 

structure could be observed in wild accessions and weak population structure for 

PMiGAP lines. The weak population structure is explained by the lack of major 

genetic bottlenecks during the rapid spread of pearl millet agriculture within India 

and Africa (Varshney et al., 2017).  

The genetic basis of the exceptional heat and drought tolerance characteristics of 

pearl millet were also investigated via the identification of gene families containing 

cutin, suberin and wax biosynthesis genes. Increased cuticular wax synthesis has 

long been proven to improve drought tolerance in Arabidopsis species (Seo et al., 

2011). Genome wide SNP data was used to carry out GWAS across 258 PMiGAP 

lines for 15 traits. From the subsequent analysis, 1054 highly significant marker trait 

associations (MTAs) were identified for useful agronomic traits including grain 

number per panicle, grains per square meter, dry stover yield, fresh stover yield, 

tillers per plants, panicle diameter, panicle harvest index, panicle length, panicle 

yield, panicle number, plant population, grain yield, grain harvest index, plant height 

and 1000-grain-weight. These MTAs explain 9-27% of the phenotypic variation 

(Varshney et al., 2017). This break-through research will enable a better 

understanding of trait variation and greatly accelerate the genetic improvement of 

pearl millet for a more food secure future. 

1.12.6 Recombinant DNA Technology and Genetic Modification 

Even though recombinant DNA technology and Genetic Modification (GM) is not 

within the scope of this thesis, they are still acknowledged as powerful tools that 

would facilitate the improvement of the pearl millet gene pool (O’Kennedy et al., 

2006). Research into DNA technology has been developed extensively in major 

cereal crops, more so than for pearl millet. Although recent advances for the 

improvement of pearl millet have been well established via traditional breeding 

methods and MAS, genetic engineering and in-vitro culture allows the gene pool to 
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be expanded further than previously thought possible. This may be facilitated by the 

transfer of genes which control well-defined traits between species (O’Kennedy et 

al., 2006). 

The first cereal embryogenic in-vitro culture systems were established for pearl 

millet in the 1980’s (Vasil and Vasil, 1981) and since then, efficient regeneration 

systems for pearl millet breeding lines have facilitated the development of reliable 

transformation systems (O’Kennedy et al., 2006). For the improvement of nutritional 

quality, genetic engineering methods can be used to elevate mineral and vitamin 

content in the starchy endosperm of cereal seeds. This has been accomplished in rice, 

where expression of soybean ferritin (a Fe binding protein) in developing rice seeds 

has resulted in a threefold increase in endosperm Fe content compared to the non-

transformant (Qu et al., 2005). This work was achieved using two types of ferritin 

hyper-expressing rice lines, which were synthesised via the introduction of a soybean 

ferritin SoyferH-1 gene under the control of the rice seed storage glutelin gene 

promoter, GluB-1 and the rice seed storage globulin gene promoter, Glb-1, (Double 

transformation line GluB-1/SoyferH-1 and Glb-1/SoyferH-1) and by introducing the 

SoyferH-1 gene under the control of Glb-1 promoter alone (Single transformation 

line with Glb-1/SoyferH-1). Similar findings were also reported by Goto et al. 

(1999), where the coding sequence of the soybean ferritin gene was transferred into 

Asian rice by Agrobacterium-mediated transformation. GluB-1 was used to facilitate 

the expression of the soybean gene in developing, self-pollinated seeds of transgenic 

plants. Findings showed that the Fe content of seeds from the transgenic plants was 

up to three times greater than that of their untransformed counterparts (Goto et al., 

1999). The same techniques could be applied to pearl millet for the increased Fe 

accumulation, when more is known about the Fe pathways. 

Harnessing tools that facilitate genetic engineering have also been established for 

anti-nutrient compounds such as phytate. Techniques involve the development of 

new varieties by generating and utilising genetic variation, via chemical/physical 

mutagenesis (Oladosu et al., 2016). The pathway of phytate from myoinositol is 

considered to be well understood and the screening of mutant populations for 

reduced phytate accumulation is now possible. For example, the identification of low 

phytate mutants in maize, barley, wheat, soybean, and rice will assist in the selection 

of similar mutations in millets and these can be incorporated into breeding programs. 
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Rasmussen and Hatzack (1998) mutagenised barley grains with sodium azide and 

screened for high levels of free phosphate for the identification of low-phytate 

mutants. Results showed that 9 out of 27 mutants had increased free phosphate 

content in the grain and this was correlated with a significant decrease in levels of 

phytate. Allelic testing of 4 out of the 9 mutants showed that at least two distinct loci 

control the biosynthesis of grain phytin (a Ca-Mg salt of phytic acid). It is therefore 

possible to screen for and isolate low phytate mutants through the identification of 

genes involved in the biosynthetic pathway of phytin. This contributes to the 

development of low-phytin crops with higher nutritional value (Rasmussen & 

Hatzack, 1998). 

As previously discussed, NA plays a key role in metal assimilation and homeostasis 

(Morrissey and Guerinot, 2009). Therefore, manipulation of cellular NA 

concentrations should be considered for the improvement of Fe and Zn content in 

pearl millet. This has previously been achieved through the use of activation and 

knockout mutants in rice and tobacco. A study by Inoue et al. (2003) demonstrates 

that among the three NAS genes present in rice, OsNAS1 and OsNAS2 transcripts are 

elevated in roots and leaves in response to reduced Fe levels, whereas OsNAS3 

expression is induced in roots but suppressed in leaves when Fe is insufficient. 

Activation and knockout mutants were used to examine the functioning of OsNAS3 

in metal homeostasis in rice plants and it was found that there was an increase in NA 

by activation of OsNAS3, causing increased levels of Fe and Zn in both leaves and 

seeds (Lee et al., 2009). NAS genes could therefore be potential candidates for the 

improvement of Fe and Zn in rice. Constitutive overexpression of NAS genes also 

resulted in elevated levels of Fe and Zn in transgenic tobacco plants (Douchkov et 

al., 2005); this suggests findings may also be relevant to other crops such as pearl 

millet. 

Due to the orphan status of pearl millet, little work has been performed so far on the 

nutritional enhancement of grains via genetic engineering – thus presenting a 

significant gap in the literature. However, work on major cereals via reliable 

techniques and protocols have demonstrated that genetic improvements are possible 

using genetic engineering approaches (O’Kennedy et al., 2006). In order to employ 

recombinant DNA technology and GM methods, there needs to be an increase in 

knowledge about the Zn and Fe pathways in pearl millet and it is also important to 
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consider factors such as cost, consumer acceptability and socio-economic barriers to 

smallholder farmers. In many countries, farmers are free to choose which 

technologies they wish to employ. For example, in the USA the use of GM seeds 

with respect to maize, cotton and soybean exceeds 90% (James, 2015), the majority 

of which is used as feed for food-producing animals (Van and Young, 2014). The 

main reasons for this choice are better performance and increased profits. However, 

in particularly vulnerable and developing regions, such as where the majority of 

pearl millet is grown for human consumption there may be cost constraits to 

smallholder farmers due to expensive patented seed (Lucht, 2015) 

alongsidescepticism, fears of eroding indigenous crop diversity and increased 

pesticide costs (Makanya, 2004). Therefore, many Indian and African small-scale 

farmers may reject GM crops and instead opt for traditional plant breeding systems 

that take into account local pests, soils and weather patterns. 

1.13 Aims of Thesis and Chapter Descriptions 

Micronutrient malnutrition of Fe and Zn is a persistent challenge for global 

development and predominantly affects low and middle income populations living in 

India and Africa. Therefore, enhancing levels of these micronutrients by crop 

biofortification is increasingly being recognised as a cost-effective and sustainable 

solution. A suitable crop to focus these efforts on is pearl millet, due to its concurrent 

growth with climate change and the fact that it is highly accessible to those who 

suffer from MNDs. The identification of genomic regions associated with elevated 

levels of grain Fe/Zn will aid the breeding of elite lines, with enhanced micronutrient 

content, leading to improved health and well-being, especially for women and 

children. Furthermore, the improvement of pearl millet will be greatly accelerated, 

due to the recent pearl millet genome assembly, the sequencing of which proves the 

importance of this crop is being recognised. 

The aim of this project was to identify genes associated with Fe/Zn uptake in the 

PMiGAP. The first objective was to phenotype levels of grain Fe and Zn by 

Inductively-coupled Plasma Atomic-Emission Spectroscopy (ICPAES) in glasshouse 

and field populations and to analyse the influence of environment on micronutrient 

uptake (Chapter 3). Other phenotyping objectives included assessing factors that 

may affect the bioavailability of Fe and Zn, including of levels of phytate (Chapter 
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4) and metal-chelating phenolic compounds, identified using High Performance 

Liquid Chromatography-Mass Spectrometry (HPLC-MS) (Chapter 5). In Chapter 6, 

GBS libraries were created from PMiGAP DNA. The resulting GBS sequence reads 

were then mapped to a foxtail millet Setaria italica reference genome (pearl millet 

did not have a reference genome at the time of this research). As a result, 663 

polymorphic SNP markers were generated for GWAS, to identify markers associated 

with mineral uptake. Prior to GWAS, the population structure in the PMiGAP was 

analysed to minimise the rate of false positives between MTAs. The extent of 

Linkage Disequilibrium (LD) was also assessed among all pairs of loci, using the 

most commonly used LD measure, r2. After GWAS, a 4kb region surrounding each 

significant SNP was BLASTed against the most annotated Setaria italica reference 

genome, for the identification of candidate genes. In September 2017, a pearl millet 

genome assembly and 32,901,665 SNPs became available for public use (Varshney 

et al., 2017). The SNPs were downloaded and filtered into two data sets, which 

contained >37,000 SNPs (as a result of stringent filtering) and >3,000,000 SNPs (as 

a result of less stringent filtering), respectively. These were used to conduct two 

additional GWAS’, in hope of yielding more significant findings. In the final chapter 

(Chapter 7), haplotypes covering the YUCCA11 gene were identified and their 

association with Fe/Zn uptake was assessed. Figure 1.7 demonstrates how the project 

proceeded to address aims and objectives. 



53 
 

Figure 1.7: The project process. Blue shows aspects covered in chapter 3, 4 and 5; 

orange shows processes covered in chapter 6 and yellow shows areas of the project 

covered in chapter 7. S = Selfed; OP = Open-Pollinated, CG = Candidate Gene. 
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Chapter 2: Plant Material for Phenotyping/Genotyping 

2.1 Summary 

230 selfed and 235 Open-Pollinated (OP) PMiGAP lines were obtained from 

ICRISAT, Patancheru, India according to the ICRISAT guidelines for germplasm 

distribution. Guidelines state that researchers may request up to 5g per line. In order 

to bulk enough seed for phenotyping/genotyping, three in-house seed multiplication 

trials were conducted under glasshouse conditions using selfed imported seed. 

Mature seed was harvested for phenotyping purposes, as well as young leaf tissue 

(harvested at four weeks), which was subsequently used for DNA extractions. 

2.2 Introduction 

The findings drawn from this research are based on phenotypic/genotypic analysis of 

the PMiGAP. As previously discussed, the PMiGAP has been drawn from a core 

collection, consisting of 2094 pearl millet accessions, landraces and cultivars grown 

across three continents. The resulting lines represent the entire cultivated global 

diversity of pearl millet and cover a wide range of genetic variations present in the 

pearl millet germplasm (Bhattacharjee et al., 2007). The original 2094 accessions 

were analysed at ICRISAT, India, using genome wide SSR markers, and grouped 

into clusters based on genetic similarity. 24 core clusters were identified and a 

number of lines were selected from each cluster (ranging from 3-14). As a result, the 

PMiGAP is classed as a mini core collection, consisting of 250 lines in total (Yadav 

et al., 2010). 

PMiGAP seed was obtained from the ICRISAT genebank, which serves as a world 

repository for the collection of pearl millet germplasm, as well as for sorghum, 

chickpea, pigeon-pea, groundnut, finger millet; and five small millets ~ foxtail 

millet, little millet, kodo millet, proso millet and barnyard millet. In-house seed 

multiplication under venlo glasshouse conditions was necessary to ensure sufficient 

amounts of plant material for phenotyping/genotyping.  
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2.3 Materials and Methods 

All imported PMiGAP lines were grown by ICRISAT staff in the fields at ICRISAT, 

India. These were imported according to the ICRISAT guidelines for germplasm 

distribution (http://genebank.icrisat.org/PDF/Section/Section8.pdf). 

2.3.1 PMiGAP Selfed Seed Multiplication, ICRISAT, 2010 

230 PMiGAP inbred lines were sown at ICRISAT, Patancheru (17°31'4"N 

78°16'43"E) India, in shallow sandy loam (alfisol) soil in the late rainy season on 

23rd August 2010. These were hand sown at 2-3 cm depth in plots of 4 m length 

with 1 m paths in between. The plants were thinned 3 weeks after sowing to maintain 

10-15 cm distance between them. The distance between the ridges was 75 cm. Crop 

nutritional requirements were met by applying 40 kg of Nitrogen (N) and 18 kg of 

Phosphorus (P) ha–1 into the ridges before sowing and side dressing an additional 45 

kg of N ha–1 after thinning. Irrigation was provided at periodical intervals until 

harvest, which took place on 15th December 2010. One selfed panicle was harvested 

from each accession and the seed was threshed and retained (Rao and Bramel, 2000). 

Seed Viability 

Seed viability was tested at IBERS, Aberystwyth University in 2014 by observing 

the germination rate of 5 seeds per line. Seeds were placed in petri dishes lined with 

filter paper (Camlab, UK) dampened with water. They were subsequently placed in a 

heated oven at 20°C and observed daily for signs of germination. 

2.3.2 Multiplication of PMiGAP Open Pollinated Lines, ICRISAT, 2013 

235 PMiGAP lines were sown at ICRISAT, Patancheru (17°31'4"N 78°16'43"E) 

India, in shallow sandy loam (alfisol) soil in the late rainy season in August 2013. 

These were hand sown at 2-3 cm depth in plots of 4 m length with 1 m paths in 

between. The plants were thinned 3 weeks after sowing to maintain 10-15 cm 

distance between them. The distance between the ridges was 75 cm. Crop nutritional 

requirements were met by applying 40 kg of Nitrogen (N) and 18 kg of Phosphorus 

(P) ha–1 into the ridges before sowing and side dressing an additional 45 kg of N ha–1 

after thinning. Irrigation was provided at periodical intervals until harvest, which 
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took place in December 2013. One OP panicle was harvested from each accession 

and the seed was threshed and retained (Rao and Bramel, 2000). 

2.3.3 PMiGAP Seed Multiplication, Glasshouse Conditions, Aberystwyth 

University 

Three independent seed multiplication trials took place under venlo glasshouse 

conditions at IBERS, Aberystwyth University (Trial 1: October 2014 – February 

2015, Trial 2: February – June 2015, Trial 3: August 2015- January 2016). 

Trial 1: In October 2014, 230 27.5 × 27 × 24 cm pots were filled with John Innes 

potting compost No.3 and placed in rows of four in a temperature controlled venlo 

glasshouse system (Figure 2.1). 

Figure 2.1: Pearl millet growing under glasshouse conditions, IBERS, Aberystwyth 

University (photo taken by Author). 

The concrete floor area was lined with a waterproof sheet plus an absorbent felt 

material. The temperature was maintained at 28°C and 10 hours daylight was 

artificially provided by Philips Son T Plus High Pressure Sodium (HPS) Bulbs (400 

watts). HPS lamps produce ‘redder’ light and are widely used to extend the natural 

‘day length’ that a plant is subjected to, thereby imitating summer conditions. 

 In each pot, 10 seeds per genotype were sown at a depth of 2-3cm from the top of 

the soil (Figure 2.2) and watered daily using a hose with a spray nozzle attachment. 
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Figure 2.2: Sprouting pearl millet seedlings (photo taken by Author). 

After one month the artificial daylight hours were reduced to 8 hours and watering 

took place on alternate days. The first plant to reach the panicle initiation stage per 

pot was covered with a 30cm × 10cm agricultural parchment paper bag and fastened 

with a staple, for the production of selfed seed. The other plants were able to 

exchange pollen, to produce Open Pollinated Varieties (OPV’s). After two months, 

the majority of genotypes started to produce pollen and a fan was installed to aid 

pollen circulation. After three months, most plants reached physiological maturity as 

indicated by yellowing stems, a dried up appearance and a firm panicle with seeds 

that had a “black layer” at the base. The panicles were harvested, placed in cotton 

storage bags and dried in an on-site desiccator oven at 28°C for 5 days. Panicles 

were subsequently threshed and separated from the chaff by hand. The collected 

seeds were then weighed and stored in paper envelopes at 4°C, in the presence of 

silica gel in a Nalgene desiccator cabinet (Cat. No 3517). This process was repeated 

in February 2015 (trial 2) and August 2015 (trial 3). 

Observations 

Following observations from trial 1, several changes took place in the second and 

third trials with the aim of improving yield: 

During the first trial, it was found that the pots were placed too close together; this 

meant that genotypes which took longer to germinate were generally unsuccessful 

due to the surrounding larger plants shading the seedlings during the initial growth 

stages. This suggests that the competition for light had an effect on successful 

growth. In light of this, 230 pots were spread across two venlo compartments in rows 
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of three during the second and third trial to allow more space between the pots (7.5 

inches between each pot). For the production of OP seed, pollen could also be 

exchanged across the venlo compartments via the removal of 3 large glass panels 

separating the two compartments. 

The natural day length was longer throughout February’s seed multiplication trial 

due to daylight saving time. This was a factor beyond experimental control and tests 

have been conducted determine whether this had an effect on mineral uptake 

(Chapter 3). As a result of the longer daylight hours, plants grew much faster and 

exhibited more vegetative growth as compared to trial 1. 

Aphid infestations - During trial 2, there were two aphid infestations during the 

months of May and June, lasting around two weeks each. Additionally, during trial 

3, there was one infestation in November, lasting 1 week. The treatment was a 

chemical spray (APHOX, applied at 1.4 gms per litre of water), applied by hand. 

Due to limited amounts of selfed PMiGAP seed stock, the number of plants covered 

for the production of selfed seed increased from 1 to 4 during trials 2 and 3. 

2.3.4 Young Leaf Tissue for DNA Extractions 

PMiGAP young leaf tissue (1-2 leaves per plant) was harvested from seed 

multiplication trial 2, when plants had been growing for 1 month. Upon harvest, the 

leaves were immediately placed in liquid nitrogen, and then stored at -80°C in 5 × 10 

cm plastic bags. 

2.3.5 Pearl Millet HHB67 Improved 

HHB67 Improved was imported from ICRISAT according to the ICRISAT 

guidelines for seed distribution. 

Prior to the development of HHB67 Improved, the hybrid, HHB67 was released in 

1990 by CCS Haryana Agricultural University, India, due to its extra-early maturity 

(65 days from sowing to grain maturity). In the late 1990’s it was grown on over 

100,000 ha in Haryana and Rajasthan states in India. Unfortunately, the hybrid was 

found to be susceptible to Downy Mildew (DM) disease, which developed in up to 

30% of crops planted. In light of this, marker-assisted backcrossing with the elite 

donor parent ICMP 451 took place to add DM resistance to the male parent H 



59 
 

77/833-2 and additional DM resistance genes were backcrossed into female parent 

843A/B from donor ICML 22 using traditional progeny-based greenhouse screening 

of pot-grown seedlings. Greenhouse disease screening and subsequent field testing 

across six environments confirmed DM resistance improvement in the new parental 

lines and their hybrids. As a result, farmers have since expressed a preference for 

HHB67 improved, which was also found to have significantly higher grain and 

stover yields (5–10%) than that of the original HHB67 (Khairwal & Hash, 2007). 

2.3.6 Other Cereals 

9 cereal samples were donated by Aberystwyth University (Wheat samples), Bangor 

University (Barley) and Aberdeen University (Rice) (Table 2.1). 
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Table 2.1, Cereals used for comparison against HHB67 Improved (DM = downy mildew, AU1 = Aberystwyth University, AU2 = Aberdeen 

University, BU = Bangor University, BBL = Bangor breeding line). 

Analysis Crop Sample 
Sample 

Type 

Obtained 

from 

No. of 

Lines 
Information 

Mineral 

Quantification 

(Fe, Zn, Na, K, 

Ca, Mg) 

ICPAES 

Pearl 

Millet 

HHB67 

Improved 

Mature 

Seed 
ICRISAT 1 Control. 

Rice Kalinga III 
Mature 

Seed 
AU2 1 

A popular variety grown in the upland areas of Eastern India. Tall with long 

slender grains, resistant to brown spot, cold tolerant and produces average 

yield (Steele et al., 2006). 

Wheat 

CV Viscount 
Mature 

Seed 
AU1 

7 

Soft, low-nitrogen wheat. Popular in Scotland. Moderate winter dormancy. 

Good tillering ability and retention, backed by reasonable disease resistance 

(Green et al., 2015). 

CV Revelation 
Mature 

Seed 
AU1 

Produced in Europe. Does not appear to have high yield potential. Known for 

reliability in terms of an excellent all-round disease resistance profile. 

(Limagrain Europe, 2015). 

CV Riband 
Mature 

Seed 
AU1 A soft (low gluten content) variety. Low in protein (11.0 – 11.5%) 

CV Batalion 
Mature 

Seed 
AU1 

Common in Europe and has temperature-sensitive resistance to Brown Rust 

which is ineffective at 25°C but is effective at 10°C (Jones, 1997). 

CV Hereward 
Mature 

Seed 
AU1 

Known for good bread making qualities due to increased protein content, as 

compared to CV Riband (Khatkar et al., 1995). 

CV Cordiale 
Mature 

Seed 
AU1 Known for good bread making qualities. 

CV Hereward 

II 

Mature 

Seed 
AU1 Known for good bread making qualities. 

Barley 
Naked Barley 

(BBL) 

Mature 

Seed 
BU 1 

Favourable taste and has high levels of beta-glucan soluble fibre. It has 

potential for delivering public health benefits in reducing rates of obesity and 

Type-2 diabetes. Susceptible to lodging and foliar diseases when grown in the 

UK (Dicken et al., 2011). 
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2.4 Results and Discussion 

2.4.1 Seed Viability 

The data in Table 2.2 suggests that the selfed PMiGAP seed population imported 

from ICRISAT in 2010 is a reliable population for in-house multiplication, since 

90% of the lines tested achieved a 100% germination rate when grown on dampened 

filter paper, in the laboratory. This high reliability rate may be due to proper storage 

at 4°C in the presence of silica gel beads. 

Table 2.2, % Seed viability for the selfed PMiGAP population imported from 

ICRISAT, 2010. 

% Seed viability* No. of lines 

100% 206 

40% 6 

20% 6 

0% 12 

 Total: 230 PMiGAP lines 
* Seed viability measured as a percentage of how many, out of a total of 10 seeds germinated when 

grown on damp filter paper in a 10 day period. 

2.4.2 Yield 

The data in Figure 2.3 suggests that across the seed multiplication trials, enough seed 

was produced to meet the requirements for the experiments detailed in Table 2.3. 

Due to increased distance between pots for trials 2 and 3, as compared to trial 1, 

yield increased significantly, suggesting that adequate daylight is an extremely 

important factor during the initial seedling growth stages, due to the growth rate 

variation between PMiGAP accessions. 
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Figure 2.3, Seed yield per trial. S = selfed seed, OPV = open pollinated varieties 
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Table 2.3, Summary of the plant material used within this thesis, per chapter and experiment within. (* = See Table 2.1, S = self, OPV = open 

pollinated variety, SMT = seed multiplication trial, I = ICRISAT, P = phytate assays, UA = untargeted analysis, TA = targeted analysis, MD = 

method development, MS = mature seed, YL = young leaf, Exp. = experiment, HTA = haplotype trait associations).  

     No. of Genotypes Obtained from… 

Chapter, 

Analysis 
Exp. No. 

Plant 

Material 

No. of 

Genotype

s 

Weight 

Required/ 

Genotype (g) 

I S I OPV SMT1 
SMT

2 
SMT3 

HHB67 

Improve

d 

*Other 

Cereals 

I S 

(2012

) 

3 

ICPAES 

1 Mature Seed 10 1 - - - - - 1 9 - 

2 Mature Seed 229 1 229 - - - - - - - 

3 Mature Seed 40 1 - - 40 40 - - - - 

4 (Pilot) Mature Seed 20 1 20 - 20 20 - - - - 

4 Mature Seed 99 1 99 - - - 99 - - - 

5 Mature Seed 131 1 131 131 - - - - - - 

4 

Phytate 

assays + 

ICPAES 

1 Mature Seed 84 0.5 - - 

42 (P) 

42 

(ICPAES) 

- 

42 (P) 

42 

(ICPAES) 

- - - 

2 Mature Seed 235 0.5 - 

235 (P) 

235 

(ICPAES) 

- - - - - - 

5 

UV-HPLC 

+ HPLC-

MS 

MD Mature Seed 4 12 - - 4 - - - - - 

1 Mature Seed 34 0.5 - - 34 - - - - - 

2 Mature Seed 57 1 - - - - 
57 (UA) + 

57 (TA) 
- - - 

3 Mature Seed 1 1 - - - - - 1 - - 

4 Mature Seed 185 0.1 - 185 - - - - - - 

6 

ICPAES 

GWAS 1 
Mature Seed 

+ YL 
223 1 

223 (MS 

ICPAES) 
- - - - - - 

223 

(YL 

DNA) 

GWAS 2 Mature Seed 223 1 
223 (MS 

ICPAES) 
- - - - - - - 
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GWAS 3 Mature Seed 223 1 
223 (MS 

ICPAES) 
- - - - - - - 

7 DNA 

Extractions 

+ICPAES 

DNA 

Extraction 
YL 48 1 - - - 48 - - - - 

HTA Mature Seed 42 1 
42 

(ICPAES) 
- - - - - - - 
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Where sub-populations of PMiGAP lines have been used (for example in Chapter 3, 

experiment 4, where 20 lines were analysed for GEI effects), these samples were 

selected based on yield. Lines that produced a total yield of >5g were selected for 

analysis. Therefore, it was considered that this would prevent the selection of a truly 

random sample. It was considered that the lines that produced >5g of  seed for this 

study may have been hardier genotypes, which may have caused some degree of 

bias. In order to test this, the selected lines were plotted on a Zn/Fe scatter plot, as 

measured by ICPAES and compared to that of the entire PMiGAP population. From 

the results in Figure 2.4, no obvious clustering can be seen, therefore there is some 

degree of random selection. Details of how other PMiGAP sub-populations were 

selected can be seen in Table 2.4. 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

Figure 2.4, Top: Zn and Fe content in 229 PMiGAP lines. Bottom: Zn and Fe 

content in 20 PMiGAP lines selected for a GEI Experiment, which produced >5g 

total yield. 
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Table 2.4, Selection of PMiGAP sub-populations (SMT = seed multiplication trial, MD = method development, S = selfed, OPV = open 

pollinated variety, HTA = haplotype trait association). 

Chapter, 

Analysis 
Exp No. No. of Genotypes Selection Based On… 

3 

ICPAES 

1 10 N/A 

2 229 Imported Seed (ICRISAT) S 

3 40 Yield (SMT 1 + 2) 

4 (Pilot) 20 Yield (SMT 1 + 2) 

4 99 Yield (SMT 3) 

5 131 Imported Seed (ICRISAT) OPV 

4 

Phytate assays + 

ICPAES 

1 84 Yield (SMT 1 + 2) 

2 235 Imported Seed (ICRISAT) OPV 

5 

UV-HPLC + HPLC-MS 

MD 4 Yield (SMT 1) 

1 34 Yield (SMT 1) 

2 57 Yield (SMT 3) 

3 1 Imported Seed (ICRISAT) HHB67 Improved 

4 185 Imported Seed (ICRISAT) OPV 

6 

ICPAES 

GWAS 1 223 
Trait data - Imported Seed (ICRISAT) S 

Imported DNA (ICRISAT) S 

GWAS 2 223 
Trait data - Imported Seed (ICRISAT) S 

SNP Markers (Varshney et al., 2017) 

GWAS 3 223 
Trait data - Imported Seed (ICRISAT) S 

SNP Markers (Varshney et al., 2017) 

7 

DNA Extractions +ICPAES 

1 DNA Extraction 48 High, Med Low Combined Fe/Zn content 

2 HTA 42 High, Med Low Combined Fe/Zn content 
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2.4.3 The Limitations of Glasshouse Grown Seed 

The use of an in-house glasshouse system facilitated the multiplication of pearl 

millet seed in the UK, without which growth would have been impossible due to the 

cooler climate as compared to India and Africa, where pearl millet is grown 

naturally. Whilst there were many advantages to the use of such a system, including 

minimal external threats of adverse weather conditions and grazers, as well as 24-

hour controlled temperature and light, there were also many limitations including 

high operating expenses and increased risk of insect pests. As previously discussed, 

a total of three aphid infestations occurred during the seed multiplication trials. This 

required the use of a chemical treatment spray (APHOX). Although the chemical 

treatment spray was not thought to have any significant impact on seed quality, the 

stress of the infestation on the plants may have had a negative impact since aphids in 

large numbers are known to cause damage, which in-turn may reduce yield and seed 

size (Kolbe, 1970).  

2.5 Conclusions 

The in-house seed multiplication trials are believed to be the first conducted at 

IBERS, Aberystwyth University. Therefore, the detailed observations from trial 1 

were crucial for the improvement of yield in trials 2 and 3. Whether the challenges 

faced had a significant impact on micronutrient uptake is determined in Chapter 3, 

where GEI effects were analysed between lines grown under glasshouse and field 

conditions. Although the imported samples and seed multiplication trials gave an 

adequate amount of plant material for the unreplicated experiments listed in Table 

2.3, the seed resulting from glasshouse trials was shared between other members of 

the research group, for other projects not relating to this one. Therefore, there are 

regrettably no experimental replicates of PMiGAP lines obtained under field or 

glasshouse conditions, use in the experiments listed in Table 2.3. In light of this, it is 

recommended that seed is bulked on much a larger scale for future work, with the 

aim of producing enough for at least three replicates per experiment. This will 

greatly improve the reliability and validity of findings in the downstream analysis. 
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Chapter 3: Quantification of Grain Trace Elements by ICPAES 

3.1 Summary 

Comparing the levels of 6 grain micronutrients (Fe, Zn, K, Mg, Na and Ca) present 

in the pearl millet hybrid line HHB67 Improved against that of 9 major staples 

(including wheat, rice and barley) revealed higher levels of Fe, Zn, Mg and Na in 

pearl millet. Therefore, pearl millet is deemed an excellent candidate for the 

promotion of good health and nutrition, even though its nutrition credentials are 

currently undersold. 

To generate trait data for GWAS, inductively coupled plasma atomic emission 

spectroscopy (ICPAES) mineral analysis was conducted on 229 selfed PMiGAP 

lines. Results showed that grain Fe and Zn content was highly variable and 

positively correlated (R=0.72; P≤0.05), this suggests the possibility of simultaneous 

selection for both minerals. To test suitability for agriculture, ten lines from the 90th 

percentile for grain Fe and Zn levels were compared against the total yield of three 

in-house seed multiplication trials, per genotype. Findings revealed 5 high Fe/Zn 

lines with above-average yield. For example, the line IP19405 contained 102 mg/kg 

Fe, 78 mg/kg Zn and produced a total of 71g seed, where the average total yield was 

26g. 

The size of genotype × environmental interaction (GEI) effects on mineral uptake 

was examined in multi-environmental trials to test the reliability of trait data. 

Between 2 trials conducted during different seasons, under glasshouse conditions, 

levels of Fe, Zn and Mg did not differ significantly, but did for Na, Ca and K. 

Furthermore, mineral levels between glasshouse and field populations revealed that 

Fe, Na and Zn levels differed significantly between the two populations, but Ca, K 

and Mg levels did not. Therefore, the differences indicate that the environment has a 

stronger effect on mineral uptake than the genetics, indicating that the data should be 

approached with caution. Additionally, the mineral content in OP and selfed seed 

harvested from field populations was also compared. It was found that mineral levels 

were significantly higher in selfed populations, which may be indicative of seed 

concentration effects. 
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3.2 Introduction 

3.2.1 ICPAES 

During the last century, a major objective of conventional plant breeding was to 

breed high yielding cereal crops with increased total calorific value, to meet an 

increased demand for food, owing to an increasing global human population. As a 

result, the fibre, protein and micronutrient content of grains were largely ignored, 

leading to an unintentional increase in micronutrient malnutrition, i.e. hidden hunger 

(Gupta et al., 2009). The resulting increasing prevalence of Fe and Zn deficiencies in 

human populations on a global scale has stressed the need for more research 

focusing on the distribution and chemical speciation of these elements in cereal 

products (Persson et al., 2009). This is a prerequisite for efficient breeding/genetic 

engineering of elite, micronutrient rich cultivars, for a more nutrition secure future. 

The levels of 6 mineral elements (Fe Mg, Na, K, Ca and Zn), present in PMiGAP 

lines were determined by ICPAES. This method is proven to be highly sensitive, 

accurate, and can be used to determine many elements at the same time (Du & Du, 

2009). The results will provide reliable trait data for GWAS, to ultimately determine 

significant MTAs and in turn candidate genes. The principles of ICPAES can be seen 

in Figure 3.1. 
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Figure 3.1: The principles of ICPAES, derived by author. 

3.2.2 The Mineral Content of Pearl Millet 

As previously discussed, plant based food products are a staple food for people in 

many parts of the world either by choice, circumstance or religious constraint. They 

constitute an important source of carbohydrates, protein, dietary fibre, vitamins and 

minerals (Berwal et al., 2017). Pearl millet grains are one of the cheapest sources of 

Fe and Zn as compared to other cereals and vegetables (Rao et al., 2006) and many 

health benefits associated with their consumption have been well documented, this 

includes many accounts that the mineral profile of pearl millet is better than that of 

other cereals, including wheat and maize (Manwaring et al., 2016). However, the 

bioavailability of bivalent minerals including Fe, Mg etc. is lower in pearl millet due 

to the presence of anti-nutrient factors, such as phytate.  

Successful crop improvement, facilitated by traditional plant breeding is dependent 

on the presence of natural genetic variation for the target traits in the gene pool. The 

amount of influence that the environment has on the phenotype is a hotly debated 

topic known as GEI,  which is most commonly observed as a change in genotype 

performance across different environments (Cooper and Delacy, 1994). Significant 
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GEI may seriously limit the feasibility of selecting superior genotypes for the 

breeding of elite lines (Gurmu et al., 2009, Živanović et al., 2012). When genotypes 

are selected for wide adaptation, plant breeders prefer minimal GEI (Matus-Cadiz et 

al., 2003) because when this is the case the target trait is likely to be expressed 

across multiple environments (Basford & Cooper, 1998). Breeding for elevated grain 

Fe/Zn levels is complicated because many studies document that micronutrient 

concentration is highly dependent on the environment, particularly soil mineral 

composition (Feil et al., 2005).  

For this study, analysing the mineral content of PMiGAP lines belonging to just one 

growing season is not a sufficient method to determine a true estimate of mineral 

content. Many other factors must be considered (Figure 3.2), including: The 

differences that occur between environments and if these will have an impact on 

mineral uptake (GEI effects), any correlation between the uptake of certain minerals 

- this is important when elucidating the uptake pathways and understanding how 

they can be improved, whether lines associated with high mineral content also 

produce acceptable yield and lastly, whether any seed-set differences between OP 

and selfed varieties will cause a significant difference to overall mineral 

concentrations. A robust analysis during these early stages will allow any 

conclusions from the GWAS to be met with increased confidence. 
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Figure 3.2, Mineral phenotyping :Factors to consider (derived by Author). 

3.2.3 Experimental Aims 

ICPAES analysis for the quantification of 6 minerals has been conducted on 9 

different staples, including wheat, barley and rice. The data was compared to the 

nutrition credentials of a popular variety of pearl millet ~ HHB67 Improved, which is 

grown on over 500,000ha in Haryana and Rajasthan, India (Hash et al., 2006). 

Mineral levels were also quantified in 229 selfed PMiGAP lines, grown under field 

conditions to determine if any correlations between the minerals exist and to identify 

high and low Fe/Zn lines for the future GWAS.  

A negative correlaton exists between elevated grain Fe/Zn content and grain yield in 

some crops, such as maize (Banziger & Long, 2000) and sorghum (Reddy et al., 

2005). This indicates some difficulty in breeding simultaneously high levels of 

micronutrients and acceptable grain yield. In light of this, once high Fe/Zn lines were 

identified, the lines that fell within the 90th percentile were compared with the 

combined yields of three in-house seed multiplication trials, per genotype, for the 

selection of superior lines with increased grain Fe/Zn levels coupled with high yield.  

To gain insight into GEI effects on mineral uptake, differences in mineral 

concentration between lines grown in multi-environments, including glasshouse and 

field conditions were assessed. In the pilot phase, GEI effects were determined by 

comparing the mineral levels of 10 PMiGAP lines grown under field conditions, to 
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those grown in glasshouse conditions. Analysis was then conducted on a larger scale, 

using 99 PMiGAP lines and the GEI effects between the two unrelated environments 

were evaluated. 

Both selfed and OP PMiGAP lines have been used in this study for mineral analysis. 

Since reliable estimates of mineral concentrations have a direct bearing on breeding 

efficiency (Rai et al., 2015), selfed and OP seed from 131 lines grown under field 

conditions were examined for grain micronutrient density and potential factors that 

may cause differences between the two populations are discussed. 

3.3 Materials and Methods 

3.3.1 Plant Material 

See Chapter 2, Table 2.1 and Table 2.3. 

3.3.2 ICPAES Analysis 

ICPAES analysis was conducted by Dr Sue Lister and Mrs Delma Jones using an 

accredited service at the Institute of Biological, Environmental and Rural Sciences, 

Aberystwyth University, UK. 

Sample digestion 

Two analytical quality control (AQC) samples and one blank were run with every 

batch of 40. Using an electric powered grinding mill (Retsch Mortar Grinder Mill, 

110V/60Hz OY-04181-10) 1g of whole pearl millet seed from each genotype was 

ground to obtain a fine powder, which was able to pass through a 1mm sieve.1 g of 

sample was placed into a 100mL Kjeldahl and 15mL digestion acid (Aqua regia, 

780mL of concentrated hydrocloric acid + 500mL nitric acid + 7.20mL deionised 

water) was added and left to soak in a fume cupboard overnight. Samples were 

digested on a Kjeldahl heating block at 120°C for 3 hours and cooled for a further 1 

hour. The solution was washed into a 50mL volumetric flask using diluent acid 

(250mL nitric acid + 2L deionised water) and shaken. The contents of each 

volumetric flask was filtered through Whatman No. 1 filter paper (25mm) into a 

100mL conical flask, using the initial filtered extract to rinse the flask. 
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Examination of extracts 

Standards were prepared by pipetting the relevant volume of single element stock 

solutions into the flasks (as below) and made up to 1L with diluent acid. Standards 

were poured into 25mL test tubes and the digested samples into 8mL test tubes, and 

then measured by ICP-AES. 

Preparation details for Standard Solutions (Ppm = Parts per million): 

Mineral Std 

Concentration of 

single element stock 

(ppm) 

ML of stock 

to add to 1L 
Ppm 

Ppm in plant 

material 

Zn 

1 

2 

3 

1000 

0.1 

0.5 

1.0 

0.1 

0.5 

1.0 

5 

25 

50 

Fe 

1 

2 

3 

1000 

1.0 

2.0 

4.0 

1.0 

2.0 

4.0 

50 

100 

200 

 

Operating conditions of the ICP-AES instrumentation: 

Template:   Fe, Zn 

Element 
Wavelength 

(nm) 
Rep Curve 

Fe 259.940 3 Linear 

Zn 213.856 3 Linear 

 

Power:    1.2 kW  

Plasma gas flow:  15.0 L/min 

Auxiliary gas flow:  1.5 L/min 

Spray chamber type:  Glass cyclonic 

Torch type:   Axial Quartz with 90° bend 

Nebuliser type:  Conikal glass concentric/OneNeb 

Nebuliser flow:   0.75 L/min 

Pump tube:   Orange-orange (inlet) 

    Blue-blue (outlet) 

Pump rate:   15 rpm 

Replicate read time:  5 s 

Sample delay time:  25 s 

Rinse time:   10 s 

Stabilisation time:  15 s 

Background correction: None 

PMT voltage:   650 V 
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Filter position:   Default 

 

Template:   Ca, K, Mg, Na 

 

Element Wavelength (nm) Rep Curve 

Ca 317.933 3 Linear 

K 769.897 3 Quadratic 

Mg 285.213 3 Linear 

Na 589.592 3 Linear 

 

Power:    1.2 kW  

Plasma gas flow:  15.0 L/min 

Auxiliary gas flow:  1.5 L/min 

Spray chamber type:  Glass cyclonic 

Torch type:   Axial Quartz with 90° bend 

Nebuliser type:  Conikal glass concentric/OneNeb 

Nebuliser flow:   0.75 L/min 

Pump tube:   Orange-orange (inlet) 

    Blue-blue (outlet) 

Pump rate:   15 rpm 

Replicate read time:  5 s 

Sample delay time:  30 s 

Rinse time:   10 s 

Stabilisation time:  15 s 

Background correction: None 

PMT voltage:   650 V 

Filter position:   Default 

 

3.3.3 Statistical Analysis 

Data were analysed using the software GenStat (16th edition, VSN International Ltd, 

Hemel Hempstead, UK) using the 2 sample t-test, one-way analysis of variance 

(ANOVA) with location as the fixed effect, Spearman’s Rank correlation, and 

Pearson’s product moment. 
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3.4 Results and Discussion 

3.4.1 Comparing Micronutrient Levels in Pearl Millet Wheat, Rice and Barley 

Table 3.1: Comparison of pearl millet to wheat, rice and barley (*1Lowest Ranking Value-

10Highest ranking Value, TMC = total mineral content, BBL = Bangor breeding line). 

Analyte Ca K Mg Na Fe Zn TMC 

Units 1 mg/100g* mg/100g mg/100g mg/100g mg/kg mg/kg mg/kg 

HHB67 Improved  

(Pearl Millet) 
51.053 369.46 135.810 37.059 46.199 32.168 6011.358 

KALINGA III 

(Rice) 
92.3110 347.13 115.17 33.335 21.751 37.8910 5938.047 

CV Viscount 

(Wheat) 
47.632 403.28 903 22.971 24.892 22.124 5685.013 

CV Revelation 

(Wheat) 
54.754 386.87 89.92 33.966 39.466 18.022 5711.584 

CV Riband 

(Wheat) 
69.048 619.110 994 34.417 50.1410 24.26 8289.8410 

CV Battalion 

(Wheat) 
69.119 367.35 111.86 27.352 38.875 20.423 5814.896 

CV Hereward 

(Wheat) 
66.837 347.74 105.35 36.938 38.684 23.215 5629.492 

CV Cordiale 

(Wheat) 
47.591 323.71 85.61 27.433 25.523 17.011 4885.731 

CV Hereward II 

(Wheat) 
65.366 415.69 120.88 42.6610 41.077 26.927 6512.199 

Naked Barley 

(BBL) 
60.745 345.72 130.19 32.114 45.968 34.299 5766.755 

 

With the exception of Ca, pearl millet line HHB67 Improved performed above 

average (defined as a ranking of 5 or higher) for all other minerals and had the third 

highest total mineral content of all lines. The data in Table 3.1 suggest that pearl 

millet is an excellent candidate for good health and nutrition in comparison to 

common varieties of rice, wheat and barley, For example, in terms of Fe and Zn, 

HHB67 Improved ranks 9/10 and 8/10, respectively. Additionally, the concentration 

of Mg is the highest in pearl millet, being 37% higher than that of CV Cordiale 

(wheat). It also exceeds that of Naked Barley. Therefore pearl millet can be seen as a 

good alternative Mg source to those who are gluten intolerant. It must be noted that 

samples within this comparison are predominantly wheat (7/10 samples). Any future 

comparison should include a variety of other crops including maize, sorghum and oat 

for a more holistic comparison. 
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3.4.2 Micronutrient Analysis of 229 PMiGAP lines 

 

Figure 3.3: Pairwise association and correlation (r; Pearson’s product moment) 

between variables from 229 PMiGAP lines grown at ICRISAT, Patencheru, under 

field conditions. r (ranging from -1 and +1) represents the correlation coefficient, 

which measures the strength and direction of a linear relationship between two 

minerals. The histograms represent the sample distribution, where each bar 

represents the number of samples that fall within a set range. The distribution of 

samples is split into 10 equal bars that represent the range. 

The data in Figure 3.3 shows the correlation between different minerals in 229 selfed 

PMiGAP lines grown under field conditions. The correlation between Fe and Zn was 

positive and highly significant (R=0.72; P≤0.01). However, there is no significant 

relationship between any other minerals. These results indicate good prospects for 

the simultaneous selection for both Fe and Zn, and selection within the PMiGAP, is 

likely to provide good opportunities for the development of elite lines with elevated 

grain Fe and Zn levels. Findings also coincide with other reports in the literature, 

including that of Velu et al., (2007), who investigated the Fe and Zn content within 

the Iniadi germplasm of pearl millet, also developed at ICRISAT, which is 
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considered to be a valuable genetic resource for high grain Fe and Zn densities. The 

positive association between Fe and Zn has also been proven in a variety of other 

crops and is thought to be due to common molecular mechanisms that control the 

uptake and metabolism of these minerals or common transporters controlling the 

movement of these minerals within plants (Vreugdenhil et al., 2004; Ghandilyan et 

al., 2006). 

 

Figure 3.4: Median (grey dotted lines), quartiles (blue dotted lines) and 10th and 90th 

percentiles (red dotted lines) for grain Zn and Fe content in 229 PMiGAP lines 

grown at ICRISAT, Patencheru, under field conditions. 

The data in Figure 3.4 suggests large within population genetic variability for both 

Fe and Zn across 229 PMiGAP lines. Fe concentration ranges from 29.18 – 135.27 

mg/kg and Zn concentration ranges from 22.07 – 93.28 mg/kg. From the data, it is 

possible to identify individual high and low Fe and Zn lines. High Fe/Zn lines are 

identified as those that fall within the top 90th percentile and low Fe/Zn lines are 

identified as those that fall within the bottom 10th percentile. 
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Table 3.2: 90th percentiles for grain Zn and Fe content in 229 PMiGAP lines, in 

relation to Figure 3.4 (OPV = open pollinated variety. DM = downy mildew). 

Sample No. IP No. Origin Known Traits Citation 

50 ICTP 8203 
ICRISAT, 

Patencheru 

High yielding and 

high Fe, content 

OPV, DM resistant 

Saltzman et 

al., 2013 

102 IP 8955 Togo Drought Tolerant 
Sehgal et al., 

2015 

87 IP 15344 India 
High yielding, 

productive tillers 

Sehgal et al., 

2015 

215 IP 19405 Chad 
Tall, increased 

vegetative growth 

Khairwal et 

al., 2007 

142 IP 9971 Zambia - Icrisat.org 

157 IP 7886 India - Icrisat.org 

18 IP 12925 Ghana High yielding 
Khairwal et 

al., 2007 

81 IP 6460 Mali - - 

35 GB 8735 
ICRISAT, 

Patencheru 
High Fe line 

Andrews & 

Kumar, 1996 

229 IP 4952 Uganda - Icrisat.org 

 

Table 3.2 shows the lines within the 90th percentile for grain Zn and Fe content in 

229 PMiGAP lines. The data in Figure 3.4 suggests that ICTP 8203 (50) had the 

highest levels of both Fe and Zn. It also contains other useful traits such as high yield 

and resistance to DM. Development of ICTP 8203 was achieved by randomly mating 

five S2 progenies selected at ICRISAT and is related to an Iniadi germplasm line, 

known for high Fe/Zn levels, as previously discussed (Rai et al. 1990). 
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Figure 3.5: Boxplots displaying the distribution of minerals Ca, Fe, K, Mg, Na and 

Zn data based on the minimum, first quartile, median, third quartile and the 

maximum in 229 selfed PMiGAP lines grown at ICRISAT, Patencheru, under field 

conditions.  

In addition to measuring Zn and Fe, other elements including Ca, K, Mg and Na 

were also quantified in PMiGAP lines. Findings suggest that the predominant 

mineral (mineral at highest levels) was K, which varied between 272.5 mg/100g and 

568.1 mg/100g. This was also demonstrated by Oshodi et al., 1999. For all other 

lines, the Mg content ranged from 98.5 mg/100g to 166.7 mg/100g, Na content 

ranged from 1.2 mg/100g to 14.5 mg/100g, Ca content ranged from 10.9 mg/100g to 

73.7 mg/100g, Fe content ranged from 29.2 mg/kg to 93.3 mg/kg and Zn content 

ranged from 22.1 mg/kg to 92.3 mg/kg. The seeds were richer in K, Mg and Ca 

while Na, Fe and Zn were evenly distributed; this was also reported by Oshodi et al., 

1999. 
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Figure 3.6: A comparison of grain Zn and Fe content to the combined yield of 3 seed 

multiplication trials. Black dotted line denotes average PMiGAP yield, red dotted 

line denotes average PMiGAP Zn content and blue dotted line denotes average 

PMiGAP Fe content. 

The data in Figure 3.6 shows a comparison of the 90th percentile Fe/Zn lines with the 

combined yields of three in-house seed multiplication trials, conducted under 

glasshouse conditions. Average yield for the entire PMiGAP population was 26.3g 

per line, therefore 5 lines: IP19405, IP7885, IP12925, IP6460 and GB8735 

performed above average. The best line for elevated Fe/Zn content coupled with high 

yield was IP19405 and may be used as a parent for the development of elite lines. 

IP15344 has been cited in the literature to be high yielding (Sehgal et al., 2015); 

however this is not reflected during the three seed multiplication trials. This may be 

due to GEI factors, where the environmental effects are stronger than the genetics. 

Although the line ICTP 8203 described previously has the highest readings for Fe 

and Zn content, this is not reflected in the yield as it performed below average.  
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3.4.3 A Comparison between 2 Glasshouse Seed Multiplication Trials 

 

Figure 3.7: Rug plot to show the distribution of  minerals Ca, Fe, K, Mg, Na and Zn 

between 2 glasshouse grown PMiGAP populations (n = 40) conducted in October 

(OCT) 2014 and February (FEB) 2015 at Aberystwyth University. Ca, K, Mg, Na 

are measured in mg/100g. Fe and Zn are measured in mg/kg. The rug plot depicts 

each observation per mineral, per population, respectively. Ca data and K data for 

February 2015 both included an outlier (2023 S and 2035 S, respectively). These 

data were excluded from further analyses. All data were approximately normally 

distributed. 

The findings from Figure 3.7 suggest that the predominant mineral in the two 

glasshouse populations was K; this is consistent with the results from Figure 3.5. 

Values varied between 220.5 mg/100g and 583.3 mg/100g for October’s population 

and between 237.5 mg/100g and 445.3 mg/100g for February’s population. The Mg 

content ranged from 65.4 mg/100g to 156.7 mg/100g for October and from 104.3 

mg/100g to 163.5 mg/100g for February, Na content ranged from 14.41 mg/100g to 
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21.69 mg/100g for October and from 10.02 mg/100g to 25.2 mg/100g for February, 

Ca content ranged from 34.64 mg/100g to 71.65 mg/100g for October and from 

30.38 mg/100g to 71.65 mg/100g for February, Fe content ranged from 17.04 mg/kg 

to 137.16 mg/kg for October and from 30.88 mg/kg to 123.11 mg/kg for February 

and Zn content ranged from 14.36 mg/kg to 78.12 mg/kg for October and from 22.81 

mg/kg to 81.98 mg/kg for February. 

Figure 3.8: Association between mineral contents of 40 PMiGAP lines from 

February and October glasshouse  trials, grown at Aberystywth University.  Broken 

line denotes y = x, red data points = OP lines, black data points = selfed lines. 
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The data in Figure 3.8 determines the relationship between the mineral content of 

lines from the October 2014 and February 2015 populations. The two-sample t-Test 

was used to determine whether mean mineral concentrations differed between the 

populations (Table 3.3). 

Table 3.3: Comparison of the mean mineral content of 40 PMiGAP lines from the 

October 2014 and February 2015 glasshouse trials, conducted at Aberystwyth 

University. 

Mineral 
October  February 

t prob1 

N Mean s.e.m.  N Mean s.e.m. 

Ca (mg/100 g) 40 51.2 1.31  39 56.6 1.30 0.005 

K (mg/100 g) 40 408.3 14.46  39 331.7 6.97 <0.001 

Mg (mg/100 g) 40 131.1 2.86  40 131.1 1.93 0.998 

Na (mg/100 g) 40 17.7 0.30  40 15.9 0.45 0.001 

Fe (mg/kg) 40 52.1 3.42  40 60.3 3.62 0.107 

Zn (mg/kg) 40 36.7 2.42  40 40.4 1.94 0.237 

s.e.m; Standard error of the mean 
1; H0: Mean February = Mean October; H1: Mean February ≠ Mean October. 

 

The two-sample t-Test requires the establishment of H0 and H1 (Table 3.3). Using the 

mean of both populations, the s.e.m. and the number of observations in the two 

populations, F prob and T prob values were generated. Having tested the t-statistic 

and compared the t-value with a standard table of t-values, it was possible to 

determine whether the T prob value exceeded the threshold of statistical significance. 

From the results it can be seen that there is a difference between the mean values of 

the two populations for Ca, K and Na, therefore H0 is rejected and H1 is accepted, 

that there are differences between the mean values between the populations. 

However, for Mg, Fe and Zn, the results are not statistically significant, therefore H0 

is accepted and it is determined that the mean of the minerals between the 

populations is equal and does not reach the threshold for significance. In terms of 

phenotypic stability, the data suggests that since the threshold for significance has 

not been met for Mg, Fe and Zn according to T prob, the phenotype is stable across 

both environments, but this is not the case for Ca, K and Na. 
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To assess the stability of the phenotype, Spearman’s rank correlation coefficients 

between the two populations were compared. 

Table 3.4: Spearman’s rank and Bootstrapped Pearson’s correlation values per 

mineral between October and February populations grown under glasshouse 

conditions at Aberystwyth University. 

Mineral 
Spearman’s 

Rank 
Prob1 

Bootstrapped Pearson’s 

Correlation 
Prob1 

Ca (mg/100 g) 0.093 0.144 0.053 >0.05 

K (mg/100 g) 0.564 <0.001 0.596 <0.001 

Mg (mg/100 g) 0.513 <0.001 0.565 <0.001 

Na (mg/100 g) -0.284 0.019 -0.299 >0.05 

Fe (mg/kg) 0.318 0.011 0.222 >0.05 

Zn (mg/kg) 0.388 0.003 0.255 >0.05 
1; H0: r = 0; H1: r ≠ 0. 

 

According to the data in Table 3.4, the Spearman’s rank probability values point to 

weak positive relationships between K and Mg values from the two populations 

(P≤0.001). The weak positive relationships suggest some degree of phenotypic 

stability. However, since correlations are not ≥0.70, these lower positive correlations 

are met with caution. Between seasons, the data overall is not consistent, which 

suggests that the environment has a stronger effect than the genetics.  
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Associations between the different minerals were also examined within each 

population (Figure 3.9 and 3.10). 

 

Figure 3.9: Pairwise association and correlation (r; Pearson’s product moment) 

between variables from 40 PMiGAP lines from the October 2014 glasshouse trial, 

Aberystwyth University. r (ranging from -1 and +1) respresents the correlation 

coefficient (S – Selfed samples, X – OP samples). 
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Figure 3.10: Pairwise association and correlation (r; Pearson’s product moment) 

between variables from 40 PMiGAP lines from the February 2015 glasshouse trial, 

Aberystwyth University. r (ranging from -1 and +1) respresents the correlation 

coefficient (S – Selfed samples, X – OP samples). 

The results in Figure 3.9 and 3.10 suggest that the only strong association is the 

relationship between Fe and Zn, this is consistent for both populations and coincides 

with the data from Figure 3.3. It can therefore be concluded that Fe and Zn are likely 

to be positively correlated together, even in the case of multi-environments. 

3.4.4 Multi-Environmental Trials (Field and Glasshouse) 

Pilot Phase 

During the pilot phase, a total of 20 selfed PMiGAP entries grown in different 

environments were analysed by t-test and Spearman’s Rank statistical tests. A larger 

sample size would have been favourable but was not possible to obtain due to low 

seed availability at the time of analysis.  



88 
 

Table 3.5: Mean grain Fe and Zn content of 20 genotypes across 3 sites by one-way 

ANOVA. (ICRISAT, field trial, Patencheru; Aberystwyth University, glasshouse 

trial, conducted in October 2014 and Aberystywth University, glasshouse trial 

conducted in February 2015). 

 October ‘14  February ‘15  ICRISAT Combined 

s.e.m. 
Prob 

 Mean s.e.m.  Mean s.e.m.  Mean s.e.m. 

Fe (mg/kg) 58.8 6.53  58.7 5.51  58.6 4.05 5.46 1.000 

Zn (mg/kg) 39.5 3.93  40.6 3.41  46.5 2.57 3.35 0.286 

s.e.m,; Standard error of the mean 

 

 

Figure 3.11: Comparing grain Fe levels between three different environments 

(ICRISAT, field trial, Patencheru; Aberystwyth University, glasshouse trial, 

conducted in October 2014 and Aberystywth University, glasshouse trial conducted 

in February 2015). 
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Table 3.6: Pairwise Spearman’s rank correlation coefficients for grain Fe content 

across 3 environments (ICRISAT, field trial, Patencheru; Aberystwyth University, 

glasshouse trial, conducted in October 2014 and Aberystywth University, glasshouse 

trial conducted in February 2015). 

Fe_FEB 0.273 

(P=0.061) 

0.751 

(P<0.001) 

Fe_OCT - 0.456 

(P=0.011) 

 Fe_OCT ICRISAT_SELF_Fe 

 

With respect to the data in Table 3.6, although there is a strong association between 

the February glasshouse and the ICRISAT field populations (R=0.751;P<0.0011), 

there is no relationship between the February and October glasshouse populations. 

This is also the case for the October glasshouse and ICRISAT field population. 

Therefore, the overall data points to the environmental effects overriding the genetic 

effects of Fe uptake. 

 

Figure 3.12: Comparing grain Zn levels between three different environments 

(ICRISAT, field trial, Patencheru; Aberystwyth University, glasshouse trial, 
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conducted in October 2014 and Aberystywth University, glasshouse trial conducted 

in February 2015). 

Table 3.7, Pairwise Spearman’s rank correlation coefficients for grain Zn content 

across 3 environments (ICRISAT, field trial, Patencheru; Aberystwyth University, 

glasshouse trial, conducted in October 2014 and Aberystywth University, glasshouse 

trial conducted in February 2015). 

Zn_FEB 0.450 

(P=0.012) 

0.564 

(P=0.003) 

Zn_OCT - 0.603 

(P=0.001) 

 Zn_OCT ICRISAT_SELF_Zn 

 

According to Table 3.7, with respect to Zn, the association between genotypes grown 

in different environments does not exceed the Spearman’s rank threshold of 0.7, for 

a positive relationship. Therefore the data points to the environmental effects being 

stronger the genetic effects of Zn uptake. 

Post-Pilot Phase (n=99) 

A larger data set, which consisted of 99 selfed PMiGAP lines, became available due 

to an additional growing season, under glasshouse conditions in August 2015. The 

GEI effects between the two unrelated environments were determined by comparing 

mineral levels from the ICRISAT field population to the in-house glasshouse 

population, conducted in August. 
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Figure 3.13: Rug plot to show the distribution ofminerals Ca, Fe, K, Mg, Na and Zn 

between populations grown under glasshouse conditions in Aberystwyth (August 

2015) and under field conditions at ICRISAT, patencheru. A = August ’15 trial, 

glasshouse and I = ICRISAT, field trial. Ca, K, Mg, Na are measured in mg/100g. Fe 

and Zn are measured in mg/kg. The rug plot depicts each observation per mineral, 

per population, respectively. All data were approximately normally distributed.  

Values for K ranged between 289.2 mg/100g and 529.3 mg/100g for ICRISAT field 

grown population and between 257.92 mg/100g and 613.23 mg/100g for glasshouse 

population. The Mg content ranged from 94.5 mg/100g to 162.8 mg/100g for 

ICRISAT field population and from 100.45 mg/100g to 175.43 mg/100g for the 

glasshouse population, Na content ranged from 1.26 mg/100g to 13.21 mg/100g for 

ICRISAT field population and from 4.51 mg/100g to 13.11 mg/100g for the 

glasshouse population, Ca content ranged from  13.2 mg/100g to 73.71 mg/100g for 

ICRISAT field population and from 7.78 mg/100g to 53.08 mg/100g for the 

glasshouse population, Fe content ranged from 34.33 mg/kg to 135.27 mg/kg for 

ICRISAT field population and from 32.55 mg/kg to 182 mg/kg for the glasshouse 

population and Zn content ranged from  23.46 mg/kg to 79.31 mg/kg for ICRISAT 

field population and from 24.05 mg/kg to 161.06 mg/kg for the glasshouse 

population. The Zn levels in lines grown under glasshouse conditions show a far 
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greater distribution of values, whereas the distribution in the field population is 

tighter and lower. Therefore, there may be environmental factors affecting the gene 

expression, perhaps within the soil, thus limiting the Zn. This is also the case for Fe, 

although to a lesser extent.  

 

Figure 3.14: Scatter plot matrix to show the relationship between minerals in 99 

PMiGAP lines grown under glasshouse conditions at Aberystwyth University in  

August 2015 , A.. 
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Figure 3.15: Scatter plot matrix to show the relationship between minerals in 99 

PMiGAP lines grown under field conditions at ICRISAT, Patencheru in 2010, I. 

From the data in Figure 3.14 and 3.15, the strongest relationship is between Fe and 

Zn for both environments, and is further demonstrated by the Spearman’s Rank 

values in Table 3.8. This indicates a genetic link, regardless of the environment. 
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Table 3.8: Spearman’s Rank correlations between 99 PMiGAP lines grown under 

glasshouse (G) conditions at Aberystwyth University, in 2015 and field (F) 

conditions at ICRISAT, Patencheru in 2010.  

Mineral 

Aberystwyth G Aug’15  ICRISAT F 2010 

n 
Spearman’s 

Rank 
Prob1  n 

Spearman’s 

Rank 
Prob1 

Fe/Ca 99 0.027 0.790  99 0.249 0.013 

K/Ca 99 0.218 0.030  99 0.191 0.058 

Mg/Ca 99 0.329 <0.001  99 0.104 0.304 

Na/Ca 99 0.214 0.034  99 0.249 0.013 

Zn/Ca 99 0.078 0.444  99 0.013 0.897 

K/Fe 99 -0.137 0.178  99 -0.186 0.066 

Mg/Fe 99 0.109 0.281  99 -0.064 0.531 

Na/Fe 99 -0.019 0.855  99 0.253 0.011 

Zn/Fe 99 0.807 <0.001  99 0.721 <0.001 

Mg/K 99 0.252 0.012  99 0.105 0.301 

Na/K 99 0.343 <0.001  99 0.085 0.402 

Zn/K 99 -0.137 0.176  99 -0.189 0.061 

Na/Mg 99 0.175 0.084  99 -0.335 <0.001 

Zn/Mg 99 0.146 0.150  99 0.088 0.387 

Na/Zn 99 -0.032 0.751  99 0.028 0.782 
1; H0: r = 0; H1: r ≠ 0. 

 

From the data in Table 3.8, it can be seen that the only strong positive relationship 

that occurs for both environments is that of Fe and Zn (P=<0.001). Therefore, H0 is 

rejected for these combinations and it is concluded that there is a relationship 

between these minerals. The data suggests that due to the occurrence of this 

relationship in both environments, this phenotype is deemed stable. 
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The two sample t-Test was used to determine whether mean mineral concentrations 

differed between glasshouse and field populations (Table 3.9). 

Table 3.9:  Comparison of the mean grain mineral content of 99 PMiGAP lines 

grown under glasshouse (G) conditions at Aberystwyth University, in 2015 and field 

(F) conditions at ICRISAT, Patencheru in 2010. 

Mineral 

Aberystwyth (G) 

Aug’15 
 ICRISAT (F) 2010 

t prob1 

N Mean s.e.m.  N Mean s.e.m. 

Ca (mg/100 g) 99 26.8 0.95  99 29.4 1.04 0.062 

Fe (mg/kg) 99 78.6 2.58  99 62.7 1.92 <0.001 

K (mg/100 g) 99 382.9 6.34  99 397.5 5.44 0.081 

Mg (mg/100 g) 99 128.6 1.61  99 129.0 1.421 0.885 

Na (mg/kg) 99 6.2 0.15  99 4.1 0.18 <0.001 

Zn (mg/kg) 99 72.3 2.71  99 48.5 1.18 <0.001 

s.e.m; Standard error of the mean 
1; H0: Mean February = Mean October; H1: Mean February ≠ Mean October. 

 

From the results it can be seen that there are differences between the mean mineral 

content values of the two populations for Fe, Na and Zn, therefore H0 is rejected and 

H1 is accepted, that the mean mineral content from the glasshouse population is not 

equal to mean of the field population. This is indicative of phenotypic instability 

between the two environments. However, for Ca, K and Mg, the results are not 

statistically significant and H0 is accepted, that the mean mineral content from the 

field population is equal to mean of the glasshouse population, this is indicative of 

some degree of phenotypic stability for these three elements. 
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Figure 3.16: Pairwise association between grain mineral content from 99 PMiGAP 

lines grown under glasshouse conditions in 2015, at Aberystywth University (A) and 

field conditions in 2010, at ICRISAT, Patencheru (I). 
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Table 3.10: Spearman’s Rank correlations between grain mineral content from 99 

PMiGAP lines grown under glasshouse at Aberystwyth University in 2015 and field 

conditions at ICRISAT, Patencheru in 2010. 

Mineral 
Spearman’s 

Rank 
Prob1 

Ca (mg/100 g) 0.261 0.009 

Fe (mg/kg) 0.291 0.003 

K (mg/100 g) 0.496 <0.001 

Mg (mg/100 g) 0.468 <0.001 

Na (mg/kg) -0.262 0.009 

Zn (mg/kg) 0.483 <0.001 
1; H0: r = 0; H1: r ≠ 0. 

 

From the results in Table 3.10, it can be seen that there is a weak positive 

relationship (above R=0.4) for K, Mg and Zn between the two populations 

(P<0.001). However,  the extent of this is less for Ca and Fe and a negative 

correlation of -0.262 can be seen for Na. H0 is rejected due to P=<0.001 for K, Mg 

and Zn and accepted for Ca, Fe and Na. Although the positive association is 

statistically significant according to the data, it must be noted that since correlations 

are not ≥0.70, lower positive correlations should be met with caution. 
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3.4.5 Selfed vs. OP PMiGAP Lines 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.17: Rug plot to show the distribution of minerals Ca, Fe, K, Mg, Na and Zn 

between 131 selfed and OP PMiGAP entries grown under field conditions at 

ICRISAT, Patencheru. (S = Selfed samples, Xpol = open pollinated varieties).. The 

rug plot depicts each observation per mineral.. All data were approximately normally 

distributed.  

When selfed and OP seed from the same environment were compared, the 

predominant mineral for both populations was K (Figure 3.17). Values for K varied 

between 272.5 mg/100g and 539.7 mg/100g for selfed samples and 278.1 mg/100g 

and 530.6 mg/100g for OP samples. Values for Ca content varied between 10.94 

mg/100g and 73.71 mg/100g for selfed entries and 13.23 mg/100g and 46.36 

mg/100g for OP entries, Fe content varied between 29.18 mg/kg and 124.6 mg/kg 

for selfed entries and 21.9 mg/kg and 112.8 mg/kg for OP entries. Na content varied 

from 1.46 mg/100g and 14.5 mg/100g for selfed entries and 1.5 mg/100g and 15.51 

mg/100g for OP entries and Zn content varied from 22.07 mg/kg and 71.11 mg/kg 

for OP entries and 22.07 mg/kg and 93.28 mg/kg. Mg content varied from 96.9 
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mg/100g and 179.6 mg/100g for OP entries and 94.5 mg/100g and 166.7 mg/100g 

for selfed entries. 
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Figure 3.18: Scatter plot matrix to show the relationship between minerals in 131 

selfed (top) and OP (bottom) PMiGAP lines grown under field conditions at 

ICRISAT, Patencheru. 
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Table 3.11: Spearman’s Rank Correlations between grain mineral content from 131 

selfed/OP PMiGAP lines grown under field conditions, at ICRISAT, Patencheru. 

Mineral 

Selfed  OPV’s 

n 
Spearman’s 

Rank 
Prob1  N 

Spearman’s 

Rank 
Prob1 

Fe/Ca 131 0.203 0.020  131 0.107 0.226 

K/Ca 131 0.343 <0.001  131 0.367 <0.001 

Mg/Ca 131 0.253 0.004  131 0.206 0.018 

Na/Ca 131 0.158 0.072  131 0.142 0.106 

Zn/Ca 131 -0.059 0.505  131 -0.064 0.468 

K/Fe 131 -0.183 0.036  131 -0.113 0.199 

Mg/Fe 131 0.126 0.153  131 0.106 0.229 

Na/Fe 131 0.127 0.149  131 0.021 0.812 

Zn/Fe 131 0.717 <0.001  131 0.737 <0.001 

Mg/K 131 0.330 <0.001  131 0.257 0.003 

Na/K 131 -0.043 0.627  131 0.285 0.001 

Zn/K 131 -0.147 0.095  131 -0.185 0.034 

Na/Mg 131 -0.124 0.159  131 0.107 0.223 

Zn/Mg 131 0.218 0.012  131 0.174 0.047 

Na/Zn 131 -0.077 0.381  131 -0.131 0.136 
1; H0: r = 0; H1: r ≠ 0. 

OPV’s = Open Pollinated Varieties 

 

From the scatter plot matrices in Figure 3.18, the strongest observable relationship 

exists only between Fe and Zn for both selfed and OP populations. This is further 

demonstrated by the Spearman’s Rank values in Table 3.11 (P<0.001).  
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Table 3.12: Comparison of the mean mineral content between 131 selfed and OP 

PMiGAP lines grown under field conditions at ICRISAT, Patencheru. 

Mineral 
Selfed  OPV’s 

t prob1 

N Mean s.e.m.  N Mean s.e.m. 

Ca (mg/100 g) 131 29.50 0.8782  131 22.46 0.5235 <0.001 

Fe (mg/kg) 131 62.16 1.696  131 48.13 1.323 <0.001 

K (mg/100 g) 131 397.3 4.462  131 344.8 3.957 <0.001 

Mg (mg/100 g) 131 131.5 1.203  131 123.7 1.030 <0.001 

Na (mg/kg) 131 4.064 0.1774  131 3.759 0.1759 0.223 

Zn (mg/kg) 131 48.40 1.118  131 43.43 0.888 <0.001 

s.e.m; Standard error of the mean OPV’s – Open Pollinated Varieties 
1; H0: Mean February = Mean October; H1: Mean February ≠ Mean October. 

 

A 2 sample t-test was used to determine whether mean mineral contents varied 

between selfed and OP populations. The general trend in this data is that the mean 

mineral content is higher in selfed populations as compared to OP populations. From 

the results, it can be seen that there are differences between mean mineral content for 

Fe, K, Mg, Zn and Ca, therefore H0 is rejected and H1 is accepted, that the mean of 

these minerals from the selfed population is not equal to the mean of the OP 

population. This is indicative of phenotypic instability, perhaps by GEI effects (as 

they were not grown at the same time) or by differences in OP/selfed populations 

owing to factors such as seed set or dilution/concentration effects. However, for Na, 

the results do not reach the threshold for statistical significance, therefore H0 is 

accepted, that the mean mineral content from the selfed population is equal to the 

mean of the OP population.  
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Figure 3.19: Pairwise association between grain mineral content from 131 selfed (S) 

and open pollinated (Xpol)  PMiGAP lines grown under field conditions at 

ICRISAT, Patencheru. 
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Table 3.13: Spearman’s Rank correlations for grain mineral content from 131 selfed 

and OP PMiGAP lines grown under field conditions at ICRISAT, Patencheru. 

Mineral 
Spearman’s 

Rank 
Prob1 

Ca (mg/100 g) 0.522 <0.001 

Fe (mg/kg) 0.542 <0.001 

K (mg/100 g) 0.548 <0.001 

Mg (mg/100 g) 0.520 <0.001 

Na (mg/kg) 0.221 0.011 

Zn (mg/kg) 0.660 <0.001 
1; H0: r = 0; H1: r ≠ 0. 

From the results in Table 3.13, it can be seen that there are positive correlations 

above R=0.5 for Ca, Fe, K, Mg and Zn values between the selfed and OP 

populations (P= <0.001), the strongest of which is for Zn , which is indicative of 

some degree of phenotypic stability between the two populations. However, for a 

much weaker correlation of R=0.221 can be seen for Na, therefore H0 is rejected for 

Ca, Fe, K, Mg and Zn and accepted for Na.  

3.5 Conclusions 

GEI effects are determined based on various statistical analyses that examine the 

correlation of minerals between lines grown in multi-environments (Spearman’s rank 

and Pearson’s product moment) in addition to a comparison of mean mineral levels 

between environments (t-tests). From the results, the most abundant element in pearl 

millet is K in all environments, also demonstrated by Oshodi et al., (1999). Although 

the t-test results in Table 3.3 indicate that with respect to the October and February 

glasshouse populations, the means significantly differ for Ca K and Na, but they do 

not for Mg Fe and Zn. These results differ to those in Table 3.9, which compares the 

mineral concentrations of field and glasshouse populations. These results indicate 

that the means significantly differ for Fe, Na and Zn, but do not for Ca K and Mg. 

Although this was not the case for Mg, the results show that there are significant GEI 

effects at work for all other elements between growth trials meaning that the 

environmental effect is often stronger than the genetic effect, overall. Plant breeders 

need to take this into account when selecting elite lines and any results from 

subsequent genetic analysis must be approached with caution. When a smaller 

PMiGAP data set was used for the comparison of Fe and Zn concentrations in two 

glasshouse populations and one field population (pilot phase, Table 3.5), it was 
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found that the means did not differ significantly, according to a 1 way ANOVA 

statistical analysis. However, this could be due to the small sample size (n=20), 

which is not a true representation of the entire PMiGAP.  

According to the Spearman’s Rank values, a strong positive association is observed 

between Fe and Zn in all populations (R≥0.7; P≤0.001), this coincides with many 

accounts in the literature and could be owing to common molecular mecahnisms that 

control the uptake/metabolism of these minerals or common transporters that control 

the movement of these minerals within plants (Vreugdenhil et al., 2004; Ghandilyan 

et al., 2006). The Spearman’s rank test was also used to determine the relationship 

between minerals measured in multi-environments and it was found that a positive 

relationship exists between K and Mg for the October and February glasshouse trials 

(P<0.001) and between the field and glasshouse trials (P<0.001), this suggests some 

degree of phenotypic stability when pearl millet is grown in multi-environments. 

Regretably, this was not the case for other elements, as the threshold for significance 

was not met. 

It has been well documented that a reduction in seed-set, as a result of selfing is a 

genotype-dependent and common trait that exists within pearl millet (Rai et al., 

2015). This can lead to an over-estimation of mineral density, indicating that data 

from selfed populations must be approached with caution. Inbreeding depression is 

also associated with selfed populations, due to increased rates of homozygosity 

(Kaur & Soodan, 2017). Contrastingly, pearl millet OP lines are documented to have 

>90% seed set and produce higher average seed weights, more stable yields and 

fewer seedling losses during plant establishment (Hanna et al., 1986, Gray & 

Steckel, 1986, Kaur & Soodan, 2017). Because of this, OP seed production is 

considered to be more cost-effective and data from these populations can be used for 

reliable estimation of mineral density (Rai et al., 2015). A study by Kumar et al., 

(2016), compared mineral levels from selfed and OP populations of pearl millet. It 

was found that the average selfed grain mineral content was significantly higher than 

that of OP populations, which coincides with the findings from this study (Table 

3.12). It was also reported that the average selfed grain Fe content was higher than 

the selfed grain Zn content, which also coincides with this study (Table 3.12) and 

another study by Voorrips et al., (2002). Furthermore, Kumar et al.’s (2016) study 

also suggests that the effect of seasonal variation is greater on selfed seed. For 
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example, in the summer season, the mineral contents in selfed seeds were found to 

be significantly higher than that of the rainy season. This indicates that 

environmental factors are stronger than the genetic effects on selfed seed set, mineral 

distribution and uptake. Findings from other studies reveal contrasting results that 

the rainy season is more favourable for mineral content in seeds (Velu et al., 2007). 

In spite of growing season, it has been widely documented in a variety of different 

species that alterations in the environment or plant physiology can have vast effects 

on the accumulation of multiple elements, simultaneously (Vreugdenhil et al., 2004). 

For example, growing the same genotype of Silene vulgaris (Bladder Campion) on 

different soil types is proven to result in variation of micronutrients by a factor of 

2.4, 3.6, 4.4 and 4.2 for Fe, Cu, Mn and Zn, respectively (Ernst et al., 2000).  

For selfed seed, it is also important to consider the possibility that an increase in 

grain mineral content may be due to “concentration effects” (Gomez-Becerra et al., 

2010) as a result of small seed, reduced seed set or low yield capacity. For example, 

in wild wheat, researchers have explored the possibility of increased mineral content 

as a result of higher concentrations of minerals in small seeds and/or yield capacity 

because the existence of this inverse relationship between grain yield and mineral 

concentration has been well documented in the past. However, it was found that 

increased grain concentration of Fe and Zn in wild wheat is under genetic control 

and not entirely attributable to differences in grain yield/size (Gomez-Becerra et al., 

2010).  

As previously discussed, pearl millet is a protogynous species, in which stigmas are 

usually fertilised by wind bourne pollen from other sources prior to pollen shed from 

flowers from the same panicle, thus open pollination is favoured. Due to a reduction 

in seed size, seed set and yield in selfed panicles as compared to OPV’s, the 

differences in mineral content as seen in Table 3.12 may be attributable to 

concentration effects due to Fe and Zn being predominantly present in the outer seed 

layers and a reduction in bulk endosperm fraction (Garvin et al., 2006). 

Contrastingly, it would be expected that increased weight due to increased 

endosperm and yield in OPVs results in a dilution effect.. This suggests the 

importance of acknowledging different individual grain weights in PMiGAP entries 

and that if individual grain weight differs among varieties, this should be accounted 
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for in results, possibly by measuring mineral contents per 1000 seeds instead of a set 

weight per gram only.  

Another contributing factor to differences in mineral content between selfed and OP 

seed could also be due to the pollen source, i.e. the xenia effect. The term xenia 

describes the effect of foreign pollen on the development and characteristics of the 

seed (Pahlavani & Abolhasani, 2006). This is because the genotype of the seed 

embryo is decided after pollination, therefore, OP seeds could not only be more 

numerous per panicle as compared to selfed seeds, but grain mineral content could 

also be affected (Rai et al., 2015). Upon further investigation into this theory, Rai et 

al.’s (2015) research suggests that OPV’s of pearl millet may be the best option for 

cost effective and reliable estimation of Fe and Zn density and are not affected by the 

pollen source (xenia effect). Furthermore, results from this study demonstrate no 

xenia effect on seed Fe and Zn density in OP lines. Other studies report contrasting 

results on the xenia effect on seed size in pearl millet (Burton, 1952) and the only 

other study on the xenia effect for mineral content is in maize by Pletsch-Rivera & 

Kaeppler, (2007), which looked the xenia effect on P content in cross pollinated 

maize. Results indicated that no xenia effect was observed (Pletsch-Rivera & 

Kaeppler, 2007). 

Findings from the experiments conducted in this chapter will contribute to the 

decision of which population from which seed multiplication trial (field/glasshouse) 

to use as trait data in the downstream genetic analysis, i.e. the GWAS. Whilst there 

were many interesting conclusions drawn, quite a few limitations came to light. For 

example, the lack of replicates owing to limited seed stocks and whether the mineral 

concentrations can be trusted owing to the GEI or mineral concentration effects, as a 

result of selfing. In order to investigate the issue of mineral concentration effects 

further, it is recommended that instead of submitting 1g of seed for mineral analysis, 

1000-seed-weight should be submitted so that the mineral concentrations are relative 

to the size of the seed/the seed-set.  

According to Viana et al., (2016), GWAS is considered ineffective for smaller 

population sizes, consisting of less than 200 individuals. Therefore the population 

used for the GWAS conducted in this study must include as many PMiGAP lines as 

possible, exceeding 200 lines. The population with the largest number of lines 
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phenotyped was the ICRISAT field population, which consisted of 229 selfed 

genotypes. Therefore, this population is deemed the most suitable for GWAS. This 

population was also grown in field conditions, more representative of the weather 

conditions likely to occur where this crop can be grown naturally. It is also 

recommended by Viana et al., (2016) that high trait heritability is achieved at a rate 

of 70-80% by phenotyping replicated populations. This was not possible to achieve 

during this study, due to limited seed stocks, therefore no broad/narrow sense 

heritability studies could take place. Instead, t-tests were used to determine 

phenotypic stability across the populations grown in multi-environments. The results 

from these tests suggest that the resulting data needs to be treated with caution due to 

the environmental effect being stronger than the genetics in the majority of findings. 
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Chapter 4: The Effect of Phytate on Iron and Zinc Bioavailability 

4.1 Summary 

Phytate assays were performed to quantify levels of phytate in 42 PMiGAP lines, 

from two glasshouse populations. Findings revealed that levels of phytate differed 

significantly between the two populations (P=<0.05). Additionally, Pearson’s 

product moment and Spearman’s rank correlation coefficients showed no significant 

correlation between the two populations. This may be attributable to the effects of 

cultivars, environment and their interactions with phytate being highly significant. 

Furthermore, there was no correlation between Fe/Zn content and phytate, which is 

beneficial in terms of plant breeding because this indicates the possibility of breeding 

elite pearl millet lines with low phytate content and high grain Fe/Zn levels. 

As discussed previously, phytate has a negative effect on the bioavailability of Fe 

and Zn due to its metal chelating properties. It is possible to predict the 

bioavailability of Fe and Zn using the molar ratios of phytate: minerals. The 

literature documents that if the phytate: Fe ratio exceeds a critical value of 1 and if 

the phytate: Zn ratio exceeds a critical value of 15; this may result in poor Fe/Zn 

bioavailability (Al Hasan et al., 2016). Using phytate data from 235 PMiGAP lines 

grown at ICRISAT and their comparison to grain Fe/Zn levels, it was found that 

100% of the population exceeded the critical value of 1 for Fe and 69% exceeded the 

critical value of 15 for Zn. This suggests that the vast majority of the PMiGAP for 

breeding is currently limited in terms of bioavailability of Fe and Zn. 

4.2 Introduction 

Phytates represent a complex class of naturally occurring phosphorus storage 

compounds that can significantly influence the functional and nutritional properties 

of foods by chelating with metal cations, including Fe2+ and Zn2+. This creates an 

insoluble complex (Urbano et al., 2000). Additionally, phytate can be found 

complexed to proteins, in free form and during internal digestion and can also bind 

with micronutrients in other foods. The hindering effect of phytate on mineral 

bioavailability has been previously discussed in Chapter 1, where it is demonstrate 

that, absorption of Fe, Zn, and Ca are significantly lower from diets with high levels 

of phytate than from diets that contain low levels of phytate (Egli et al., 2004). 
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Although indigestible to humans, phytate plays several key roles in the seed 

development of cereals and legumes and reaches its highest level at seed maturity. 

As previously discussed, due to its role in storage and as a source of myoinositol, it 

can never be completely eliminated from the crop (Reddy et al., 1989). In spite of 

this, conscious efforts should be made to significantly reduce phytate content so that 

it does not become a limiting factor in micronutrient absorption. The phytate 

concentration in morphological components of cereal grains is presented in Table 

4.1. In pearl millet, the majority of the phytate appears to be present in germ and 

bran fractions. Other studies indicate it is also present in the aleurone layer (Kulp, 

2000).  

Table 4.1: Phytate concentration and distribution in morphological components of 

cereals (Reddy et al., 1989) 

Cereal Morphological 

component 

Phytate 

phosphorus 

(%) 

Phytate (%)a Distribution 

(%)b 

Corn Commercial hybrid 

Endosperm 

Germ 

Hull 

0.25 

0.01 

1.80 

0.02 

0.89 

0.04 

6.39 

0.07 

- 

3.20 

88.00 

0.04 

Corn High lysine 

Endosperm 

Germ 

Hull 

0.27 

0.01 

1.61 

0.07 

0.96 

0.04 

5.72 

0.25 

- 

3.00 

88.90 

1.50 

Wheat Soft 

Endosperm 

Germ 

Aleurone layer 

0.32 

0.001 

1.10 

1.16 

1.14 

0.004 

3.91 

4.12 

- 

2.20 

12.90 

87.10 

Rice Brown 

Endosperm 

Germ 

Pericarp 

0.25 

0.004 

0.98 

0.95 

0.89 

0.01 

3.48 

3.37 

- 

1.20 

7.60 

80.00 

Pearl 

Millet 

Whole 

Endosperm 

Germ 

Bran 

0.25 

0.09 

0.75 

0.28 

0.89 

0.32 

2.66 

0.99 

- 

- 

- 

- 
a Phytate content is calculated by assuming that it contains 28.20% phosphorus. 
b Percentage of phytate in the component part. 

Decreasing levels of phytate is advantageous to the consumer, due to its influence on 

nutritional end use quality (Samia et al., 2005). Soaking in water, dehulling, 

germination and fermentation are traditional methods of reducing levels of phytate in 

pearl millet. Among these methods, fermentation is proven to further decrease levels 

of antinutrients in grains, whilst increasing mineral extractability (Badau et al., 
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2005). In a study by Eltayeb et al., (2016), two common pearl millet cultivars: 

Gazira and Gadarif, were obtained from Khartoum North local market, Sudan. It 

was found that soaking of grains in water reduced phytate content by 39% for the 

Gazira cultivar and 24% for the Gadarif cultivar. Germination proved to be the most 

effective method in reducing phytate (P<0.05) as compared to all other processing 

methods and resulted in a reduction in phytate content by 67% for the Gazira 

cultivar and 65% for the Gadarif cultivar. These findings also coincided with 

research conducted by Badau et al., (2005). Fermentation for 12 hours of all treated 

grain was also found to further significantly decrease phytate content in both 

cultivars, owing to the action of the enzyme phytase, which is released by 

microorganisms during the fermentation process (Eltayeb et al., 2016). 

Fe and Zn biofortification is applicable to a wide variety of cereals including wheat, 

rice, and pearl millet (Prentice et al., 2017). However human absorption of non-heme 

Fe and Zn is subject to strong interference from phytate. The high affinity of phytate 

to bind to Fe and Zn should limit the use of Fe by microorganisms in the gut and 

intestines, however research suggests that phytases derived from various sources 

(plants or other dietary components), synthesised by gut bacteria, or produced by the 

intestinal mucosal cells can degrade phytate in the gastrointestinal tract and therefore 

free the chelated Fe and Zn to some extent (Sandberg & Andlid, 2002). However, the 

extent of phytase activity in the human small intestine is naturally extremely limited. 

For example, in a study by Iqbal et al., (1994), small intestinal phytase activity was 

measured in-vitro in mucosal homogenates from two human small intestinal samples 

obtained from transplant donor patients. Rat intestine was also studied as a 

comparison. Phytase activity was found in human small intestine samples at low 

values, up to 30 × less than that of the rat tissue (Iqbal et al., 1994). In order to 

enhance the phytase activity in the human body, studies have tested the efficiency of 

phytase supplements, which are added to food directly before consumption. For 

example, in a study by Brnić et al., (2016) fractional absorption of Zn was assessed 

in 35 children using the double-isotopic tracer ratio approach with 67Zn as oral tracer 

and 70Zn as intravenous tracer, in test meals which consisted of millet based porridge 

containing 1.4mg total Zn with the addition of 20.5 phytase units. The results 

indicated that mean fractional absorption of Zn increased from 9.5±3.4 to 16.0±5.1% 

(P<0.0001), when phytase was added to the test meal. This suggests that adding 
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phytase prior to the consumption of a Zn-fortified cereal-based complementary food 

can significantly improve Zn absorption in young children (Brnić et al., 2016). 

4.2.1 Experimental Aims 

The staple diet of most of the global population is provided by cereal crops, which 

present levels of Fe and Zn below the nutritional demand of human beings. Factors 

that may interfere with the bioavailability of Fe and Zn include antinutritional 

compounds present in the edible parts of plants, such as phytate. Thus, it is necessary 

to evaluate the variation of Fe/Zn/phytate levels in PMiGAP lines for the 

identification of cultivars with potential for biofortification. For the development of 

low-phytate lines, it is also necessary to determine the consistency of phytate levels 

between multi-environmental growth trials, which may be affected by GEI factors, 

since different species of plants as well as cultivars of the same species, have 

differing abilities to absorb, translocate and accumulate nutrients and antinutrients 

and often exhibit a wide range of genetic variability for these traits (White & 

Broadley, 2009). 42 selfed PMiGAP lines were selected from two glasshouse 

populations and phytate levels were compared to determine if certain lines were 

characterised by high/low phytate and to determine if GEI factors were at work. The 

effect of phytate on Fe/Zn and bioavailability depends on the ratio of phytate: 

minerals in the diet. Mineral and phytate levels were quantified in 235 OP PMiGAP 

lines and the relative bioavailability of minerals was predicted from the molar ratio 

of phytate: minerals (Ma et al., 2005).  

4.3 Materials and Methods 

4.3.1 Plant Material 

See Chapter 2, Table 2.3. 

4.3.2 Phytate Assays 

Phytate content was determined using the Phytic Acid (Total Phosphorus) Assay Kit 

(K-PHYT), Megazyme International Ireland Limited, Bray, Ireland. 
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Sample extraction 

Using an electric powered grinding mill (Retsch Mortar Grinder Mill, 110V/60Hz 

OY-04181-10) 0.5g of whole pearl millet seed from each genotype was ground to 

obtain a fine powder, which was able to pass through a 1mm sieve. This was 

transferred into a 75mL glass beaker and 20mL 0.66M hydrochloric acid was added. 

The sample was left to stir overnight. 1mL of the extract was centrifuged at 13,000 

rpm for 10 mins and 0.5mL of the supernatant was transferred to a fresh 1.5mL 

microfuge tube. The sample was then neutralised by the addition of 0.5mL sodium 

hydroxide solution (0.75M).  

Enzymatic Dephosphorylation Reaction 

Table 4.2: Enzymatic dephosphorylation reaction protocol. 

Amount pipetted into 

1.5mL microfuge tube 
Free Phosphorus Total Phorphorus 

Distilled Water 0.62mL 0.60mL 

Buffer plus Sodium azide, 

pH 5.5 
0.20mL 0.20mL 

Sample extract 0.05mL 0.05mL 

Phytase suspension - 0.02mL 

Samples mixed by vortex and incubated in a water bath set to 40ºC for 10min. 

After 10min next reaction started by addition of: 

Distilled Water 0.02mL - 

Buffer + MgCl2, ZnSo4 and 

sodium azide 
0.20mL 0.20mL 

Alkaline phosphatase 

suspension 
- 0.02mL 

Samples mixed by vortex and incubated in a water bath set at 40ºC for 15min. 

After 15 min the reaction was stopped by addition of: 

Trichloroacetic acid (50% 

w/v) 
0.30mL 0.30mL 

Terminated reaction centrifuged at 13,000 rpm for 10min. 

 

The supernatant was extracted and used for the colourimetric determination of 

phosphorus. 

Colourimetric Determination of Phosphorus 

For every batch of samples that was applied to the colourimetric determination of 

phosphorus, a phosphorus calibration curve was performed concurrently using the 

same batch of colour reagent (ammonium molybdate , 5% w/v added to ascorbic 

acid, 10% w/v / 1M sulphuric acid). Samples were read against air, without a cuvette 

in the light path. 
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Table 4.3: Ratio of sample/standard : colour reagent. 

Pipetted into a 1.5mL microfuge tube Sample 

Sample/ Phosphorus standard 1.00mL 

Colour reagent 0.50mL 

Mixed by vortex and incubated in a water bath set to 40°C for 1 hour. 

After 1 hour, samples were mixed by vortex, then 1mL was transferred to a 

semi-micro cuvette and the absorbance was read at 665nm (A665), within 3 

hours. 

 

Preparation of the Phosphorus Calibration Curve 

Preparation of standard phosphorus solutions are described in Table 4.4 and treated 

as samples for the colourmetric determination of phosphorus. 

Table 4.4: Preparation of standard phosphorus solutions 

Pipetted into a 13mL 

polypropylene tube 

STD 0 

(0µg) 

STD 1 

(0.5µg) 

STD 2 

(2.5µg) 

STD 3 

(5 µg) 

STD 4 

(7.5 µg) 

Distilled Water 5.00mL 4.95mL 4.75mL 4.50mL 4.25mL 

Phosphorus standard 

solution 
- 0.05mL 0.25mL 0.50mL 0.75mL 

Total volume 5.00mL 5.00mL 5.00mL 5.00mL 5.00mL 

 

Calculation 

Results were entered into a downloadable spreadsheet 

(https://secure.megazyme.com/phytic-acid-total-phosphorus-assay-kit) to determine 

phytate content. 

4.3.3 Statistical Analysis  

Data were analysed using the software GenStat (16th edition, VSN International Ltd, 

Hemel Hempstead, UK) using the 2 sample t-test, Spearman’s rank correlation, and 

Pearson’s product moment. Phytate to mineral millimolar ratios were used to 

estimate the inhibitory effects of phytate on the bioavailability of minerals. 

 

 

 

 

https://secure.megazyme.com/phytic-acid-total-phosphorus-assay-kit


115 
 

4.4 Results and Discussion 

Figure 4.1: Average phytate content in grains of 42 PMiGAP lines grown under 

glasshouse conditions (Aberystwyth University, October 2014 and August 2015).  

 

Figure 4.2: Average Fe content in grains of 42 PMiGAP lines grown under field 

conditions (ICRISAT, Patencheru, 2010).  
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Figure 4.3: Average Zn content in grains of 42 PMiGAP lines grown under field 

conditions (ICRISAT, Patencheru, 2010).. 

Levels of phytate, Zn and Fe varied considerably between genotypes, according to 

Figures 4.1, 4.2 and 4.3.  

The average content of phytate found in grains of different PMiGAP cultivars grown 

in October 2014 was 1.18 g/100g, with values varying by approximately 60%, from 

0.68 to 1.72 g/100g, while the average content of phytate for PMiGAP entries grown 

in August 2015 was 1.03 g/100g, ranging from 0.37 to 1.64 g/100g, that is, a 

difference of about 77% among cultivars (Figure 4.1). The average content of Fe 

found in grains of different PMiGAP cultivars was 65.61 mg/kg, with values varying 

by approximately 70%, from 35.94 to 117.84 mg/kg, while the average content of Zn 

was 50.08 mg/kg, ranging from 26.57 to 74.12 mg/kg, that is, a difference of about 

64% among cultivars (Figures 4.2 and 4.3). 
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Figure 4.4: Scatter graph to show phytate content in 42 PMiGAP lines grown under 

glasshouse conditions (Aberystwyth University, October 2014 and August 2015). 

Table 4.5: Comparison of the mean phytate content of 42 PMiGAP lines from the 

October and August glasshouse trials. 

 

 
August 2015 October 2014 F 

Prob1 

t 

Prob2 n Mean s.e.m n Mean s.e.m 

Phytate 

(g/100g) 
42 1.032 0.3978 42 1.184 0.05361 0.49 0.006 

s.e.m; Standard error of the mean 
1;H0: Variance September 2015 = Variance October 2014; H1: Variance September 2014 ≠ Variance 

October 2014 
2; H0: Mean September 2015 = Mean October 2014; H1: Mean September 2014 ≠ Mean October 2014 

From the results in Table 4.5, it can be seen that there are differences between the 

mean phytate content of the two populations at a P<0.006 significance threshold, 

upon the rejection of H0.  

Table 4.6: Spearman’s Rank correlation coefficient between 42 PMiGAP lines 

grown under glasshouse conditions in October 2014 and August 2015. 

Variates n 

Spearman’s 

Rank 

Correlation 

Exact 

Probability 

P-

Value* 

Aug’15/Oct’14 42 0.007 0.241 0.9494 
*t approximation 0.05 on 40d.f. 
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From the results in Table 4.6, it can be seen that there is no significant correlation 

between the two populations.  

The relationship between grain Fe/Zn levels and phytate content was determined by 

correlating Fe/Zn data to phytic acid assay data (Figure 4.5, Table 4.8 Table 4.9).  

 

Figure 4.5: Scatter graphs to show Fe/Zn content Vs Phytate content from two 

glasshousegrowth trials conducted in Oct’14 and Aug ’15 at Aberystwyth 

University. 
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Table 4.7: Spearman’s Rank Correlation Coefficient between phytate levels and 

Fe/Zn content in 41 PMiGAP lines. 

Varieties N 

Spearman’s 

Rank 

Correlation 

Exact 

Probability 
t-Prob 

Fe(mg/kg) 

ICRISAT/Phytate(g/100g) 

Oct’14 

41 -0.041 0.200 0.799 

Zn(mg/kg) 

ICRISAT/Phytate(g/100g) 

Oct’14 

41 0.013 0.234 0.935 

Fe(mg/kg) 

ICRISAT/Phytate(g/100g) 

Aug’15 

41 -0.042 0.199 0.794 

Zn(mg/kg) 

ICRISAT/Phytate(g/100g) 

Aug’15 

41 -0.136 0.099 0.396 

 

Although the literature reports a close positive association between phytate content 

and mineral elements, including Ca, Fe, Mg, and Zn, as indicated in studies on 

soybean, winter wheat, and maize (Feil & Fossati, 1997, Raboy et al., 1984, Raboy 

et al., 1989), this experiment shows contrasting results (Figure 4.5, Table 4.7,), that 

there is no correlation between phytate content and Fe/Zn content within the two 

populations. This suggests the strong possibility of breeding pearl millet cultivars 

with low phytate content and high Fe/Zn content as they seem to be associated with 

different pathways. 

Using the phytate data from 235 PMiGAP lines grown at ICRISAT, it was possible 

to compare these to grain Fe/Zn levels (Figure 4.6). 
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  Figure 4.6: Phytate, Fe and Zn content in 235 OP PMiGAP entries grown under 
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field condition, ICRISAT, Patencheru, 2015. 

The average content of phytate was 7473 mg/kg, with values varying by 

approximately 47%, from 6857 to 13032 mg/kg. The average content of Fe found in 

grains was 46.6 mg/kg, with values varying by approximately 74%, from 21.9 to 

84.49 mg/kg, while the average content of Zn was 42.6 mg/kg, ranging from 20.72 to 

71.11 mg/kg that is a difference of about 71% among PMiGAP entries. 

The literature reports a variety of studies in humans that indicate that the absorption 

of Zn and Fe from a meal corresponds directly to its phytate levels (Ma et al., 2005).  

Phytate/mineral molar ratios are typically used to predict the inhibitory effect of 

phytate on the bioavailability of minerals based on a ‘critical value’. For example, if 

the phytate/Fe molar ratio is >1, this is indicative of poor Fe bioavailability 

(Hallberg et al., 1989). Zn absorption is also greatly reduced when bound to phytate, 

although to a lesser extent and results in a negative Zn balance when the phytate/Zn 

molar ratio is >15 (Turnlund et al., 1984). Phytate exerts its inhibitory effect on the 

bioavailability of Fe and Zn when the critical values are exceeded (Al Hassan et al., 

2016). 

 

Figure 4.7: Histograms showing Phytate/Fe and Phytate/Zn molar ratios in 235 

PMiGAP lines grown under field conditions at ICRISAT, Patencheru, dashed line 

denotes the critical values of 1 and 15, respectively. 

According to the data in Figure 4.7, molar ratios exceeding the critical values 

indicate the proportion of the population that is likely to have reduced mineral 
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bioavailability. For Fe, all PMiGAP entries are likely to have reduced mineral 

bioavailability. However, there are 73 lines that do not meet the Zn critical value, 

which indicates that the mineral bioavailability would not be affected. These have 

potential use in biofortification studies for the development of elite lines. On the 

basis of phytate/Zn molar ratio, a set of 10 lines are suggested (Table 4.8), from the 

73 which did not meet the Zn critical value of 15. These can be used in crossing 

programs for the creation of elite lines with low phytate/Zn molar ratio. Interestingly, 

70% of lines are of African origin, which may suggest that lines from this region 

may naturally have a lower phytate/Zn molar ratio, as compared to Indian lines. 

Additionally, 70% of these lines achieved above-average combined Fe/Zn content. 

Table 4.8: Suggested lines for the creation of elite lines selected based on phytate/Zn 

molar ratio. High Fe/Zn content was defined as above an average of 89.2mg/kg, for 

the total 235 lines analysed. 

 
Line 

IP. No 
Origin Fe Critical Value Zn Critical Value 

Combined Fe/Zn 

(mg/kg) 

1 IP 9282 Togo 2.9 5.7 176.9 

2 IP 13817 
Burkina 

Faso 
4.7 5.8 91.25 

3 IP 18157 Mali 4.5 6.6 90.56 

4 IP 8276 ICRISAT 6.3 7.1 85.14 

5 IP 11353 
Burkina 

Faso 
5.5 7.2 72.97 

6 IP 22419 ICRISAT 6.9 7.6 72.15 

7 IP 8187 ICRISAT 6.3 7.9 89.29 

8 IP 10379 Nigeria 7.5 8.0 93.58 

9 IP 9406 Ghana 3.9 8.1 176.84 

10 IP 10471 Zimbabwe 6.4 8.5 83.81 
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Figure 4.8: Scatter plot matrix for Fe, Zn and Phytate measured in mg/kg with 

Pearson’s product moment correlations (r). 

The results in Figure 4.8 indicate that although Fe and Zn levels are strongly 

correlated, levels of phytate and these minerals are not. This suggests that levels of 

phytate may be decreased without affecting levels of Fe and Zn. 

4.5 Conclusions 

This experiment primarily focuses on the inhibitory effect of phytate on Fe and Zn 

bioavailability in matured raw pearl millet grains. However, the influence of phytate 

on the bioavailability of essential micronutrients not only depends on the phytate 

content itself, but also phytate and mineral interactions. Phytate to mineral molar 

ratios have been extensively used to forecast the inhibitory effect of phytate on the 

bioavailability of minerals (Al Hasan et al., 2016). The mean phytate to Fe 

millimolar ratio was found to be 14.5 and the mean phytate to Zn millimolar ratio 

was 18.1. Both average values exceeded the critical values of 1 and 15, respectively 

to significantly impair Fe and Zn absorption upon consumption. 100% of genotypes 
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are likely to reduce Fe bioavailability. However, a significantly lower percentage of 

the population, 69% are likely to reduce Zn bioavailability (Figure 4.7). This 

suggests that Zn is less affected by phytate than Fe, although the rate is still highly 

prevalent in the population.  

Al Hasan’s (2016) study states that among a variety of predictors of the inhibitory 

effects of phytate on micronutrient bioavailability, including; phytate intake, 

inadequate micronutrient bioavailability, inadequate micronutrient intake, age and 

total energy intake, phytate was the strongest inhibitory predictor of Fe and Zn and it 

was proven that phytate to Fe and Zn molar ratios would be expected to be 2.48 and 

1.96 points higher for every 100mg increment in daily phytate intake, respectively. 

This demonstrates the potency of phytate as an inhibitor of Fe and Zn bioavailability 

from grain based diets. 

Additionally, the dietary patterns of individuals living in pearl millet consuming 

communities must also be taken into consideration. These diets are often 

characterised by lack of diversity, with infrequent consumption of nutrient rich 

foods, meat and milk products (Torheim et al., 2010). Studies also suggest that age 

and pregnancy status has a significant effect on the bioavailability of Fe and Zn. For 

example children and pregnant women are more likely to be effected by high levels 

of phytate to Fe/Zn ratios. This may be largely attributable to the increasing demands 

for these micronutrients during childhood and pregnancy (Butte et al.,2004). 

The results from this experiment point to an urgent need to address the challenges 

associated with poor mineral bioavailability for pearl millet consuming communities 

and they also prove that bioavailability of micronutrients as a result of phytate must 

be considered a significant factor in plant breeding. The effect of phytate intake on 

the bioavailability of minerals means that their micronutrient consumption will likely 

fail to meet their mineral needs without intervention. 

Processing raw grains may play a huge role in enhancing bioavailability of Fe/Zn 

since phytate cannot ever be completely eliminated. In this study, although readings 

were taken from raw milled grains, it has been proven that if grains were germinated 

(spouted in water for 24 hours) before consumption, this would significantly reduce 

the levels of phytate (Kumar & Chauhan, 1993). Other effective methods of 

processing to reduce phytate content include; soaking, autoclaving, fermentation and 
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debranning, as previously discussed. However, soaking of grains may result in a 

25% loss of total Fe but in-vitro soluble Fe would remain relatively high. This is due 

to its distribution in the grain. Even though some Fe is lost, the 25% loss is more 

acceptable than if the levels of phytate were to remain high. Germination and 

fermentation of whole grains also maintains high levels of in-vitro soluble Fe. A 

molar ratio of <1:1 was achieved by this method in a study by Eyzaguirre et al., 

(2006). Levels of Zn are generally less affected (Eyzaguirre et al., 2006), which is 

due to Zn being more evenly distributed in the endosperm as opposed to Fe, which is 

mostly present in the testa. A ratio of <10:1 was achieved by soaking, germination 

and fermentation. 
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Chapter 5: Identifying and Quantifying Metabolites That Affect the 

Bioavailability of Absorbable Fe/Zn using HPLC 

5.1 Summary 

Even though pearl millet grains are rich in Fe and Zn, the bioavailability of these 

important micronutrients is limited due to the presence of metal chelating phenolic 

compounds, such as the flavonones; apigenin and luteolin (Tako et al., 2015). An 

extensive protocol was developed for the extraction of these compounds and the 

level of variation was assessed in 34 PMiGAP lines by high performance liquid 

chromatography with photodiode array detection (HPLC-PDA). Identification of 

flavonone derivatives and other phenolic compounds was carried out by high 

performance liquid chromatography with photodiode array and tandem mass 

spectrometry detection (LC-PDA-MSn). Compound structures were also elucidated 

from fragmentation patterns, obtained by drilling down into MSn events.  

In the pilot phase, HPLC-MS untargeted analysis of 57 PMiGAP lines revealed 16 

compounds of interest including; hydroxycinnamic acids, phenolamides and 

flavones. Sugar moieties attached to aglycones were also tentatively identified by 

examination of MSn events. Additionally, targeted analysis gave some insight into 

the chemical relationships between lines. However, it was found that the use of a 

larger population, an optimised methanol (MeOH) extraction protocol and the 

inclusion of an appropriate internal standard would be beneficial. Furthermore, 

MeOH extraction plus acid hydrolysis and comparison against standards enabled the 

identification of sugar moiety positions, when attached to core aglycones.   

In the post-pilot phase, the extraction of phenolic compounds from 185 PMiGAP 

lines was achieved using an optimised MeOH extraction method, with biochanin A 

as an internal standard. After targeted analysis, it was possible to accurately identify 

and compare peak areas of apigenin/luteolin glycosides (as a measure of relative 

abundance) in UV chromatograms. Five flavonoid glycosides/aglycones were 

quantified using standard calibration curves, on a molar basis and it was found that 

the content of all compounds was highly variable between lines. The correlation 

between polyphenol content and micronutrients was also investigated. Although no 

significant correlations were observed, upon application of a statistical filter, some 

clustering was revealed between apigenin and luteolin derivatives.  
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5.2 Introduction 

5.2.1 The Relationship between Polyphenolics and Micronutrient Bioavailability 

The bioavailability of a substance refers to the proportion absorbed and entered into 

systemic circulation (Xu et al., 1995). Pearl millet grains are rich sources of 

phytochemicals and micronutrients (Singh & Raghuvanshi, 2012). However, their 

benefits are often compromised by the presence of polyphenolic compounds, many 

of which are proven to have adverse effects on micronutrient bioavailability, via 

their metal chelating properties (Al-Sa'aidi, 2003, Cook & Samman, 1996). For 

example, some interfere with Fe absorption via the formation of insoluble complexes 

in the gastrointestinal lumen (Brune et al., 1989). Plant polyphenols are secondary 

metabolites that are ubiquitous in monocotyledonous and dicotyledonous plants and 

are synthesised via complex non-reversible pathways (Croizer et al., 2008). Whilst 

the literature reports several studies acknowledging their benefits, including 

improvement to gut microbiota, inflammation and diabetes symptoms (Cardoso et 

al., 2015), this study is one of the first to investigate the flavonones; apigenin, 

luteolin and their derivatives as significant inhibitors of Fe/Zn uptake. 

PMiGAP lines with elevated levels of Fe and Zn were previously identified in 

Chapter 3. However, increased grain Fe and Zn content may not necessarily translate 

into a proportional increase in absorbed Fe and Zn, if increased Fe and Zn correlates 

to increased concentrations of Fe and Zn absorption inhibitors (Tako et al., 2015). In 

light of this, it is necessary to investigate potential phenolic inhibitors in the 

PMiGAP as a prerequisite for the selection of elite, micronutrient-rich lines, for 

biofortification. Polyphenolic compounds that have been reported as inhibitors of 

mineral bioavailability can be seen in Table 5.1 (Nestel et al., 2006). 
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Table 5.1: Polyphenolic compounds in pearl millet showing a negative effect on 

mineral bioavailability/absorption (Tako et al., 2015). 

Class Compound Citation 

Flavonones 

Apigenin 

 

Mira et al., 2002 

 

Baicalein 

 
Perez et al., 2009 

Luteolin 
Mira et al., 2002 

 

Flavonol 

Galangin 

 
Park et al., 1989 

Kaempferol 

 
Mira et al., 2002 

Isoflavones 

Dihydrodaidzein 

 
Mira et al., 2002 

Genistein 

 
Benheral et al., 2008 

Anthocyanins 
Pelargonidin 

 
Wang et al., 2010 

 

In a recent in-vitro study, Tako et al., (2015) compared the capacity of Fe-

biofortified pearl millet (ICTP-9203, high-Fe, 85µg/g) and standard pearl millet 

(DG-9444, low-Fe, 26µg/g) to deliver Fe for haemoglobin (Hb)-Synthesis, in Red 

Junglefowl (Gallus gallus). However, the high-Fe pearl millet provided less 

absorbable Fe than expected. It was later concluded that a likely reason why high-Fe 

pearl millet wasn’t performing as well as expected was due to the presence of certain 

polyphenolic compounds and/or phytate. Therefore, polyphenolic and phytate 

profiles of pearl millet should be evaluated to further improve the bioavailability of 

Fe, and other mineral elements. 

5.2.2 Generic Structure and Major Classifications 

Polyphenols are a class of several thousand compounds found across all crops, fruits 

and vegetables. They are divided into two groups; flavonoids and non-flavonoids 

and their biological activity is directly linked with their chemical structure 

(Williamson & Manach, 2005). Flavonoids consist of the flavonols, flavones, 

isoflavones, flavonones and anthocyanidins. They represent the largest class of 

polyphenols, with a common structure of diphenylpropanes (C6-C3-C6), consisting 

of two aromatic rings linked through three carbons, as seen in Figure 5.1 (Ross & 

Kasum, 2002).  



129 
 

 

Figure 5.1: Basic flavonoid structure. 

The non-flavonoids comprise the phenolic acids (hydrobenzoic and 

hydroxycinnamic acids), lignans, and stilbenes (Etcheverry et al., 2012). Food 

polyphenols are typically bound to a sugar moiety, forming glycones; when the sugar 

moiety is absent, the core polyphenol structure is known as an aglycone. During 

gastrointestinal digestion, the aglycone may detach from the sugar moiety by 

acetolysis, resulting in a more absorbable compound (Etcheverry et al., 2012).  

5.2.3 Absorption of Flavonoids 

In humans, flavonoids are absorbed from the gastrointestinal tract and excreted either 

unchanged or as flavonoid metabolites in urine or faeces (Cook & Samman, 1996). 

They are well known antioxidants, free radical scavengers and metal chelators. The 

structural requirements for metal chelating activity are between three potential 

coordination sites; (i) between the 5-hydroxy and 4 carbonyl group, (ii) between the 

3-hydroxy and 4 carbonyl group and (iii) between the 3’,4’-hydroxy group on the B 

ring (Figure 5.2) (Symonowicz & Kolanek., 2012).  

 

Figure 5.2: Potential metal binding sites on a flavonoid molecule. 

Detailed information about absorption, metabolism and excretion of flavonoids in 

humans is scarce, which presents a gap in the literature. However, some studies 

suggest that they are not well-absorbed in humans and are unable to reach general 
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circulation unchanged/unmodified, in measurable concentrations (Gugler et al., 

1975). For example, in a study by Gugler et al., (1975) the metabolism of the 

flavonoid quercetin was investigated in six humans, aged 21-32 years. After oral 

administration of a single 4g dose, no measurable concentrations of quercetin or its 

derivatives were detected in plasma/urine. However, 53% of the oral dose was 

recovered unchanged in faeces. 1% of the oral dose, which equates to approximately 

40mg, was absorbed. Even though this result is significant, a 4g dose greatly exceeds 

what would normally be consumed in the diet and may not accurately reflect the 

metabolism of flavonoids from dietary sources. 

5.2.4 Analysis of Soluble Phenolics 

Analysis of soluble phenolics is greatly facilitated by tandem mass spectrometry 

(MS) coupled to liquid chromatography (LC), resulting in an important and widely 

used approach into the study of these compounds, without previous isolation or 

clean-up (Ferreres et al., 2007). Studying the relative abundance of the main ions 

from the MS preferential fragmentation on the -/+MSn events allows characterisation 

of the aglycone and other moieties that may be attached by C or O linkage. Factors 

that have previously hindered research are; (i) the inaccuracy of measuring 

compounds in biological samples, (ii) a dearth of information on their 

absorption/metabolism (Crozier et al., 2000) and (iii), the occurrence of complex 

mixtures of O-glycosyl and C-glycosyl flavones in phytochemical extracts is 

frequent and isolation of different compounds prior to identification is challenging 

(Ferreres et al., 2006). 

5.2.5 Factors Influencing Flavonoid Absorption 

The bioavailability of flavonoids (and attached micronutrients) depends on the 

glycoside moieties attached to the aglycone (Ross & Kasum, 2002; Gibson et al., 

2000). For example, a study by Felgines et al., (2000) demonstrated that the 

flavonoid naringenin (a flavone commonly found in grapefruit) occurs 

predominantly in two glycoside forms; naringenin-7-rhamnoglucoside and 

naringenin-7-glucoside. When the  absorption kinetics of the naringenin glycosides 

were studied in rats, it was found that even though the absorption kinetics were 

similar, naringenin-7-rhamnoglucoside exhibited a delay in intestinal absorption, 

resulting in a significant decrease in bioavailability (Felgines et al., 2000). 
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Additionally, upon the study of flavonoid urine recovery in rats, Xu et al., (1995) 

reported that the isoflavone daidzein had greater bioavailability than genistein, and 

apigenin had lower bioavailability than both isoflavones. This suggests that the core 

aglycone may also influence the rate of bioavailability (Xu et al., 1995). 

Flavonoid bioavailability may also be influenced by gut microflora (Klaasen & 

Rozman, 1991). For example, Xu et al., (1995) demonstrated that the bioavailability 

of daidzein and genistein, at three doses per day was about 21 and 9%, respectively, 

as measured by urine recovery of a known dose. It was elucidated that the range in 

results was a result of flavonoid bioavailability being dependent on the relative 

ability of gut microflora to degrade these compounds. Some bacteria present in the 

human intestine have the ability to metabolise and degrade flavonoids, as well as to 

free aglycones. Several groups of bacteria are responsible for this, including: 

Lactobacilli, Bacteroides and Bifidobacteria (Hawksworth et al., 1971). Xu et al., 

(1995) also showed that flavonoid glycosides are poorly absorbed in the small 

intestine, as compared with their aglycones, owing to the glycosides' higher 

hydrophilicity and greater molecular weight. 

5.2.6 Apigenin and Luteolin Pathways 

Many flavonoids have been subjected to a wide range of applications in medicine, 

pharmacy and in the food industry as antioxidants, preservatives and flavouring 

agents (You et al., 1993). However, flavonoids such as luteolin and apigenin (Figure 

5.3) in grains are in need of considerable attention because of their adverse effect on 

nutritional quality (Salunkhe et al., 1983).  
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Figure 5.3: Luteolin (left) and apigenin (right). 

Their anti-nutritional activity in grains can be reduced by; soaking in water, 

fermenting or by removal of the pericarp/testa (outer seed coat) by pearling. 

Treatment with alkaline reagents and ammonia can also remove up to 90% of 

polyphenols (Salunkhe et al., 1983).  

According to Figure 5.4, apigenin/luteolin biosynthesis begins with the condensation 

of three malonyl-CoA molecules with p-coumaroyl-CoA by chalcone synthase to 

form naringenin chalcone (Casas et al., 2014). Chalcone isomerase (CHI) then 

converts narigenin chalcone into the flavanone naringenin (Winkel-Shirley, 2001). 

Naringenin then acts as the substrate for the flavanone-3′-hydroxylase enzyme, 

which is encoded by the locus Pr1, to synthesise eriodictyol. Naringenin is then 

converted into various flavones which involve the enzymes flavanone-2-hydroxylase 

(F2H) and C-glycosyl transferase (CGT), to generate apigenin-6-C-glucoside (iso-

vitexin) or its isomer, apigenin-8-C-glucoside (vitexin). In the case of eriodictyol, the 

flavones generated after these conversions steps are luteolin-6-C-glucoside (iso-

orientin) or its isomer, luteolin-8-C-glucoside (orientin) (Winkel-Shirley, 2001; 

Morohashi et al., 2012). Flavones are often O or C glycosylated by glycosyl 

transferases, to generate, for example, apigenin-7-O-glucoside (Casas et al., 2014). 
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Figure 5.4: Proposed flavone and 3-deoxy flavonoid biosynthetic pathways. 

Condensation of p-coumaroyl-CoA and malonyl-CoA by chalcone synthase (CHS, 

encoded by the locus C2) produces naringenin chalcone, which is then converted to 

naringenin by chalcone isomerase (CHI). Naringenin is converted to apiforol 

(flavan-4-ol) by a dihydroflavonol reductase (DFR, A1) and polymerised into 

phlobaphenes. It may also be converted to isovitexin (C-glycosylflavone) by a 

flavanone-2-hydrohylase (F2H) and a C-glycosyl transferase (CGT). A flavone 

synthase (FNS) may also catalyse this step, followed by an O-glycosyl transferase 

(OGT). Naringenin may also be converted to eriodictyol by a flavanone-3′-

hydroxylase (F3′H, Pr1). The proposed steps for the conversion of apigenin and 

luteolin into the C-glycosylflavones (apimaysin and maysin) is thought to involve at 

least three enzymatic conversions: glycosylation at C6, followed by rhamnosylation 

and dehydration, mediated by Sm2 and Sm1. Enzymes are identified in black, those 

proposed in grey (Casas et al., 2014, Morohashi et al., 2012). 

 



134 
 

5.2.7 Preferential Metal Chelation Sites 

The metal chelating property of flavonoids is primarily due the presence of –OH 

groups, which chelate a free metal ion. The site where the removal of H atoms 

(deprotonation) from the -OH groups occur is where the metal atom is bound 

(Primikyri et al., 2014), thus preventing the participation of the metal ion in systemic 

circulation. When flavonoids bind Fe, they inhibit the catalysis of the Fenton 

reaction, which produces hydroxyl radicals. These are known to cause damage to 

cells (Primikyri et al., 2014). Iwahashi et al., (2004) observed from the measurement 

of visible high performance liquid chromatography-electron spin resonance-mass 

spectrometry (HPLC-ESR-MS) spectra that luteolin-7-O-glucoside chelates Fe ions 

(Iwahashi et al., 2004) and luteolin can form a luteolin–Fe(III) complex with a ratio 

of 1:1 and coordinate to the Fe(III) ion at the 3′,4′-dihydroxyl group in ring B of the 

luteolin molecule (Yang et al., 2014). This is the most favourable site, whereas the 4-

5 group is considered a less favourable complexation site (Primikyri et al., 2014). 

There are a number of studies where electrospray MS has been used to study metal 

ion interactions in flavonoids from different classes (Fernandez et al., 2002; Mira et 

al., 2002). For example, Fernandez et al., (2002) found that a spectrum given by 

luteolin, in the presence of Fe revealed two peaks at m/z 341 and 626, corresponding 

to the ions [Fe(II)+(M−H)]+ and [Fe(III)+2(M−H)]+. Complexation of Zn(II) ions 

with luteolin has also been verified with Nuclear Magnetic Resonance (NMR) 

spectroscopy and first-principle calculations, as demonstrated by Primikyri et al., 

(2014). The study suggests that the combined use of NMR spectroscopy with 

emphasis on the phenolic OH resonances, with ab-initio calculations (quantum 

chemistry using computational chemistry methods) provides a valuable tool for 

accurate structural and electronic description of flavonoid-metal diamagnetic 

complexes (Primikyri et al., 2014). The study also reports that even though it is 

possible for luteolin to bind to Zn2+ ions through two possible sites, (4-5H and 3H
’-

4H’), the 4-5H site appears to be the most favourable (Figure 5.5).  
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Figure 5.5: Potential chelation sites of metals (Image derived from Primikyri et al., 

2014). 

5.2.8 Other Uses for Flavonoids 

Although finding appropriate methods to reduce metal-chelating polyphenols in 

plants is important, research should equally focus on exploiting the 

pharmacological/medicinal properties of these compounds, especially in light of the 

on-going challenges associated with the high cost of drug development and the threat 

of drug resistance. Techniques such as CRISPR gene editing, tissue culture, GM and 

other modern plant breeding tools will play a vital role in exploring the beneficial 

effects of these compounds (Soetan, 2008). Certain flavonoids groups are reported to 

possess antibiotic (Soetan et al., 2006), antifungal (Jun et al., 1989) and antiviral 

activities (Okubo et al., 1994). Their beneficial traits are also of great interest owing 

to their antioxidant and free-radical scavenging abilities, observed in-vitro (Ross & 

Kasum, 2002). Luteolin is thought to reduce high blood cholesterol levels by 

inhibiting intestinal cholesterol absorption, mediated by the gene Niemann–Pick C1-

like 1 (Nekohashi et al, 2014). Flavones are also receiving considerable attention due 

to their potential role in the prevention/treatment of cancer (Messina, 1999). For 

example, tricin is proven to inhibit the growth of human-derived malignant MDA-

MB-468 breast tumour cells at sub-micromolar concentrations (Cai et al., 2004). 

Similarly, chrysoeriol, which is known for its antioxidant and anti-inflammatory 
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properties, may be used for the prevention/treatment of vascular diseases (Cha et al., 

2009). For example, a study by Cha et al., (2009) demonstrated that, upon 

investigation of the effect of chrysoeriol on the proliferation of human aortic smooth 

muscle cells, chrysoeriol significantly inhibited platelet-derived growth factor 

migration, which is one of the most potent factors in the development and 

progression of a variety of vascular disorders. 

5.3 Method Development 

Method development trials were conducted with the aim of extracting a wide range 

of polyphenolic compounds in pearl millet seed, using an optimised extraction 

protocol. 

5.3.1 Plant Material  

See Chapter 2, Table 2,3. 

5.3.2 Extraction, Clean-up and Separation 

Extraction 

HPLC analysis of grain begins with sample preparation, which involves grinding the 

sample into a fine powder, to obtain homogeneity of the matrix; this is usually 

followed by a solvent extraction to remove target compounds from other components 

in the matrix. In general, selecting a suitable solvent is based on the chemical 

properties of the compounds of interest. For polyphenols, MeOH (polarity index 5.1) 

is typically used as it is inexpensive and a wide range of polar (and some non-polar) 

compounds dissolve readily in it. It has a low boiling point of 65°C; therefore it is 

easily evaporated, thus reducing the length of time to complete a sample preparation 

protocol. 

Clean-up 

Sample clean-up is needed to reduce the detection limit and to limit interference 

from other compounds that may affect the identification and quantification of target 

compounds. This is often achieved by solid phase extraction (SPE), which is based 

on binding target compounds to a matrix, with bonded chemical groups which have 

appropriate chemical properties, such as C18 or an ion-exchange moiety. This is 
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usually carried out using cartridges based on silica particles for larger sample sizes 

(exceeding 1mL) or membrane discs for smaller sample sizes. Target compounds are 

separated from crude extracts by binding to the SPE matrix, followed by subsequent 

elution with an appropriate solvent. An advantage of this method is that it minimises 

the content of non-target compounds, which may interfere with the HPLC analysis 

and MS detection e.g. sugars. 

Separation 

Reversed Phase (RP) is routinely used for the separation of phenolic compounds and 

is characterised by hydrophobic interactions with the stationary phase and 

hydrophilic interactions with the mobile phase, which is dependent on the proportion 

of organic solvent in the mobile phase (Snyder, 2012). 

5.3.3 Protocol Optimisation 

A summary of the method development for protocol optimisation can be seen in 

Figure 5.6.  

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Summary of the protocol optimisation process. 
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Trial A: Effect of Extraction Solvent Volume on Extraction Efficiency 

Materials and Methods 

Using an electric powered grinding mill (Retsch Mortar Grinder Mill, 110V/60Hz 

OY-04181-10), 0.5g of whole pearl millet seed from each genotype was ground to 

obtain a fine powder, able to pass through a 1mm sieve. The effect of extraction 

solvent (MeOH) volume was tested with two extracts from the same PMiGAP line. 

Material was extracted initially with either 1/5mL 70% MeOH. Samples were 

vortexed for 1 minute and centrifuged at 13,000 rpm for 10 minutes. The supernatant 

was transferred to clean tubes. The pellets were then washed with 500µL 70% 

MeOH and centrifuged again at 13,000 rpm for 10 minutes. The second supernatant 

was added to the first supernatant fraction to maximise recovery of target 

compounds. The MeOH was then removed using a heated centrifugal evaporator 

(Jouan RC10.22) set to 70°C, at 13,000 rpm and 500µL distilled water was added to 

the residual aqueous fraction. A Waters Sep-Pak C18 500mg cartridge 

(WAT036945) was prepared by passing through 5mL 100% MeOH followed by 

5mL 5% acetic acid. Either 25 or 100% of the sample was then loaded into the 

cartridge (Table 5.2) and washed with 3mL water, and then eluted into a clean vial.  

Table 5.2: Sample extraction volumes and amount loaded into the SPE C18 

cartridges. 

Genotype 
Initial extraction 

volume (mL) 

% of sample added to 

SPE C18 

4036 1 100% 

4036 5 100% 

1037 1 *25% 

1037 5 *25% 
*Samples were made up to 4mL with purified water. 25% of the diluted sample was added onto the 

SPE C18 cartridge. 

The samples were then fully dried using a heated centrifugal evaporator at 13,000 

rpm, at 70°C and reconstituted in 70µL 70% MeOH. HPLC analysis was carried out 

on a Waters system with a 996 PDA detector and a 8 mm×100mm i.d., 4μm, C18 

Nova-Pak radial compression column (Waters), equilibrated with 100% solvent A 

(5% acetic acid) at a flow rate of 2 mL/min. The injection volume was 10µL. 

Compounds were eluted by linear gradient to 100% solvent B (100% MeOH) over 

50 minutes and monitored from 240 to 400 nm. 
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Results and Discussion 

Figure 5.7: HPLC chromatogram showing separation of soluble phenolic compounds 

in extracts of pearl millet (genotype 1037) detected by PDA at 280nm  following 

purification of 25% of the extract by SPE. Samples were extracted with either 1mL 

MeOH (A) or 5mL MeOH (B).  

Upon extraction method A, two main compounds were detected by HPLC-PDA. The 

two peaks at tr 16.7 and 18.3 minutes, which correspond to a luteolin derivative and 

an apigenin derivative, respectively were very weak according to the absorbance 

units. This indicates that extraction method A does not fully extract phenolic 

compounds compared to B, where stronger peak signals for 12 compounds were 

detected. 

 

 

 

 

 

 

 

A 

B 

25% 
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Figure 5.8: HPLC chromatogram showing separation of soluble phenolic compounds 

in extracts of pearl millet (genotype 4036) detected by PDA at 280nm following 

purification of 100% of the extract by SPE. Samples were extracted with either 1mL 

MeOH (C) or 5mL MeOH (D). 

Upon comparison of extraction method C to D, the same 6 peaks were detected. 

However, the peaks were much weaker where a 1mL MeOH extraction was used 

(C), as observed by the reduced UV absorbance signal. In light of this, a 5mL 

extraction solvent volume is deemed more appropriate for future work, as this 

resulted in greater extraction of compounds. 

Trial B – Solid Phase Extraction Optimisation 

The initial experiment on extraction volume efficiency described above indicated 

that samples loaded onto SPE cartridges may have exceeded the binding capacity of 

the columns when the total extract volume was loaded. An experiment was designed 

to test both the efficiency of extraction volume and binding capacity of SPE 

columns, with extracts from the same material. 

Materials and Method 

Samples of genotype 2052 were prepared and analysed by HPLC, as described 

above. 

D 

C 

100% 
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Table 5.3: SPE optimisation of extracts of genotype 2052 including: MeOH 

extraction volume, quantity added to SPE C18 cartridge and quantity dried down and 

resuspended in the final volume. 

Extraction 

method* 

Initial extraction 

volume (mL) 

% of sample 

added to SPE 

C18 

% of SPE C18 

eluent in final 

volume 

A 1 100% 25% 

B 5 100% 25% 

C 5 25% 100% 

D 1 25% 100% 
*All treatments were carried out in triplicate. 

Treatments A and D were extracted with 1mL 70% MeOH and B and C were 

extracted with 5mL 70% MeOH. B and C determined overloading of SPE C18 

cartridges. 

Results and Discussion 

Extraction method C was deemed the most replicable, upon comparison of % peak 

area (Table 5.4), as indicated by smaller differences between replicate readings, as 

compared to B. Therefore, it is likely that the SPE C18 cartridge was overloaded 

with extraction method B compared with method C. Methods A and D produced 

weak peaks indicating that the extraction with 1mL was not efficient, as observed 

above. In light of the above, out of the four extraction methods tested, C is deemed 

the most accurate and reliable. 
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Table 5.4: A comparison of the peak area (%) of compounds detected from all extraction methods. Method C was deemed 100% efficient and 

peak area % from other methods were worked out as a percentage of the average peak area of method C, per peak at each respective tr. 

Method/Replicate Peak Areas % 

tr (Mins) 3 9 9.5 10.3 13.5 15.8 16.3 17.3 18 18.8 

A1 - 18 - - 17 40 20 22 21 20 

A2 - 19 - - - 27 18 17 16 15 

A3 - 10 - - 6 10 13 10 10 10 

B1 - 27 - - 30 - 29 33 34 25 

B2 - 49 38 - 28 73 44 50 53 46 

B3 - 72 - - 66 68 93 75 69 58 

C1 99 86 87 - 74 86 91 90 91 92 

C2 95 100 100 - 100 100 100 100 100 100 

C3 100 100 100 - 100 100 100 100 100 100 

D1 - - - - - - 31 28 31 29 

D2 - - - - - 26 25 27 29 26 

D3 - - - - - - 29 29 31 28 

Conditional formatting has been used to colour the values in terms of high (green) and low (red) % peak area.
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Trial C: Investigation into the Effect of Shaking on Compound Extraction 

An experiment was designed to test if the inclusion/duration of a shaking step 

resulted in differences in the quantity of compounds extracted.  

Materials and Methods 

To test the effect of the inclusion of a shaking step and duration of shaking on the 

extraction of compounds, extracts were treated as described in Table 5.5 

Table 5.5: Duration of shaking step during extraction (genotype 1030) 

Extraction 

method* 

Duration of shaking step 

(minutes) 

X 0 

A 10 

B 30 

C 1440 
*All treatments were carried out in triplicate  

The extraction volume was 5mL 70% MeOH. Extraction methods A, B and C 

included a shaking step of 10, 30 and 1440 minutes, respectively (170rpm using a 

KSSOL digital IKA Labortechnik Shaker). Samples of genotype 1030 were 

extracted and analysed by HPLC, as described above.  

Results and Discussion 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: HPLC chromatograms showing differences in phenol profiles detected by 

PDA at 280.0nm. For A, samples were extracted with no shaking step and B, 

Current Date 21/12/2015Spectrum Index Plot

Sample 1030XB; Run Date 20/12/2015 13:39:10; Channel Id 1498;  PDA 280.0 nm; Gradient 0-100; Label ; Injection Volume 60.00

nm300.00

400.00 500.00

288.9

524.9

538.2552.8

8.112

nm300.00

400.00 500.00

311.4

13.463

nm300.00

400.00 500.00

243.0

318.5

14.110

nm300.00

400.00 500.00

255.9

349.4

16.491

nm300.00

400.00 500.00

268.9
337.5

17.589

A
U

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Minutes

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

8
.1

1
2

1
3
.4

6
3

1
4
.1

1
0

1
6
.4

9
1

1
7
.5

8
9

A
U

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Minutes

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

Project Name Hannah2015

1

2

3

RT Area

8.112

13.463

14.110

1604247.4

1424188.4

1674207.6

4

5

RT Area

16.491

17.589

5700098.4

13736468.4

Peak Results

Current Date 01/12/2015Spectrum Index Plot

Sample 24C; Run Date 30/11/2015 18:29:44; Channel Id 1229;  PDA 280.0 nm; Gradient 0-100; Label ; Injection Volume 60.00

nm250.00

550.00

255.9

534.6

546.7562.5

2.829

nm250.00

550.00

288.9

530.9

545.5

8.163

nm250.00

550.00

279.5

538.2

554.0

8.457

nm250.00

550.00

310.2

520.0

13.848

nm250.00

550.00

241.8

294.8

320.9

446.3

14.354

nm250.00

550.00

270.0

326.8

481.3

514.0

535.8

549.1

15.896

nm250.00

550.00

255.9

349.4

16.823

nm250.00

550.00

268.9

336.4

18.042

nm250.00

550.00

272.4

328.0

475.2

493.4516.4538.2562.5

19.642

nm250.00

550.00

319.7

515.2

556.4

584.4

22.890

nm250.00

550.00

272.4

288.9

345.9

470.4

510.3

528.5

564.9

23.148

nm250.00

550.00

284.2

484.9

34.509

nm250.00

550.00

284.2

486.1

505.5544.3

35.026

A
U

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Minutes

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

2
.8

2
9

8
.1

6
3

8
.4

5
7

1
3
.8

4
8

1
4
.3

5
4

1
5
.8

9
6

1
6
.8

2
3

1
8
.0

4
2

1
9
.6

4
2

2
2
.8

9
0

2
3
.1

4
8

3
4
.5

0
9

3
5
.0

2
6

A
U

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Minutes

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

Project Name Hannah2015

1

2

3

RT Area

2.829

8.163

8.457

1115719.4

1523702.0

1214050.3

4

5

6

RT Area

13.848

14.354

15.896

1999833.7

960972.2

1107448.9

7

8

9

RT Area

16.823

18.042

19.642

14819858.1

37905243.9

761150.8

10

11

12

RT Area

22.890

23.148

34.509

450038.6

508792.8

755430.3

13

RT Area

35.026 562694.7

Peak Results

A 

B 

a 

a 

b 

b 



144 
 

samples were extracted with a 30 minute shaking step. a- a luteolin derivative; b- an 

apigenin derivative. 

The results in Figure 5.9 suggest that the inclusion of a 30 minute shaking step 

caused a vast increase in the quantity of detectable compounds, when compared to a 

0 minute control. Upon comparison of a luteolin derivative and an apigenin 

derivative extracted with no shaking (A) and the same compounds detected with 30 

minutes shaking (B), it was observed from the peak area absorbance units (as a 

measure of relative abundance) that the quantity of compounds extracted increased 

up to twice as much. 

Additionally, there were no major differences between the peak areas of compounds 

detected after 30 minutes shaking, as compared to 1440 minutes shaking (Table 5.6). 

Therefore, 30 minutes was deemed sufficient for the extraction of all phenolic 

compounds present in pearl millet grain. 
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Table 5.6: Table to show differences in peak area (%) when shaking duration was manipulated. The average values of replicates at 1440 minutes 

were deemed the most efficient and peak area % from other methods were worked out as a percentage of these values, per peak at each 

respective tr. 

Shaking 
duration/Replicate 

Peak Areas % 

tr (Mins) 3 8.3 8.7 14.1 14.3 14.7 15 16.4 17.5 18.6 

0minsA - 100 - 96 - - - 100 100 - 

0minsB - 100 - 90 - - - 100 100 - 

0minsC - 100 - 100 - - - 100 100 - 

10minsA 86 100 74 38 - 100 100 - 87 88 

10minsB 100 100 100 60 - 100 100 100 100 100 

10minsC 100 100 89 46 100 100 100 100 81 81 

30minsA 96 100 85 56 100 100 91 75 92 94 

30minsB 93 100 85 48 100 100 100 - 89 92 

30minsC 100 100 94 55 100 100 100 74 99 96 

1440mins A 96 76 88 100 100 100 - 100 83 82 

1440mins B 91 100 88 86 79 - - - 98 97 

1440mins C 100 100 100 100 93 - - - 100 100 

Conditional formatting has been used to colour the values in terms of high (green) and low (red) % peak areas. 
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5.4 Experimental Aims 

34 PMiGAP lines were selected for analysis of phenolic compounds, based on high 

grain Fe and Zn content. Differences in the composition of phenolic compounds 

were determined by HPLC-PDA-MSn analysis and the dependent mode provided 

information on the fragmentation patterns of compounds detected. 

The initial study indicated differences between samples and revealed compounds that 

could potentially affect metal ion bioavailability. Based on these findings, a more 

detailed study was carried out with 57 PMiGAP lines. The untargeted HPLC-PDA-

MSn analysis provided data for the tentative identification and detailed analysis of 

phenolic compounds of matured raw grain. Additionally, sugar moieties attached to 

core aglycones were identified by analysing neutral losses (MS2 events). UV 

absorption profiles also contributed to the tentative identification of the aglycone. A 

targeted analysis facilitated the identification and comparison of the peak areas of 

identified phenolic compounds that may affect Fe/Zn bioavailability. This involved 

identifying peaks of interest in PDA chromatograms, including apigenin and luteolin 

glycosides, and measuring areas below the peak as a measure of the relative 

abundance of the compounds, for comparison between samples. In addition, data 

were analysed statistically for correlations between abundance of targeted 

compounds and micronutrient content, as well as for clustering between lines. 

MS2 fragmentation patterns for luteolin and apigenin glycosides identified in grains 

clearly showed that compounds contained both O and C linked sugars. For the 

purpose of structural elucidation, a sample of the line HHB67 improved, was acid 

hydrolysed and analysed to help identify what position the C-linked sugar moieties 

were attached to core aglycones. When a glycoside is subjected to acidic conditions, 

acetolysis occurs, which breaks the attached O-linkage, releasing the O-glycoside. 

The resulting C-linked glycosides remain attached. Products can then be compared to 

iso-vitexin/vitexin for apigenin and iso-orientin/orientin for luteolin. On the basis 

that the position of the sugars on apigenin can only occur in two positions (C6 or 

C8); these were compared to iso-vitexin (where the sugar is attached on position C6) 

and vitexin (sugar on position C8) standards. For luteolin the same position 

principles occurs for iso-orientin (sugar on position C6)/ orientin (sugar on position 

C8).  
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A further study was carried out with the aim of developing a more high through-put 

method for the analysis of pearl millet phenolic compounds, compared with the 

previous two studies. The method used for the previous targeted analysis was 

optimised to accurately identify and compare the abundance of phenolic compounds 

that may affect the bioavailability of absorbable Fe/Zn, in 185 PMiGAP lines. This 

involved the isolation of peaks and comparing all data together by analysing the 

differences in compound relative abundance between each line. Flavonoid glycosides 

were also quantified using aglycone standard calibration curves, on a molar basis. 

Furthermore, the correlation between abundance of phenolic compounds and 

micronutrient content was investigated, as well as the clustering between lines.  

5.5 Materials and Methods 

5.5.1 Plant Material 

See Chapter 2, Table 2.3. 

5.5.2 Sample Preparation  

34 and 57 × PMiGAP lines 

Using an electric powered grinding mill (Retsch Mortar Grinder Mill, 110V/60Hz 

OY-04181-10), 0.5g of whole pearl millet seed from each genotype was ground to 

obtain a fine powder, able to pass through a 1mm sieve. The extraction volume was 

5mL 70% MeOH with added internal standard (5mg of ethyl ferulate added to 50mL 

70% MeOH, this created a 100× stock solution. 2mL of the stock solution was added 

to to 198mL 70% MeOH to create the working solution). Samples were left to shake 

for 30 minutes (170 rpm using a KSSOL digital IKA Labortechnik Shaker), then 

centrifuged at 13,000 rpm for 10 minutes. The supernatant was transferred to clean 

tubes. The pellets were then washed with 500µL 70% MeOH and centrifuged again 

at 13,000 rpm for 10 minutes. The second supernatant was added to the first 

supernatant fraction to maximise recovery of target compounds. The MeOH was 

then removed using a heated centrifugal evaporator (Jouan RC10.22) set to 70°C, at 

13,000 rpm and 500µL distilled water was added to the residual aqueous fraction. A 

Waters Sep-Pak C18 500mg cartridge (WAT036945) was prepared by passing 

through 5mL 100% MeOH, followed by 5mL 5% acetic acid. 25% of the sample was 

then loaded into the cartridge and washed with 3mL water, and then eluted into a 
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clean vial. The samples were then fully dried using a heated centrifugal evaporator at 

13,000 rpm, at 70°C and reconstituted in 70µL 70% MeOH. 

Analysis of Hydrolysed and Non-Hydrolysed HHB67 Improved 

Non-hydrolysed 

10g of pearl millet seed was prepared as above and extracted in 100mL 70% MeOH. 

After centrifigation, the pellet was washed with 5mL 70% MeOH. The sample was 

fully dried using a heated centrifugal evaporator (Jouan RC10.22) set to 70°C, at 

13,000 rpm, then reconstituted in 1mL 70% MeOH plus 9mL distilled water. 1mL at 

a time was loaded into a Waters Sep-Pak C18 500mg cartridge (WAT036945), 

prepared as above. The sample was then taken down to 2mL using a heated 

centrifugal evaporator at 13,000 rpm, set to 70°C.  

Hydrolysed  

10g of pearl millet seed was prepared as above. 8mL distilled water was added to the 

2mL concentrated sample, along with an equal volume of 2M HCL. The sample was 

boiled using a water bath, set to 90°C for 1hr then neutralised with 1M NaOH, 

checking the pH regularly until pH3 was reached. The sample was loaded 1mL at a 

time through a Waters Sep-Pak C18 500mg Cartridge and taken to dryness using a 

heated centrifugal evaporator at 13,000rpm, set to 70°C and reconstituted in 2mL 

70% MeOH. 

185 × OP PMiGAP lines 

0.1g of pearl millet seed was prepared as above and extracted in 1mL 70% MeOH 

with added internal standard (5mg of biochanin A added to 50mL 70% MeOH, this 

created a 100× stock solution. 2mL of the stock solution was added to to 198mL 

70% MeOH to create the working solution). Samples were prepared as described 

above, minus the use of a Waters Sep-Pak C18 Cartridge, then taken to dryness 

using a heated centrifugal evaporator at 13,000rpm, at 70°C and reconstituted in 

70µL 70% MeOH, then diluted with 70% MeOH, 10 fold. 
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Control and Blank 

A control sample was prepared without pearl millet material, as per the method 

described above. The blank consisted of 1mL working solution. 

5.5.3 HPLC Analysis 

HPLC-PDA 34 × PMiGAP lines 

HPLC analysis was carried out as described in section 5.3.3. 

HPLC-PDA-MSn 8 × PMiGAP lines 

Samples were fully dried using a heated centrifugal evaporator at 13,000 rpm, set to 

70°C and reconstituted in 50µL 70% MeOH, then diluted with 70% MeOH, 10 fold. 

HPLC-MS analysis was performed on a Thermo Finnigan LC-MS system (Thermo 

Electron Corp., Waltham, MA, USA) comprising a Finnigan Surveyor PDA Plus 

detector and a Finnigan LTQ linear ion trap with ESI source, and the column used 

was a 3.9mm×100mm i.d., 4μm, C18 Nova-Pak (Waters). The autosampler tray 

temperature was maintained at 5°C and the column temperature at 30°C. The sample 

injection volume was 20μL, the detection wavelength was set to 240−400nm, and the 

flow rate was 1 mL/min, with 100 μL/min going to the mass spectrometer. The 

mobile phase consisted of water/formic acid (A; 100:0.1, v/v) and MeOH/formic 

acid (B;100:0.1,v/v). The column was equilibrated with 95% solvent A and the 

percentage of B increased linearly to 60%, over 65 min. Ionisation parameters were 

optimised by infusion of chlorogenic acid standard at a constant rate into the LC 

flow. Mass spectra were acquired in negative and positive ionisation mode with the 

following interface and MS parameters: sheath gas 30 and auxiliary gas 15 (both 

arbitrary units), spray voltage -4.0 kV in negative and 4.8 kV in positive ionisation 

mode, capillary temperature 320 °C, capillary voltage -1.0 and 45 V, respectively, 

and tube lens voltage -68 and 110 V, respectively 

HPLC-PDA-MSn 57 × PMiGAP Lines for Untargeted Analysis 

As described above. 
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HPLC-MSn 55 × PMiGAP Lines for Targeted Analysis 

A Waters Xevo TQ-S ultra performance liquid chromatography - tandem mass 

spectrometer (UPLC-MS/MS) system was used to target specific ions in negative 

ionisation mode. Targeted ions can be seen in Table 5.7. 

Table 5.7: Targeted  parent and daughter ions in 55 lines. 

Compound tr (mins) Parent Ion Daughter Ions 

Apigenin7-glycoside 3.5 431 - 

Ethyl Ferulate 6.2 221 134 

P-Coumaric Acid 3.4 163 119 

Apigenin 5.2 269 179 

Luteolin 4.6 285 217 

Vitexin 3.0 431 311 

Orientin 2.8 447 327 

Luteolin7-glycoside 3.1 449 287 

Luteolin + Caffeic 1.9 771 609 

Dicaffeoyl 

Spermidinea 
2.1 468 332 

2”-O-Hex-C-Hex-

Apigenina 
2.7 593 413 

C-O-Dihexosyl-

Luteolina 
2.5 609 489 

C-Hex-C-Pent-

Apigenina 
2.5 563 473 

a Putative identifications. 

A 5μL aliquot was injected onto a BEH C18 column (150×2.1mm, 1.7μm, Waters) 

on a Waters Acquity UPLC with a Xevo Triple Quadrupole Mass spectrometer. The 

mobile phase consisted of an acetonitrile (0.1% v/v formic acid)/water (0.1% v/v 

formic acid) gradient (10:90 to 60:40 over 6 minutes; to 98:2 over 0.5 minutes; hold 

for 2 minutes; to 10:90 over 0.5 minutes; hold for 1 minute) at a flow rate of 

0.2 mL/min and a column temperature of 40 °C. Data were analysed using the 

Waters MassLynx 4.1 software. Quantities of each metabolite were established by 

monitoring specific transitions in multiple reaction monitoring (MRM) mode (Table 

5.7) and normalised to the internal standard (ethyl ferulate, ethyl 4-hydroxy-3-

methoxycinnamate). 
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Analysis of Hydrolysed and Non-Hydrolysed HHB67 Improved 

UV-HPLC 

A 5μL aliquot was injected onto a Kinetex 5u Biphenyl 100A column (Phenomenex, 

150 × 4.6 mm) with a ZORBAX Eclipse XDB guard column (1.0 mm × 17 mm).  

The mobile phase consisted of a MeOH: acetic acid (100:0.2 v/v) gradient (25% to 

50% over 20 minutes; hold for 4 minutes; to 95% over 1 minute; hold for 4 minutes) 

at a flow rate of 1 mL/min and a column temperature of 35 °C.  Signals were 

recorded at 280 nm for putative flavonoid diglycosides. 

Fraction collecting 

Putative flavonoid diglycosides were collected using the fraction collecting function. 

Fractions were collected on a time basis, 6.6-7.2 minutes (Peak 1) and 8.5-9.5 

minutes (Peak 2). Collected fractions were then fully dried under nitrogen and 

reconstituted in 50µL 70% MeOH, for further analysis by MS. The purpose of this 

was to verify compounds in collected fractions. Fractions were subsequently 

analysed by HPLC-MSn, as described in above. 

MS/MS 

As described above. 

HPLC-MSn Targeted Analysis of 185 × OP PMiGAP Lines 

A Waters Xevo TQ-S UPLC-MS/MS system was used to target specific ions in 

negative ionisation mode. Targeted ions can be seen in Table 5.8. 
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Table 5.8: Targeted  parent and daughter ions in 185 lines. 

Compound tr (mins) Parent Ion Daughter Ions 

Apigenin7-glycoside 3.5 431 - 

Biochanin A 6.98 283 268 

P-Coumaric Acid 3.4 163 119 

Apigenin 5.2 269 179 

Luteolin 4.6 285 217 

Vitexin 3.0 431 311 

Orientin 2.8 447 327 

Luteolin7-glycoside 3.1 449 287 

Luteolin + Caffeic 1.9 771 609 

Dicaffeoyl 

Spermidinea 
2.1 468 332 

2”-O-Hex-C-Hex- 

Apigenina 
2.7 593 413 

C-O-Dihexosyl-

Luteolina 
2.5 609 489 

C-Hex-C-Pent- 

Apigenina 
2.5 563 473 

a Putative identifications. 

A 10μL aliquot was injected onto a BEH C18 column, as described above. Amounts 

of each metabolite were established by monitoring specific transitions in MRM 

mode (Table 5.8) and normalised to the internal standard (biochanin A, 5,7-

dihydroxy-4′-methoxyisoflavone).  

5.5.4 Standards 

Standards: Orientin (O9765-1MG), iso-Orientin (I1536-1MG), vitexin (49513-

10MG-F), iso-vitexin (17804-1MG), apigenin (A3145-5MG), luteolin (L9283-

10MG), luteolin7-O-β-D-glucoside (449968), apigenin7-glucoside (44692), ethyl 4-

hydroxy-3-methoxycinnamate (320617-1G), p-coumaric acid (C9008-1G), biochanin 

A, 5,7-dihydroxy-4′-methoxyisoflavone (D2016-100MG) were obtained from 

Sigma-Aldrich (Gillingham, UK). 

5.5.5 Statistical Analysis 

Data were analysed under the Qlucore Omics Explorer, v3.2 environment, using 

hierarchical cluster analysis and principal component analysis. P<0.05 filters were 

applied where appropriate. 
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5.6 Results and Discussion 

5.6.1 Analysis of 34 × PMiGAP lines 

HPLC-PDA 

Initially, the separation of soluble phenolic compounds in 34 PMiGAP lines were 

detected by HPLC with PDA at 280.0nm, to identify compounds that could 

potentially affect metal ion bioavailability and any differences between lines. Results 

indicated that the majority of samples presented similar composition and a typical 

chromatogram is shown in Figure 5.10. This is consistent with the strong tendency 

for plants of the same species to produce similar compounds (Cuyckens & Claeys, 

2004). Compounds were tentatively identified based on spectral scans, 240-400nm 

(Table 5.9).  

Figure 5.10: HPLC chromatogram showing a typical profile of soluble phenolic 

compounds in extracts of 34 PMiGAP lines detected by PDA at 280 nm. Compounds 

were separated with a Waters HPLC system on a 8 mm×100 mm i.d. 4μm, C18 

Nova-Pak radial compression column. Peak numbering corresponds with Table 5.9.  

Table 5.9: Tentative identifications of phenolic compounds in pearl millet based on 

UV spectra information 

Peak 

No. 

tr 

(mins) 
UV Max Aglycone tentative ID 

1 7.9 288 -* 

2 13.1 310 
P-Coumaric Acid 

derivative 

3 13.9 319 -* 

4 16.2 256, 349 Luteolin derivative 

5 17.5 268, 337 Apigenin derivative 
*Could not be identified 
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8 lines were selected based on a small amount of variation detected within the 

population, as per the quantity (absorbance units as per peak area) of compounds 

detected (Figure 5.11). 

HPLC-PDA-MSn Untargeted Analysis 

In the 8 lines where variation was present, a more detailed analysis was carried out 

by HPLC-PDA-MSn. Figure 5.12 shows an example of the data obtained by this 

method. The dependent mode provided information on the fragmentation patterns of 

compounds (Figure 5.11). Additionally, sugar moieties attached to aglycones were 

identified by analysis of neutral losses (MS2 events). Peaks of interest were 

identified from the full scan PDA chromatograms (Figure 5.12, A). Full MS 

chromatograms in both negative (Figure 5.12, B) and positive ionisation modes 

(Figure 5.12, C) were obtained and MS peaks were matched with UV peaks of 

interest. 
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Figure 5.11: Differences in peak area as a measure of relative abundance seen for 8 PMiGAP genotypes. 
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Figure 5.12: HPLC-PDA-MS chromatograms and spectra for an extract of a selected 

genotype. Individual figures show: A total PDA scan at 280-400nm (A); full MS 

scan in negative mode (B); full MS scan in positive mode (C); UV spectrum of the 

22.7 min peak (D); full MS negative mode spectrum of the 22.7 min peak (E); full 

MS positive mode spectrum of the 22.7 min peak (F); MS2 chromatogram for 609 

negative ion (G); MS2 spectrum for the 609 negative ion at 22.7 min (H). 

 

For peaks of interest, the UV spectral scans (240-400nm) were recorded (Figure 

5.12, D). The observed profile and UV maxima (256, 265 and 347nm) are consistent 

with a luteolin glycoside. Parent ions were identified by analysing the full MS data 

in both negative and positive ionisation modes (Figure 5.12, E and F). In this 

example, E and F show the nominal mass of parent ions present at 22.69 minutes. 
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From the data, it was possible to match the parent ions with the phenolic compound 

eluting at the time. The most abundant matching ions in negative ionisation mode 

have masses of 654.64 and 609.21 units, respectively. The former is a formic acid 

adduct (Figure 5.13) [M–H + 46]- of the latter [M-H]- where M, the nominal mass, is 

610 units. This is supported by the dominant ion observed in positive mode, with a 

mass of 611.15 [M+1]+.  

 

 

 

 

 

 

 

Figure 5.13: Formic artefact.  

Figure 5.14 shows a typical UV profile of the soluble phenolics extracted from pearl 

millet grains of the 8 selected lines following analysis with the Thermo-Finnegan 

LC-MS system. The profile shows some differences with profiles obtained with the 

Waters HPLC system shown in Figure 5.10. This is probably due to differences 

between columns and gradients used within the two systems. Analysis by HPLC-MS 

with PDA detection revealed approximately 4 compounds that could be easily 

distinguished (Table 5.10). Several aglycones and their sugar moieties were readily 

identified by comparison of retention time and fragmentation pattern with known 

standards. Others were tentatively identified by the similarity of UV absorbance 

characteristics and comparison with compounds reported in the literature. 

Four main compounds were identified (Table 5.10), with a luteolin glycoside being 

the most prominent compound detected in the majority of cases. 
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Figure 5.14: HPLC-MS chromatogram showing a typical profile of soluble phenolic 

compounds in extracts of pearl millet detected by PDA at 280 nm. Compounds were 

separated with a Thermo Finnigan LC-MS system on a 3.9 mm × 100 mm i.d. 4 μm, 

C18 Nova-Pak column. Peak numbering corresponds with Table 5.10.  

Table 5.10: UV maxima, full MS ions and MS2 events for compounds detected in 

extracts of selected PMiGAP genotypes. 

Peak 

No. 

tr 

(mins) 

UV 

Max 

Nominal 

Mass, Mr 

Da 

Parent Ions 

MS2 

Fragments 

(in order of 

intensity) 

Neutral 

loss 

(MS – 

MS2) 

Tentative 

identification 

1 9.11 289.0 

301.0 

234 (-ve) Not 

detected 

(+ve) 235.00 

(-ve) 

Not detected 

 

(+ve) 

218 

88 

(-ve) 

Not 

detected 

(+ve) 

17 

147 

Coumaroyl 

Putrescine 

2 13.96 290.0 

303.0 

164 163.02 (-ve) 

(+ve) Not 

detected 

(-ve) 

119 

(+ve) 

Not detected 

(-ve) 

44 

(+ve) 

Not 

detected 

P-Coumaric 

Acid 

3 22.60 265.0 

347.0 

610 609.21 (-ve) 

611.15(+ve) 

(-ve) 

327 

489 

357 

(-ve) 

282 

120 

252 

Luteolin 

glycoside 
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dilution) – 

413 
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Figure 5.15: Frequency (%) of compounds detected within 8 × PMiGAP lines. 
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* 

Figure 5.16: Detailed analysis of negative ion 593 in genotype 1032 (1:1 dilution- 

targeted). Individual figures show: 1:10 dilution, PDA, full MS negative mode (red), 

full MS positive mode (green) (A); 1:1 dilution MS2 of targeted ion 593 at 22.2 

minutes (B); 1:1 dilution, PDA, full MS negative mode (red) (C);  1:1 dilution MS2 

retention time 23.9 minutes (D).  

Elucidation of compound structure 

Two samples, where the parent ions were known (1032, IP19386 and 3055, 

IP16638) underwent further fragmentation by targeting specific ions from the MS2 to 

help elucidate structure. Where compounds could not be identified using standards, 

their structure was elucidated based on UV profiles and co-eluting parent ions. UV 

spectra gave an indication of the phenol class and fragments observed and +/-MS2 

events allowed confirmation of the core aglycone. Once this was established, the 

nature of sugar linkages in glycosylated compounds was determined. Two types 

were observed: O-linked glycosylation (the attachment of a sugar molecule to an O 

atom on the phenol ring) and C-glycosylation (the attachment of a sugar molecule to 

the phenol via a carbon-carbon linkage) (Ferreres et al., 2007). The sugar fragment 

that is lost from the core can be determined by the fragmentation patterns observed 

in mass spectra in the case of hexoses, deoxyhexoses and pentoses (Vukics & 
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Guttman, 2010). Loss of 180/162 or 150/132 units indicates the loss of an O-linked 

hexose or pentose sugar respectively, while losses of 120/90 or 90/60 indicate the 

loss of a C-linked hexose or pentose sugar, respectively. A fragment corresponding 

to the aglycone +41/71 units also indicates a C-linked sugar. According to Ferreres 

et al., (2007), three groups can be determined according to fragmentation pattern: Y0
- 

(loss of 162), Z1
- (loss of 180) and X0/1

- (loss of 120) (Figure 5.17). Cleavage at X0/3
- 

will result in a loss of 90 units and this is also observed in some cases. Z- is the most 

common fragmentation pattern of O-glycosyl-C-glycosyl flavones (Ferreres et al., 

2007). Table 5.11 shows the diagnostic mass losses observed from mass spectral 

data for pearl millet compounds. This leads to determination of fragmentation pattern 

X0
- Y0

- and Z1
-, respectively. 

It is also possible to distinguish between O-glycosylation at the 2’ and 6’ positions 

on flavonoid core molecules (Ferreres et al., 2007).   

 

Figure 5.17: General fragmentation of O-glycosyl-C-glycosyl flavones (Ferreres et 

al, 2007). 

 

 

 

 



162 
 

Table 5.11: Aglycones (Ag) and diagnostic mass losses of main compounds detected 

in PMiGAP lines, full MS shows parent ion in negative ionisation mode: [M-H]- and  

MS2 data show main fragment ions. 

Aglycone 

(Ag) 

Molecular 

Weight 

Full MS 

[M-H]- 
MS2 ions and mass losses 

3 Luteolin 286 

[M-H]- 

609 

 

[M-H]- 

-120 -180 Ag+41 Ag+71 

489    429   327    357 

4 Apigenin 270 

[M-H]- 

593 

 

[M-H]- 

-120 -180 Ag+41-18 

473 413    293 

2 

P-Coumaric 

Acid 

164 

[M-H]- 

163 

 

[M-H]- 

-44      -28 

119     135 

 
Z1

-(2” –O-Glycosyl-C-glycosyl derivatives) -180(-162-18,hexose). 

Compound 3: UV maxima (265, 347 nm) and MS fragments indicate that the 

aglycone is luteolin (mass 286 units). The fragmentation patterns from the MS2 

events in negative ionisation mode indicate a C-linkage to the aglycone with a 

hexose sugar dimer (-120, -180). The presence of [Ag+41]- and [Ag+71]- are 

indicative of mono-C-glycosyl flavones (a single C-C sugar linkage). In light of this, 

the compound has been tentatively identified as C-O-dihexosyl-luteolin. 

Compound 4: UV maxima (268, 336 nm) and MS fragments indicate that the 

aglycone is apigenin (mass 270 units). The fragmentation patterns from the MS2 

events in negative ionisation mode indicate a C-linkage to the aglycone with a 

hexose sugar dimer (-120, -180). The fragmentation patterns indicate one C-linked 

glycoside plus another sugar moiety that is attached by a sugar linkage to the first 

sugar moiety and that the O-glycosylation is at the 2” position. In light of this, the 

compound has been tentatively identified as 2”-O-hex-C-hex-apigenin 

Compound 2: This compound has been identified as p-coumaric acid (mass 164 

units), the fragmentation patterns from the MS2 events in negative ionisation mode 

indicate a loss of CO2 (-44) and a loss of CO (-28). A positive identification was 

later provided by comparison with a standard. 
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5.6.2 HPLC-PDA-MSn Untargeted Analysis of 57 × PMiGAP lines 

The previous study revealed compounds that could potentially affect metal ion 

bioavailability in all PMiGAP lines tested. Based on these findings, a more detailed 

analysis was carried out with 57 PMiGAP lines, for the tentative identification and 

analysis of phenolic compounds present in pearl millet grain. Figure 5.18 shows 4 

UV chromatograms representing different profiles of soluble phenolics extracted 

from 57 PMiGAP lines. Analysis by HPLC-MS with PDA detection revealed 

approximately 16 compounds that could be easily distinguished (Table 5.12). 

Several compounds were readily identified by comparison of retention times and 

fragmentation patterns with known standards. Others were tentatively identified by 

the similarity of UV absorbance characteristics and comparison with compounds 

reported in the literature. Compounds identified by HPLC-MS include 

hydroxycinnamic acids, phenolamides and flavones. Relatively abundant flavonoids, 

previously reported by Chandrasekara & Shahidi, (2011) and Shekhar et al., (2016) 

in pearl millet were identified in extracts. 
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Figure 5.18: 4 UV chromatograms showing distinct profiles of soluble phenolic compounds in extracts of pearl millet detected by PDA at 

280nm. Peak numbering corresponds with Table 5.12. 
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Table 5.12: UV maxima, full MS ions and MS2 events for compounds detected in 

extracts of samples selected from 57 PMiGAP genotypes. 

Peak 

No. 

tr 

(mins) 

UV 

Max 

Nominal 

Mass, Mr 

Da 

Parent Ions 

MS2 

Fragments 

(in order of 

intensity) 

Neutral 

loss (MS 

– MS2) 

Tentative 

identification 

1 12.34 309.0 164 
163.20 (-ve) 

165.27 (+ve) 

(-ve) 

119 

(+ve) 

147 

(-ve) 

44 

(+ve) 

18 

P-Coumaric 

Acid 

2 35.26 
299.0 

322.0 
222 

(-ve) 

Not Detected 

223.20 (+ve) 

- - 

Ethyl 4-

hydroxy-3-

methoxycinna

mate (98%) 

(IS) 

3 41.22 
268.0 

342.0 
330 

329.28 (-ve) 

331.25 (+ve) 

(-ve) 

314 

(+ve) 

315 

270 

287 

(-ve) 

15 

(+ve) 

16 

61 

44 

Tricin 

4 8.73 322.0 354 
353.22 (-ve) 

355.08 (+ve) 

(-ve) 

191 

(+ve) 

163 

(-ve) 

162 

(+ve) 

192 

Chlorogenic 

Acid 

(5-Caffeoyl 

quinate) 

5a 20.26 
295.0 

319.0 
469 

468.40 (-ve) 

470.46 (+ve) 

(-ve) 

332 

(+ve) 

220 

308 

453 

291 

163 

145 

(-ve) 

136 

(+ve) 

250 

162 

17 

179 

307 

325 

Dicaffeoyl 

Spermidine 

5b  

Not 

Detect

ed* 

564 
563.15 (-ve) 

565.08 (+ve) 

(-ve) 

473 

443 

503 

353 

383 

545 

(+ve) 

547 

529 

427 

511 

(-ve) 

90 

120 

60 

210 

180 

18 

(+ve) 

18 

36 

138 

54 

Apigenin (C-

Hex-C-Pent-

Apigenin) 

6 21.48 
267.0 

348.0 
610 

609.44 (-ve) 

611.27 (+ve) 

(-ve) 

489 

429 

327 

357 

449 

(+ve) 

(-ve) 

120 

180 

282 

252 

160 

(+ve) 

Luteolin 

(C-O-

Dihexosyl-

Luteolin) 
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449 

329 

431 

287 

491 

162 

282 

180 

324 

120 

7 22.91 
267.0 

337.0 
594 

593.32 (-ve) 

595.38 (+ve) 

(-ve) 

Not Detected 

(+ve) 

433 

449 

475 

415 

313 

271 

 

 

 

162 

146 

120 

180 

282 

324 

Apigenin 

(2”-O-Hex-C-

Hex-Apigenin) 

 

8 26.36 292.0 283 
282.39 (-ve) 

284.32 (+ve) 

(-ve) 

119 

145 

167 

162 

134 

(+ve) 

147 

(-ve) 

163 

137 

115 

120 

148 

(+ve) 

137 

Coumaroyl 

Tyramine 

9 28.35 

sh 

294.0 

318.0 

313 
312.38 (-ve) 

314.38 (+ve) 

(-ve) 

178 

297 

135 

(+ve) 

177 

145 

(-ve) 

134 

15 

177 

(+ve) 

137 

169 

Feruloyl 

Tyramine 

10 33.05 
293.0 

309.0 
410 

409.43 (-ve) 

411.33 (+ve) 

(-ve) 

289 

259 

135 

(+ve) 

265 

235 

291 

261 

177 

147 

(-ve) 

120 

150 

274 

(+ve) 

146 

176 

120 

150 

234 

264 

Feruloyl 

Coumaroyl 

Putrescine1 

11 14.80 310.0 238 
237.20 (-ve) 

239.12 (+ve) 

(-ve) 

119 

163 

145 

(+ve) 

147 

(-ve) 

118 

174 

192 

(+ve) 

92 

Coumaroyl 

glycerate 

12 24.20 

sh 

296.0 

320.0 

483 
482.44 (-ve) 

484.37 (+ve) 

(-ve) 

346 

332 

(+ve) 

234 

322 

147 

220 

177 

(-ve) 

136 

150 

(+ve) 

250 

162 

17 

264 

307 

Caffeoyl 

Feruloyl 

Spermidine 
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13 26.12 
296.0 

320.0 
624 

623.29 (-ve) 

625.22 (+ve) 

(-ve) 

443 

(+ve) 

463 

445 

343 

301 

305 

(-ve) 

180 

(+ve) 

162 

180 

282 

324 

320 

Chrysoeriol-

C,O-

Diglycoside 

14 17.67 
270.0 

333.0 
772 

771.32 (-ve) 

773.26 (+ve) 

(-ve) 

609 

(+ve) 

611 

449 

491 

(-ve) 

162 

(+ve) 

162 

324 

282 

Luteolin + 

Caffeic 

 

15 27.64 
288.0 

295.0 
467 

466.00 (-ve) 

468.00 (+ve) 

(-ve) 

Not Detected 

(+ve) 

147 

177 

204 

234 

292 

 

 

 

321 

291 

264 

234 

176 

P-Coumaroyl 

Feruoyl 

Spermidine 

16 

(Co-

eluted 

with 

4) 

8.73 
299.0 

308.0 
410 

409.00 (-ve) 

411.00 (+ve) 

(-ve) 

177 

265 

(+ve) 

89 

264 

(-ve) 

232 

144 

(+ve) 

322 

147 

Feruloyl 

Coumaroyl 

Putrescine2 

17 35.57 
298.0 

322.0 
424 

423.00 (-ve) 

425.00 (+ve) 

(-ve) 

Not Detected 

(+ve) 

177 

147 

279 

249 

 

 

(+ve) 

248 

278 

146 

176 

Coumaroyl 

Feruoyl 

Cadaverine 

        
*Not detected due to coeluting compounds (5a and 5b). 
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Figure 5.19: Frequency (%) of compounds detected within 57 × PMiGAP lines 

(Names as in table). 

Hydroxycinnamic acids  

A number of hydroxycinnamic acids, previously identified in pearl millet were 

identified in this study (Chandrasekara & Shahidi, 2011). For example, compound 1 

with Mr 164 Da and tr 12.34 mins showed characteristics consistent with p-coumaric 

acid with a UV-maxima at 309.0. The parent ion at m/z 163 in negative ionisation 

mode produced a base peak in the MS2 at m/z 119 [coumaric acid – CO2]. 

Additionally, the parent ion at m/z 165 in positive ionisation mode produced a base 

peak in the MS2 at m/z 47 [coumaric acid – H2O].  

Although many medicinal characteristics are associated with this group, such as 

antioxidant, anti-carcinogenic and anti-inflammatory activities, very few studies 

have addressed the bioavailability of hydroxycinnamic acids and their effect on 

micronutrient uptake. A study by Manach et al., (2005) suggests that when ingested 

in the free form, hydroxycinnamic acids are rapidly absorbed from the small 

intestine. However, these compounds are naturally esterified in plant products, and 

this impairs their absorption (Manach et al., 2005). 
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Compound 4 with Mr 354 Da and tr 8.73 mins showed characteristics consistent with 

chlorogenic acid (5-caffeoyl-quinate), with a UV maxima at 322.0. The parent ion at 

m/z 353 in negative ionisation mode produced a base peak in the MS2 at m/z 191 [5-

caffeoyl-quinate]. Chlorogenic acids are some of the most abundant phenolics in the 

human diet and have been reported in a wide variety of plants, including pearl millet 

(Meng et al., 2013). Despite extensive research into the bio-pharmacological 

properties attributed to these compounds (antibacterial, antioxidant, and 

anticarcinogenic activities), little is known about their bioavailability in humans 

(Monteiro et al., 2007), or their interactions with other micronutrients. Health 

benefits attributed to chlorogenic acid include anti-diabetic properties. For example, 

a study by McCarty (2005) found that when chlorogenic acid was used as an insulin 

sensitiser, it acted in a similar way to the drug Metformin, which is used to control 

blood sugar levels in diabetic patients. This has been confirmed in other studies. For 

example, Bassoli et al., (2008) researched the effect of chlorogenic acid on hepatic 

glucose output, blood glucose levels, and glucose tolerance and found that 

chlorogenic acid promoted a reduction in the plasma glucose peak in the oral glucose 

tolerance test, most likely by reducing intestinal glucose absorption. This finding 

indicates a possible role for chlorogenic acid as a glycaemic index lowering agent for 

reducing the risk of developing type 2 diabetes (Bassoli et al., 2008). 

Compounds 8 (Mr 283 Da, tr 26.36 mins and UV maximum 292.0) and 11 (Mr 238 

Da, tr 14.80 mins and UV maximum 310.0) have been tentatively identified as 

coumaroyl conjugates. In the case of compound 8, this is due to the parent ion at m/z 

282 in negative ionisation mode producing a base peak in the MS2 at m/z 145 and 

119 ([coumaric – H2O]- and [coumaric – CO2]
- respectively) and the parent ion at 

m/z 284 in positive ionisation mode producing a base peak in the MS2 at m/z 147 

([coumaric – H2O]+). This is also the case for compound 11, with a UV maximum of 

309 nm (characteristic of coumaric) and where the parent ion at m/z 237 in negative 

ionisation mode produced a base peak in the MS2 at m/z 163 [coumaric]-, 145 and 

119. Additionally, the parent ion at m/z 239 in positive ionisation mode produced a 

base peak in the MS2 at m/z 147. Compound 8 could be further characterised as 

coumaroyl tyramine, due to the parent ion in negative and positive ionisation modes 

producing peaks resulting from the neutral loss of 137 Da (m/z 145 and 147 

respectively), consistent with the presence of a tyramine moiety. Compound 11 
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could also be further characterised as coumaroyl glycerate. This is supported by the 

parent ion at m/z 237 in positive ionisation mode producing a peak in the MS2 

resulting from the loss of 92 Da (m/z 147). 

Compound 9 (Mr 313 Da, tr 28.35 mins and UV maxima 294.0sh, 318.0) has been 

tentatively identified as feruloyl tryamine due to the nominal mass of 313 Mr Da. 

Additionally, the parent ion in negative ionisation mode produced a peak in the MS2 

at m/z 178, indicative of [ferulic acid - CH3]
-. Furthermore, the parent ion in positive 

ionisation mode produced a peak in the MS2 at m/z 177, which is indicative of 

[ferulic - H2O]+. The neutral loss of 137 can also indicate tyramine. 

Compound 12 (Mr 483 Da, tr 24.20 mins and UV maxima 296.0sh, 320.0) has been 

tentatively identified as caffeic ferulic spermidine. This was concluded due to the 

UV data being consistent with caffeic acid (318.0 and 320.0, respectively) and also 

due to the parent ion at m/z 484 in positive ionisation mode producing a base peak in 

the MS2 at m/z 177, indicative of ferulic acid. Additionally the peak at m/z 322 is 

indicative of a ferulic acid unit (176+H+) plus spermidine (molecular weight 

145units). 

Flavones 

Compound 3 with Mr 330 Da and tr 41.22 mins showed characteristics consistent 

with tricin. The parent ion at m/z 329 in negative ionisation mode produced a base 

peak in the MS2 at m/z 314 [tricin – methyl group]-. However, the UV maxima of 

268.0, 342.0 was not indicative of tricin and may be due to coeluting compounds. 

This requires further targeted analysis of the MS2 fragments. 

Compound 6 with Mr 610 Da and tr 21.48 mins showed characteristics consistent 

with C-O-dihexosyl-luteolin with a UV maxima at 267.0, 348.0. The parent ion at 

m/z 609 in negative ionisation mode produced dominant base peaks in the MS2 at 

m/z 489 and 429, thus giving neutral losses of 120 and 180, respectively, indicative 

of C-linkage with a hexose sugar dimer. The parent ion at m/z 611 in positive 

ionisation mode produced a base peak in the MS2 at 449, which produced a neutral 

loss of 162, consistent with the loss of the terminal hexose in an attached sugar 

dimer.  
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Compound 5b with Mr 564 Da and tr 20.26 mins showed characteristics consistent 

with C-hex-C-pent-apigenin. The UV maxima could not be detected due to coelution 

with compound 5a. The parent ion at m/z 563 in negative ionisation mode produced 

peaks in the MS2 at m/z 353 [apigenin+83] and m/z 383 [apigenin+113]. The m/z 353 

is indicative of 2 C-linked sugars attached to apigenin, whilst m/z 383 indicates one 

C-hexose sugar and one C-pentose sugar. 

Compound 7 with Mr 594 Da and tr 22.91 mins showed characteristics consistent 

with 2”-O-hex-C-hex-apigenin, with a UV maxima at 267.0, 337.0. Although peaks 

from the parent ion in negative ionisation mode could not be detected, the 

fragmentation patterns from the MS2 events in positive ionisation mode (m/z 595) 

indicate a C-link with a hexose sugar dimer (due to losses of -120, -180). The 

fragmentation patterns indicate 1 C-linked glycoside plus another sugar moiety that 

is attached to it via a sugar linkage at the 2”position. The O-link is indicated by the 

parent ion at m/z 595 in positive ionisation mode producing a base peak in the MS2 

at m/z 433, which is produced by a neutral loss of 162 (hexose). 

Compound 13 with Mr 624 Da and tr 26.12 mins showed characteristics consistent 

with chrysoeriol-C,O-diglycoside, with a UV maxima at 296.0, 320.0. The parent ion 

at m/z 623 in negative ionisation mode produced a single base peak in the MS2 at m/z 

443, which indicated a loss of 180. This is indicative of the loss of a terminal hexose 

on the sugar chain of two or more. However, the parent ion at m/z 625 in positive 

ionisation mode produced a base peak in the MS2 at m/z 301, which indicated a loss 

of 324. This could be interpreted as two O-linked hexose sugars.  

Compound 14 with Mr 772 Da and tr 17.67 mins showed characteristics consistent 

with C-O-dihexosyl-luteolin (described in compound 6) plus a caffeic acid unit 

attached. The parent ion at m/z 771 in negative ionisation mode produced a single 

base peak in the MS2 at m/z 609 (which matches the molecular weight of C-O-

dihexosyl-luteolin), this also indicated a loss of 162, which represents the loss of a 

caffeic acid unit. 

 

 

 



172 
 

Phenolamides  

Phenolamides comprise a diverse class of secondary metabolites that are found 

ubiquitously in plants and are known to play important roles in a wide range of 

biological processes, including plant development and defense (Dong et al., 2014). 

Compound 5a with Mr 469 Da and tr 20.26 mins is present in 90% of samples 

(Figure 5.13) and showed characteristics consistent with dicaffeoyl-spermidine. The 

parent ion at m/z 470 in positive ionisation mode produced a base peak in the MS2 at 

m/z 453, which produced a neutral loss of 17, indicating a loss of NH3 (amine 

group). Additionally, the peak at m/z 308, which produced a neutral loss of 162, 

indicates the loss of a caffeic unit (amine group) and the peak at m/z 145 is indicative 

of spermidine, as it matches the molecular weight. 

Compound 15 with Mr 467 Da and tr 27.64 mins showed characteristics consistent 

with p-coumaroyl feruloyl spermidine, with a UV maxima at 288.0, 295.0. The 

parent ion at m/z 468 in positive ionisation mode produced peaks in the MS2 at m/z 

147, 177, 204, 234 and 292. All of these are consistent with the findings of Dong et 

al., 2014. 

Compound 16 (coeluted with compound 4), with Mr 410 Da and tr 8.73 mins showed 

characteristics consistent with feruloyl coumaroyl putrescine, with a UV maxima at 

299.0, 308.0. The parent ion at m/z 411 in positive ionisation mode produced peaks 

in the MS2 at m/z 264, indicating the loss of a coumaric acid unit (147) and m/z 89, 

which matched the size of putrescine. This compound could be further verified with 

putrescine and coumaric acid standards. Additionally, the parent ion at m/z 409 in 

negative ionisation mode produced base peaks in the MS2 at m/z 177 (indicative of a 

ferulic unit) and 265 (indicative of a ferulic unit attached to putrescine). This 

compound also matched compound 10 with Mr 410 Da, tr 33.05 mins and UV 

maxima 293.0, 309.0. In the case of compound 10, the parent ion at m/z 411 in 

positive ionisation mode produced a base peak in the MS2 at m/z 147, indicative of 

the loss of a coumaric acid unit and a peak at m/z 177, indicative of the loss of a 

ferulic acid unit. Furthermore, when losses of 146 (coumaric acid unit) and 176 

(ferulic acid unit) from the parent ion at m/z 411 in positive ionisation mode are 

added together, the value is 322, which when subtracted from 410 is 88. This is 
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indicative of a putrescine unit, thus a further characterisation of feruoyl coumaroyl 

peutrescine could be made. 

Compound 17 with Mr 424 Da and tr 35.57 mins showed characteristics consistent 

with coumaroyl feruoyl cadaverine, with a UV maxima at 298.0, 322.0. The parent 

ion at m/z 425 in positive ionisation mode produced peaks in the MS2 at m/z 147, 

177, 279 (indicative of a ferulic unit + cadaverine) and 249 (indicative of a coumaric 

unit + cadaverine). 

In addition to verification with standards, there are a number of techniques that could 

also be used to confirm the identification of compounds, including 1H/13C NMR and 

Infrared (IR) spectroscopy. They are powerful tools often used for qualitative 

analysis of unknown compounds (Liotta & James-Pederson, 2008) and the resulting 

spectra can be used to determine the compound’s structure. In the case of 1H NMR, 

the spectrometer will be tuned to H-1 nuclei within the molecules of a substance. The 

elucidation of a compound’s structure is dependent on a magnetic field, generated as 

a result of an element’s characteristic spin (Reusch, 2013). Different parts of the 

compound will absorb radio frequency energy, which will subsequently reveal a 

resonance signal. Additionally, 13C NMR may be used when significant portions of a 

molecule lack C-H bonds (Reusch, 2013). With respect to IR spectroscopy, a spectra 

is generated based on the amount and frequency of light absorbed, depending on 

different functional groups and the structure of the compound. Thus, the existence of 

hydroxyl groups, double bonds, and other active parts of a molecule can be easily 

deduced (Stuart, 2005). 

5.6.3 Pilot-Phase HPLC-MS Targeted Analysis of 55 × PMiGAP lines 

The previous untargeted analysis identified 16 phenolic compounds of interest, 

present in pearl millet grain. Based on these findings, a targeted analysis of the same 

lines was conducted to compare the relative abundance of typical compounds 

between lines (Table 5.7) and to analyse data for correlations between abundance of 

targeted compounds and micronutrient content, as well as for clustering between 

lines. A summary of the analytical method development process can be seen in 

Figure 5.20. 
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Analytical Method Development 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Analytical method development process for targeted analysis 

The analytical method development process included an attempt to the separate co-

eluted peaks found during UV-HPLC analysis. When the peaks for isoorientin and 

orientin could not be resolved, an HPLC-MS system was deemed more appropriate, 

which resulted in successful separation of peaks.  
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Figure 5.21: HPLC chromatogram showing standards at 0.1mg/mL. A- orientin, B- 

iso-orientin, C-vitexin, D- iso-vitexin, E- luteolin7-O-β-D-glucoside, F- apigenin7-

glucoside, G- luteolin, H- ethyl 4-hydroxy-3-methoxycinnamate. Compounds A, B, 

D and E are Coeluted (Zorbax Eclipse C18 Column). 

Figure 5.22: Overlay of 4 PMiGAP lines; Olive- initial standard mix in Figure 5.21, 

Pink, Blue, Green, Red- 4 PMiGAP lines.  
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Figure 5.23: Overlay of HPLC data: Blue- standards with D and E resolved, D- iso-

vitexin and E- luteolin7-O-β-D-glucoside, Red- P-coumaric acid standard, Olive- 

PMiGAP sample (Kinetex 5U Biphenyl 100A Column). 

Figure 5.24: HPLC-MS chromatograms showing standards, Waters Xevo TQ-S 

UPLC-MS/MS. Top – bottom = luteolin7-O-β-D-glucoside; orientin, vitexin, P-

coumaric acid, ethyl-ferulate, apigenin7-glucoside, luteolin and apigenin. 

HPLC-MS Targeted Analysis 

High-resolution metabolite profiling by UPLC-MS/MS facilitated a detailed analysis 

of the secondary metabolite composition in 55 PMiGAP lines. The profiling data and 

applied multivariate data analysis provided insight into the chemical relationships 
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between lines. This data could contribute to the selection of elite genotypes, for 

breeding pearl millet varieties with increased levels of bioavailable Fe/Zn, via lower 

amounts of metal-chelating compounds. The data also contributes to the current 

chemical knowledge of luteolin and apigenin compounds in pearl millet, and the 

hierarchical clustering analyses of the results provided an efficient method to 

investigate cluster relationships between lines.  

 

 

 

 

 

 

 

 

Figure 5.25: Heatmap with hierarchical cluster analysis of 55 PMiGAP lines built 

under the Qlucore Omics Explorer, v3.2 environment. Data has been normalised to 

the internal standard, ethyl ferulate. Clusters on the heatmap are identified by groups 

of common colour as indicated by similar values. As a result of the hierarchical 

clustering, the rows in the heat map have been reordered to correspond to the cluster 

calculation. Those placed in the same cluster are indicative of results that are similar, 

although not statistically significant. 

The relationship between compounds in the extracts under investigation and a 

comparison of data can be seen in Figure 5.25. When a P<0.05 statistical 

significance threshold filter was applied (Figure 5.26), significant clustering for 

levels of Fe, Zn and luteolin7-O-β-D-glucoside were revealed. These findings were 

confirmed by Pearson’s product moment correlation tests, where a strong correlation 

of 0.71 (P<0.001) between Fe and Zn occurred. When the Pearson’s product moment 

correlation test was applied to Fe/Zn and luteolin7-O-β-D-glucoside, slight positive 

correlations of 0.42 and 0.34 were revealed, respectively. Significant clustering for 

high and low levels of Fe and Zn were also verified by PCA (Figure 5.28). 
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Figure 5.26: Heatmap with hierarchical cluster analysis of 55 PMiGAP lines with 

P<0.05 statistical significance threshold filter lines, built under the Qlucore Omics 

Explorer, v3.2 environment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: 3D-PCA plot to show variation between 55 PMiGAP lines based on 

origin and phenotype data (P<0.05) lines, built under the Qlucore Omics Explorer, 

v3.2 environment. 

The PCA plot in Figure 5.27 suggests that when the PMiGAP lines were studied 

based on origin, there was one significant outlier, identified as genotype 1001 

(IP10820) from Sudan. This line presented significantly higher levels of luteolin7-O-

β-D-glucoside, luteolin, orientin, Fe, C-O-dihexosyl-luteolin and C-hex-C-pent-

apigenin than all other PMiGAP lines. 
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Figure 5.28: 3D-PCA plot to show variation between 55 PMiGAP lines based on 

high/low Fe and Zn levels, and phenotype data (P<0.05) lines, built under the 

Qlucore Omics Explorer, v3.2 environment. Data has been normalised to the internal 

standard, ethyl ferulate. 

Figure 5.28 suggests that there was significant clustering between lines with 

high/low levels of Fe and Zn (mg/kg). 

On the basis of low total phenolics content, a set of lines were identified (Table 

5.13), which can be used in crossing programs for the development of elite lines with 

low apigenin/luteolin content and high Fe/Zn levels. Interestingly, all lines are of 

African origin which suggests that typically, lines from this region may be naturally 

lower in apigenin/luteolin compounds, as compared to the Indian lines. 

Table 5.13: Proposed lines for the creation of elite lines. These were selected based 

on a phenolic content below the  average total phenolic content of 55 lines analysed 

(average content = 536385.35AU), coupled with high Fe/Zn content. High Fe/Zn 

content was defined as above an average of 113.78mg/kg, for the total 55 lines 

analysed. 

Line (IP No.) Origin 
Total Phenolics 

content*(% of average) 
Combined Fe/Zn (mg/kg) 

IP 10471 Zimbabwe 38 138.30 

IP 6460 Mali 46 170.99 

IP 19584 Niger 49 139.50 

IP 5713 Nigeria 58 129.28 

IP 13964 Zimbabwe 68 152.54 
*(Total phenolics content per line / 536385.35×100) 
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For a more significant comparison, a larger population would have been favourable 

and with minor changes, this approach is fully compatible with the study of a larger 

population. Other aspects of the sample preparation method also required 

optimisation. For example, it was found that the internal standard, ethyl ferulate was 

barely detectable in negative ionisation mode. This is likely due the SPE clean-up 

step removing significant amounts of this compound. The peak area range for the 

internal standard was between 54-792 AU, this is highly variable, and indicative of 

inaccurate sample preparation. In addition, when amounts of each targeted 

metabolite were established by normalising to the internal standard, this could have 

produced inaccurate data in the downstream analysis as it is highly probably that 

many peaks, especially the ones with peak areas below 200 AU were within the level 

of background noise. For this reason, results must be approached with caution and 

the analysis should be repeated with; i) a larger population, ii) changes to the sample 

preparation method to allow for increased concentrations of internal standard to be 

detected in the final solutions, at invariable levels and iii), the use of a different 

internal standard, that ionises well in both negative and positive ionisation modes 

and does not co-elute with compounds of interest.  

5.6.4 Untargeted/Targeted Analysis of Non-Hydrolysed and Acid Hydrolysed 

HHB67 Improved  

MS2 fragmentation patterns for luteolin and apigenin glycosides, identified in 

PMiGAP lines clearly showed that compounds contained both O and C linked 

sugars. HHB67 improved was subjected to untargeted (data dependant mode, which 

selects the most abundant ions for MS2) and targeted analysis to confirm the 

presence of O/C linked apigenin/luteolin glycosides. Phenolic extracts were treated 

with 1M HCL, as described above to acid hydrolyse phenol glycosides and analysed 

by HPLC-MS analysis for the determination of C-linked sugar moiety position, 

when attached to the core aglycone. 

HPLC-PDA-MSn Untargeted Analysis 

Figure 5.29 shows the profile of soluble phenolics extracted from HHB67 Improved. 

Analysis by HPLC-MS with PDA detection revealed approximately 6 compounds 

that could be easily distinguished (Table 5.14), which included hydroxycinnamic 

acids, phenolamides and flavones. These were identified as described above. 
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Figure 5.29: HPLC-MS chromatogram showing the separation of 6 soluble phenolic 

compounds in HHB67 Improved detected by PDA at 280nm. Peak numbering 

corresponds with Table 5.14. 

Table 5.14: UV maxima, full MS ions and MS2 events for compounds detected in an 

extract of HHB67 Improved. 

Peak 

No. 

tr 

(mins) 

UV 

Max 

Nomina

l Mass, 

Mr Da 

Parent Ions 

MS2 

Fragments 

(in order of 

intensity) 

Neutral 

loss (MS 

– MS2) 

Tentative 

identification 

1 11.19 309.0 164 
163.20 (-ve) 

165.27 (+ve) 

(-ve) 

119 

(+ve) 

147 

(-ve) 

44 

(+ve) 

18 

P-Coumaric 

Acid 

5a 19.56 

Not 

Detecte

d* 

469 
468.22 (-ve) 

470.27 (+ve) 

(-ve) 

332 

(+ve) 

308 

220 

453 

291 

163 

145 

(-ve) 

136 

(+ve) 

162 

250 

17 

179 

307 

325 

Dicaffeoyl 

Spermidine 

5b  

Not 

Detecte

d* 

564 
563.15 (-ve) 

565.08 (+ve) 

(-ve) 

473 

443 

503 

353 

(-ve) 

90 

120 

60 

210 

Apigenin (C-

Hex-C-Pent-

Apigenin) 
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383 

545 

(+ve) 

547 

529 

427 

511 

180 

18 

(+ve) 

18 

36 

138 

54 

6a 20.60 
268.0 

339.0 
432 

431.17 (-ve) 

433.17 (+ve) 

(-ve) 

311 

(+ve) 

415 

397 

367 

313 

(-ve) 

120 

(+ve) 

18 

36 

66 

120 

Vitexin 

6b  

Not 

Detecte

d* 

610 
609.44 (-ve) 

611.27 (+ve) 

(-ve) 

489 

429 

327 

357 

449 

(+ve) 

449 

329 

431 

287 

491 

(-ve) 

120 

180 

282 

252 

160 

(+ve) 

162 

282 

180 

324 

120 

Luteolin 

(C-O-

Dihexosyl-

Luteolin) 

7 21.79 
268.0 

336.0 
594 

593.32 (-ve) 

595.38 (+ve) 

(-ve) 

Not Detected 

(+ve) 

433 

449 

475 

415 

313 

271 

 

 

 

162 

146 

120 

180 

282 

324 

Apigenin 

(2”-O-Hex-C-

Hex-Apigenin) 

 

 

*Not detected due to coeluting compounds 

All compounds are discussed in section 5.6.2, with the exception of vitexin which 

was unique to HHB67 Improved.  

Compound 6 with Mr 432 Da and tr 20.60 mins showed characteristics consistent 

with vitexin (apigenin-C-hexoside), with a UV maxima at 268.0, 339.0. The parent 

ion at m/z 431 in negative ionisation mode produced a dominant base peak in the 

MS2 at m/z 311, thus giving a neutral loss of 120. This is indicative of a C-linkage 

with a hexose sugar. This compound was also identified with a standard for 

confirmation. 

 

 



183 
 

HPLC-PDA-MSn Targeted Analysis 

Table 5.15: Targeted MS2 events in negative ionisation mode, in HHB67 Improved. 

Compound tr (mins) 

MS2 target 

ion 

(negative 

mode) 

MS2 

Fragments 

(in order of 

intensity) 

Neutral 

loss (MS – 

MS2) 

Identification 

6a 20.61 431 
311 

341 

120 

90 
Vitexin 

5a 19.71 468 332 136 
Dicaffeoyl 

Spermidine 

5b 19.37 563 

473 

443 

503 

383 

353 

545 

90 

120 

60 

180 

210 

18 

C-Hex-C-Pent-

Apigenin 

7 21.79 593 
413 

293 

180 

300 

2”-O-Hex-C-

Hex-Apigenin 

6b 20.51 609 

489 

327 

357 

429 

449 

369 

309 

120 

282 

252 

180 

160 

240 

300 

C-O-

Dihexosyl-

Luteolin 

 

The MS2 fragmentation pattern data obtained from the targeted analysis (Table 5.15) 

confirmed the findings from the untargeted (data dependant) analysis.  

Acid Hydrolysis of Flavone Glycosides 

Acid hydrolysis facilitated the identification of C-linked sugar moiety position, when 

attached to the aglycones luteolin and apigenin as described above. Additionally, an 

O-glucoside standard for both apigenin and luteolin (apigenin7-glucoside and 

luteolin7O-β-D-glucoside) was used as a control to confirm the O-linkages were 

hydrolysed by the treatment. Predicted flavones as a result of acid hydrolysis can be 

seen in Figure 5.30. 

 



184 
 

Figure 5.30: Predicted flavones resulting from acid hydrolysis, adapted from Casas 

et al., 2014. Orientin and isoorientin are luteolin-8/6-C-glucosides and vitexin and 

isovitexin are apigenin-8/6-C-glucosides. 
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UVHPLC Analysis 

Peak 2 – Apigenin C-O/C-C diglycosides 

The results from the UVHPLC and MS data analysis (Figures 5.31 and 5.32, 

respectively) revealed that the peak at tr 8.93 minutes, in the non-hydrolysed extract 

was composed of several apigenin diglycosides coeluting together. One of the 

apigenin diglycosides contained an O- and a C-link. This conclusion was drawn from 

the UVHPLC data, where upon hydrolysis, the O-link was cleaved off and an iso-

vitexin peak remained at tr 11.6 minutes, in the hydrolysed extract. This suggests that 

the location of the C-linked sugar moiety was on the C6 position. The other apigenin 

diglycoside present in the same peak contained two C-links, indicating a C6 and C8 

linkage. This conclusion was drawn because the peak did not disappear completely 

upon hydrolysis, and was still present at tr 9.03 minutes in the hydrolysed extract, 

indicating an apigenin compound with two sugars attached, both linked by C-

linkage.  

Vitexin 

According to Figure 5.31, vitexin was present in both extracts (non-hydrolysed tr 

10.04 minutes, hydrolysed tr 10.06 minutes) and was not affected by acid hydrolysis 

because there was no O-linkage to hydrolyse. Therefore, it is concluded that the 

sugar was on the C8 position and C-linkage was confirmed. 

Luteolin diglycoside 

A luteolin diglycoside was present in the non-hydrolysed extract, although it cannot 

be seen on the PDA in Figure 5.31 (possibly due to coeluting peaks); it was 

predicted to contain an O- and C-linkage because upon hydrolysis, the product of 

this was isoorientin/orientin, which presented a peak at tr 7.9 minutes. This suggests 

that when the O-link was removed, a monoglycoside remained. However, the 

position of the sugar whether it was at C6 or C8 could not be distinguished as 

isoorientin and orientin gave rise to coeluting peaks (as seen in the standard mix, 

Figure 5.31). Furthermore, in the hydrolysed extract, there was no obvious formation 

of a luteolin aglycone peak, which proves that this was not a diglycoside where the 

sugars were attached by two O-linkages.  
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MS/MS Analysis 

Peak 1 

The MS results for Peak 1 (Figure 5.32) revealed that dicaffeoyl spermidine, with a 

mass of 468 Da (in negative ionisation mode) was a major constituent. It also 

coeluted with an apigenin diglycoside with a mass of 593 Da, in negative ionisation 

mode (Figure 5.32).  

Peak 2 

Peak 2 (Figure 5.32) represents two coeluting apigenin diglycosides with masses of 

593 and 563 Da, respectively. The results verified the predictions from the UVHPLC 

data (Figure 5.31), that one apigenin diglycoside contained a C- and O-linkage and 

the other contained two C-linkages.  
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Figure 5.31: UV-HPLC chromatograms showing non-hydrolysed and hydrolysed extracts of HHB67 Improved as compared to standards, at 

320nm PDA. Peaks in red boxes were collected and run on the MS for verification purposes, the peak on the left is referred to as Peak 1 in the 

text and the one on the right is referred to as Peak 2. Blue text represents peaks verified by MS
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Figure 5.32: MS data for Peak 1 and Peak 2, corresponding to peaks in the red boxes 

in Figure 5.31, from the UV-HPLC data. 

2”-O-Hex-C-Hex-Apigenin 

2”-O-Hex-C-Hex-Apigenin 

Dicaffeoyl Spermadine 

C-Hex-C-Pent-Apigenin 
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5.6.5 Post Pilot-Phase HPLC-MS Targeted Analysis of 185 × PMiGAP lines  

The results in section 5.6.3 revealed that significant changes to the phenolic 

compound extraction method would benefit future work, in terms of increased 

reliability/accuracy. Implemented changes included; scaling down the MeOH 

extraction protocol to 0.1g seed + 1mL MeOH to avoid compound loss due to 

pipetting errors and to facilitate higher though-put, a larger PMiGAP population, the 

use of a more consistent internal standard (biochanin A) and the removal of the SPE 

C18 clean-up step. As a result, an improved targeted analysis of typical compounds 

present in 185 PMiGAP lines (Table 5.8) facilitated the identification and 

comparison of the relative abundance of phenolic compounds, which may affect the 

bioavailability of absorbable Fe/Zn. Additionally, 5 flavonoid glycosides/aglycones 

were quantified using standard calibration curves on a molar basis and the 

correlation between polyphenol content and micronutrient content was also 

investigated. A summary of the analytical method development process can be seen 

in Figure 5.33. 
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Analytical Method Development 

Figure 5.33: Method development process for targeted analysis of 185 PMiGAP 

samples *p-coumaric-acid linear up to 100µg/mL. IS = Internal Standard, biochanin 

A. 
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Figure 5.34: Standard calibrations curves of apigenin-7-glucoside, biochanin A, p-

coumaric acid, luteolin-7-glucoside, luteolin and vitexin based on UV absorption. 
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HPLC-MS Targeted Analysis 

Free phenols were obtained from the MeOH extraction of ground pearl millet seed. 

An initial screening of the extracts identified 16 phenolic compounds (Section 5.6.2), 

6 of which were highly prominent in the majority of samples and, with the exception 

of dicaffeoyl spermidine, contained the aglycones apigenin/luteolin. The mass 

spectra and retention times of the phenols were compared with those of standards 

including; vitexin, luteolin, luteolin7-O-β-D-glucoside, apigenin7-glucoside and p-

coumaric acid. UPLC-MS/MS facilitated a detailed analysis of the secondary 

metabolite composition of 185 PMiGAP lines and flavonoid glycosides were 

quantified using aglycone standard calibration curves on a molar basis (Figure 5.36). 

The profiling data and applied multivariate data analysis provided valuable insight 

into the chemical relationships between lines, with increased reliability than the 

previous analysis due to the implemented changes, as discussed.  

Data produced can be approached with increased confidence. For example, the larger 

sample set (n=185) is more representative of the full diversity of the PMiGAP and 

changes made to the sample preparation method, which included scaling down the 

extraction method 5 fold and not using SPE filtering decreased the chances of 

compounds being lost, either by transfer between tubes/pipetting errors or by binding 

to the SPE filter. The resulting accuracy was reflected in the low levels of internal 

standard variability between samples, as compared to that of the previous targeted 

analysis (Figure 3.35). The internal standard used in this analysis was biochanin A, 

as it was found that ethyl ferulate (used in section 5.6.3) did not ionise well in 

negative ionisation mode. From the data in Figure 5.35, it can also be seen that 

biochanin A yielded more intense peaks, therefore this reduced the probability that 

the readings could be mistaken for ‘background noise’, which was the case for ethyl 

ferulate. 
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Figure 5.35: A comparison of the peak areas, absorbance units; 240-400nm range (as 

a measure of relative abundance) detected for two internal standards; ethyl ferulate 

and biochanin A.  
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According to the data in Figure 5.36, there were extremely large amounts of 

variation for all 5 compounds, when quantified using standard calibration curves. 

The average content of apigenin-7-glucoside found in 185 PMiGAP lines was 58.5 

µg/g, with values varying from 1.5 – 757.5 µg/g. The average content of p-coumaric 

acid was 1609.0 µg/g, with values varying  from 483.2 – 4105.2 µg/g. The average 

content of luteolin was 60.8 µg/g, with values varying from 7.68 – 910.2 µg/g. The 

average content of vitexin was 2797.8 µg/g, with values varying from 175.2 – 

16194.8 µg/g. The average content of luteolin-7-glucoside was 587.7 µg/g, with 

values varying from  68  – 15480.8 µg/g 
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Figure 5.36: 6 compounds quantified (LOG base 10µg/g) using aglycone standard calibration curves. All compounds have been normalised to 

the internal standard, biochanin A.
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Figure 5.37: Histograms, 185 PMiGAP lines, frequency over variables measured in absorbance units in all cases with the exception of Fe and Zn 

(mg/kg). The distribution of samples is split into 12 equal bars calculated by dividing the highest value per metabolite by 12. Readings that fell 

within the 12 range values represent each bar (Unknown = Dicaffeoyl Spermidine). 
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The histograms in Figure 5.37 show the sample distribution between variables. The 

data for biochanin A further strengthens the conclusions from the results in Figure 

5.35 because all samples are represented in one bar, showing low levels of variability 

and that the method used in this experiment was robust. The highest levels of 

variability can be seen for 2”-O-hex-C-hex-apigenin, dicaffeoyl spermidine, p-

coumaric acid and C-O-di-hexosyl-luteolin; whereas moderate levels of variability 

were detected for Fe, Zn, vitexin, C-hex-C-pent-apigenin and apigenin-gluc-gluc. 

Low levels of variability are seen for apigenin-7-glucoside, luteolin, orientin, 

luteolin-7-glucoside and luteolin+caffeic. 
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Figure 5.38: Heatmap with hierarchical cluster analysis of 185 PMiGAP lines built under the Qlucore Omics Explorer, v3.2 environment. Data 

has been normalised to the internal standard, biochanin A. Clusters on the heatmap are identified by groups of common colour as indicated by 

similar values. As a result of the hierarchical clustering, the rows in the heat map have been reordered to correspond to the cluster calculation. 

Those placed in the same cluster are indicative of results that are similar, although not statistically significant. 
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Figure 5.39: Heatmap with hierarchical cluster analysis of 164 PMiGAP lines plus mineral data built under the Qlucore Omics Explorer, v3.2 

environment. 21 (of the total of 185) samples have been removed due to lack of mineral data because leaving them in for analysis would have 

skewed the statistics. Data has been normalised to the internal standard, biochanin A. Clusters on the heatmap are identified by groups of 

common colour as indicated by similar values. As a result of the hierarchical clustering, the rows in the heat map have been reordered to 

correspond to the cluster calculation. Those placed in the same cluster are indicative of results that are similar, although not statistically 

significant. 
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Figure 5.40: Heatmap with hierarchical cluster analysis of 164 PMiGAP lines with P<0.05 statistical significance threshold filter lines, filtered 

by genotype built under the Qlucore Omics Explorer, v3.2 environment. 

 

 

 

 

 

 

Figure 5.41: Heatmap with hierarchical cluster analysis of 164 PMiGAP lines with P<0.05 statistical significance threshold filter lines built 

under the Qlucore Omics Explorer, v3.2 environment. 
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Figures 5.38 and 5.39 provide information about the relationships between the 

occurrence of compounds in the extracts under investigation and compare all data 

from all PMiGAP lines tested together. Even though no statistical filtering was 

applied in Figure 5.38, findings revealed that in some cases apigenin compounds 

clustered together and luteolin compounds also clustered together with respect to 

abundance, when filtered by genotype.  When a P<0.05 statistical significance 

threshold filter was applied (Figures 5.40 and 5.41), the data suggests that there was 

significant clustering for levels of Fe, Zn, apigenin-7-glucoside and luteolin-7-

glucoside, when the data was filtered by genotype. Data also suggests that luteolin-7-

glucoside was negatively correlated with Fe and Zn, which is interesting as the 

opposite was revealed from the 55 PMiGAP lines analysed previously (Section 

5.6.3). In addition, apigenin-7-glucoside was negatively correlated with Fe/Zn. 
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Figure 5.42: Top- 3D-PCA plots to show variation between 164 PMiGAP lines 

based on high/low Fe and Zn, and phenotype data lines. Bottom- 3D-PCA plot to 

show variation between 164 PMiGAP lines based on origin and phenotype data 

lines. All PCA’s were built under the Qlucore Omics Explorer, v3.2 environment. 

Figure 5.42 suggests that when the data was normalised to the internal standard, 

there was significant clustering between lines that had high/low Fe and Zn. This was 

confirmed by a Pearson’s product moment correlation of 0.8 (P<0.05). However, 

there was no significant clustering when the data was filtered by origin (P<0.05). 

On the basis of low total phenolics content, a set of lines were identified (Table 

5.16), which can be used in crossing programs for the creation of elite lines with low 

apigenin/luteolin content and high Fe/Zn levels. Interestingly, 70% of lines are of 

African origin, which may suggest that lines from this region may be naturally lower 

in apigenin/luteolin compounds, as compared to the Indian lines. This finding 

P=<0.05 

P=<0.05 

No Statistical Filter 

No Statistical Filter 
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coincides with the result of the targeted analysis of 55 PMiGAP lines (Section 5.6.3, 

Table 5.13). 

Table 5.16: Proposed lines for the creation of elite lines. These were selected based 

on a phenolic content below the average total phenolic content of 185 lines analysed 

(average content = 564385.35AU), coupled with high Fe/Zn content. High Fe/Zn 

content was defined as above an average of 96.3mg/kg, for the total 185 lines 

analysed. 

Line (IP No.) Origin 
Total Phenolics content* 

(% of average) 
Combined Fe/Zn (mg/kg) 

IP 6869 Kenya 40 105.52 

IP 7941 ICRISAT 40 99.8 

IP 6102 Niger 41 111.05 

IP 10701 Mali 41 106.13 

IP 9446 Ghana 44 118.26 

IP 5272 Niger 45 119.93 

IP 9692 Nigeria 48 105.99 

IP 4828 India 48 111.57 

IP 9532 Ghana 49 114.39 

IP 3732 India 49 99.1 
*(Total phenolics content per line / 564385.35×100). 

5.7 Conclusions 

Over many years, flavonoids have been investigated and quantified in a vast number 

of crops. Similar to this study, major crops including rice, wheat, barley and maize 

were also found to be rich in apigenin/luteolin aglycones/glycosides (Kim et al., 

2008; Olenichenko et al., 2006; Markham et al., 1998; Casas et al., 2014). 

Apigenin/luteloin compounds have also been studied in a variety of lesser known 

edible plants. These were characterised in a study by Miean & Mohammed (2001), 

where out of 62 edible plants, apigenin and/or luteolin was present in 21.  

Due to their abundance in crop species, it is important to increase our understanding 

of how apigenin/luteolin compounds interact with micronutrients, for food and 

nutrition security purposes. It has been documented that they interact with 

micronutrients in the gut lumen, as they form stable complexes with non-heme dietry 

Fe and Zn, thus limiting the absoption of these important micronutrents into the gut. 

Therefore, it is advisable that population groups that are susceptible to Fe/Zn 

deficiency should avoid the intake of flavonoid rich foods (Scalbert et al., 2002). 

Naturally, this cannot be avoided in communities dependent on pearl millet, 

therefore decreasing flavonoid content via biofortification is an appropriate solution 

to subsequently increase Fe/Zn intake and to enchance the nutritional credentials of 
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pearl millet. This research will contribute to the development of new pearl millet 

lines to incorporate in diets with optimal health benefits. 

A major finding from this chapter is that: apigenin and luteolin compounds were 

found in large abundance, as compared to all other phenolic compounds. 

Furthermore, most of the flavonoids present in extracts were attached to sugars 

(glycosides), although occasionally they were found as aglycones. The presence of 

glycosides may further decrease mineral absorption, as compared to aglycones due to 

their increased molecular weight, as previously discussed. 

There are limited research studies acknowledging the antinutrient qualities of 

apigenin and luteolin flavonone compounds, present in pearl millet. Many studies 

instead focus on the benefits of such compounds, in relation to their antioxidant 

properties as they may protect against many degenerative diseases including; heart 

disease, many types of cancer, gastrointestinal problems and inflammation. This is 

achieved in part by reactive oxygen species (Dykes & Rooney, 2007).  

Although it is clear that polyphenolic compounds are of great importance in all 

vegetables, fruits and crops, their relationship with Fe and Zn must be acknowledged 

as detrimental. This is important when improving the micronutrient bioavailability 

status of pearl millet for human nutritional benefits. One of the few studies that 

recognises the adverse effects of phenolic compounds on Fe/Zn has concluded that in 

order to ensure a food secure future, appropriate processing methods (including 

soaking, fermenting and pearling) are necessary for the improvement of 

micronutrient bioavailability and storage stability of millet flour (Rani et al., 2018). 

As previously discussed, polyphenolic compounds predominantly exist in the 

pericarp, alurone and endosperm layers of the seed, thus targeting these layers would 

be beneficial.  Whilst this is a suitable method for improvement, another path to 

explore would be to decrease apigenin/luteolin compounds in the grain, whilst 

keeping Fe/Zn levels high using modern plant breeding methods. As a result of the 

work presented in this chapter, individual PMiGAP lines for the improvement of 

Fe/Zn bioavailability in pearl millet have been identified and may be taken forward 

for this purpose. Although the research is in its preliminary stages, an extremely 

robust method for the extraction of such compounds, from milled raw grain has been 
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developed for phenotyping purposes. Results are promising thus far and will 

contribute to pearl millet improvement and pave the way for future endeavors.  

If this work were to be followed up, GWAS could be conducted and markers 

associated with reliable and robust trait data could be utilised for the mining of 

candidate genes associated with apigenin/luteolin reduction. In the longer term, to 

test the bioavailability of Fe/Zn in subsequent elite hybrids, resulting from plant 

breeding methods, simulations of gastro-intestinal digestion may be used to estimate 

in-vitro Fe/Zn availability from seed, taking into account the complex physiological 

conditions of gastric digestion, followed by the simulation of intestinal absorption, 

using the Caco-2 cell culture model. This could be performed to confirm apigenin 

and luteolin as antinutritional factors and also their mineral interactions in more 

detail. 
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Chapter 6: Population Structure, Linkage Disequilibrium (LD) and 

Genome Wide Association Studies (GWAS) to Identify Genomic 

Regions Associated with Increased Mineral Content 

6.1 Summary 

The key to understanding the genetics behind important phenotypic traits in pearl 

millet is genome wide characterisation of diverse germplasm panels, with high 

marker density. Genetic variations were identified in PMiGAP lines by GBS. These 

variations acted as genetic markers (SNPs) – the tools needed for GWAS. Prior to 

GWAS, population structure and LD were accounted for to control confounding 

factors and false positives that may arise as a result.  

Three sets of markers were generated for this study. The first resulted from GBS 

libraries prepared in house from PMiGAP DNA extractions. Next generation DNA 

sequencing and preliminary data analysis was performed to generate GBS sequence 

reads, which were mapped to a foxtail millet (Setaria italica) genome because at the 

time, no pearl millet genome assembly was available. Subsequently, 663 SNPs were 

generated for GWAS. Although the number of resulting SNPs was small, the 

analysis still provided important insights into the methods used for the dissection of 

mineral accumulation at a molecular level. 

In September 2017, a pearl millet genome assembly and 32,901,665 SNPs became 

available for public use (Varshney et al., 2017). The SNPs were downloaded and 

filtered into the two remaining data sets, which contained >37,000 SNPs (as a result 

of stringent filtering) and >3,000,000 SNPs (as a result of less stringent filtering), 

respectively. 

Population structure was insignificant in all cases, which was the pattern expected 

from inbred lines derived from a highly allogamous species. The extent of LD was 

also assessed among all pairs of loci. In the 663 SNP data set 2.08% of the total 

marker pairs were in LD based on r2 values. LD also decayed extremely rapidly, 

which may be attributable to the relatively low number of markers. LD was more 

prominent in the >37,000 SNP data set, especially on chromosomes 3 and 5, and 

decayed at a slower rate, indicating an adequate number of markers for GWAS.  
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Three GWAS were conducted to identify markers associated with mineral uptake 

using ICP-AES data generated in Chapter 3. From the 663 SNP data set, just 12 

marker trait associations (MTA’s) were identified, whereas 199 and >1000 were 

identified from the >37,000 SNP data set and the >3,000,000 SNP data set, 

respectively with much lower P-values. 35 SNPs that had the lowest P-values from 

the 3 GWAS were located by position and chromosome number on their respective 

genome assemblies. A 4kb region surrounding each SNP was BLASTed against the 

most annotated Setaria italica reference genome, for the identification of candidate 

genes. 

A BLAST search of the NCBI database revealed a large number of hits, representing 

a vast number of candidate genes of which functions included; defense against 

biotic/abiotic stress factors, growth, development and regulation of bioactive 

metabolites. Many of these contained metal binding sites including, Zn fingers and 

heme groups. This suggests that Fe and Zn may be used as co-factors in these 

pathways or they may regulate genes through cellular Fe/Zn ion changes. 

Furthermore, some candidate genes were found to be directly associated with 

mineral uptake across all SNP data sets including: V-type proton ATPase subunit D, 

DETOXIFICATION 16, ERECTA and YUCCA11. YUCCA 11 was detected from 

the 4kb region of the MTA that had the lowest P-value (P = 6.84E-06) and will be 

taken forward for verification by haplotyping. 

6.2 Introduction 

Rapid human population growth on a global scale is boosting the demand for a 

corresponding increase in crop grain yield, coupled with better nutrition credentials 

for a food secure future. Understanding the molecular genetic control of useful traits, 

such as yield and nutrition quality, remains a major challenge in the genetic study of 

staple cereal crops (Jin et al., 2010). Historically, genetic characterisation of pearl 

millet has lagged behind other cereals due to its orphan crop status and lack of 

annotated reference genome assembly, prior to September 2017 (Varshney et al., 

2012). To address this challenge, the literature reports several robust linkage maps 

and QTL mapping studies conducted on grain and stover yield, height and 

biotic/abiotic stress traits (Jones et al., 2002; Kannan et al., 2014; Sehgal et al., 

2015). High density markers are needed for QTL fine mapping, molecular breeding 
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and MAS, as previously discussed in Chapter 1 (Wu et al., 2014). Several studies 

have been conducted with the aim of understanding the genetic diversity of pearl 

millet germplasm panels using: Restriction Fragment Length Polymorphism (RFLP), 

Amplified Fragment Length Polymorphism (AFLP), SNP and SSR markers 

(Bhattacharjee et al., 2002; Vom Brocke et al., 2003; Bertin et al., 2005; Sehgal et 

al., 2015). Despite the lack of a reference genome, these studies provided valuable 

insights into population structure and diversity. However, it was often the case that 

these were targeted to germplasm from specific regions (Stich et al., 2010), or were 

conducted on global germplasm but with relatively low marker density (Oumar et 

al., 2008) Therefore, genome wide characterisation of worldwide pearl millet 

germplasm panels with increased marker density is required to gain a more holistic 

understanding of genomic resources in this important crop. 

As previously discussed, NGS platforms have been used in many staples, including 

rice, wheat and maize to identify useful genomic variations and to develop genetic 

maps (Huang et al., 2012; Jiao et al., 2012). In order to facilitate sequencing to 

genotype vast populations, reduced representation sequencing approaches have been 

developed, including restriction site-associated DNA sequencing (RAD-seq) and 

GBS (Hu et al., 2015). Prior to the sequencing of the pearl millet reference genome, 

the development of new markers required a procedure that did not depend on 

sequence information. GBS is one approach that results in genome-wide SNP 

markers, even in species without a reference genome. This method involves; the 

digestion of DNA with restriction enzymes, ligation of unique barcoded adapters, 

PCR amplification and the sequencing of resulting pooled libraries (Elshire et al., 

2011) (Figure 6.1).  
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Figure 6.1: Schematic overview of GBS library preparation, sequencing and 

analysis. (1) Genomic DNA is quantified. (2) Genomic DNA is normalised in a new 

96 well plate to ensure equal representation of samples and equal molarity of 

DNA/adapters. (3) A master mix with a restriction enzyme and buffer is added to the 

plate and incubated. (4) The DNA barcoded adapters, ligase and ligation buffers are 

added. (5) Samples are pooled and AMPure cleaned. (6) The GBS library is PCR 

amplified. (7) The amplified library is AMPure cleaned. (8) Libraries are sequenced. 

(9) Data analysis: FASTQ files containing raw data are used to parse sequencing 

reads to samples using the DNA barcode sequence. Once assigned to individual 

samples, the reads are aligned to a reference genome. In the case of species without a 

reference genome, reads are internally aligned (alignment of all sequence reads with 

all other reads from that library) and SNPs are identified from 2 bp sequence 

mismatch. Various filtering methods can then be applied to distinguish true SNPs 

from sequencing errors (Poland and Rife, 2012).   

GBS facilitates high density SNP discovery and genotyping for vast numbers of 

diverse lines at relatively low cost and has been successfully used to genotype 

diverse germplasm panels and facilitate GWAS in many crops. For example, a high-

density genetic map for pearl millet was constructed using GBS on a bi-parental 

population (Moumouni et al., 2015) and a GBS survey of a diverse pearl millet 

germplasm has also been described by Hu et al., (2015), where GBS was applied to 

500 pearl millet accessions, including Senegalese landraces and diverse global 

accessions. As a result, a total of 83,875 SNPs were identified and used to 

characterise genomic diversity and population structure in pearl millet (Hu et al., 

2015). 
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6.2.1 Why Analyse Population Structure and LD prior to GWAS? 

Understanding the genomic diversity and population structure of cereal germplasms 

is necessary for conservation, cultivar development, QTL mapping, and lays the 

foundation for association mapping (Hu et al., 2015; Jin et al., 2010). A key part of 

GWAS is controlling confounding factors and false positives that may arise as a 

result of population structure and family relatedness. 

Understanding the extent of LD also provides information to guide GWAS and is 

defined as “a property of SNPs on a contiguous stretch of genomic sequence that 

describes the degree to which an allele of one SNP is inherited or correlated with an 

allele of another SNP within a population” (Bush & Moore, 2012). LD analysis 

determines the extent to which association mapping can be used in a species and is a 

sensitive indicator of the population genetic factors that structure a genome. It is 

used to understand the joint evolution of linked sets of genes (Slatkin, 2008). For 

example, the number of SNPs required for GWAS is justified by the distance at 

which LD has decayed, i.e. how quickly LD breaks down. The more rapidly LD 

breaks down, the more SNPs that are needed (Vot et al., 2017).  LD decay is usually 

determined by estimating the decay of r2 with distance or estimating the decay of D’ 

with distance. The r2 value is the most typically used and is defined as the square of 

the correlation coefficient between two loci. It has more reliable sampling properties 

than D’ within cases of low allele frequencies because D’ is strongly inflated in 

populations of small sample size and with low-allele frequencies (Abdurakhmonov 

& Abdukarimov, 2008) 

6.2.2 STRUCTURE 

The software STRUCTURE 

(https://web.stanford.edu/group/pritchardlab/structure.htmL) is a well-established 

population analysis tool that allows the assessment of patterns of genetic structure in 

a set of samples (Porras-Hurtado et al., 2013). Developed by Pritchard et al., (2000), 

it works by detecting differences in allele frequency within data sets and assigns 

individuals to sub-population clusters based on analysis of likelihoods. The 

differences in the distribution of genetic variants within populations coupled with a 

complex Bayesian iterative algorithm allows individuals to be assigned to clusters 

and members of which share patterns of variation similar to one another (Porras-

https://web.stanford.edu/group/pritchardlab/structure.html
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Hurtado et al., 2013). A Markov-Chain-Monte-Carlo (MCMC) estimation is applied, 

which assigns individuals to a pre-determined number of subpopulations. Variant 

frequency estimates per group then allow individuals to be reassigned. This is 

repeated, typically with 50,000 iterations (chosen by the user). The burnin process, 

which is performed separately from the MCMC estimation results in the assignment 

of reliable allele frequency estimation per population and membership probabilities 

of individuals to a population (Porras-Hurtado et al., 2013). Individual analysis is 

performed for each assumed population number, from one to an appropriate number 

of K (subpopulations). Usually the range of K is unknown by the user, although this 

parameter must be pre-selected. This is usually rationalised by calculating the 

likelihood of the data for a range of K values. As K is not an absolute value, user-

defined values should be carefully considered and must account for characteristics of 

the sampled population. This can be extrapolated by analysing passport/origin data in 

many cases. It has been observed that better clusters may be generated when the 

most accurate K values are applied without over-estimation; therefore it is crucial to 

obtain the smallest K value that maximises the likelihood of data (Kalinowski, 

2011).  

The two ancestry models that can be applied in STRUCTURE are the no admixture 

and admixture models. If the origin of the population under study is unknown, the no 

admixture model is considered appropriate. However, admixture between 

populations is typical and a large proportion of individuals, particularly in plant 

population panels may have recent ancestors from multiple populations. 

6.2.3 TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) 

The last decade has given rise to significant advances in genotyping technology, 

including a rapid increase in the number of genetic markers available for QTL 

mapping and MAS studies. Because of this, association analysis has become a viable 

platform for the dissection and visualisation of complex traits (Bradbury et al., 

2007). TASSEL (http://www.maizegenetics.net) (Bradbury et al., 2007) provides a 

user friendly platform for such analysis, where confounding factors including 

population and family structure can be accounted for, in order to minimise the risk of 

false positives. This is achieved by implementing the general linear model (GLM) 

and mixed linear model (MLM) functions. A structured association method may 

http://www.maizegenetics.net/
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partially correct for type 1 errors (i.e. false positives) using a Q-matrix of population 

membership estimate, the Q method is implemented as the GLM function. The 

average relationship between individuals is estimated by kinship (K) and is 

calculated from pedigrees or an appropriate number of random markers across the 

genome. A combined approach, that uses the information from both Q + K, is 

implemented as a MLM function. 

LD statistics may also be calculated and visualised graphically in triangle plots, 

which are useful for showing block-like LD structures. This simplifies LD mapping 

efforts of complex traits and can be estimated by the standardised disequilibrium 

coefficient, D′, as well as r2 and P-values. Other features of TASSEL include; 

analysing/calculating diversity statistics, integration of trait and genotypic data, 

imputing missing data and calculating principal components (Bradbury et al., 2007). 

6.2.4 Identifying Genomic Regions for Grain Fe/Zn Content 

Considerable global efforts are under way to improve the Fe and Zn content of pearl 

millet, through genetic enhancement. GWAS are a useful tool to decipher genomic 

regions for these important traits, and progress will increase intensely during the next 

few years, at a faster rate thanks to the recent pearl millet genome assembly 

(Varshney et al., 2017). Some studies have already identified favourable genomic 

regions for grain Fe and Zn through association mapping. For example, an 

association mapping panel of 130 diverse lines was assessed at three pearl millet 

growing agro-climatic environments in India: Delhi, Jodhpur and Dharwad 

(Anuradha et al., 2017). MTA’s were analysed with 267 markers (250 SSRs + 17 

genic markers). As a result, a total of 16 MTA’s for both grain Fe and Zn content 

were identified (6 Fe + 10 Zn). 3 markers in particular; Xpsmp 2261 belonging to 

LG5 (R2-value of 13.34%), Xipes 0180 belonging to LG3 (R2-value of 11.40%) and 

Xipes 0096 belonging to LG7 (R2-value of 11.38%) were consistently associated 

with both grain Fe and Zn content for the 3 locations. Most notably, the Xipes 0180 

amplicon sequence matched a segment of the pearl millet reference genome, which 

was annotated as the aspartic proteinase (Asp1) gene. Although the Asp1 gene is not 

documented to play a direct role in grain Fe and Zn metabolism, it may be indirectly 

involved via other gene networks/pathways. Furthermore, stably expressing alleles 

linked to these three markers are promising targets for MAS.  
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Even though research associated with the identification of markers, and in turn genes 

linked with grain Fe/Zn content in pearl millet is still in its pioneering stages, this 

has been achieved extensively in other staples, including maize. For example, in a 

study by Hindu et al., (2018) GWAS was conducted on 923 diverse maize lines for 

the identification of genomic regions associated with increased kernel Fe/Zn content, 

using 347,765 SNPs obtained by GBS. Findings revealed 46 SNPs associated with 

kernel Fe/Zn content (20 Zn + 26 Fe). Some of the MTA’s identified were co-located 

within genes, which were previously documented to be associated with Fe/Zn 

uptake, transport or localisation in plants. Among the genes, one stood out and was 

common for both Fe and Zn - No Apical Meristem (NAC) domain transcriptional 

regulator super family protein. Research has shown that NAC family Transcription 

Factors (TFs) regulate Fe and Zn remobilisation from source organs to developing 

seeds associated with senescence in wheat and rice (Ricachenevsky et al. 2013). 

6.2.5 Experimental Aims 

Using SNP data from GBS libraries prepared in house (which generated 663 SNPs), 

and the SNP files from the recent pearl millet genome assembly, which after filtering 

resulted in >37,000 and >3,000,000 SNPs, respectively, the aim of this work was to 

conduct GWAS to identify pearl millet genomic regions associated with increased 

mineral content. The ICPAES data described in Chapter 3, Section 3.4.2 was used as 

the trait data in all cases. 

Population structure was assessed as well as the extent of LD between all pairs of 

loci at the genome level and at the chromosome level, as measured by r2. Differences 

between GLM and MLM model based approaches were also measured to determine 

which approach was superior at accounting for confounding effects.  

Using the MLM model based approach, GWAS was conducted which resulted in the 

identification of SNPs associated with mineral content. Once the SNPs associated 

with the trait data with the lowest P-values were identified, they were located on 

their respective genome assemblies (Setaria italica and Pennisetum glaucum), a 4kb 

region surrounding the selected SNP was used to identify candidate genes. This was 

facilitated by a NCBI nucleotide/protein BLAST search. Hits consisting of >500 

identities, found within the region of each  
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 SNP were literature searched and function/association with Fe and Zn pathways 

were determined where possible. 

6.3 Materials and Methods 

6.3.1 Qubit – DNA Quantification 

DNA from 251 PMiGAP DNA extractions (prepared at ICRISAT in 2012) was 

quantified using a Qubit fluorometer. The Qubit fluorometer uses fluorescent dyes to 

determine the concentration of nucleic acids and proteins in a sample. The purpose 

of this was to generate readings for the dilution calculations for the preparation of 

GBS libraries. DNA was quantified using a Qubit DS DNAbr assay kit. Standards 

and samples were prepared according to Table 6.1. 

Table 6.1, Sample and standard preparation using the Qubit DS DNAbr assay kit. 

 
Standard Assay 

Tubes** 

DNA Sample 

Assay Tubes** 

Volume of Working 

Solution* 
190µL 195µL 

Volume of Standard 

from kit 
10µL - 

Volume of DNA 

Sample to add 
- 5µL 

Total Volume 200µL 200µL 
*Working Solution = 200µL/sample Qubit buffer plus 1µL/sample fluorescent dye. 

** Thin wall clear 0.5mL PCR tubes (Qubit assay tubes, Cat no. Q32856). 

Samples were vortexed for 3 seconds and incubated, at room temperature for 3 

minutes.  Tubes were then inserted into the Qubit Fluorometer and readings were 

taken after the stock concentration of the initial sample was determined. 

6.3.2 GBS Library Preparation 

Each DNA sample was Qubit quantified and the concentration was adjusted to 

10ngµL-1. 10µL (100ng) of each DNA sample and 3µL of barcoded adapter was 

added to a 96 well plate (barcoded adapters are at 0.6 ngµL-1). A different barcoded 

adaptor was used in each well, and these are Pst-1 adaptors. To each well, 7µL of 

digest mix was added. The digest mix consisted of: 3µL common adapter at 0.6 

ngµL-1, 2µL Cut-Smart digestion buffer and 1µL Pst-1 enzyme. This was vortexed 

for 5 seconds and digested at 37°C overnight in a PCR machine. 30µL of master 

ligation mix was added to each well (master ligation mix consisted of: 5µL ligase 
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buffer, 0.3µL T4 DNA ligase and 24.7µL H2O). This was mixed by pipetting and 

incubated at 22°C for 1 hour. After 1 hour, the ligase was heat inactivated at 65°C 

for 30 mins. 10µL of each sample from two rows of the plate were combined via 

multichannel pipetting into a PCR 8-strip. This was repeated for each two rows into 

a separate 8-strip until the plate was completely pooled in this manner. Each 8-strip 

was then further pooled into a 1.5mL high-recovery microfuge tube. The sample was 

AMPure cleaned and resuspended in 50µL Qiagen EB buffer. The digestion/ligation 

product was Qubit quantified after AMPure clean-up and 40ng was set aside for an 

initial test PCR using the following: -µL pooled cleaned DNA, 25µL 2× Phusion 

Master Mix, 2µL of PCR Primer mix (12.5ngµL-1 final concentration of primer A 

and B mixed together at 25ngµL-1 each) and -µL of H2O to get a total of 50µL. The 

PCR cycle was set to:  

72 ºC 5 minutes 

  98ºC 30 seconds 

  18 × 

  98 ºC 10 seconds 

  65ºC 30 seconds 

  72 ºC 30 seconds 

  72ºC 5 minutes 

  4ºC hold 

 

If the PCR was judged to have worked well on the basis of agarose gel 

electrophoresis (bright smear ~300-100bp), then the number of cycles were reduced 

to 15. This is to avoid over-amplification and potential for introducing PCR-based 

errors into the library. The PCR product was AMPure cleaned with 100µL 80% 

EtOH and resuspended in 30µL Qiagen EB buffer. A 1% agarose gel was run to 

check that there was no adapter contamination. The concentration of the PCR was 

quantified by Qubit, mixed together such that the entire 96-well plate was now 

pooled, and the final concentration was re-Qubited. 

6.3.3 Next Generation Sequencing at Floragenex, CA 

GBS libraries were sent to Floragenex, CA where next-generation DNA sequencing 

and preliminary data analysis was performed to generate GBS sequence reads. A 

Quality Control (QC) report was also generated (Figure 10.1). Dr Jason Kam, 

IBERS, Aberystwyth University then mapped the reads to a foxtail millet (Setaria 
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italica) reference genome 

(https://www.ncbi.nlm.nih.gov/assembly/GCA_001652605.1). The foxtail millet 

genome was used because, as of August 2016, a pearl millet reference genome was 

not available and the literature reports a comparison of a pearl millet GBS linkage 

map with the foxtail millet genome, which indicated extensive regions of synteny 

(Hu et al., 2015). Foxtail millet is also taxonomically most closely related to pearl 

millet (Devos et al., 2000). As a result, a set of 663 polymorphic SNP markers were 

generated. The low number of markers could be attributable to poor quality DNA in 

plate 2, as indicated by the QC report in Figure 10.1. 

6.3.4 Model-based population STRUCTURE analysis and PCA 

Population structure in the PMiGAP was assessed using Bayesian model-based 

population structure analysis implemented in the software STRUCTURE v2.3, using 

the 663 SNP data set. K (cluster groups) values from 1 - 15 were assessed and the 

‘admixture’ and ‘correlated allele frequency’ models were applied. Three 

independent runs were achieved for each K and the replication number was set to 

20,000 for the burn-in and 50,000 for the MCMC periods. Once all the runs were 

finished, a zip-file containing the results was created and used as an input in the 

STRUCTURE HARVESTER online software programme 

(http://taylor0.biology.ucla.edu/structureHarvester/index.php) in order to estimate 

∆K, which is an ad hoc measure that identifies the number of subpopulations via the 

estimation of the rate of change in the log probability of data between successive K 

values. 

PCA was conducted as an alternative method of determining population structure 

and was performed using TASSEL v5.2.38 (http://www.maizegenetics.net) 

(Bradbury et al., 2007). The PCA method was used to analyse population structure 

in the 663 and >37,000 SNP data sets. SNP markers were filtered, selecting 0.9 as 

the minimum proportion of sites present in order to remove data with ≥ 10% missing 

data. A matrix, which consisted of principle component vectors accounting for 

population structure was generated. Population stratification was visualised by 

plotting the first three PCs. 

 

http://www.maizegenetics.net/
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6.3.5 Linkage disequilibrium analysis 

LD was estimated in the 663 and >37,000 SNP data sets only. LD was not analysed 

using the >3,000,000 SNP data set as this analysis was already completed by 

Varshney et al., (2017). Using the software TASSEL v5.2.38, 

(http://www.maizegenetics.net), LD significance was determined with 100,000 

permutations for each locus. The squared correlation coefficients values, r2 were 

used to quantify LD. P-values for each r2 estimate were obtained with a two-sided 

Fisher's exact test and the LD values between all pairs of marker loci were plotted as 

triangle LD plots to estimate the general view of genome-wide LD patterns and to 

evaluate ‘block-like’ LD structures, which represent regions of high LD. 

For the LD decay plots, LD data generated for both the 663 and the >37,000 SNP 

data set in TASSEL v5.2.38 was loaded into RStudio (RStudio Team, 2015 

http://www.rstudio.com) and r2 values were plotted against physical distance (bp) 

between markers, generated from the Setaria italica and Penisetum glaucum 

genomes, respectively. Using a script adapted from Marroni et al.’s study (2011), LD 

decay plots were generated for each linkage group per data set, and then combined to 

produce genome wide LD decay plots. The decay of r2 with distance was fitted using 

the Hill and Weir expectation of r2 between adjacent sites (Hill and Weir 1988). 

6.3.6 GWAS, Marker Trait Associations 

MTA’s were determined using TASSEL v5.2.38 (http://www.maizegenetics.net), 

employing both the GLM and MLM functions (both based on the kinship matrix). It 

must be noted that only the MLM results are described in this study, due to their 

superiority over GLM. 

6.3.7 Analysis of 37,296 SNPs from the Pearl Millet Genome Assembly 

A genome sequence of reference genotype Tift 23D2B1-P1-P5 became available for 

public use (http://ceg.icrisat.org/ipmgsc/genome.htmL) (Varshney et al., 2017). At 

ICRISAT in 2014, WGS and BAC sequencing was used to create libraries (10 small 

insert and 13 large inserts). The libraries were sequenced on an Illumina HiSeq 2000 

and 520 Gbp data was generated with paired end reads ranging from 49-150 bp, 

representing 296× genome coverage. Two BAC libraries were constructed from the 

pearl millet line: Tift 23D2B1-P1-P5 with average insert size ~120kb. As a result, 

http://www.maizegenetics.net/
http://www.maizegenetics.net/
http://ceg.icrisat.org/ipmgsc/genome.html
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972 Gbp data was created by sequencing 100,608 BAC clones at 80× coverage. 

After filtering and correction parameters were applied, 1.49Tb sequence data was 

assembled into 1.58 Gbp contigs (sequences without gaps or missing data) and 1.82 

Gb scaffolds (contigs with estimated gaps filled in). As a result, >90% of the genome 

was assembled. For assembling and ordering genomic scaffolds into 

pseudomolecules, three biparental mapping populations and the PMiGAP coupled 

with collinearity with the foxtail millet genome were used. 92.8% of scaffolds were 

anchored into 7 pseudomolecules (Pg 1 – 7). Each of the seven pseudomolecules was 

known to physically be located on one DNA molecule i.e. chromosome, and so 

correspond to chromosomes. Sequence data from multiple genomes (963 inbred lines 

of cultivated pearl millet, including the PMiGAP and 31 heterozygous wild 

individuals) provided a vast resource of genome wide variations including millions 

of SNPs, which will help in allele mining of genes with significant MTA’s 

(Varshney et al., 2017). 

The pearl millet genome assembly and SNP files were downloaded from 

http://ceg.icrisat.org/ipmgsc/. However, upon extraction, the SNP files contained 

32,901,665 SNPs, too many to realistically analyse in the TASSEL v5.2.38  

environment. Under Dr Matthew Hegarty’s instruction, Dr Dan Smith and Dr Vasilis 

Lenis (Bioinformatics division, Aberystwyth University) filtered out any missing 

data or what was suspected to be indels, as represented by “-“. Since there were 

many cases where individuals were labelled as “-“, it was unclear whether this meant 

data was missing or represented an indel. Therefore, these were treated as missing 

data. From these assumptions, a first round filter for loci with <10% missing data 

was applied. After filtering, the number of SNPs was still too large, as seen in Table 

6.2, (most GUI population genetics/GWAS software including TASSEL is designed 

for a few thousand or tens of thousands of SNPs) therefore a further filtering step 

was applied based on a minimum allele frequency of <5%. As a result, rare cases 

(<5%) of polymorphism were filtered out based on the parameter that any SNP not 

matching the reference base in <5% of samples was removed. Based on the results of 

this, a large number of SNP were still retained so the stringency was increased to 

<10%. 

 

http://ceg.icrisat.org/ipmgsc/
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Table 6.2 Number of SNPs retained as a result of each filtering step. 

Chromosome original calls filtered ("-") filtered (5%) filtered (10%) 

1 5682988 78538 73117 44599 

2 5014786 61430 58586 37190 

3 6321154 64870 61339 39732 

4 4362915 54651 49782 31575 

5 3172895 44726 42493 26570 

6 5045470 51717 49579 32129 

7 3301457 44181 41548 26558 

Dr Matthew Hegarty (Translational Genomics Facility, Aberystwyth University) 

then took the <10% files and filtered the resulting SNPs to further reduce the number 

of SNPs and to restrict the data set to include PMiGAP genotypes only. SNPs were 

retained only where the number of alleles were called as identical to the reference 

genome within 1 standard deviation of the mean across the 376 plants sequenced at 

ICRISAT (typically ~30-70% of calls). This resulted in the exclusion of rarer alleles. 

For example, 20% for chromosome 1, all markers with 30%-70% of calls matching 

the reference base were used, this resulted in >6600 SNPs. For all other 

chromosomes, this reduced it to 5000-6000 SNPs on average. Multi-allelic SNPs 

were also removed as these would have complicated the TASSEL analysis, resulting 

in a further 2000 SNPs being filtered. In total, 37,296 SNPs from PMiGAP entries 

were generated in HAPMAP format. Chromosome 1 contained 6647 SNPs, 

chromosome 2 contained 6199 SNPs, chromosome 3 contained 6455 SNPs, 

chromosome 4 contained 5583 SNPs, chromosome 5 contained 5408 SNPs, 

chromosome 6 contained 4587 SNPs and chromosome 7 contained 2417 SNPs. 

6.3.8 Analysis of 3,150,286 SNPs from the Pearl Millet Genome Assembly 

Dr. Sarah Beynon (Genome and Diversity, Aberystwyth University) applied more 

relaxed filtering stringencies to the 32,901,665 SNPs downloaded from 

(ftp://cegresources.icrisat.org/). This was achieved by applying a 0.05 minor allele 

frequency filter and a “minimum count’ threshold, where a call must be present in 

80% of individuals at a given loci. This was done in the TASSEL v5.2 command line 

environment. As a result, 3,150,286 SNPs were generated for GWAS on a greater 

scale than previously. Chromosome 1 contained 517989 SNPs, chromosome 2 

contained 531723 SNPs, chromosome 3 contained 624454 SNPs, chromosome 4 

contained 423250 SNPs, chromosome 5 contained 329516 SNPs, chromosome 6 
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contained 415923 SNPs and chromosome 7 contained 307431 SNPs. Phenotype and 

genotype data were analysed in a High Performance Computing (HPC) Linux 

environment. MLM based associations are reported due to the clean MLM QQ plot 

as compared to GLM for this dataset. For MLM, Multi-Dimensional Scaling (MDS) 

was applied for the GWAS, taking into account 5 components. Outputs of the 

GWAS included the results table, including P-Values and Marker r2 values of each 

significant marker, per trait. The ‘grep’ and ‘cat’ functions were used to break up the 

large results file in the HPC Linux environment by trait (see appendices). The table 

was then used as an input in TASSEL v5.2.38 (GUI version) to generate QQ and 

Manhattan plots. 

6.3.9 Bonferroni Corrected Threshold 

Multiple testing was accounted for by adjusting the threshold below which a p value 

is considered significant. This was achieved using the Bonferroni threshold 

correction method at the 5% significance level. In cases where the Bonferroni 

corrected threshold has not been met, the lowest P-values possible have been used in 

further analysis. 

6.3.10 NCBI BLAST 

Nucleotide (n) and protein (x) Basic Local Alignment Search Tool (BLAST) 

searches were performed using the NCBI (National Centre for Biotechnology 

Information) website and the Setaria italica genome (in the case of BLASTn), using 

the standard BLAST settings to find regions of similarity between biological 

sequences. A hit was deemed significant if the number of identities was >500 for the 

BLASTn search and >40 for the BLASTx search. The software compares nucleotide 

sequences to sequence databases and calculates the statistical significance to detect 

whether the SNP falls within a gene. 

6.3.11 Plant Material and Phenotype Data 

See Chapter 2, Table 2.3. 

6.4 Results and Discussion 

6.4.1 Population Structure, LD and GWAS Using 663 SNPs Mapped to Foxtail 

Millet 
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Population Structure 

The most likely number of subpopulations in the PMiGAP was determined to 

account for population structure. The clustering program STRUCTURE (v.2.3.4) 

(Pritchard et al., 2000) was used to estimate the membership probability of each 

PMiGAP accession to a number of hypothetical subpopulations (K) and the 

STRUCTURE HARVESTER program was used to determine the ∆K value and to 

generate the Evanno table. 

 

 

 

 

 

 

 

Figure 6.2, Plot of mean likelihood L(K) and variance per K value. 

 

 

 

 

 

 

 

 

Figure 6.3, Ad-hoc statistic ∆K for K values ranging from 1 to 15. 
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K Reps Mean LnP(K) Stdev LnP(K) Ln'(K) |Ln''(K)| Delta K 

1 3 -125575.600000 2.851315 — — — 

2 3 -115428.366667 15.617405 10147.233333 6930.266667 443.752771 

3 3 -112211.400000 15.463182 3216.966667 2919.800000 188.822714 

4 3 -111914.233333 882.841494 297.166667 1053.066667 1.192815 

5 3 -110564.000000 723.615112 1350.233333 583.066667 0.805769 

6 3 -109796.833333 415.510930 767.166667 315.300000 0.758825 

7 3 -108714.366667 129.046516 1082.466667 1746.700000 13.535429 

8 3 -109378.600000 1824.080681 -664.233333 19742.333333 10.823169 

9 3 -129785.166667 15735.193628 -20406.566667 30878.700000 1.962397 

10 3 -119313.033333 16435.345972 10472.133333 10676.833333 0.649626 

11 3 -119517.733333 20552.896436 -204.700000 91998.333333 4.476174 

12 3 -211720.766667 85718.505855 -92203.033333 23379.000000 0.272742 

13 3 -327302.800000 257645.744984 -115582.033333 203019.300000 0.787978 

14 3 -239865.533333 136800.303802 87437.266667 116955.066667 0.854933 

15 3 -269383.333333 72776.237737 -29517.800000 — — 

Figure 6.4, Table output of the Evanno method results. Data highlighted in yellow 

shows the largest value in the ∆K column. 

The results from the model-based STRUCTURE analysis can be seen in Figures 6.2, 

6.3 and 6.4. Analysis was performed for K populations varying from 1 to 15 and no 

distinct population structure was identified in 251 PMiGAP lines. The peak at K=2, 

as seen in Figure 6.3 and highlighted in Figure 6.4 is explained by the fact that there 

was enough variation to divide the population between the two clusters, but the 

effect is random. STRUCTURE divides the data into genetic components, meaning 

that if there is at least some differentiation between samples, it will divide them by 

the extremes and group them into 2. Figure 6.2 shows the rate of change within 

values of K. According to Porras-Hurtado et al., (2013), “plots of K values typically 

progress to a plateau for levels of K beyond the most applicable number of detected 

populations, so the smallest stable K value represents the optimum value”. Thus, the 

data points should creep up and plateau if population structure was present and 

where the data would plateau may indicate the number of K that is most likely. In 

Figure 6.2, the data is fairly constant, indicating no rate of change and therefore 
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indicative of no population structure. The lack of population structure in PMiGAP 

accessions is ideal for the genetic dissection of complex traits with GWAS. 

The results in this study do not coincide with those of Sehgal et al., (2015), who used 

STRUCTURE to analyse population structure in 250 PMiGAP lines, using 37 

microsatellite SSR and Conserved Intron-Scanning Primer (CISP) markers and 

found that topologically meaningful clustering was captured at K = 6. According to 

Porras-Hurtado et al., (2013), SNPs are binary markers that have lower variability 

than multiple-allele loci. Therefore, small sample sizes may be used to obtain 

accurate allele frequency estimates. Microsatellites require larger samples sizes than 

SNPs to reliably assess patterns of variability within a population. This could explain 

the differences in the results generated here, as compared to that of Sehgal et al., 

(2015), in that there may not have been enough markers in Sehgal et al.,’s (2015) 

study to accurately determine population structure. 

 

 

 

 

 

 

 

 

Figure 6.5, PCA plot for 212 PMiGAP lines generated in the TASSEL v5.2.38  

environment.  

 

Similarly, the PCA plot in Figure 6.5, based on SNP marker data from 212 PMiGAP 

lines (after filtering for 10% missing data) showed no clear population structure. The 

plot shows two principal components displaying no separation into sub-populations, 

therefore the results from the different statistical analyses were quite consistent.  

The results from this study also contrast with the results from Hu et al.,’s (2015) 

study, where population structure in 500 global pearl millet accessions was 
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characterised using 8,377 SNPs, from which extensive geographic structure was 

reported and topologically meaningful clustering was captured at K = 3. Upon 

comparison of this study with Hu et al.,’s study, the larger number of SNPs (8,377 as 

compared to 663) from a larger population (500 as compared to the 251) is obviously 

more favourable. However, when comparing the origins of the samples from this 

study to Hu et al.,’s study it was found that Hu et al.,’s study held accessions with 

particularly large numbers from Senegal as compared to all other origins. Even 

though a smaller sample set was generated from this study, global diversity is better 

represented here, as seen in Figure 6.6. 
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Figure 6.6, Top: The distribution of pearl millet accessions used in this study. 

Bottom: The distribution of pearl millet accessions used in Hu et al.’s (2015) study. 
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Linkage Disequilibrium 

A LD plot shows whether any two given SNPs are inherited together. The extent of 

LD can be observed from chromosomes 1 – 9 (Figure 6.7), as indicated by the r2 

values and the areas of blue, green and red, which show levels of significance. 

Within the areas of significance, markers are significantly associated. In general, the 

triangle plot allows visualisation of blocks of loci (red blocks) in significant LD and 

any prominent block-like LD structures are of interest in association mapping studies 

and may simplify LD mapping efforts of complex traits. 

Figure 6.7, LD plot built in the TASSEL v5.2.38 environment. The squared 

correlation coefficient (r2) values are denoted by a colour scale from white (0.0) to 

red (1.0) in the upper triangle. The p values ranging from non-significant (0.01; 

white) to highly significant (<0.0001; red) are shown in the lower triangle. R2 

represents the correlation between alleles at two loci, which is informative for 

evaluating the resolution of association approaches. The white area with coloured 
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pixels represent the area that applies to chromosomes 1-9 and the lines represent the 

division of chromosomes. 

The extent of LD was assessed among 31,425 pairs of loci (Figure 6.7). Across all 

accessions, 2.08% of the total marker pairs were in LD (based on r2), and no large 

block-like structures were observed. This may be attributable to low levels of 

markers. Counts for individual r2 values can be seen in Table 6.3. 

Table 6.3, r2 results among 31,425 pairs of loci. 

r2 Min r2 Max Count r2 Min r2 Max Count 

0 0.01 11467 0.5 0.51 0 

0.01 0.02 3070 0.51 0.52 1 

0.02 0.03 1512 0.52 0.53 1 

0.03 0.04 990 0.53 0.54 0 

0.04 0.05 591 0.54 0.55 4 

0.05 0.06 337 0.55 0.56 1 

0.06 0.07 239 0.56 0.57 1 

0.07 0.08 170 0.57 0.58 3 

0.08 0.09 160 0.58 0.59 0 

0.09 0.1 109 0.59 0.6 0 

0.1 0.11 82 0.6 0.61 0 

0.11 0.12 38 0.61 0.62 0 

0.12 0.13 45 0.62 0.63 0 

0.13 0.14 44 0.63 0.64 10 

0.14 0.15 40 0.64 0.65 0 

0.15 0.16 36 0.65 0.66 1 

0.16 0.17 27 0.66 0.67 0 

0.17 0.18 19 0.67 0.68 2 

0.18 0.19 19 0.68 0.69 1 

0.19 0.2 6 0.69 0.7 0 

0.2 0.21 4 0.7 0.71 2 

0.21 0.22 7 0.71 0.72 4 

0.22 0.23 14 0.72 0.73 4 

0.23 0.24 4 0.73 0.74 0 

0.24 0.25 11 0.74 0.75 0 

0.25 0.26 4 0.75 0.76 1 

0.26 0.27 1 0.76 0.77 0 

0.27 0.28 10 0.77 0.78 0 

0.28 0.29 3 0.78 0.79 0 

0.29 0.3 1 0.79 0.8 0 

0.3 0.31 0 0.8 0.81 0 

0.31 0.32 4 0.81 0.82 0 

0.32 0.33 5 0.82 0.83 0 

0.33 0.34 8 0.83 0.84 0 

0.34 0.35 0 0.84 0.85 2 
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0.35 0.36 5 0.85 0.86 1 

0.36 0.37 0 0.86 0.87 0 

0.37 0.38 1 0.87 0.88 1 

0.38 0.39 0 0.88 0.89 3 

0.39 0.4 2 0.89 0.9 1 

0.4 0.41 3 0.9 0.91 0 

0.41 0.42 0 0.91 0.92 0 

0.42 0.43 0 0.92 0.93 0 

0.43 0.44 1 0.93 0.94 3 

0.44 0.45 1 0.94 0.95 2 

0.45 0.46 4 0.95 0.96 1 

0.46 0.47 3 0.96 0.97 3 

0.47 0.48 0 0.97 0.98 10 

0.48 0.49 1 0.98 0.99 0 

0.49 0.5 2 0.99 1 138 

   

NaN NaN 12124 
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Figure 6.8, LD decay per chromosome for the Seratia Italica genome built in the 

RStudio environment. Regression line is based on Hill and Weir (1988). LD data is 

represented by r2 values and distance is measured in bp. The positions of pearl millet 

SNPs are mapped to Setaria italica. 

Figure 6.9, LD decay across the entire genome of Seratia Italica built in the RStudio 

environment. Regression line is based on Hill and Weir (1988). LD data is 

represented by r2 values and distance is measured in bp. The positions of pearl millet 

SNPs are mapped to Setaria italica. 

In general, LD decays slowly in inbred species and more rapidly in natural 

populations of outcrossing species, such as pearl millet. In species where LD 

declines rapidly, genome scans require a larger marker density; however the testing 

of candidate genes is still feasible (Garris et al., 2003). In this study, r2 values were 

plotted against distance (bp) to generate LD decay plots. A regression line based on 

Hill and Weir (1988) was included in each plot.  From the data, it was possible to 

Chromosome 9 
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estimate average genome-wide decay of LD by plotting r2 values from the entire 

genome against distance (Figure 6.9). Alternatively, the extent of LD for each 

chromosome was also estimated from the LD decay plots generated, using the 

‘subset’ function in RStudio to separate r2 values per chromosome (Figure 6.8). 

When LD decay plots are generated, it is typical to observe the distance point where 

the LD value (r2) decreases below 0.1 based on the nonlinear logarithmic trend line 

(regression line). This provides an estimate of the extent of LD for association 

analysis. The decrease of LD with genetic distance is indicative of the portion of LD 

that is conserved with linkage and proportional to recombination. 

The extent of LD was investigated using 31,425 loci pairs across the genome and 

loci pairs from each separate chromosome (Figure 6.8 and 6.9). Pairwise LD, 

estimated using r2, was found to decay extremely rapidly with genetic distance. This 

suggests the importance of an adequate number of markers for GWAS and that there 

were not nearly enough markers in this case. Some differences were observed in the 

extent of LD at the chromosome level. LD across the Setaria italica genome was 

seen to rapidly breakdown in all chromosomes (regression line did not extend past 

r2 = 0.1). However, the greatest amount of LD, although minimal was seen on 

chromosomes 3 and 7. For chromosome 3, the LD decay distance was 0.8e+07bp for 

locus pairs with r2 0.1. For chromosome 7, the LD decay distance was 1.4e+07bp for 

locus pairs with r2 0.1. 

Marker Trait Associations 

Two approaches, GLM and MLM, were compared for all traits using the kinship 

matrix in both models. The QQ (quantile-quantile) plot is commonly used for 

GWAS to show that confounding factors aren’t at work and shows the expected 

distribution of association test statistics (X-axis) across the SNPs as compared to the 

observed values (Y-axis). A clean QQ plot should indicate a solid line matching 

X=Y until it curves sharply at the end (representing true associations among SNPs). 

The QQ plots of traits, shown in Figure 6.10 suggest that the MLM model is superior 

at accounting for confounding effects. 
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Figure 6.10, Quantile-quantile plots of Ca, K, Mg, Na, Fe and Zn using MLM and 

GLM models built in the TASSEL v5.2.38  environment. 

Here we present results of only MLM model-based associations due to the clean 

MLM QQ plot in Figure 6.10 as compared to the GLM associations. When the 

Bonferroni threshold correction at the 5% significance level was applied, none of the 

MTA’s exceeded the threshold, thus associations with candidate genes are explored 

based on the lowest P-values possible, eventhough these fall below the Bonferroni 

threshold for significance. Some Low P-value MTA’s can be seen in Figure 6.11 and 

Table 6.4. 

 

MLM 

GLM 
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Figure 6.11, GWAS-based Manhattan plots built in the TASSEL v5.2.38 
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environment exhibiting the lowest P-values (measured by the MLM model) 

associated with seed mineral concentrations using 663 genome-wide GBS SNPs in 

pearl millet. The x-axis illustrates the relative density of Setaria italica reference 

genome-based SNPs physically mapped on 9 chromosomes. The y-axis displays the 

-log10 (P)-value for the degree of association of SNP loci with seed-mineral 

concentrations.  

Table 6.4,  SNPs associated with minerals, P=<0.002. Bonferroni corrected threshold 

= 1.26E-05. 

a Percentage of phenotypic variation explained. 

Phenotypic variance (cumulative r2) explained by the genetic effects of all associated SNPs can only 

be calculated for Ca because only Ca has multiple MTA’s (8), the value is 64.6%. 

A GWAS was conducted on grain samples from field grown plants (ICRISAT, 

Patencheru, 2010). The MLM model-based association mapping approach identified 

12 gene-based SNPs exhibiting an association (P =<0.002) with seed-mineral 

concentrations (Table 6.4). The percentage of phenotypic variation explained is the 

Marker r2 × 100 for each individual associated marker and is also summarised in 

Table 6.4. For the 12 MTA’s, the percentage of the phenotypic variation explained 

ranged from 7.03% - 9.92% and the marker 50972232 on chromosome 5 for Na 

uptake had the highest r2 value. According to the data in Figure 6.11, the log10 P-

value scores in all cases were relatively low (the cut-off point was P=0.002), which 

may have been attributable to a number of factors. For example, in this study, the 

sample size was relatively small as compared to many GWAS in other crops 

reported in the literature. GWAS are generally aimed at finding very small effects; 

therefore they need large numbers of samples to confirm small differences with 

statistical confidence. For example, in barley, 298 landraces were characterised for 

micronutrient concentration and then genotyped with 7,842 SNPs. Results yielded 

Trait Marker Chromosome Position Df F P-Value Marker r2 %r2a 

Na 5_50971121 5 50971121 2 9.416687 1.27E-04 0.099236 9.92 

Ca 1_5882761 1 5882761 2 8.484362 2.97E-04 0.089309 8.93 

Ca 1_5882763 1 5882763 2 8.484362 2.97E-04 0.089309 8.93 

K 7_20384756 7 20384756 2 8.324543 3.45E-04 0.087953 8.80 

Ca 6_37189739 6 37189739 2 7.824584 5.44E-04 0.082364 8.24 

Ca 6_37189769 6 37189769 2 7.824584 5.44E-04 0.082364 8.24 

Ca 2_467521 2 467521 2 7.582021 6.82E-04 0.079811 7.98 

Ca 9_7373490 9 7373490 2 7.557771 6.97E-04 0.079555 7.96 

Zn 9_4623914 9 4623914 2 6.952239 0.001225 0.073464 7.35 

Ca 9_7373520 9 7373520 2 6.821473 0.00138 0.071805 7.18 

Ca 7_34304700 7 34304700 2 6.786889 0.001427 0.071513 7.15 

Fe 9_3820759 9 3820759 2 6.497722 0.001874 0.070313 7.03 
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increased statistical significance as compared to this study where 191 PMiGAP lines 

were genotyped with 663 SNPs (Mamo et al., 2014). This was also the case for 

chickpea, where increased statistical significance was also observed when 369 

individuals were characterised for Fe and Zn concentrations and genotyped with 

24,620 SNPs generated from genome-wide GBS (Upadhyaya et al., 2016).  

The biggest challenge of successfully carrying out a reliable GWAS is obtaining 

robust genotype data; this was accounted for by filtering out 10% missing data, 

implemented in TASSEL v5.2.38 . The original QC report by Floragenex can also be 

seen in the appendix.  

As discussed previously, next-generation DNA sequencing and preliminary data 

analysis of pearl millet DNA was performed to generate GBS sequence reads. The 

reads were then mapped to a foxtail millet reference genome due to their close 

taxonomic relationship. A foxtail millet genome was used because a pearl millet 

reference genome was not available at the time of this research and the literature 

reports extensive regions of synteny between foxtail millet and pearl millet (Hu et 

al., 2015). However, some large-scale rearrangements in the pearl millet lineage has 

been detected, as reported by Devos et al., (2000). This may have affected LD data 

and the quality and accuracy of the downstream analysis, thus findings from the 

GWAS may be less valid than in if a pearl millet reference genome was used. A 

different reference genome may also be one of the reasons for the low levels of SNPs 

detected, simply because tags may not have matched the reference genome due to 

sequence variation. If too much sequence variation is present, the read will not map 

and therefore may not be detected as a tag. 

Identifying Candidate Genes from Low P-Value SNPs 
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Figure 6.12, SNPs with the lowest P-values from GWAS mapped onto the Setaria italica genome. Chromosome numbers 1 – 9 correspond to 

CM004364.1 – CM004372.1, respectively. Image built in the CLC Genomic Workbench environment (v6.5).
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SNPs with the lowest P-values from the GWAS were located by position and 

chromosome number on the Setaria italica reference genome 

(https://www.ncbi.nlm.nih.gov/genome/10982?genome_assembly_id=276542), as 

seen in Figure 6.12, using the CLC Genomics Workbench v.6.5 (CLC Bio, Aarhus, 

Denmark). A 4kb region surrounding each SNP was selected and a BLAST search of 

the NCBI database was conducted on each region of interest using the Setaria italica 

reference genome. Blast alignments can be seen in Table 6.5 and 6.6. 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/genome/10982?genome_assembly_id=276542
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Table 6.5, BLASTn alignments of low P-value SNPs mapped onto the Setaria italica reference genome assembly + 4kb – 663SNP dataset. 

SNP 
(Chromosome 
no._Position) 

Score 
E 

Value 
Identities Gaps Range Candidate Gene(s) 

Na 5_50971121 
2931 

bits(1587) 
0.0 

1641/1665(99
%) 

12/1665(0%) 
44102337 to 

44103995 

1681 bp at 5' side: LOW QUALITY PROTEIN: probable 
carboxylesterase 16 

5182 bp at 3' side: probable histone acetyltransferase 
HAC-like 3 

Ca 
1_5882761/5882

763 

6986 
bits(3783) 

0.0 
3942/4014(98

%) 
29/4014(0%) 

5593345 to 
5597342 

premnaspirodiene oxygenase-like 

712 
bits(385) 

0.0 
1074/1408(76

%) 
42/1408(2%) 

5585865 to 
5587258 

6301 bp at 5' side: citron Rho-interacting kinase-like 
3313 bp at 3' side: premnaspirodiene oxygenase-like 

K 7_20384756 
3834 

bits(2076) 
0.0 

2105/2119(99
%) 

2/2119(0%) 
20283626 to 

20285743 
U-box domain-containing protein 33-like 

Ca 6_37189739/ 
37189769  

However, BLAST 
hits only 

detected on 
chromosome 5 

6953 
bits(3765) 

0.0 
3950/4031(98

%) 
45/4031(1%) 

43912019 to 
43916034 

 
transcription factor bHLH128-like 

Ca 2_467521 
7269 

bits(3936) 
0.0 

3982/4003(99
%) 

7/4003(0%) 
147809 to 

151806 

60S ribosomal protein L13a-4-like 
probable LRR receptor-like serine/threonine-protein 

kinase RPK1 

Ca 9_7373490 
5081 

bits(2751) 
0.0 

2751/2751(10
0%) 

0/2751(0%) 
6263550 to 

6266300 
folate transporter 1, chloroplastic 

Zn 9_4623914 
2959 

bits(1602) 
0.0 

1606/1608(99
%) 

0/1608(0%) 
4486437 to 

4488044 

3839 bp at 5' side: BTB/POZ domain-containing protein 
At3g50780 

1298 bp at 3' side: uncharacterized protein 
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LOC101772810 

Ca 9_7373520 
5136 

bits(2781) 
0.0 

2781/2781(10
0%) 

0/2781(0%) 
6263550 to 

6266330 
folate transporter 1, chloroplastic 

Ca 7_34304700 
7315 

bits(3961) 
0.0 

3988/4001(99
%) 

1/4001(0%) 
31286727 to 

31290726 

992 bp at 5' side: microtubule-associated protein RP/EB 
family member 1A-like 

20506 bp at 3' side: V-type proton ATPase subunit D 

Fe 9_3820759 

2392 
bits(1295) 

0.0 
1331/1347(99

%) 
8/1347(0%) 

3704917 to 
3706255 

homeobox protein Hox-A13-like 

1315 
bits(712) 

0.0 726/732(99%) 3/732(0%) 
3704010 to 

3704739 
6066 bp at 5' side: DNA-binding protein HEXBP-like 
179 bp at 3' side: homeobox protein Hox-A13-like 

 

Table 6.6, BLASTx alignments of low-P-value SNPs mapped onto the Setaria italica reference genome assembly + 4kb – 663SNP dataset. 

SNP 
(Chromosome 
no._Position) 

Score 
E 

Value 
Identities Positives Gaps Range 

Sequences producing significant 
alignments 

Na 5_50971121 
370 

bits(950) 
2e-114 240/379(63%) 259/379(68%) 49/379(12%) 64 to 399 

hypothetical protein SETIT_004765mg 
[Setaria italica] 

Ca 
1_5882761/5882

763 

526 
bits(1354) 

0.0 286/286(100%) 286/286(100%) 0/286(0%) 26 to 311 
PREDICTED: premnaspirodiene 
oxygenase-like [Setaria italica] 

K 7_20384756 

463 
bits(1192) 

2e-142 238/341(70%) 264/341(77%) 37/341(10%) 
516 to 

819 
hypothetical protein 

SORBI_3006G086700 [Sorghum bicolor] 

415 
bits(1067) 

4e-125 196/200(98%) 198/200(99%) 0/200(0%) 
497 to 

696 
PREDICTED: U-box domain-containing 

protein 33-like [Setaria italica] 

Ca 6_37189739/ 
37189769 

339 
bits(870) 

2e-101 211/249(85%) 213/249(85%) 33/249(13%) 69 to 284 
hypothetical protein SETIT_001123mg 

[Setaria italica] 

178 2e-63 125/148(84%) 127/148(85%) 13/148(8%) 113 to PREDICTED: transcription factor 
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bits(452) 247 bHLH128-like [Setaria italica] 

Ca 2_467521 
779 

bits(2012) 
0.0 462/464(99%) 463/464(99%) 0/464(0%) 

259 to 
722 

PREDICTED: probable LRR receptor-like 
serine/threonine-protein kinase RPK1 

[Setaria italica] 

Ca 9_7373490 
74.7 

bits(182) 
2e-10 70/100(70%) 70/100(70%) 30/100(30%) 1 to 70 

PREDICTED: folate transporter 1, 
chloroplastic [Setaria italica] 

Zn 9_4623914 
42.0 

bits(97) 
0.69 17/18(94%) 18/18(100%) 0/18(0%) 81 to 98 

hypothetical protein SETIT_033505mg 
[Setaria italica] 

Ca 9_7373520 
74.7 

bits(182) 
2e-10 70/100(70%) 70/100(70%) 30/100(30%) 1 to 70 

PREDICTED: folate transporter 1, 
chloroplastic [Setaria italica] 

Ca 7_34304700 

138 
bits(347) 

4e-39 77/139(55%) 87/139(62%) 25/139(17%) 52 to 165 
uncharacterized protein LOC8079218 

isoform X1 [Sorghum bicolor] 

93.6 
bits(231) 

7e-24 45/97(46%) 63/97(64%) 4/97(4%) 
416 to 

512 
Os03g0643433 [Oryza sativa Japonica 

Group] 

87.0 
bits(214) 

1e-18 40/80(50%) 52/80(65%) 0/80(0%) 
523 to 

602 
Nitrate transporter [Aegilops tauschii] 

Fe 9_3820759 

165 
bits(418) 

5e-44 102/102(100%) 102/102(100%) 0/102(0%) 12 to 113 
hypothetical protein SETIT_040692mg 

[Setaria italica] 

109 
bits(272) 

2e-22 45/49(92%) 49/49(100%) 0/49(0%) 1 to 39 
PREDICTED: zinc finger protein GIS-like 

[Brachypodium distachyon] 

82.8 
bits(203) 

4e-15 36/43(84%) 39/43(90%) 1/43(2%) 46 to 88 
PREDICTED: zinc finger protein 7-like 

[Setaria italica] 
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Na 5_50971121 

The Carboxylesterase 16 (CXE16) candidate gene was located 1681bp upstream at 

the 5’ side of the Na 50971121 SNP. CXE family members are short chain fatty 

acids and although their roles influencing signal transduction and xenobiotic 

detoxification in animals has been well defined for decades, possibly due to their 

importance in detoxifying drugs and pesticides (Gershater & Edwards, 2007), much 

less is known about their roles in planta, even though CXE activities in planta have 

been reported for over 40 years. Specifically, CXE16 is expressed in roots, leaves, 

stems, flowers and siliques (Marshall et al., 2003). In enzymology, CXE’s catalyses 

the following reaction: 

Carboxylic ester + H2O  Alcohol + Carboxylate 

The making and breaking of carboxylic ester bonds are fundamental reactions in 

organic chemistry, with esters being more hydrophobic and typically less reactive 

than the respective alcohol and acid components. This may protect carboxylic acids 

from undergoing unwanted side reactions. Additionally, the hydrolysis of carboxylic 

esters in biological systems may have potentially important roles in regulating the 

synthesis and release/transport of bioactive metabolites. Members of the CXE family 

have also been proven to hydrolyse soluble low molecular weight natural products 

and xenobiotics in plants (Gershater & Edwards, 2007). 

A probable histone acetyltransferase HAC-like 3 protein was located 5182 bp 

downstream at the 3' side of this Na associated SNP. Structurally, HAC-like 3 

proteins contain 4 zinc finger regions including plant homeodomain (PHD)-type, 

ZZ-type 1 + 2 and transcriptional adaptor zinc (TAZ)-type, where Zn plays a critical 

structural role for protein stabilisation (Grotz et al., 1998). HAC family genes 

regulate flowering time in Arabidopsis thaliana and a study by Han et al., (2007) 

revealed that the transcript level of FLOWERING LOCUS C was significantly 

higher in hac1-involved mutants than in wild-type plants (Han et al., 2007). Ethylene 

is an important plant hormone that regulates various growth dynamics and 

developmental events, including seed germination, seedling growth, fruit ripening 

and organ senescence. The function of the HAC family genes in the ethylene 

pathway has been investigated by Li et al., (2014), where it was proven that hac1-
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involved mutants were hypersensitive to ethylene and they also influenced the 

expression levels of ethylene-responsive genes. 

Ca 1_5882761/5882763 

Premnaspirodiene oxygenase-like was found to be associated with the 2kb region 

surrounding the Ca 5882761/5882763 SNPs. Premnaspirodiene oxygenase is 

involved in the biosynthesis of solavetivone, a potent antifungal phytoalexin 

(Takahashi et al., 2007) by catalysing the reaction below: 

Vetispiradiene + 2 NADPH + 2 O2  solavetivone + 2 NADP+ + 3 H2O 

Structurally, it contains a metal binding site for Fe (heme axial ligand), which acts as 

an inorganic cofactor, required for a protein to be catalytically active. Solavetivone is 

a well-known phytoalexin that is produced by potato plants in response to various 

stress factors, including the application of arachidonic acid (Desjardins et al., 1995) 

and infection with Erwinia carotovora (Engström et al., 1999). It also reduces the 

growth of the potato pathogen Phytophthora infestans (Engström et al., 1999). 

Additionally, a citron Rho-interacting kinase-like protein was located 6301 bp at the 

5' side and is known to play an important role in the regulation of cytokinesis in both 

animals and plants. Citron is a 183 kDa protein that contains a C6H2 zinc finger, a 

PH domain, and a long coiled-coil forming region including 4 leucine zippers and a 

rho/rac binding site (Madaule et al., 1995). Plant cytokinesis differs from animal 

cytokinesis, partly because of the rigidity of plant cell walls. The regulation of 

cytokinesis is facilitated by recently identified endolysosmal ion channels known as 

Two-Pore Channels (TPC). There are three known TPC’s: TPC1, TPC2 and TPC3. 

TPC1 is proven to interact with citron kinase, regulating completion of cytokinesis 

(Horton et al, 2015). In plants, studies of Ca2+ release in Arabidopsis thaliana 

identified AtTPC1 as a channel that mediates the slow vacuolar current, regulating 

germination and stomatal movement (Peiter et al., 2005). This may provide some 

insight as to why this candidate gene was associated with a Ca SNP. Additionally, 

the literature documents other studies that prove that proton-permeable ion channels 

are activated by NAADP or Ca2+ (Pitt et al., 2014). 
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K 7_20384756 

A U-box domain-containing protein 33-like was located within the 4 kb region 

surrounding the K associated SNP, 20384756. This candidate gene functions as an 

E3 ubiquitin ligase in Arabidopsis thaliana, which facilitates protein ubiquitination. 

The importance of E3 ubiquitin ligasess is highlighted by the vast number of cellular 

processes they regulate (such as hormone metabolism and photomorphogenesis in 

plants), and the number of diseases associated with their loss of function or 

inappropriate targeting. U-box proteins account for only 3 - 4% of the annotated 

ubiquitin ligases in humans, which is far less than those found in plants (Patterson, 

2002).  

Ca 6_37189739/ 37189769   

A TF basic helix-loop-helix (bHLH) 128-like was located in relation to these SNPs 

(which are within 30bp of each other), associated with Ca uptake. Functions 

associated with this TF that have been characterised in Arabidopsis thaliana, 

include: DNA binding, regulation of stomatal movement and protein dimerisation 

activity. At present, few plant bHLH TFs have been studied in detail, but among the 

few that have, some provided insights into the central roles of TFs in plants, and into 

their biochemical function. For example, genetic analysis of the anthocyanin 

biosynthetic pathway in Zea mays resulted in the identification of a group of bHLH 

TFs required for synthesis of the purple anthocyanin pigments (Heim et al., 2003, 

Neuffer et al., 1997). 

Ca 2_467521 

A probable LRR receptor-like serine/threonine-protein kinase RPK1 gene was 

located within the 4 kb region surrounding the SNP, 467521. This gene is involved 

in the main abscisic acid-mediated (ABA) signaling pathway and in early ABA 

perception. Coupled with RPK2, it is needed for pattern formation along the radial 

axis (e.g. the apical embryonic domain cell types that generate cotyledon primordia), 

and the apical-basal axis (e.g. differentiation of the basal pole during early 

embryogenesis) (Nodine et al., 2007). Microarray studies have proven that hundred 

of genes respond to water deficiency via a specific temporal and spatial expression 

pattern, including signalling cascades involving protein kinases/phosphatases (e.g., 
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RPK1) and the upregualtion of chaperones and molecules concerned with 

osmoprotectant metabolism. ABA plays a key role in cellular signaling during 

drought and salt stress (Reddy et al., 2011). Synthesis of ABA is induced under 

drought stress and elevated levels of ABA signals for plant guard cell stomatal 

closure, which inturn induces the expression of drought stress–related genes that 

encode proteins which facilitate dehydration tolerance mechanisms. Promoters of 

many ABA-responsive genes contain cis-acting elements such as ABRE 

(PyACGTGGC) (Uno et al., 2000). ABA-inducible transcription generally requires 

the existence of >2 ABREs or the combination of 1ABRE with a coupling element at 

an appropriate position within the promoter region (Uno et al., 2000). Many of the 

Ca2+ regulated genes contain these elements, which suggests that ABA may regulate 

ABA-responsive genes through cellular Ca2+ changes (Kaplan et al., 2006), hence 

the association with a Ca SNP. 

Ca 9_7373490/7373520 

Folate transporter 1 (FOT1), chloroplastic was the candidate gene associated with the 

SNPs, 7373490 and 7373520. It facilitates the movement of folate into chloroplasts 

and has been extensively characterised in Arabidopsis thaliana, where it is expressed 

throughout development (Bedhomme et al., 2005). A study by Bedhomme et al., 

(2005) indicated that even though AtFOT1 belongs to the mitochondrial carrier 

family, green fluorescent proteins (GFP)-tagging experiments and Western blot 

analyses indicate that it is targeted to the envelope of chloroplasts. 

Zn 9_4623914 

A BTB/POZ domain-containing the protein At3g50780 was located 3839 bp at the 5' 

side. The BTB domain (Broad-Complex, Tramtrack and Bric a brac) is also referred 

to as the POZ domain (POxvirus and Zinc finger). It is a homodimerisation domain 

occurring at the N terminus of proteins which contains several copies of either C2H2 

zinc fingers or Kelch repeats comprised of around 50 amino acid residues which 

form the structure of a four stranded beta-sheet "blade" for multiple potential 

protein-protein contact sites (Zollman et al., 1994). Many BTB proteins are 

transcription regulators and may act via the control of the chromatin structure. C2H2 

zinc fingers are a common type of DNA binding domain. The motif typically occurs 

in tandem repeats and consists of 2 cysteine and 2 histidine residues that coordinate a 
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Zn ion and fold the domain into a finger-like protein that is able to interact with 

DNA (Klug & Schwabe, 1995) – hence the association with a Zn SNP. In terms of 

function, this candidate gene may act as a substrate-specific adapter of an E3 

ubiquitin-protein ligase complex (CUL3-RBX1-BTB), which mediates the 

ubiquitination and proteasomal degradation of target proteins, this has been 

characterised in Arabidopsis thaliana (Gingerich et al., 2005). 

Ca 7_34304700 

A microtubule-associated protein RP/EB family member 1A-like (MAPRE1) was 

located 992 bp at the 5' side. Microtubles represent tracks for the transport of 

material within the cell by means of molecular motor proteins and EB1 proteins are 

evolutionarily conserved plus-end-tracking proteins that localise to growing 

microtubule plus ends where they regulate microtubule dynamics and interactions 

with intracellular targets (Komaki et al., 2010). Microtubules are dynamic polar 

polymers that establish cell shape, facilitate cell motility, organise organelles within 

cells, and assist with cell division. Studies suggest that the EB1 genes are expressed 

in various cell types of Arabidopsis thaliana and GFPs fused to EB family members 

have been shown to track growing plus ends of microtubules in plant cells.  

The role of microtubule-associated proteins and their association with Ca is poorly 

understood in plants. However, it has been recently discovered in animals that 

binding at the plus end is regulated by an EF-hand motif, which contains a helix-

loop-helix topology in which Ca2+ ions are coordinated by ligands within the loop. 

This regulation is EF-hand and Ca2+ dependent. Alteration of Ca2+ responsiveness, 

resulting from mutations in the EF-hands, renders the rapid switch redundant, 

causing permanent binding with the microtubule lattice or the plus end. This recently 

identified, Ca2+ dependent regulatory mechanism may play a critical role in a 

number of diverse microtubule associated processes and Ca2+ can directly and 

rapidly regulate the dynamic interaction of microtubules with key regulatory proteins 

(Kapur et al., 2012). 

A V-type proton ATPase subunit D was located 20506 bp at the 3' side. It is 

associated with ATPase activity, coupled to transmembrane movement of 

substances, including metal ions (Dietz et al., 2001). V‐ATPase functions as a 

dominant vacuolar electrogenic H+‐pump in the majority of plant cells and plays a 
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vital role in plant growth due to its role in energising secondary transport, 

maintenance of solute homeostasis and in facilitating vesicle fusion. Under abiotic 

stress conditions including; high salinity, drought, cold, acid stress, anoxia, and 

excess heavy metals in the soil, the survival of cells is highly dependant on 

maintaining/adjusting the activity of V‐ATPase (Dietz et al., 2001). In terms of 

heavy metal stress, metal tolerance appears to depend on additional membrane 

transporters (as well as other cellular mechanisms, such as the synthesis of 

phytochelatins and metallothioneins) (Dietz et al., 2001). Therefore, V‐ATPase is 

likely to be affected under excess heavy metal exposure. At present, the influence of 

heavy metals on either the structure or the activity of V‐ATPase is incompletely 

understood. However, there is some experimental data in the literature that highlights 

the effect of V‐ATPase activity on metal transport (Chardonnens et al., 1999). 

Although all heavy metals are toxic when present in abundance, plants utilise 

essential metals, such as Fe, Zn and Ni in low quantities, as discussed in Chapter 1. 

Based on research on yeast metal transporters, any particular metal has both a high‐ 

and a low‐affinity uptake mechanism, the use of which is dependent on the amount 

of the metal, respectively (Guerinot, 2000). Intracellular transport systems are 

essential in understanding membrane transport processes involved in metal ion 

homeostasis. This may explain how plants may have adapted to high metal 

concentrations, including high levels of Ca in the soil, by evolving cellular tolerance 

mechanisms which involve vacuolar transporters such as V-ATPase. The literature 

reports on proton gradient‐dependent transport of metals across the tonoplast and this 

type of antiporter activity is dependent on the presence of a proton gradient across 

the vacuolar membrane and thus, indirectly, on V‐ATPase (Dietz et al., 2001). Other 

studies suggest that proton ATPase’s accumulate in response to Fe deficiency, this is 

best characterised in Arabidopsis thaliana; protons are released into the rhizosphere, 

by proton ATPases expressed in the epidermis. This lowers the soil pH, making Fe 

more soluble (Morrissey & Guerinot, 2009). 

A BLASTx search of the 4kb region surrounding this Ca associated SNP revealed a 

nitrate transporter in Aegilops tauschii (Tausch's goats grass) within the 523 to 602 

range. The purpose of the BLASTx search against other proteins was to see if there 

was a coding sequence within this region. Even though components involved in 

nitrogen signalling pathways are poorly understood, Ca is a known second 
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messenger in signal transduction pathways in plants, and it has been indirectly 

implicated in nitrate responses. This has been characterised in Arabidopsis thaliana 

(Riveras et al., 2015). A study by Riveras et al., (2015) revealed that gene expression 

of nitrate-responsive genes were severely affected by pre-treatments with Ca2+ 

channel blockers, thus proving that Ca2+ acts as a second messenger in the nitrate 

signaling pathway – hence the association of this region with a Ca SNP.  

Fe 9_3820759 

Hox-A13-like was located 179 bp at the 3' side. The HOX-A13 gene provides 

instructions for the production of proteins that bind to specific regions of DNA and 

regulate the activity of other genes. On the basis of this general-purpose role, the 

HOX-A13 gene is referred to as a TF. The HOXA13 gene is part of a larger family 

of TFs called homeobox (HOX) genes. HOX genes are considered general-purpose 

control genes. Even though HOX genes are found in plants, fungi, and animals, there 

are few known direct HOX target genes and their mechanisms of regulation are 

currently poorly understood (McCabe & Innis, 2005).  

A DNA-binding protein HEXBP (hexamer-binding protein) -like protein was located 

6066 bp at the 5' side in association with Fe uptake. HEXBP encodes a sequence-

specific DNA-binding protein that contains nine 'CCHC' zinc finger motifs. This 

motif is present in a number of nucleic acid-binding proteins and functions by 

binding to single-stranded nucleic acids. Researchers investigated the relationship 

between this TF and Fe-deficiency in rice plants, as demonstrated in a study by 

Sperotto et al., (2011). The study aimed to provide further insight into the pathways 

induced during Fe-deficiency in rice seedlings which were grown for 3, 6 and 9 days 

in the presence/absence of Fe. Using Representational Difference Analysis, 

sequences of 32 induced genes/TFs in rice shoots under Fe-deficiency were 

identified, including HEXBP. 

Additionally, a BLASTx search revealed two zinc finger proteins, GIS and 7-like in 

Brachypodium distachyon and Setaria italica, respectively.  The zinc finger proteins 

family members are likely to be involved in numerous activities associated with 

plant growth and development and are also known to regulate resistance mechanisms 

for various biotic and abiotic stress factors (Gupta et al., 2012). Additionally, the 

zinc finger binding domains are involved in sequence specific binding to DNA/RNA 
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and contribute in protein-protein recognitions. More specifically, zinc finger protein 

GIS functions as a probable TF, required for the initiation of inflorescence trichomes 

in response to gibberellin (Gan et al., 2006).  It contains a single C2H2-type zinc 

finger binding domain, whereas zinc finger 7 contains 4 CCHC-type binding 

domains, indicative of how many Zn ions are required to stabilise a protein fold.  

Several studies have reported that C2H2-type zinc finger proteins are responsible for 

the activation of some stress-related genes and enhanced tolerance to salt, 

dehydration, and/or cold stresses (Gupta et al., 2012).   

6.4.2 Population Structure, LD and GWAS Using 37,296 SNPs from the Pearl 

Millet Genome Assembly 

Prior to September 2017, the limited range of genomics tools prevented full 

exploitation of modern breeding methods for the improvement of pearl millet. 

Recently, a genome sequence of reference genotype Tift 23D2B1-P1-P5 and a vast 

resource of genome wide variations including >39 million SNPs, developed at 

ICRISAT, Patencheru has become available for public use (Varshney et al., 2017).   

Population Structure 

The population structure within the PMiGAP was assessed using >37,000 high 

quality SNPs using PCA in TASSEL (Figure 6.13). 

 

 

 

 

 

 

 

 

Figure 6.13, PCA plot for 223 PMiGAP lines generated in the TASSEL v5.2.38 

environment. 

Insignificant population structure was identified in the PMiGAP population studied; 

this coincides with the previous set of results using 663 SNPs and with that of 

Varshney et al., 2017. This pattern is expected from inbred lines derived from a 
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highly allogamous species, from a collection of FAO-designated germplasm entries. 

The lack of population structure also points to homogenous genetic diversity on a 

large geographical scale and may be associated with a rapid spread of pearl millet 

agriculture in Africa and India without major bottlenecks during the migration 

(Varshney et al., 2017). 

Linkage Disequilibrium 

The extent of LD was also assessed among all 1,863,525 pairs of loci (Figure 6.14). 

Across all accessions, the largest blocks of marker pairs that were in LD (based on 

r2) can be seen on chromosomes 3 and 5, respectively and findings were highly 

significant.  

Figure 6.14, LD plot built in the TASSEL v5.2.38 environment zoomed in on 

regions of high LD on chromosomes 3 and 5. The squared correlation coefficient (r2) 

values are denoted by a colour scale from white (0.0) to red (1.0) in the upper 

triangle. The p values ranging from non-significant (0.01; white) to highly 
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significant (<0.0001; red) are shown in the lower triangle. The white area with 

coloured pixels represent the area that applies to chromosomes 1-7 

The extent of LD is greater within this data set, as compared to the 31,425 pairs of 

loci studied previously; this could be attributable to increased levels of markers. 

 

Figure 6.15, LD decay for the Pennisetum glaucum genome built in the RStudio 

environment. Regression line is based on Hill and Weir (1988). LD data is 

represented by r2 values and distance is measured in bp. 
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Figure 6.16, LD decay per chromosome for the Pennisetum glaucum genome built in 

the RStudio environment. Regression line is based on Hill and Weir (1988). LD data 

is represented by r2 values and distance is measured in bp. 

The extent of LD decay was investigated using 1,863,525 pairs of loci at the genome 

wide level and at the chromosome level (Figure 6.15 and 6.16). Pairwise LD, 

Chromosome 5 

Chromosome 6 

Chromosome 7 
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estimated using the squared allele frequency correlation (r2), was found to decay 

slowly, as compared to the 663 SNP dataset across all chromosomes with genetic 

distance. This also suggests that the number of markers for GWAS is adequate. 

Differences between chromosomes were also observed. For example, although LD 

declined slowly in all cases, it was most prominent on chromosome 3 (Figure 6.14), 

which is also seen in the LD plot in Figure 6.16. 

Even though slow LD decay is reported here (from 37,000 PMiGAP SNPs), 

Varshney et al., (2017) reported contrasting results, when 450,000 PMiGAP SNPs 

were used to compute LD decay. These differing results may be attributable to a 

number of differing factors between this study and Varshney et al.’s, (2017) study, 

including the marker selection process. For example, in this study, markers deemed 

‘better for GWAS’ were selected, i.e. markers that worked across the bulk of the 

accessions, meaning rarer alleles, indels and monomorphic alleles were removed, 

which may have skewed the data, leading to a biased estimate of LD decay. 

Additionally, other studies have  found that increased marker coverage  may be the 

reason for rapid LD decay. including that of  Liu et al., (2015) and Blackmore et al., 

(2016), who both found that accuracy of LD decay is highly dependent on sufficient 

marker coverage. Marroni et al., (2001) also reported that small sample sizes may 

lead to biased estimates of LD. 

Marker Trait Associations 

The two model-based approaches, GLM and MLM, were compared for all traits 

using the kinship matrix in both models. The QQ plots of traits shown in Figure 6.17 

suggest that the MLM model is superior at accounting for confounding effects, as 

previously demonstrated. Here we present results of only MLM model-based 

associations due to the clean QQ plots in Figure 6.17. When the Bonferroni threshold 

correction at the 5% significance level was applied, just 3 of the MTA’s in Table 6.7 

(all associated with Na) exceeded the threshold, thus for the remaining MTA’s, 

associations with candidate genes are explored based on the lowest P-values 

possible, eventhough these fall below the Bonferroni threshold for significance. 

MTA’s with the lowest P-values can be seen in Figure 6.18 and Table 6.7.  
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Figure 6.17, Quantile-quantile plots of Ca, K, Mg, Na, Fe and Zn using MLM and 

GLM models built in the TASSEL v5.2.38  environment 
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Figure 6.18, GWAS-based Manhattan plots built in the TASSEL v5.2.38  

environment exhibiting the lowest P-values (measured by the MLM model) 
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associated with seed mineral concentrations using >37,000 genome-wide GBS SNPs 

in pearl millet. The x-axis illustrates the relative density of Pennisetum glaucum 

reference genome-based SNPs physically mapped on 7 chromosomes. The y-axis 

displays the -log10 (P)-value for the degree of association of SNP loci with seed-

mineral concentrations 

Table 6.7, Top 3  SNPs per minerals Ca, Na, Fe, Zn and Mg, P=<0.001. Those 

highlighted exceeded the Bonferroni corrected threshold (2.23 E-07). 

a Percentage of phenotypic variation explained. 
b Phenotypic variance (cumulative r2) explained by the genetic effects of all associated SNPs. 

Trait data from field grown plants (as discussed in Chapter 3) was used in the 

GWAS analysis, coupled with SNP genotype data from corresponding PMiGAP 

lines. The MLM model based association mapping approach identified 199 SNPs 

exhibiting associations below the P=<0.001 threshold with seed mineral 

concentrations. The top three markers for each mineral, with the exception of K (due 

to low Log P-values) were selected for a BLAST search of the NCBI database to 

identify potential candidate genes. These can be seen in Tables 6.7, 6.8 and 6.9, 

respectively. The MTA’s explained a large proportion of observed phenotypic 

variation with individual marker %r2 values ranging from 9.55 – 18.42%. 

Cumulative %r2 values ranged from 30.46 - 51.89% for all SNPs found associated 

with each mineral. 

The 3 SNPs that exceeded the Bonferroni corrected threshold and the low P-value 

SNPs from the GWAS were located by position and chromosome number on the 

Trait Marker Chromosome Position Df F P-Value Marker r2 %r2a Cumulative 
%r2b 

Na chr3_221196763 3 221196763 3 13.4446 4.46E-08 0.184173 18.42 

51.89 Na chr5_65686933 5 65686933 3 12.9662 8.06E-08 0.177619 17.76 

Na chr3_193997829 3 193997829 3 11.4699 5.23E-07 0.157122 15.71 

Ca chr4_16960040 4 16960040 2 13.9676 1.97E-06 0.127558 12.76 

37.33 Ca chr1_230986046 1 230986046 3 10.0906 3.00E-06 0.138228 13.82 

Ca chr6_210316981 6 210316981 3 7.9270 4.86E-05 0.108589 10.86 

Mg chr2_242869315 2 242869315 3 8.6429 1.92E-05 0.118395 11.84 

31.43 Mg chr6_182035399 6 182035399 3 7.1527 1.33E-04 0.097983 9.80 

Mg chr6_121772772 6 121772772 3 7.1489 1.34E-04 0.09793 9.79 

Zn chr4_43134799 4 43134799 3 8.3700 2.74E-05 0.114658 11.47 

33.12 Zn chr2_199712768 2 199712768 3 8.0853 3.96E-05 0.110758 11.08 

Zn chr4_60825590 4 60825590 3 7.7134 6.42E-05 0.105664 10.57 

Fe chr4_153484722 4 153484722 3 8.1491 3.65E-05 0.111632 11.16 

30.46 Fe chr1_239148556 1 239148556 3 7.115 1.40E-04 0.097474 9.75 

Fe chr5_58171748 5 58171748 3 6.9704 1.69E-04 0.095484 9.55 
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Pennisetum glaucum reference genome assembly 

(http://ceg.icrisat.org/ipmgsc/genome.htmL), as seen in Figure 6.19, using the 

software CLC Genomics Workbench v.6.5 (CLC Bio, Aarhus, Denmark). A 4kb 

region surrounding each SNP was selected and a BLAST search of the NCBI 

database was conducted on each region of interest. Where no significant hits were 

found, a 10kb region was selected. This was the case for 2 Fe associated SNPs- 

labelled in Table 6.8. BLAST alignments to Setaria italica can be seen in Table 6.8. 

Setaria italica was used due to the lack of annotated pearl millet genome assembly. 

If hits were located on different chromosomes, this was still considered significant 

due to the fusion of chromosomes (9 chromosomes to 7 chromosomes from Setaria 

italica to Pennisetum glaucum). 

Identifying Candidate Genes from Significant SNPs 
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Figure 6.19, SNPs with the lowest P-values from GWAS mapped onto the Pennisetum glaucum genome. Chromosome numbers 1 – 7 

correspond to chr1 – 7, respectively. Image built in the CLC Genomic Workbench environment.
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Table 6.8, BLASTn alignments of low P-value SNPs mapped onto the Pennisetum glaucum reference genome assembly + 4kb. A 10kb region 

surrounding the Fe associated SNPs; 153484722 and 58171748 were analysed using BLASTn due to the lack of significant hits within the +4kb 

region. – >37,000 SNP dataset. 

SNP 
(Chromosome 
no._Position) 

Score 
E 

Value 
Identities Gaps Range Candidate Gene(s) 

Na 
3_2211967637 

1011 
bits(547) 

0.0 
1021/1247(82

%) 
43/1247(3%) 

8586326 to 
8587560 

120400 bp at 5' side: cyclin-dependent kinase inhibitor 
1C-like 

59608 bp at 3' side: zinc finger BED domain-containing 
protein RICESLEEPER 2-like 

Na 5_65686933 

333 
bits(180) 

6e-89 499/651(77%) 29/651(4%) 
12609251 to 

12609888 

206267 bp at 5' side: cytochrome P450 99A2-like 
68119 bp at 3' side: putative receptor-like protein kinase 

At1g80870 

243 
bits(131) 

1e-61 388/508(76%) 34/508(6%) 
26553639 to 

26554135 

15423 bp at 5' side: uncharacterized protein 
LOC101762765 

13185 bp at 3' side: uncharacterized protein 
LOC101763173 

231 
bits(125) 

2e-58 275/346(79%) 16/346(4%) 
3141364 to 

3141703 

47241 bp at 5' side: uncharacterized protein 
LOC101756405 

47133 bp at 3' side: protein DETOXIFICATION 16-like 

Na 3_193997829 
407 

bits(220) 
4e-111 301/340(89%) 5/340(1%) 

27527898 to 
27528237 

25917 bp at 5' side: E3 ubiquitin-protein ligase 
Os06g0535400-like 

5336 bp at 3' side: RING-H2 finger protein ATL30-like 

Ca 4_16960040 

298 
bits(161) 

2e-78 395/510(77%) 8/510(1%) 
19523743 to 

19524248 

231263 bp at 5' side: uncharacterized mitochondrial 
protein AtMg00810-like 

210552 bp at 3' side: RNA-directed DNA polymerase 
homolog 

285 
bits(154) 

2e-74 395/510(77%) 9/510(1%) 
23179946 to 

23180450 
5004 bp at 5' side: putative germin-like protein 2-2 

49008 bp at 3' side: putative germin-like protein 2-2 
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283 
bits(153) 

7e-74 433/568(76%) 20/568(3%) 
13812042 to 

13812593 

34557 bp at 5' side: uncharacterized protein 
LOC101785864 

41475 bp at 3' side: expansin-B11-like 

Ca 1_230986046 
119 

bits(64) 
2e-24 134/165(81%) 15/165(9%) 

8609538 to 
8609695 

4770 bp at 5' side: uncharacterized protein 
LOC101778091 

1203 bp at 3' side: RNA polymerase sigma factor sigE, 
chloroplastic/mitochondrial 

Ca 6_210316981 
1478 

bits(800) 
0.0 

972/1054(92%
) 

15/1054(1%) 
5693028 to 

5694069 
snurportin-1 
snurportin-1 

Mg 2_242869315 
1495 

bits(809) 
0.0 

1641/2026(81
%) 

124/2026(6%
) 

77570 to 
79528 

protein disulfide isomerase-like 1-4 

Mg 6_182035399 

634 
bits(343) 

2e-179 
1167/1565(75

%) 
55/1565(3%) 

32444027 to 
32445557 

2378 bp at 5' side: transcription factor bHLH130-like 
8906 bp at 3' side: IRK-interacting protein-like 

545 
bits(295) 

8e-153 
1209/1652(73

%) 
56/1652(3%) 

8815877 to 
8817502 

5301 bp at 5' side: LOW QUALITY PROTEIN: 
pentatricopeptide repeat-containing protein At2g13420, 

mitochondrial-like 
6328 bp at 3' side: TPD1 protein homolog 1A-like 

355 
bits(192) 

1e-95 
1234/1744(71

%) 
43/1744(2%) 

14063096 to 
14064817 

1585 bp at 5' side: 21 kDa protein-like 
2613 bp at 3' side: uncharacterized protein 

LOC101781726 

Mg 6_121772772 
193 

bits(104) 
1e-46 208/255(82%) 20/255(7%) 

2237547 to 
2237799 

uncharacterized protein LOC101778133 

Zn 4_43134799 
174 

bits(94) 
4e-41 243/309(79%) 34/309(11%) 

7448256 to 
7448547 

637 bp at 5' side: ACT domain-containing protein ACR8-
like 

9319 bp at 3' side: CAX-interacting protein 4-like 

Zn 2_199712768 

429 
bits(232) 

8e-118 249/257(97%) 2/257(0%) 
5084978 to 

5085234 
uncharacterized protein LOC105914899 

265 
bits(143) 

2e-68 306/383(80%) 18/383(4%) 
37313929 to 

37314305 

128615 bp at 5' side: uncharacterized protein 
LOC101783484 

4699 bp at 3' side: lipase-like isoform X2 
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143 
bits(77) 

1e-31 566/788(72%) 90/788(11%) 
17178404 to 

17179142 

151254 bp at 5' side: uncharacterized protein 
LOC105914943 

61873 bp at 3' side: uncharacterized protein 
LOC105914944 

137 
bits(74) 

5e-30 301/401(75%) 53/401(13%) 
34305577 to 

34305943 
9795 bp at 5' side: UDP-glycosyltransferase 91B1-like 
2935 bp at 3' side: UDP-glycosyltransferase 91C1-like 

272 
bits(147) 

1e-70 476/627(76%) 53/627(8%) 
32679972 to 

32680579 
16598 bp at 5' side: GDSL esterase/lipase EXL3-like 

21727 bp at 3' side: vegetative cell wall protein gp1-like 

Zn 4_60825590 
3988 

bits(2159) 
0.0 

3242/3732(87
%) 

205/3732(5%
) 

4853785 to 
4857421 

factor of DNA methylation 1-like isoform X1 
factor of DNA methylation 1-like isoform X2 

Fe 4_153484722 
(10kb region) 

353 
bits(191) 

1e-94 458/581(79%) 42/581(7%) 
13570742 to 

13571308 

54260 bp at 5' side: cytochrome P450 71A1-like 
29146 bp at 3' side: LOW QUALITY PROTEIN: gibberellin 

2-beta-dioxygenase-like 

339 
bits(183) 

3e-90 485/621(78%) 60/621(9%) 
196841 to 

197426 
S-formylglutathione hydrolase-like 

333 
bits(180) 

2e-88 403/505(80%) 37/505(7%) 
21162266 to 

21162744 

1875 bp at 5' side: LEC14B protein-like 
11388 bp at 3' side: LRR receptor-like serine/threonine-

protein kinase ERECTA 

333 
bits(180) 

2e-88 459/586(78%) 49/586(8%) 
43877345 to 

43877914 
67735 bp at 5' side: protein GOS9-like 

64570 bp at 3' side: luminal-binding protein 3-like 

Fe 1_239148556 

1899 
bits(1028) 

0.0 
1337/1477(91

%) 
57/1477(3%) 

345380 to 
346832 

heat stress transcription factor A-1-like 

1635 
bits(885) 

0.0 
1456/1711(85

%) 
122/1711(7%

) 
335485 to 

337161 
inactive poly [ADP-ribose] polymerase RCD1-like 
inactive poly [ADP-ribose] polymerase RCD1-like 

Fe 5_58171748 
(10kb region) 

364 
bits(197) 

6e-98 608/796(76%) 70/796(8%) 
17822474 to 

17823254 

169840 bp at 5' side: heterogeneous nuclear 
ribonucleoprotein 1-like 

23415 bp at 3' side: uncharacterized protein 
LOC101770745 isoform X2 

344 
bits(186) 

7e-92 658/876(75%) 71/876(8%) 
23491805 to 

23492662 
35844 bp at 5' side: cytochrome P450 76C2-like 

11428 bp at 3' side: auxin-induced in root cultures 
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protein 12-like 

329 
bits(178) 

2e-87 597/791(75%) 61/791(7%) 
18120310 to 

18121089 

22102 bp at 5' side: uncharacterized protein 
LOC101772338 

138099 bp at 3' side: glucan endo-1,3-beta-glucosidase 5-
like 

305 
bits(165) 

4e-80 431/556(78%) 32/556(5%) 
9275087 to 

9275633 

94870 bp at 5' side: probable purine permease 4 
49451 bp at 3' side: protein ASPARTIC PROTEASE IN 

GUARD CELL 2-like 

 

Table 6.9, BLASTx alignments of low P-value SNPs mapped onto the Pennisetum glaucum reference genome assembly + 4kb – >37,000 SNP 

dataset. 

SNP 
(Chromosome 
no._Position) 

Score 
E 

Value 
Identities Positives Gaps Range 

Sequences producing significant 
alignments 

Na 
3_2211967637 

174 
bits(442) 

3e-66 84/117(72%) 95/117(81%) 0/117(0%) 
185 to 

301 
hypothetical protein SETIT_015444mg, 

partial [Setaria italica] 

225 
bits(573) 

5e-62 111/187(59%) 136/187(72%) 1/187(0%) 90 to 276 
PREDICTED: uncharacterized protein 

LOC9270230 isoform X4 [Oryza sativa 
Japonica Group] 

Na 5_65686933 

237 
bits(605) 

1e-59 118/207(57%) 147/207(71%) 11/207(5%) 
292 to 

490 
gag-pol [Zea mays] 

186 
bits(471) 

4e-46 96/205(47%) 123/205(60%) 31/205(15%) 
280 to 

453 
uncharacterized protein LOC110431876 

[Sorghum bicolor] 

181 
bits(460) 

3e-42 91/208(44%) 128/208(61%) 19/208(9%) 
629 to 

829 

retrotransposon protein, putative, Ty3-
gypsy subclass [Oryza sativa Japonica 

Group] 

Na 3_193997829 
58.5 

bits(140) 
4e-05 30/37(81%) 34/37(91%) 0/37(0%) 66 to 102 PREDICTED: kinectin-like [Setaria italica] 
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Ca 4_16960040 

80.1 
bits(196) 

7e-14 46/110(42%) 58/110(52%) 0/110(0%) 2 to 111 
hypothetical protein LOC_Os11g22820 

[Oryza sativa Japonica Group] 

70.5 
bits(171) 

2e-10 42/95(44%) 54/95(56%) 9/95(9%) 22 to 116 
hypothetical protein LOC_Os10g39934 

[Oryza sativa Japonica Group] 

70.9 
bits(172) 

2e-08 50/106(47%) 60/106(56%) 3/106(2%) 
1119 to 

1221 

retrotransposon protein, putative, Ty3-
gypsy sub-class [Oryza sativa Japonica 

Group] 

Ca 1_230986046 
112 

bits(281) 
2e-21 82/269(30%) 137/269(50%) 0/269(0%) 

682 to 
950 

PREDICTED: uncharacterized protein 
LOC101770518 [Setaria italica] 

Ca 6_210316981 

267 
bits(682) 

3e-73 135/193(70%) 145/193(75%) 36/193(18%) 
345 to 

501 

PREDICTED: LOW QUALITY PROTEIN: 
uncharacterized protein LOC101758266 

[Setaria italica] 

252 
bits(644) 

4e-72 130/175(74%) 135/175(77%) 36/175(20%) 36 to 174 
hypothetical protein 

SORBI_3003G108800, partial [Sorghum 
bicolor] 

241 
bits(615) 

6e-69 123/173(71%) 128/173(73%) 36/173(20%) 46 to 182 
uncharacterized protein LOC100194257 

[Zea mays] 

221 
bits(563) 

2e-58 107/176(61%) 128/176(72%) 36/176(20%) 
258 to 

397 

PREDICTED: probable bifunctional 
methylthioribulose-1-phosphate 

dehydratase/enolase-phosphatase E1 
[Oryza brachyantha] 

Mg 2_242869315 
182 

bits(462) 
4e-45 110/216(51%) 123/216(56%) 58/216(26%) 

337 to 
502 

Protein disulfide isomerase-like 1-4 
[Dichanthelium oligosanthes] 

Mg 6_182035399 

401 
bits(1031) 

0.0 194/244(80%) 214/244(87%) 0/244(0%) 
672 to 

915 

retrotransposon protein, putative, Ty1-
copia subclass [Oryza sativa Japonica 

Group] 

318 
bits(815) 

0.0 164/286(57%) 214/286(74%) 5/286(1%) 
122 to 

407 
hypothetical protein VITISV_038102 [Vitis 

vinifera] 

317 
bits(813) 

0.0 155/246(63%) 195/246(79%) 2/246(0%) 
946 to 
1191 

hypothetical protein VITISV_035070 [Vitis 
vinifera] 
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298 
bits(762) 

3e-177 154/255(60%) 192/255(75%) 1/255(0%) 
839 to 
1093 

Exostosin-like protein [Corchorus 
capsularis] 

Mg 6_121772772 - - - - - - No significant similarity found 

Zn 4_43134799 

90.5 
bits(223) 

1e-15 39/52(75%) 48/52(92%) 0/52(0%) 
268 to 

319 
uncharacterized protein LOC103645210 

[Zea mays] 

90.9 
bits(224) 

1e-15 39/52(75%) 48/52(92%) 0/52(0%) 
286 to 

337 
uncharacterized protein LOC103645715 

[Zea mays] 

90.5 
bits(223) 

1e-15 39/52(75%) 48/52(92%) 0/52(0%) 
286 to 

337 
uncharacterized protein LOC103628528 

[Zea mays] 

90.5 
bits(223) 

1e-15 39/52(75%) 48/52(92%) 0/52(0%) 
292 to 

343 
uncharacterized protein LOC109942017 

isoform X2 [Zea mays] 

71.6 
bits(174) 

1e-09 33/51(65%) 40/51(78%) 0/51(0%) 
220 to 

270 
PREDICTED: uncharacterized protein 

LOC105915029 [Setaria italica] 

Zn 2_199712768 - - - - - - No significant similarity found 

Zn 4_60825590 

635 
bits(1639) 

0.0 310/363(85%) 316/363(87%) 36/363(9%) 29 to 355 
PREDICTED: factor of DNA methylation 1-

like isoform X1 [Setaria italica] 

473 
bits(1218) 

1e-148 231/366(63%) 278/366(75%) 42/366(11%) 18 to 344 
PREDICTED: factor of DNA methylation 1-

like [Oryza brachyantha] 

Fe 4_153484722 

229 
bits(583) 

1e-68 129/282(46%) 159/282(56%) 65/282(23%) 43 to 259 
PREDICTED: uncharacterized protein 

LOC101760660 [Setaria italica] 

91.7 
bits(226) 

3e-15 55/120(46%) 72/120(60%) 9/120(7%) 
320 to 

439 
protein FAR1-RELATED SEQUENCE 5-like 

[Zea mays] 

Fe 1_239148556 

539 
bits(1388) 

4e-175 276/293(94%) 283/293(96%) 0/293(0%) 
232 to 

524 
PREDICTED: heat stress transcription 

factor A-1-like [Setaria italica] 

468 
bits(1204) 

5e-148 239/297(80%) 261/297(87%) 6/297(2%) 
226 to 

521 
heat stress transcription factor A-1 

[Sorghum bicolor] 

Fe 5_58171748 
43.5 

bits(101) 
3.0 23/82(28%) 38/82(46%) 0/82(0%) 

138 to 
219 

hypothetical protein [Paenibacillus 
beijingensis] 
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Na 3_2211967637 

A cyclin-dependent kinase (CDK) inhibitor 1C-like gene was located 120400 bp at 

the 5' side. The cell cycle is regulated by CDK’s, and CDK inhibitors bind to CDKs 

and inhibit their activities, as explained by their name. At present, their molecular 

and cellular functions, regulation and cellular localisation are poorly understood. 

However, some studies suggest that their function may be related to the regulation of 

tissue senescence and stressful conditions may induce the expression of CDK 

inhibitors (Wang et al., 1998). The literature also reports that CDK inhibitors have 

been expressed in transgenic Arabidopsis thaliana plants constitutively or tissue-

specifically. For example, the phenotypic effects as a result of over-expression 

driven by the 35S promoter include; inhibition of cell division, dwarfism, leaf 

serrations and modified flower morphology (Wang et al., 2000).  Therefore, it is 

generally accepted that over-expression of CDK inhibitors affects plant growth and 

morphology. Despite the significant progress in understanding the role of plant CDK 

inhibitors, there are still many important factors that need to be considered. For 

example, it is clear that CDK inhibitors do not function alone, instead they interact 

with other factors. Currently, little is known about the dynamics of interactions 

between CDK inhibitors and other regulators in plants or cofactor minerals. When 

this is known, it may be clearer as to why this candidate gene was associated with a 

Na SNP. 

A zinc finger BED domain-containing RICESLEEPER 2 was located 59608 bp at 

the 3' side, which functions as a transposase-like protein that is essential for normal 

plant growth and development (Knip et al., 2012). The zinc finger associated is a 

BED-type and the RICESLEEPER2 gene has been characterised in Arabidopsis 

thaliana. A study by Knip et al., (2012) revealed that rice plant lines with an 

insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, 

therefore these genes are functional and required for normal development in rice. 

Na 5_65686933 

A cytochrome P450 99A2-like protein was located 206267 bp at the 5' side. 

Cytochrome P450-dependent monooxygenases represent a large group of enzymes 

that contain heme as a cofactor. The majority of these catalyse NADPH- and O2-

dependent hydroxylation reactions (Chapple, 1998). More specifically cytochrome 
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P450 99A2 has been characterised in Oryza sativa subsp. japonica (rice) and was 

found to be involved in momilactone phytoalexin biosynthesis (Shimura et al., 

2007). Momilactone phytoalexins are known to accumulate in rice husks and 

function as (i) growth inhibitors involved in seed dormancy, (ii) play an important 

role in the rice plant defense system against pathogens/insects, (iii) contribute to 

allelopathy where they inhibit the growth of weeds and (iv) are induced by the 

jasmonic acid plant growth hormone (Kato-Noguchi, 2011). Additionally, a study by 

Colangelo & Guerino (2004) revealed a number of cytochrome P450 family 

members that accumulate in response to Fe deficiency by microarray gene 

expression analysis. Therefore, it would be interesting to investigate their role in Fe 

deficient plants for future analysis in pearl millet.  

A putative receptor-like protein kinase At1g80870 was located 68119 bp at the 3' 

side, which is a protein kinase superfamily protein that is characterised by protein 

serine/threonine kinase activity, protein kinase activity, kinase activity and ATP 

binding in Arabidopsis thaliana. The functions of protein kinases in plants is 

currently incompletely understood, however protein-serine/threonine kinases in plant 

cells are thought to act as a “general central processor units”, by accepting input 

information from receptors that sense environmental conditions, stress factors, 

phyto-hormones, and other external factors, and converting these signals into 

appropriate responses including; changes in metabolism, gene expression, and cell 

growth/division (Hardie, 1999). 

The DETOXIFICATION 16 candidate gene was located 47133 bp at the 3' side, and 

is known to be involved in the transport of sugars, bile salts, organic acids, metal 

ions and amine compounds (Croft et al., 2013).  In relation to the transport of metal 

ions, members of the DETOXIFICATION family are capable of detoxifying Cd2+, a 

toxic heavy metal and there is some evidence in the literature that suggests some 

family members serve as efflux carriers that extrude a number of toxic compounds 

and heavy metals from cells (Li et al., 2002). Several mechanisms of detoxification 

include modification of toxic compounds by endogenous enzymes, sequestration into 

the vacuole and subsequent transport outside of the cell. However, at present the 

mechanism of heavy metal detoxification in plants is incompletely understood, 

suggesting a gap in the literature (Li et al., 2002). 
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Na 3_193997829 

The E3 ubiquitin-protein ligase Os06g0535400 was located 25917 bp at the 5' side, 

and contains a RING-type zinc finger binding site, characterised by the presence of a 

cysteine-rich domain that coordinates two Zn atoms (Stone et al., 2005). It is 

involved in protein ubiquitination, which is part of protein modification. More 

specifically, the addition of ubiquitin to a protein affects proteins in many ways; it 

can mark them for degradation, alter their cellular location, affect their activity, and 

promote/prevent protein interactions. Target specific ubiquitination plays an 

important role in protein regulation in Arabidopsis thaliana (Stone et al., 2005).  

Similarly, in terms of function, a RING-H2 finger protein ATL30 was located 5336 

bp at the 3' side, which is involved in protein ubiquitination. 

Additionally, a BLASTx search revealed a kinectin-like [Setaria italica] protein 

within the 4kb region of the SNP. Kinetin is a plant growth-promoting hormone that 

has an anti-aging effect on several different systems, including plant and human cells 

(Sheu et al., 2003). For example, a study by Ray et al., (1983) revealed that spraying 

100-day-old rice plants with kinetin solution (100 μgmL-1) resulted in a significant 

delay in leaf senescence as indicated by higher total chlorophyll and protein content 

in the three uppermost leaves, as compared with controls. Leaf senescence 

constitutes the final stage of leaf development and is critical for plants' fitness as 

nutrient relocation from leaves to reproducing seeds is achieved through this process. 

Both the accumulation of specific toxic ions (e.g. Na+) and changes in leaf hormone 

interactions are involved in the regulation of this process (Ghanem et al., 2008). The 

delay in leaf senescence could be explained by the interference with Na pathways to 

block the process at a molecular level. However, this is only speculation as to why 

this protein is associated with a Na SNP at this stage and further research is needed 

to investigate this hypothesis.  

Ca 4_16960040 

A putative germin-like protein 2-2 was located 5004 bp at the 5' side. Germin-like 

proteins constitute a ubiquitous family of plant proteins. All germins contain the 

germin motif that gives rise to a predicted β-barrel core involved in metal binding. 

Some germin family members are classically associated with defense against 

pathogens, based on gene regulation studies. For example, it has been proven that 
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infection with pathogens, insect feeding or the application of chemicals such as 

salicylic acid, H2O2 or ethylene increases the expression of germin-like proteins. The 

literature also reports that germin genes are involved in other, more general 

processes including development, osmotic regulation, photoperiodic oscillation, 

defense and apoptosis. There is also evidence that germin encodes an enzyme that 

degrades oxalate to CO2 and H2O2 and also releases Ca2+ in some plant species. The 

degraded residual H2O2 acts a molecular signal for the induction of defence 

mechanisms (Dunwell & Gane, 1998). Despite the abundance of germin like proteins 

in many crops, they remain poorly understood. Future research could provide 

insights into understanding the function and elucidating the molecular mechanisms 

of germin genes in plant defense responses and development. 

Additionally, an expansin-B11-like protein was found 41475 bp at the 3' side, which 

is concerned with cell wall regulation. It may cause loosening and extension of plant 

cell walls by disrupting the non-covalent bonds between cellulose microfibrils and 

matrix glucans. Expansin action is implicated in the growth responses of plants to 

hormones and to external stimuli including light, drought, salt stress and 

submergence (anoxia) and in morphogenetic processes such as root-hair formation 

(Sampedro & Cosgrove, 2005).  

Mg 2_242869315 

Protein disulfide isomerase (PDI)-like 1-4 was located within the 4kb region of the 

SNP. It acts as a protein-folding catalyst that interacts with nascent polypeptides to 

catalyse the formation, isomerisation, and reduction/oxidation of disulfide bonds. It 

may also play a role in storage protein biogenesis. It has a strong affinity for binding 

and ligands range from peptide/protein substrates to hormones and Ca/Mg. Mg, 

affects PDI-chaperone/anti-chaperone activity (Primm & Gilbert, 2001) – hence the 

possible association with this Mg associated SNP. 

Mg 6_182035399 

An inflorescence and root apices receptor-like kinase (IRK)-interacting protein was 

located 8906 bp at the 3' side. The IRK gene encodes a LRR (leucine rich repeat)-

type RLK (receptor-like kinase) and is expressed in proliferating and expanding 

tissues, such as shoot meristems, floral buds, and root meristems. Despite extensive 
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genetic studies, the function of IRK still remains poorly understood. However a 

study by Hattan et al., (2004) revealed that in Arabidopsis thaliana, IRK may be 

involved in lateral organ or lateral root formation under auxin regulation, via 

microarray gene expression analysis. 

Additionally, a retrotransposon protein, Ty1-copia subclass [Oryza sativa Japonica 

Group] was located upon BLASTx search. Retrotransposons are ubiquitous among 

higher plant species and several studies have documented their activation by stress 

factors and external changes (Grandbastien, 1998). An Exostosin-like protein 

[Corchorus capsularis] was also located. Family members encode a xyloglucan 

galactosyltransferase located in the membrane of golgi stacks that is involved in the 

synthesis of fructose. It is also involved in endomembrane organisation and may play 

a role in actin organisation and the synthesis of cell wall materials (Tedman-Jones et 

al., 2008). 

Zn 4_43134799 

An ACT domain-containing protein, ACR8 was located 637 bp at the 5' side. This 

gene facilitates the binding of amino acids, due to the ACT domain. However, at 

present little is known about proteins or regulatory domains involved in amino acid 

sensing and signalling in plants. A study by Hsieh & Goodman (2002), reports on 

the identification and molecular characterisation of the ARC Arabidopsis gene 

family encoding proteins with four copies of the ACT domain that extends 

throughout the whole polypeptide. The expression patterns of the ACR gene family 

was assessed by northern-blot analysis using total RNA which was extracted from 

roots, leaves, stems, flowers, and siliques of Arabidopsis plants. ACR8 mRNA was 

detected in all the organs tested with significantly higher levels in roots and siliques, 

thus indicative of specific roles in these particular organs. Interestingly, the steady-

state levels of ACR8 mRNA were significantly increased by ABA and NaCl and 

moderately increased by cold stress, thus indicative of some role in defense. Since 

the pathways are currently poorly understood, it is unclear whether Zn may play a 

role as a cofactor or if there may be some Zn tolerance activity. This warrants future 

study and would involve in vivo experiments to establish their distinctive activities 

and biological roles. 
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A cation exchanger (CAX)-interacting protein 4 (CXIP4) was located 9319 bp at the 

3' side. CXIP4 regulates the CAX1 cation transporter in Arabidopsis thaliana 

(Cheng et al., 2004) and plays an important role in ion homeostasis. Given that 

CXIP4 contains a CCHC-type zinc finger motif at its N-terminus, it is possible that 

CXIP4 is regulated by Zn2+ in response to ion stress – hence the association with a 

Zn SNP. The expression of CXIP4 is induced by Ca2+. Cytosolic Ca2+ acts as a 

secondary messenger, and is involved in many biological signalling pathways. To 

translate the generic signals to specific responses, the concentration of cytosolic Ca2+ 

is efficently regulated by influx systems, such as Ca2+ channels, and efflux systems, 

including Ca2+ pumps and anti-porters (Sanders et al., 2002). CAX1 is a high 

capacity and low affinity Ca2+ transporter and is reported to be localised to the plant 

vacuole. CAX1 has also been found to increase Ca2+ levels in tobacco plants and 

causes numerous stress sensitivity phenotypes often associated with Ca2+ 

deficiencies (Hirschi, 1999). According to Cheng et al., (2004), there are many 

possible mechanisms by which CXIP4 may regulate CAX1. For example, CXIP4 

may activate CAX1-mediated Ca2+ transport by altering the transporter 

conformation. Alternatively, CXIP4 may bind with with additional proteins to alter 

the subcellular localisation of CAX1 and therefore mediate transport activity and 

finally, CXIP4 may change cytosolic Ca2+ levels and this environmental perturbation 

may modulate the N-terminus of CAX1 to activate the transporter. 

Zn 2_199712768 

UDP-glycosyltransferase 91B1 and UDP-glycosyltransferase 91C1 were located 

9795 bp at the 5' side and 2935 bp at the 3' side, respectively. Uridine diphosphate 

(UDP) mediates the transfer of glycosyl residues from activated nucleotide sugars to 

a wide range of acceptor molecules (aglycones), thus regulating properties of the 

acceptors such as their bioactivity, solubility and transport within the cell and 

throughout the plant (Ross et al., 2001). Very little is known about the regulation and 

pathways of plant UDP genes or the localisation of the enzymes they encode at the 

cellular and subcellular levels, thus further study is warranted, which may answer 

why this candidate gene was associated with a Zn SNP. 
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Fe 4_153484722 

Plant cytochrome P450 71A1 was located 54260 bp at the 5' side. It contains an Fe 

(heme axial ligand) binding site, which may explain its association with an Fe SNP. 

Plant P450 family members are involved in a wide range of metabolic functions 

including use in synthetic pathways leading to phenylpropanoids, alkaloids, terpenes, 

lipids, cyanogenic glycosides and glucosinolates (Bak et al., 2001). Many of these 

products influence important properties such as flavour and colour in plants. They 

are also classically associated with pathogen resistance. P450s are also essential in 

the synthetic pathways of some plant growth regulators including giberellins, 

brassinosteroids and jasmonic acid (Bundock et al., 2003). More specifically, P450 

71A1 has been characterised in Sorghum bicolour, which shares a large amount of 

synteny with pearl millet. It is involved with dhurrin synthesis, which is a 

cyanogenic glucoside. In response to external damage to the stem, some sorghum 

varieties release dhurrin at the damage site as a potent insect repellent (Busk et al., 

2002).  

A gibberellin 2-beta-dioxygenase protein was located 29146 bp at the 3' side and is 

involved in the gibberellin biosynthesis pathway. Gibberellins are plant hormones 

that are involved in the regulation of growth in plants. They also influence various 

developmental processes, including stem elongation, germination, dormancy, 

flowering, sex expression, enzyme induction and leaf senescence. Fe2+ is a cofactor, 

and the protein contains 3 Fe binding sites, which could explain why this gene is 

associated with the Fe SNP. 

The LRR ERECTA gene was detected 11388 bp at the 3' side. It is involved in the 

general regulation of aerial architecture, flowering time and stomatal patterning (e.g. 

density and clustering) (Torii et al., 1996). More specifically, it may also be involved 

in the regulation of phytate and mineral uptake (Ghandilyan et al., 2009). For 

example in a study by Ghandilyan et al., (2009), researchers investigated genetic 

variations for the accumulation of minerals in seeds, rosettes, and roots of 

Arabidopsis thaliana plants grown on different media, to distinguish common QTLs 

involved in mineral homeostasis. Four regions of interest were located for co-

locating QTLs associated with increased mineral uptake (including Fe and Zn) in the 
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region of chromosome 2, around the ERECTA gene. Thus, the ERECTA locus has 

been identified as a major QTL for mineral concentrations. 

Fe 1_239148556 

Heat stress TF A-1 (HSFA1) was located within the 4kb range of this Fe associated 

SNP, and plays a critical role in response to several abiotic stressors via regulation of 

the expression of stress-responsive genes, e.g. heat shock proteins (Guo et al., 2016). 

Specifically, The Arabidopsis HSFA1’s are involved in response and tolerance to 

salt/osmotic stress, and oxidative stresses during seedling establishment (Liu et al., 

2011). Additionally, an inactive poly [ADP-ribose] polymerase RCD1-like gene was 

located within the same region. The Radical-induced Cell Death1 (RCD1) protein is 

a key regulator of several ROS and abiotic stress related responses in Arabidopsis 

thaliana and rcd1 mutant plants display several phenotypes including salt sensitivity, 

UV-B and methyl viologen tolerance, early flowering and senescence (Jaspers et al., 

2010). 

Fe 5_58171748 

Heterogeneous nuclear ribonucleoprotein 1 was located 169840 bp at the 5' side. 

Family members are involved in the regulation of plant growth and environmental 

stress responses. For example, in Arabidopsis thaliana, AtRNP1 is highly expressed 

in rosette and cauline leaves, and induced under drought, salt, osmotic and ABA 

stress (Wang et al., 2016).  

Cytochrome P450 76C2 was located 35844 bp at the 5' side. As previously 

discussed, these belong to a large group of enzymes that contain heme as a cofactor, 

the majority of which catalyse NADPH- and O-dependent hydroxylation reactions 

(Chapple, 1998). Additionally, its gene expression is associated with various 

processes leading to cell death such as leaf senescence, ageing, wounding and 

treatment with the necrotising heavy metal salt, lead nitrate. This was studied in 

Arabidopsis thaliana (Godiard et al., 1998).  

Auxin-induced in root cultures protein 12 (AIR12) was located 11428 bp at the 3' 

side. It binds a single, highly axial low-spin heme, likely coordinated by methionine-

91 and histidine-76, which are strongly conserved in AIR12 sequences (Preger et al., 

2009). AIR12 has been characterised in Arabidopsis thaliana as a single gene that 
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codes for a mono-heme cytochrome b and plays a role in the regulation of the 

apoplastic redox state and in the response to necrotrophic pathogens (Costa et al., 

2015). At present, little is known about its physiological role. However, a study by 

Gibson and Todd (2015) revealed an air12 Arabidopsis mutant line which 

demonstrated increased germination rates in the presence of many of abiotic 

stressors including high salt/acid and hormones. The same study also demonstrated 

that the disruption of AIR12 affected primary and lateral root development (Gibson 

& Todd, 2015).  

Additionally, a glucan endo-1,3-beta-glucosidase 5 was located 138099 bp at the 3' 

side. Family members are associated with plant defence mechanisms against 

pathogens. For example, Lindthorst et al., (1990) demonstrated that healthy tobacco 

plants accumulate beta-1,3-glucanases in their roots and in specific parts of their 

flowers. After infection with tobacco mosaic virus and salicylate treatment, beta-1,3-

glucanases were induced in the inoculated and virus-free leaves. Also with respect to 

plant defense, the candidate gene ASPARTIC PROTEASE IN GUARD CELL 2 was 

located 49451 bp at the 3' side, which may be involved in drought avoidance through 

ABA signalling in guard cells (Yao et al., 2012). The increase in ABA biosynthesis 

caused by dehydration indicates the importance of ABA signalling in response to 

drought stress in plants (Guerrero & Mullet, 1986). A study by Yao et al., (2012) 

demonstrated that the overexpression of ASPG1 can enhance ABA sensitivity in 

guard cells, in turn promoting adaptive drought avoidance in Arabidopsis thaliana 

plants. Other studies suggest that aspartic proteases are involved the regulation of 

many general physiological processes during plant development including seed 

germination in wheat (Belozersky et al., 1989), leaf senescence in tobacco (Kato et 

al., 2004) and reproduction in rice (Chen et al., 2008). 

6.4.3 GWAS Using 3,150,286 SNPs from the Pearl Millet Genome Assembly 

Genome-wide SNP data (3,150,286 SNPs) was used to compute MTA’s in the 

PMiGAP for grain Fe and Zn uptake. As compared to research by Varshney et al., 

(2017), for GWAS, a similar total of 3,117,056 SNPs, retained after filtering the 

minor alleles (MAF<0.05) and 20% missing data were used in their study. The 

number of SNPs generated for this GWAS is very similar and represents increased 

coverage of the PMiGAP population than previously used datasets. The data is also 
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deemed to be less biased i.e. markers that were ‘good for GWAS’ were selected 

previously, forming the >37,000 SNP data set, meaning that markers that worked 

across the bulk of the accessions were selected. Therefore, rarer alleles, indels and 

monomorphic alleles were removed, which may have skewed the data. QQ plots 

indicated that population stratification was appropriately corrected for (Figures 6.20 

and 6.22).  

As previously discussed, LD decay is reported here to be rapid (contradictory to 

what was observed in the >37,000 SNP dataset, perhaps due to more relaxed filtering 

stringencies in the marker selection process). According to Varshney et al., (2017), 

when the r2 threshold was set as 0.2, rapid LD decay of less than 0.5 kb in PMiGAP 

lines (84–444 bp) was observed. This is characteristic of allogamous species. GWAS 

was carried out across 221 PMiGAP lines for Fe and Zn, and the top 4 MTA’s 

(Table 6.10, Figure 6.24) were selected for a NCBI BLAST search for candidate 

genes (Table 6.12). When the Bonferroni threshold correction at the 5% significance 

level was applied, none of the MTA’s exceeded the threshold, thus associations with 

candidate genes are explored are based on the lowest P-values possible, eventhough 

these fall below the Bonferroni threshold for significance. 

Figure 6.20, Quantile-quantile plot of Fe using the MLM model, built in the 

TASSEL v5.2.38  environment 
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Figure 6.21, GWAS-based Manhattan plots built in the TASSEL v5.2.38  

environment exhibiting the lowest P-values (measured by the MLM model) 

associated with Fe content using >3,000,000 genome-wide GBS SNPs in pearl 

millet. The x-axis illustrates the relative density of Pennisetum glaucum reference 

genome-based SNPs physically mapped on 7 chromosomes. The y-axis displays the 

-log10 (P)-value for the degree of association of SNP loci with Fe concentrations 

Figure 6.22, Quantile-quantile plot of Zn using the MLM model, built in the 

TASSEL v5.2.38  environment 
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Figure 6.23, GWAS-based Manhattan plots built in the TASSEL v5.2.38  

environment exhibiting the lowest P-values (measured by the MLM model) 

associated with Zn content using >3,000,000 genome-wide GBS SNPs in pearl 

millet. The x-axis illustrates the relative density of Pennisetum glaucum reference 

genome-based SNPs physically mapped on 7 chromosomes. The y-axis displays the 

-log10 (P)-value for the degree of association of SNP loci with Zn concentrations 

Table 6.10: Top 4 SNPs associated with Fe and Zn uptake, P=<0.001. Bonferroni 

corrected threshold = 2.65E-09. 

a Percentage of phenotypic variation explained. 

b Phenotypic variance (cumulative r2) explained by the genetic effects of all associated SNPs. 

When comparing the results to the previous data set where >37,000 markers were 

used, there were vast differences (Table 6.11). For example, increased marker 

density gave lower P-values by chance, when using >3,000,000 SNPs, as compared 

to >37,000 SNPs (Table 6.11). The MTA’s explained a large proportion of observed 

phenotypic variation with individual marker %r2 values ranging from 12.94 – 

17.10%, this was slightly higher than what was found previously (9.55 – 11.47%). 

Trait Marker Chromosome Position Df F P-Value 
Marker 

r2 %r2a Cumulative 
%r2b 

Fe Chr1_105654630 1 105654630 2 15.8229 4.56e-07 0.17095 17.10 

58.63 
Fe Chr7_121182972 7 121182972 2 12.8339 6.06e-06 0.12938 12.94 

Fe Chr3_117017388 3 117017388 2 12.8008 6.45e-06 0.13629 13.63 

Fe Chr1_113738268 1 113738268 2 12.6858 7.54e-06 0.14961 14.96 

Zn Chr6_225937596 6 225937596 2 13.3155 3.99e-06 0.13930 13.93 

56.22 
Zn Chr1_271435624 1 271435624 2 12.8531 6.06e-06 0.14347 14.35 

Zn Chr1_16534195 1 16534195 2 12.7095 6.84e-06 0.14944 14.94 

Zn Chr4_4700502 4 4700502 2 12.2976 1.00e-07 0.13004 13.00 
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Cumulative %r2 values ranged from 56.22 - 58.63% for all SNPs found associated 

with each mineral. Interestingly, when comparing the 6 significant Fe/Zn markers 

found from the >37,000 SNP data set directly to the p-value of the same marker in 

the >3,000,000 SNP data set, only two of the markers still gave a p-value below 

0.001. These were 153484722 (found to be associated with Fe), which was now at 

4.51E-04 as compared to a reading of 3.65E-05, previously and 199712868 (found to 

be associated with Zn), which was now at 6.05E-05 as compared to a reading of 

3.96E-05. The remaining 4 markers previously found to be associated with Fe/Zn did 

not meet the 0.001 P-value threshold in the >3,000,000 SNP data set. Upon 

observation of the linkage groups where the associations were found, where LG4 

was previously thought to be the dominant location, accounting for 50% of  

significant markers in the >37,000 data set, the dominant location now appears to be 

LG1, again accounting for 50% of the low P-value markers, according to the 

>3,000,000 SNP dataset (Table 6.11). 

Table 6.11, A comparison  of low P-value MTA’s and linkage groups between 

>37,000 SNPs and >3,000,000 SNPs. MTA = Marker Trait Associations. ‘Top’= 

Strongest by order of significance. 

Trait 
P-Values for top SNPs 

>37,000 SNP dataset (Top 3 
MTA’s) 

>3,000,000 SNP dataset (Top 4 
MTA’s) 

Fe 3.65 E-05 4.56 E-07 
Fe 1.40 E-04 7.54 E-07 
Fe 1.69 E-04 6.45 E-06 
Fe - 6.06 E-06 
Zn 6.42 E-05 1.00 E-07 
Zn 3.96 E-05 6.84 E-06 
Zn 2.74 E-05 6.06 E-06 
Zn - 3.99 E-06 

 Linkage groups of MTA’s 

Fe 4 1 
Fe 1 7 
Fe 5 3 
Fe - 1 
Zn 4 6 
Zn 2 1 
Zn 4 1 
Zn - 4 
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Figure 6.24, SNPs with the lowest P-values from GWAS mapped onto the Pennisetum glaucum genome. Chromosome numbers 1 – 7 

correspond to chr1 – 7, respectively. Image built in the CLC Genomic Workbench environment. 
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Table 6.12, BLASTn alignments of low P-value SNPs mapped onto the Pennisetum glaucum reference genome assembly + 4kb.  

SNP 
(Chromosome 
no._Position) 

Score 
E 

Value 
Identities Gaps Range Candidate Gene(s) 

Fe 1 105654630 

562 
bits(304) 

8e-158 581/707(82%) 50/707(7%) 
34741313 to 

34742005 

4482 bp at 5' side: uncharacterized protein LOC101779298 
isoform X2 

59889 bp at 3' side: histone-lysine N-methyltransferase 
SETD2-like 

496 
bits(268) 

8e-138 531/652(81%) 42/652(6%) 
32191624 to 

32192263 

25488 bp at 5' side: 4-hydroxyphenylacetaldehyde oxime 
monooxygenase-like 

65466 bp at 3' side: uncharacterized protein 
LOC101771994 

479 
bits(259) 

8e-133 528/652(81%) 42/652(6%) 
18744777 to 

18745416 

48361 bp at 5' side: protein NRT1/ PTR FAMILY 1.2 
127804 bp at 3' side: uncharacterized protein 

LOC101757657 

473 
bits(256) 

4e-131 530/655(81%) 48/655(7%) 
10288202 to 

10288841 
28285 bp at 5' side: aquaporin SIP1-1 

4000 bp at 3' side: S-norcoclaurine synthase 

470 
bits(254) 

5e-130 531/657(81%) 49/657(7%) 
30543271 to 

30543913 

19746 bp at 5' side: pentatricopeptide repeat-containing 
protein At4g14850 

819 bp at 3' side: non-specific lipid-transfer protein C6 

Fe 7 121182972 
263 

bits(142) 
9e-68 279/344(81%) 13/344(3%) 

12643199 to 
12643539 

31605 bp at 5' side: uncharacterized protein 
LOC101753094 

44484 bp at 3' side: anthocyanidin 5,3-O-
glucosyltransferase 

Fe 3 117017388 
158 

bits(85) 
4e-36 322/438(74%) 9/438(2%) 

10400145 to 
10400578 

28384 bp at 5' side: uncharacterized protein 
LOC101753560 

70932 bp at 3' side: probable E3 ubiquitin-protein ligase 
XBOS35 

Fe 1 113738268 189 1e-45 592/827(72%) 39/827(4%) 9066176 to 35240 bp at 5' side: uncharacterized protein 
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bits(102) 9066979 LOC101783463 
78996 bp at 3' side: zinc finger protein 7 

Zn 6 225937596 
106 

bits(57) 
2e-20 111/137(81%) 4/137(2%) 

33445909 to 
33446043 

5711 bp at 5' side: uncharacterized protein LOC101762365 
569 bp at 3' side: F-box/FBD/LRR-repeat protein 

At5g22700 isoform X2 

Zn 1 271435624 
3273 

bits(1772) 
0.0 

2100/2253(93
%) 

44/2253(1%) 
33215505 to 

33217735 
uncharacterized protein LOC101786921 

Zn 1 16534195 

486 
bits(263) 

5e-135 361/409(88%) 4/409(0%) 
13393271 to 

13393677 

9295 bp at 5' side: probable indole-3-pyruvate 
monooxygenase YUCCA11 

30178 bp at 3' side: transcription factor CSA 

468 
bits(253) 

2e-129 357/408(88%) 4/408(0%) 
34824051 to 

34824456 

21639 bp at 5' side: histone-lysine N-methyltransferase 
SETD2-like 

32170 bp at 3' side: uncharacterized protein 
LOC101781443 

Zn 4 4700502 
134 

bits(72) 
7e-29 205/266(77%) 21/266(7%) 

1471782 to 
1472030 

6816 bp at 5' side: magnesium protoporphyrin IX 
methyltransferase, chloroplastic 

2467 bp at 3' side: glucan endo-1,3-beta-glucosidase 11 

 

 

 

 



285 
 

Fe 1 105654630 

4-hydroxyphenylacetaldehyde oxime monooxygenase-like was located 25488 bp at 

the 5' side. This protein is involved in step 2 of the sub-pathway that synthesises 

dhurrin (a cyanogenic glucoside defence compound) from L-tyrosine in Sorghum 

bicolour (Clausen et al., 2015). The association with an Fe SNP may be due to the 

Fe (heme axial ligand) binding site. Interestingly, an Fe associated marker 

153484722, in the region of plant cytochrome P450 71A1, from the >37,000 SNP 

data set was also found to be involved in dhurrin synthesis, although this was located 

on chromosome 4.  

NRT1/ PTR FAMILY 1.2 was located 48361 bp at the 5' side. Family members were 

originally identified as nitrate or di/tri-peptide transporters. However, recent studies 

now suggest that this transporter family also transports the plant hormones auxin, 

ABA, and gibberellin, as well as secondary metabolites (glucosinolates) (Chiba et 

al., 2015). Some family members are also associated with Fe deficiency responses. 

For example, a study by Liu et al., (2015) revealed that NRT1.1 is down-regulated 

by Fe deficiency. 28285 bp at the 5' side, aquaporin SIP1-1 was detected, which 

facilitates the transport of water across cell membranes. Additionally, plant 

aquaporin family members may also transport various small molecules including 

glycerol, urea (Maurel et al. 2002), ammonia (Loqué et al. 2005) and CO2 (Uehlein 

et al. 2003). These studies are vastly improving our knowledge of aquaporins and 

other transporter genes in plants. Although both of these candidate genes are 

associated with the transport of a wide variety of molecules, it is currently unknown 

whether they transport minerals. This may change with research in the future.  

Zn 1 16534195 

Probable indole-3-pyruvate monooxygenase, YUCCA11 was detected 9295 bp at the 

5' side. YUCCA (YUC) flavin monooxygenase was first identified as a key auxin 

biosynthesis enzyme because overexpression of YUC in Arabidopsis thaliana was 

found to cause auxin overproduction (Cheng et al., 2007). Auxin plays a key role in 

embryogenesis and seedling development. Furthermore, auxin synthesised by 

YUCCA flavin monooxygenase is essential for the establishment of the basal body 

region during embryogenesis and for the formation of embryonic and postembryonic 

organs, i.e., the part of a seed, consisting of precursor tissues for the leaves, stem and 
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roots (Chen et al., 2007). The association with Zn could stem from the fact that it is 

well documented in the literature that Zn is required for auxin synthesis and may be 

part of the pathway. Studies suggest that disturbance in the metabolism of auxins, 

especially IAA results in stunted growth and “little leaf” syndrome- the two most 

distinct visible symptoms of Zn deficiency (Alloway, 2004). Additionally, a study by 

Begum et al., (2016) reported that auxin signalling may trigger Zn uptake, transport 

and chelation in rice seedlings to withstand Zn-deficiency. The study also elucidates 

the involvement of auxin with Zn-efficiency in a Zn-efficient rice variety, Pokkali. 

This variety showed no significant decrease in physiological features, electrolyte 

leakage and total soluble proteins as a result of Zn deficiency as compared with Zn 

sufficient seedlings. However, an auxin inhibitor under Zn deficiency severely 

affected these characteristics, suggesting that Zn efficiency is associated with auxin 

signalling. Results also revealed a significant reduction in the expression of Zn 

transporter genes (OsIRT1, OsZIP4 and OsZIP1), OsDMAS1 (deoxymugeneic acid 

synthase) and phytochelatin in roots due to the auxin inhibitor. When the two key 

findings are linked, that i) YUCCA11 may regulate auxin biosynthesis and ii) auxin 

signalling triggers Zn efficiency, it can be elucidated that YUCCA11 may indirectly 

affect Zn efficiency in pearl millet.  

6.5 Conclusions 

In a study by Kumar et al., (2016), using 305 loci, a linkage map was constructed to 

map QTLs for grain Fe and Zn content using replicated samples of 106 pearl millet 

RILs derived from two PMiGAP lines: ICMB 841-P3 × 863B-P2. On the basis of 

phenotypic mineral data from two environments, two co-localised QTLs for grain Fe 

and Zn content were identified on linkage group (LG) 3 by composite interval 

mapping. For OP seeds, the analysis also led to the identification of two QTLs for 

grain Fe content on LG3 and 5, and two QTLs for grain Zn content on LG3 and 7. 

The results differ to the findings generated in this study. For example, in Table 6.7, 

which shows the top 3 low P-value SNPs and chromosome positions detected for all 

minerals using >37,000 SNPs mapped to pearl millet, the SNPs for Fe and Zn fall 

instead on chromosomes 1, 2, 4 and 5. Similarly, for the >3,000,000 SNP data set, 

according to Table 6.10 none of the SNPs for Zn appeared on LG 3/7. However, 1 

strongly associated Fe SNP was located on LG3. Instead, the majority of Fe/Zn 

associated markers fell on chromosome 1 and none were co-localised, in both cases. 
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Interestingly, the significance of chromosome 1 coincides with results from another 

study by Kumar et al., (2018), where a genetic linkage map was constructed using 

317 pearl millet RILs, derived from two Iniadi lines (ICMS 8511-S1-17-2-1-1-B-P03 

× AIMP 92901-S1-183-2-2-B-08). Three large-effect QTLs for both minerals were 

located, one on LG1 and two on LG7.  The differing results may be due to a number 

of factors, namely; (i) environment and pollen source play important roles in Fe/Zn 

concentrations in seeds, which consequently may explain the different chromosome 

positions of detected SNPs, (ii) the transport and accumulation of minerals in seeds 

is a complex trait that requires a combination of different genes on different 

chromosomes and (iii) the phenotype data in this study may be limited for the 

reasons discussed previously in Chapter 3, including the effect of the environment on 

selfed seed set, mineral distribution, grain size (small seeds were shown to be 

susceptible to concentration effects) and uptake. 

As previously discussed in Chapter 1, the strong correlation between grain Fe and Zn 

content has been studied in several crops, with results, showing similar trends. 

Similar to this study, Kumar et al., (2016) also reported that grain Fe and Zn 

contents were strongly and positively associated. This may be owing to common 

molecular mechanisms controlling the uptake and metabolism of these minerals in 

the seed or common transporters controlling the movement of these minerals within 

the plant (as previously discussed in Chapter 1).  Kumar et al., (2016) also 

hypothesised that the co-segregation of QTLs on LG3 for both Fe and Zn might be 

the reason for the strong association between grain Fe and Zn content. In this study, 

findings from the >37,000 SNP data set revealed that low p-value SNPs were located 

on chromosome 4 for both Fe and Zn, as seen in Table 6.7. Although the SNPs are 

located on the same chromosome, they are not as close together as demonstrated in 

other studies (Kumar et al., 2016; Jin et al., 2013). Similar findings from the 

>3,000,000 SNP data set also revealed that low P-value SNPs located on 

chromosome 1 (2 × Fe and 2 × Zn) were not close together. Given that there are 

other SNPs between the significant markers in both cases, it is not likely that they 

are of the same association. Despite the distance, this study still indicates that 

chromosomes 1 and 4 may hold SNPs for the uptake of both Fe and Zn. 

Interestingly, upon observation of the SNPs associated with grain Fe and Zn content 

as a result of 663 SNPs from the Setaria italica genome (Table 6.4), the SNPs are 
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much closer together, located at positions 4623914 and 3820759 on chromosome 9, 

respectively – thus indicative of some degree of co-localisation.  Other studies have 

also reported this in other crops, including one by Jin et al., (2013), who investigated 

the genetic architecture of Fe and Zn content in Zea mays grains as revealed by QTL 

mapping and meta-analysis. It was found that for Zn content, 4 QTLs were identified 

on chromosomes 2, 5 and 10, whereas for Fe content, only one QTL was located on 

chromosome 5. The QTLs identified for Fe and Zn on chromosome 5 were in the 

marker interval umc1429–umc1060, and therefore considered co-localised. The co-

localisation of nutrient element QTLs may be due to tight linkage of distinct genes, 

pleiotropism or physiological association of micronutrient accumulation; this 

suggests that there is a relationship at the molecular level among these traits (Jin et 

al., 2013). Additionally, the co-localisation of QTLs for the content of multiple 

elements has been reported in in wheat (Wu et al., 2008), Brassica oleracea 

(Broadley et al., 2008), Arabidopsis thaliana (Vreugdenhil et al., 2004) and rice 

(Shimizu & Guerta, 2005). Co-localisation is also demonstrated to a more significant 

degree in two pairs of Ca associated SNPs from the 663 SNP data set, as indicated 

by overlapping of SNPs at positions 5882761 and 5882763 on chromosome 1 (2bp 

apart) and 37189739 and 37189769 on chromosome 6 (30bp apart). This has also 

been demonstrated in a study by Broadley et al., (2008), who reported that QTLs for 

shoot Ca and Mg uptake potentially co-localise on chromosome 6, 8 and 9 in 

Brassica oleracea. 

A surprising finding from this study was the lack of well-known Fe/Zn uptake genes 

found within the region of low P-value markers, such as the YSL proteins, the ZIPs 

or the IRT proteins (as described to a fuller extent in Chapter 1). This may be 

attributable to the 4kb sequence surrounding SNPs from the pearl millet genome 

assembly, in the case of the >37,000 and >3,000,000 SNP data sets being BLASTed 

against the Setaria italica reference genome. This is because the Pennisetum 

glaucum genome was not on the NCBI genome viewer at the time of this research. 

This may have affected the quality and accuracy of the downstream analysis, thus 

findings from the GWAS may be less valid than in if a pearl millet reference genome 

was used, simply because if there is too much sequence variation present between 

the two species, this may reduce the accuracy in finding genes when conducting a 

BLASTn search. In terms of comparative mapping between the two species, a study 
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by Devos et al., (2000) investigated the homoeology between the genomes of pearl 

millet and foxtail millet and a comparison revealed that despite the close taxonomic 

relationship, their genomes were highly rearranged and most of these rearrangements 

may have taken place in pearl millet. The study involved mapping pearl millet RFLP 

probes onto a foxtail millet population. The pearl millet genetic map was compared 

with that of foxtail millet  and it was found that large chromosomal rearrangements 

that took place in the millet genomes, relative to rice could be classified as either 

species-specific or as characteristic to the taxonomic group. When comparing pearl 

millet to foxtail millet, LG1 from pearl millet was shown to be homoeologous (of 

similar genetic constitution) with a segment of foxtail millet (FM) chromosome 8. 

Pearl millet LG2 is homoeologous with segments of FM9, FM4 and FM1. LG4 in 

pearl millet is homoeologous with a segment of FM3, most of FM6 and the 

duplicated regions of FM7 and FM8. LG6 is largely homoeologous to FM5 and LG7 

is homoeologous to FM2. An additional comparison of the organisation of the 

genomes of rice, foxtail millet, sugar cane, sorghum, pearl millet, maize, wheat and 

oat revealed that most of these rearrangements were present in pearl millet only and 

therefore must be of recent origin. The pearl millet genome also carries at least one 

and two duplications between LG1 and 4, respectively, which are likely to be 

independent events. One corresponds to the duplication found between the short 

arms of rice chromosomes 11 and 12 and occurred before the divergence of the 

Panicoideae and Oryzoideae subfamilies. The other seems to be specific to pearl 

millet (Devos et al., 2000). 

Another reason for the lack of well-known Fe/Zn uptake genes may be due to few 

(3/35) p-values of MTAs exceeding the Bonferroni corrected threshold. Even though 

the Bonferroni correction is considered to be extremely stringent, it is a necessary 

step to ensure the prevention of genome-wide type 1 errors (false positive 

associations). It also reduces the probability of identifying SNPs with small effect 

size (Stringer et al., 2011). Multiple testing must be taken seriously since false 

claims of associations that show only nominal significance are seldom replicated. 

Thus, it is important to avoid this, even if it means sacrificing positive results from 

our investigations. In Varshney et al.’s (2017) study, multiple testing was accounted 

for using FDR (False Discovery Rate) at a 0.001 threshold level and only p-values 

lower than 1E−10 were considered. Multiple testing was accounted for in this study 
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using the Bonferroni threshold correction method at the 5% significance level. When 

the corrected threshold was calculated at 1.26E-05 for the 663 SNP data set, 2.23E-

07 for the >37,000 SNP data set and 2.65E-09 for the >3,000,000 SNP data set, it 

was found that just three SNPs from a total of 35 were above the thresholds. These 

were Na_ 3_221196763, Na_5_65686933 and Na_3_193997829 from the >37,000 

SNP data set. The lack of significant p-values that exceeded the Bonferroni corrected 

threshold may be due to known errors, i.e. the relatively small size of the PMiGAP 

population combined with the lack of replicates. A larger population with at least 3 

replicates would significantly increase the power of GWAS for future work. For 

example, Varshney et al., (2017) did GWAS on 288 PMiGAP lines, as compared to 

221 lines used in this study for the >37,000 and >3,000,000 SNP data sets and 171 

lines used for the 663 SNP data set. In terms of replicates, two replications in three 

test environments were used in Varshney et al.’s (2017) study, which greatly 

increased the validity and reliability of results. 
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Chapter 7: Haplotype Analysis for the Verification of the YUCCA11 

Gene 

7.1 Summary 

In this chapter, 9 haplotypes covering the YUCCA11 gene were idenitifed and their 

association with trait data (combined Fe and Zn levels) from 42 PMiGAP lines was 

assessed.  

Since haplotype analysis provides more evidence for associations than single SNP 

analysis from GWAS, haplotypes around the most relevant candidate gene, 

YUCCA11, were identified and analysed to determine whether an association with 

Fe/Zn uptake was present. This was achieved by looking at combinations of SNPs 

rather than individual SNPs, to strengthen the conclusion that these SNPs are 

associated on the YUCCA11 gene. A total of 9 haplotypes in 42 PMiGAP lines were 

detected, and findings revealed no association between any haplotype and Fe/Zn 

uptake. This may have been attributable to a number of reasons, the most likely of 

which being the fact that the MTA was likely a chance outcome. Other points to 

consider are known issues with the phenotype data (i.e. lack of replicates) affecting 

the downstream analysis and  the relatively small sample size. Additionally, data was 

examined to determine whether any haplotype was associated with a particular 

region, of which no association was found. This reflects the lack of population 

structure in the PMiGAP. 

7.2 Introduction 

A haplotype is defined as a group of genes within an organism that are inherited 

together from a single parent. In addition, the term ‘haplotype’ may also refer to the 

inheritance of a cluster of SNPs. The analysis of haplotypes with the grouping and 

interaction of several variants is sometimes superior to individual SNP analysis 

techniques and significantly improves the power and robustness of association 

studies (Wu et al., 2014). However, if the causal connection between SNP and 

phenotype is truly driven by just one SNP, then the haplotype-based approach may 

perform worse than the one-SNP-at-a-time approach (Clark, 2004). 

SNPs are considered choice markers for GWAS as they are the most abundant class 

of sequence variability in the genome and they provide the highest map resolution 
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(N’Daiye et al., 2017). However, SNPs are typically bi-allelic so each provides less 

polymorphism information content than that of other markers, such as SSRs (which 

are multi-allelic), therefore marker density should be increased. This limitation is 

typically overcome by merging SNPs into haplotypes (Lu et al. 2012). Although 

haplotype-based analyses are more commonly used in human genetics studies, 

similar efforts are gaining ground in several staple crops, including maize (Lu et al., 

2012), rice (Lestari et al., 2011) and soybean (Langewisch et al., 2014).  

7.2.1 Single-Point Analysis from GWAS vs. Haplotyping 

GWAS almost invariably use single point analysis because the traditional methods 

used to analyse large-scale genetic data are lagging behind the rapid advances in 

industrial omics/NGS technology. Traditional genetic analyses from association 

mapping explore likely single markers associated with a trait of interest and as a 

result identify only a small proportion of genetic variants responsible. This 

contributes to an incomplete understanding of complex phenotypic traits. In addition, 

the current popular single-point analysis of GWAS data suffers from low validation 

and replication rates (Panoutsopoulou & Zeggini, 2009). There is a growing 

consensus that genetic factors attributing to complex pathways, such as mineral 

uptake in plants is contributed to by multiple genes/SNPs, rather than by the 

mutations of individual genes (Dunn et al., 2007). For example, Dunn et al., (2007) 

suggests that many proteins/genes may be involved in Fe uptake, metabolism and 

homeostasis in plants including Divalent Metal Transporter-1, Ferroportin-1 and 

Heme Carrier Protein-1, to name a few. Hence, to further interpret the underlying 

molecular mechanisms behind mineral uptake, systematic dissection of the 

interactions between multiple genes as well as their functionalities is essential.  

A disappointing finding from many GWAS is the lack of association between 

relevant candidate genes and their cognate traits, couplied with the discovery of a 

wide range of genomic regions, some containing no genes at all, that have a small 

effect size on traits. This is common in the literature. For example, in a study by 

Anuradha et al., (2017), a pearl millet association mapping panel of 130 diverse lines 

was phenotyped for Fe and Zn levels and MTAs were analysed with 267 markers 

(250 SSRs and 17 genic markers). 3 markers were found to be significantly 

associated with Fe/Zn uptake in pearl millet, across three different environments. 
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However only 1 matched a segment of the pearl millet reference genome, annotated 

as the gene Asp1, which does not appear to be directly linked to Fe/Zn uptake. The 

results from the GWAS, described in Chapter 6 indicated that none of the well-

known genes for Fe/Zn uptake, including the YSL and ZIP family transporter genes, 

were identified.  Additionally, there were no overlapping candidate genes between 

the three GWAS. This has prompted some suggestions that a two tier system is 

needed for the improvement of association mapping. Haplotype analysis is an 

effective technique that overcomes many limitations of single-point analysis and is a 

plausible method of investigating the lack of association between candidate genes 

and Fe/Zn uptake. Reasons for the lack of association could be due to several factors, 

namely: (i) Differences in the effect size of the SNPs, therefore those associated with 

Fe/Zn uptake were not detectable. Normal practise is to select a low significance 

threshold; this reduces the probability of identifying SNPs with small effect size 

(Stringer et al., 2011). (ii) The QTL may not have been segregating at a sufficiently 

high frequency to be detected. (iii) Differences in the density of SNP coverage for 

the candidate genes relating to mineral uptake (especially in the case of the 663 SNP 

data set) (iv), Differences in the degree of LD across the region (Barendse, 2011) and 

(v), the fact that few SNPs exceeded the Bonferroni corrected threshold may point to 

the lack of true MTA’s, i.e. false positives. 

7.2.2 Experimental Aims 

42 PMiGAP lines were selected for haplotype analysis based on high, medium and 

low grain Fe/Zn content. DNA was extracted from young leaf tissue and 6 candidate 

genes were chosen for haplotype analysis. This was subsequently reduced to 1 

candidate gene (with the most lowest P-value) – YUCCA11, due to the weak MTA’s 

detected in Chapter 6. A transposome-based Nextera XT kit was used to generate 

libraries for sequencing on a MiSeq (Illumina platform). Data analysis included the 

determination of haplotype trait associations (HTA’s) and whether any haplotype 

was associated with a particular region. 

7.3 Materials and Methods 

7.3.1 Plant Material 

See Chapter 2, Table 2.3.  



294 
 

PMiGAP leaf tissue samples were selected based on low (14), medium (18) and high 

(16) combined grain Fe/Zn content. The low Fe/Zn lines ranged between 59.83 – 

72.9 mg/kg, the medium Fe/Zn lines ranged between 106.34 – 109.37 mg/kg and the 

high Fe/Zn lines ranged between 158.04 – 214.58 mg/kg.  

7.3.2 DNA Extraction from Young Leaf Tissue 

DNA was extracted using the Qiagen DNeasy® 96 well plant kit. Liquid nitrogen 

was used to transfer the frozen leaf tissue samples into 2cm collection tubes. A 

tungsten carbide bead was added to each tube and tissue was homogenised using a 

Qiagen TissueLyser for 2 × 40 second bursts, at 25 Hz. Samples were then pulse 

centrifuged at 3000 rpm to bring any excess tissue down from the caps. A working 

lysis solution was made up with 30mL API (preheated to 65°C, using a water-bath), 

75mL RNAse A and 75mL reagent DX. 400µL of the working lysis solution was 

added to each collection tube and left for 2 minutes on the workbench. 130µL P3 

precipitation buffer was added to each collection tube (to remove carbohydrates and 

proteins) and resealed using new caps. Samples were then shaken vigorously by 

hand for 1 minute, ensuring a 90° turn every 10 seconds, then pulse centrifuged at 

3000 rpm to collect any remaining solution from the caps. The tubes were then 

stored at -20°C for 20 minutes. Samples were centrifuged for 5 minutes at 6000 rpm 

and 400µL of the supernatant was added to new collection tubes. 600µL AW1 buffer 

was added to each tube and closed with new caps. Samples were then shaken 

vigorously for 15 seconds, and pulse centrifuged at 1000 rpm to collect any solution 

from the caps. A DNeasy 96 well plate was placed on top of an S-block and 1mL of 

each sample was added to each well. The plate was sealed with an Airpore tape sheet 

and centrifuged for 4 minutes at 6000 rpm. The tape was removed and 800µL AW2 

buffer was added to each sample. Samples were centrifuged for a further 15 minutes 

at 6000 rpm, without tape to evaporate any remaining EtOH. 100µL AE buffer was 

added and samples were incubated at room temperature for 1 minute, then 

centrifuged for 2 minutes at 6000 rpm. An additional 100µL AE buffer was added 

and samples were again incubated at room temperature for 1 minute, and then 

centrifuged for 2 minutes at 6000 rpm. Samples were mixed by vortex to ensure 

homogeneity and a final pulse spin at 6000 rpm ensured all the sample was removed 

from the lid. 
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A 1% agarose gel confirmed the presence of DNA by visualisation (Figure 7.1) and 

each sample was quantified using an Epoch spectrophotometer (BioTek Ltd) to 

measure light absorption at 260nM for individual readings. The DNA was then 

stored at -20°C. 

 

Figure 7.1, 1% agarose gel image, confirming the presence of DNA from PMiGAP 

DNA extractions 

7.3.3 Candidate Genes 

At first, 6 candidate genes were selected for haplotype analysis due to their 

association with Fe/Zn uptake, as reported in the literature (Table 7.1). 
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Table 7.1, Candidate genes selected for haplotype analysis 

SNP 
(Chromosome 
no._Position) 

SNP 
dataset 

CG of interest Location Function 

Ca 7_34304700 663 
V-type proton 

ATPase subunit D 
20506 bp at 3' 

side 

There is some experimental data that highlights the effect of proton-pumping 
V‐ATPase activity on metal transport. E.g. proton gradient‐dependent transport 
of metals across the tonoplast and antiporter activity depends on the presence 

of a proton gradient across the vacuolar membrane and thus, indirectly on 
V‐ATPase (Dietz et al., 2001). 

Fe 4_153484722 >37,000 
Cytochrome P450 

71A1-like 
54260 bp at 5' 

side 
C-P450’s are a large group of enzymes that contain heme as a cofactor. Some C-

P450 family members accumulate in response to Fe deficiency (Colangelo & 
Guerino, 2004). 

Fe 5_58171748 >37,000 
Cytochrome P450 

76C2-like 
35844 bp at 5' 

side 

Na 5_65686933 >37,000 
Cytochrome P450 

99A2-like 
206267 bp at 

5' side 

Fe 4_153484722 >37,000 

LRR receptor-like 
serine/threonine-

protein kinase 
ERECTA 

11388 bp at 3' 
side 

The ERECTA locus has been identified as a major QTL for mineral 
concentrations, including Fe and Zn in Arabidopsis thaliana (Ghandilyan et al., 

2009). 

Zn 1_16534195 >3,000,000 
Indole-3-pyruvate 
monooxygenase 

YUCCA11 

9295 bp at 5' 
side 

 

YUCCA11 is associated with auxin biosynthesis. In turn, auxin drives Zn 
efficiency by triggering uptake, transport and chelation in Zn-deficient 

conditions (Begum et al., 2016). 
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For each candidate gene, the base position (start/end region), origin gene sequence 

and the FASTA sequence were located by BLASTn search of the NCBI database. 

7.3.4 PCR Primer Design 

For each candidate gene, the FASTA sequences were imported into the program 

PRIMER3 (http://bioinfo.ut.ee/primer3-0.4.0/). The product size range was set to be 

within 100bp of the start/end region. All the default settings were used, including 

optimum 50% CG content and primer size range was set to 18 – 27bp. 1 CG clamp 

was added to each primer. Primers for each candidate gene can be seen in Table 7.2 

and were ordered from Sigma Aldrich, UK at 0.025µmole, desalted and in dry 

format. 

Table 7.2 Forward and reverse primer sequences for CG’s. Tm = Melting 

Temperature. 

DNA Oligos 
Sequence 

FWD Tm°C REV Tm°C 

V-ATPase subunit D CGCTGCTGAAGAAGAAGTCC 64.2 GATGATGTCGTCGTCCTTCTC 63.7 

Cytochrome P450 
99A2 

TATGGTGATGCCACAAGGTG 64.5 CAGCGACGCTTATCTTCCTC 63.9 

Cytochrome P450 
71A1 

CGACAAGGGTCAAGGGATAC 63.3 GTTAGACGCCTTCGATCAGG 63.7 

LRR ERECTA TACATCAGGCAGAGCGAGAC 63.2 GACCCGGTCGACTTCCTG 65.9 

Cytochrome P450 
76C2 

AAGGCCTAGGATGGCTTGTC 64.3 CGACCCCACACTTCTCTTTC 63.6 

YUCCA11 TCCCCTACCTTGTCGTTGAG 64 TGGCAATGTTGTTAGCATCC 63.5 

 

7.3.5 PCR Optimisation 

Primers were made up with 0.1 × TE buffer to 100µM, to create the stock solution, 

which was then diluted to 5µM with distilled water to make the working solution. 

50µL of the forward and reverse primers, per candidate gene were combined.  

Two PMiGAP lines with large amounts of DNA were selected, measuring at 25.4 

ng/µL and 15.4 ng/µL, respectively. A 50µL PCR reaction was conducted using 

25µL Phusion High-Fidelity DNA Polymerase, 2µL Primer, 2/3µL DNA (2µL for 

the 25.4 ng/µL DNA sample and 3µL for the 15.4 ng/µL DNA sample) and 21/20µL 

http://bioinfo.ut.ee/primer3-0.4.0/
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distilled water (21µL for the 25.4 ng/µL DNA sample and 20µL for the 15.4 ng/µL 

DNA sample). The PCR cycle was set to: 

95ºC 10 minutes 

 

  95ºC 30 seconds 

  58ºC 30 seconds 

  72ºC 30 seconds 

  72ºC 3 minutes 

   × 35 cycles 

 

  72ºC 10 minutes 

  4ºC hold 

 

58°C was chosen for the initial annealing temperature, due to it being 5°C below the 

lowest primer sequence Tm. A 1% agarose gel confirmed the retention of PCR 

products (Figure 7.2). When the PCR products showed evidence of mispriming at 

58°C due to a laddering pattern, higher annealing temperatures including 59°C, 

60°C, 61°C, 62°C and 63°C were tested, keeping all conditions the same as above. 

However, results still showed the same laddering pattern in all cases (Figure 7.2).  

 

 

 

 

 

 

 

 

 

Figure 7.2, PCR products as confirmed by 1% agarose gel. Image shows mispriming 

in most cases at 58°C (Top image), 59°C (Bottom image, Wells 2-7) and 60°C 

(Bottom image, Wells 8-13). EXT = Extension time, 2-log = 2-Log DNA Ladder, 

HL = HyperLadder, A = V-ATPase subunit D, B = Cytochrome P450 99A2, C = 
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Cytochrome P450 71A1, D = LRR ERECTA, E = Cytochrome P450 76C2, F = 

YUCCA 11. 

A touch-down PCR was conducted, where the initial annealing temperature was set 

to 63°C and gradually reduced by -5°C increments over 10 cycles until the Tm or 

“touch-down temperature” was reached, as below.  

12.5µL Phusion 

1µL DNA (24.5ng/µL)  

1µL Primer 

10.5µL Water 

Heat lid 112°C 

95°C 10 minutes 

95°C 30 seconds                       

63°C 30 seconds (-0.5)        × 10 

72°C 3 minutes 

95°C 30 seconds 

58°C 30 seconds                  × 25 

72°C 3 minutes 

 

72°C 10 minutes 

12°C Hold 

A 1% agarose gel revealed that the touchdown PCR failed in the majority of cases, 

as confirmed by a laddering/smear pattern (Figure 7.3). 

 

 

 

 

 

 

Figure 7.3: Touchdown PCR products as confirmed by 1% agarose gel, 63°C - 58°C. 

A = V-ATPase subunit D, B = Cytochrome P450 99A2, C = Cytochrome P450 

71A1, D = LRR ERECTA, E = Cytochrome P450 76C2, F = YUCCA 11. 

In an effort to address the issue of the laddering patterns, the number of PCR cycles 

was altered to ×20, ×25 and ×30, respectively. Although there was an improvement 

63°C - 58°C 
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to the PCR product, mispriming could still be seen for the majority of cases (Figure 

7.4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4, PCR products as confirmed by 1% agarose gel. Image shows mispriming 

in most cases at ×20, ×25 and ×30 cycles. EXT = Extension time, 2-Log = 2 Log 

DNA ladder. A = V-ATPase subunit D, B = Cytochrome P450 99A2, C = 

Cytochrome P450 71A1, D = LRR ERECTA, E = Cytochrome P450 76C2, F = 

YUCCA 11. 

A different reaction mix, ImmoMix (based on IMMOLASE™ DNA polymerase) 

was used in place of Phusion buffer, under the following conditions: 

7.5µL Immomix 

2µL DNA (24.5ng/µL)  

1µL Primer 

4.5µL Water 

95ºC 10 minutes 

 

95ºC 30 seconds 

59ºC 30 seconds 

72ºC 30 seconds 

72ºC 1 minute 
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× 35 cycles 

 

72ºC 10 minutes 

4ºC hold 

The PCR product was AMPure cleaned (0.6 AMPure: 1 DNA) with 100µL 80% 

EtOH and resuspended in 12µL Illumina resuspension buffer. 

 

 

 

 

 

 

 

 

 

Figure 7.5, PCR products as confirmed by 1% agarose gel. Image shows successful 

PCR in lanes B, E and F. 2-Log = 2 Log DNA ladder. A = V-ATPase subunit D, B = 
Cytochrome P450 99A2, C = Cytochrome P450 71A1, D = LRR ERECTA, E = 

Cytochrome P450 76C2, F = YUCCA 11. 

Whilst the PCR conditions were deemed successful for wells 3 6 and 7 (Figure 7.5), 

corresponding to the candidate genes; Cytochrome P450 99A2, Cytochrome P450 

76C2 and YUCCA11, respectively, the laddered PCR products in wells 2 and 5, 

corresponding to the candidate genes; V-ATPase subunit D and LLR ERECTA were 

further improved by reducing the temperature from 59°C to 58°C and changing the 

number of cycles from ×35 to ×30 and the extension time from 1 minute to 1 minute 

30 seconds. The PCR product was AMPure cleaned (0.6 AMPure: 1 DNA) with 

100µL 80% EtOH and resuspended in 12µL Illumina resuspension buffer. This 

proved to be successful (Figure 7.6). 

 

 

 

59ºC, ×35 cycles 
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Figure 7.6, PCR products as confirmed by 1% agarose gel. Image shows successful 

PCR’s corresponding to the CG’s: V-ATPase subunit D and LLR ERECTA, 

respectively. 2-Log = 2 Log DNA ladder. 

7.3.6 Sanger Sequencing  

Sanger sequencing was used to confirm the correct amplification of the PCR 

product. 5µL of AMPure cleaned PCR product plus 2pmol of primer (forward and 

reverse, separate) were subjected to Sanger sequencing, using an accredited service 

by Ms Caron Evans, University of Aberystwyth, Division of Genomics. The raw 

data was analysed in the Chromas v.2.6.4 environment 

(https://technelysium.com.au/wp/chromas/) and low-quality sequence was trimmed 

(Figure 7.7). The remaining FASTA sequence for each sample was BLASTed 

against all assemblies available on the NCBI website to confirm the correct 

amplification of DNA sequence.  

 

 

 

 

 

 

Figure 7.7, Chromatogram file built in the Chromas v.2.5.4 environment. Base pairs 

are decoded by fluorescence as per the 4 different colour peaks. 

Base Pairs 

Confidence Score 

Low Quality Sequence 

58ºC, ×30 cycles 

 

https://technelysium.com.au/wp/chromas/
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Table 7.3, BLASTn results from Sanger Sequencing 

CG of interest Primer (FWD/REV) BLASTn hit Bits/identities/E-Value 

V-ATPase Subunit D 
CGCTGCTGAAGAAGAAGTCC 

(FWD) 
No Similar Sequence found - 

V-ATPase Subunit D 
GATGATGTCGTCGTCCTTCTC 

(REV) 
Setaria italica V-type proton ATPase subunit D 

(LOC101759408), mRNA 

87.8 bits(96) 
99/121(82%) 

2e-13 

CP450 99A2 
TATGGTGATGCCACAAGGTG 

(FWD) 
Setaria italica cytochrome P450 99A2 (LOC101776139), mRNA 

657 bits(728) 
450/507(89%) 

0.0 

CP450 99A2 CAGCGACGCTTATCTTCCTC (REV) Setaria italica cytochrome P450 99A2 (LOC101776139), mRNA 
1054 bits(1168) 
704/784(90%) 

0.0 

LLR ERECTA 
TACATCAGGCAGAGCGAGAC 

(FWD) 
Setaria italica LRR receptor-like serine/threonine-protein 

kinase ERECTA (LOC101756593), mRNA 

1519 bits(1684) 
911/953(96%) 

0.0 

LLR ERECTA GACCCGGTCGACTTCCTG (REV) 
Setaria italica LRR receptor-like serine/threonine-protein 

kinase ERECTA (LOC101756593), mRNA 

1443 bits(1600) 
891/941(95%) 

0.0 

CP450 76C2 
AAGGCCTAGGATGGCTTGTC 

(FWD) 
Setaria italica cytochrome P450 76C2 (LOC101763431), mRNA 

1247 bits(1382) 
791/851(93%) 

0.0 

CP450 76C2 CGACCCCACACTTCTCTTTC (REV) Setaria italica cytochrome P450 76C2 (LOC101763431), mRNA 
749 bits(830) 
475/513(93%) 

0.0 

YUCCA 11 TCCCCTACCTTGTCGTTGAG (FWD) 
Setaria italica probable indole-3-pyruvate monooxygenase 

YUCCA11 (LOC101766463), mRNA 

699 bits(774) 
450/489(92%) 

0.0 

YUCCA 11 TGGCAATGTTGTTAGCATCC (REV) 
Setaria italica probable indole-3-pyruvate monooxygenase 

YUCCA11 (LOC101766463), mRNA 

356 bits(394) 
221/237(93%) 

8e-94 
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7.3.7 PCR and AMPure clean-up of YUCCA11  

A decision was made amongst all members of the research group that since the weak 

MTA’s, as per the results from the GWAS in Chapter 6 meant that there was a strong 

likelihood that this work may not yield any meaningful results, instead of following 

up the six candidate genes previously described, with varying levels of statistical 

significance, the association target with the lowest p-value would be taken forward 

for the haplotype analysis. Namely, YUCCA11 (found in association with the SNP 

Zn 1 16534195, P = 6.84E-06). 

All 48 PMiGAP DNA extractions were subjected to PCR, under the following 

conditions:  

7.5µL Immomix 

2-5µL DNA  

1µL Primer 

1.5-4.5µL Water 

 

The reaction volume was 15µL. 

95ºC 10 minutes 

 

95ºC 30 seconds 

59ºC 30 seconds 

72ºC 30 seconds 

72ºC 1 minute 

× 35 cycles 

 

Extension time: 72ºC 10 minutes 

4ºC hold 

The PCR product was AMPure cleaned (0.6 AMPure: 1 DNA) with 100µL 80% 

EtOH and resuspended in 12µL Illumina resuspension buffer. 

A 1% agarose gel confirmed the presence of PCR products in 45 out of 48 cases 

(Figure 7.8). 
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Figure 7.8, 1% agarose gel confirming the presence of PCR products after AMPure 

clean-up in 45 out of 48 of cases. × = unsuccessful PCR, 2-Log = 2 Log DNA 

ladder. 

7.3.8 Transposome-based Nextera XT Amplicon Libraries 

PCR products were Qubit DNA quantified and diluted to 1ng/µL in a 10µL volume 

with RNAase free water, for use in a transposome-based Nextera XT kit. Indexed 

paired-end libraries were created for each isolate using the Nextera XT DNA sample 

preparation kit (Version C protocol, Illumina,), for sequencing on Illumina 

platforms.  

10µL Tagment DNA Buffer plus 5µL AMPure cleaned PCR product were added to a 

hard-shell skirted PCR plate. 5µL Amplicon Tagment Mix was added to each well. 

The plate was mixed by pipetting and centrifuged at 280 × g at 20°C for 1minute. 

The following tagmentation program was set up on a PCR machine: 

 Preheat lid 

 55°C 5 minutes 

 Hold 10°C 

The program was run and when the temperature reached 10°C, 5µL Neutralize 

Tagment Buffer was added to each well and the plate was centrifuged at 280 × g at 

20°C for 1 minute. The plate was incubated at room temperature for 5 minutes. 

2 Log 

2 Log 

X  X 

X 
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Index primers were arranged in the TruSeq Index Plate Fixture, as per the Illumina 

Nextera protocol. 5µL of each index adapter was added to each respective 

column/row and 15µL Nextera PCR Master Mix was added to each isolate 

containing index adapters. The plate was centrifuged at 280 × g at 20°C for 1 minute 

and the following programme was run on a PCR machine: 

Preheat lid 

72ºC 3 minutes 

95ºC 30 seconds 

95ºC 10 seconds 

55ºC 30 seconds 

72ºC 30 seconds 

72ºC 5 minutes 

× 12 cycles 

10ºC hold 

The PCR product were run on a 1% agarose gel. If a smear was present, the PCR 

was deemed successful (Figure 7.9). 

 Figure 7.9, PCR products from Nextera library amplification, as confirmed by the 

appearance of “smearing” on a 1% agarose gel. 

The successful PCR products were AMPure cleaned (0.5 AMPure: 1 DNA) with 

100µL 80% EtOH and resuspended in 47µL Illumina resuspension buffer. DNA was 

Epoch quantified and equal quantities of each sample were pooled into a single 

microfuge tube. A 5µL aliquot of the pooled sample was run on a 1% agarose gel 

against 2-Log DNA ladder and Hyperladder to observe the average size, which was 

0.7kb (Figure 7.10).  
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Figure 7.10, 1% agarose gel confirming the presence of PCR product after AMPure 

clean up (well 2). 2-Log = 2 Log DNA ladder, HL = HyperLadder. 

The pooled sample was Qubit DNA quantified (reading at 1.73ng/µL). From these 

readings the molarity was calculated for future dilution calculations for sequencing 

using the following formula: 

 

 

2% of the total library was spiked into an Illumina HiSeq run (not relevant to this 

project) to assess library balance. Samples returned approzimately equal numbers of 

reads within the 2% spike (2.3 million reads total, 1.15 paired reads), which was 

intended. 

7.3.9 Next Generation Sequencing and Analysis 

The Nextera XT libraries were sequenced on a MiSeq (Illumina platform) at 8pmol 

concentration. The MiSeq was chosen instead of the previously used HiSeq, for the 

longer available read-lengths (2×300bp). This resulted in 12.3 million pairs of high 

quality reads.  

Bioinformatics analysis was performed using the CLC Genomics Workbench v.6.5 

(CLC Bio, Aarhus, Denmark) software. The FASTQ files were imported as Illumina 

files (distance: 1-1000) in paired format. The reads were subsequently mapped to the 

YUCCA11 sequence using the following CLC Genomics Workbench settings: 

Masking mode = no masking, Mismatch cost = 2, Insertion cost = 3, Deletion 

cost = 3, Length fraction = 0.8, Similarity fraction = 0.85, Global alignment = No, 

2 Log HL 
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Auto-detect paired distances = Yes, Non-specific match handling = Ignore. In terms 

of read alignment, 80% of the read lengths were matched to the reference sequence 

with 85% similarity. Once mapped, each sample was subjected to resequencing 

analysis to identify polymorphisms using probabilistic variant detections. Parameters 

were set to: Ignore non-specific matches and Ignore broken pairs, minimum 

coverage=50, variant probability=95%, variant count=20. 

The data generated for each genotype was imported into Microsoft Excel, according 

to the variant files created in the CLC Genomics Workbench environment and 

recoded according to the IUPAC nucleotide codes. These were then converted into 

PLINK format for loading into TASSEL. In TASSEL v5.2.38, a GLM 

genotype/phenotype association analysis was conducted, applying all default 

settings, which generated a table of p-values. Additionally, the haplotype file was 

used to generate a cladogram tree image. 

7.4 Results and Discussion 

Most haplotype based analyses have focused on the mapping of human disease 

alleles, using estimated haplotypes and either case-control or family-based designs 

(for a more comprehensive review see Liu et al., 2008). In contrast, this study was 

designed to be relevant to the candidate gene YUCCA11, revealed as a result of 

GWAS of selfed PMiGAP lines. Because only one gene was used for the haplotype 

analysis, only limited conclusions could be drawn about the conditions under which 

haplotype markers might be preferable to single-SNP markers.  
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Figure 7.11, Haplotype example built in the CLC Genomics Workbench 

environment. 

SNP SNP SNP 

Genotype 
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Figure 7.12, Haplotype score per genotype. Numbers 1-9 on the right hand side of 

the image indicate which haplotype each genotype belongs to. Haplotypes labelled 

2/4A represent the presence of heterozygous calls (red box). Upside-down triangle = 

Insertion. Image built in the CLC Genomics Workbench environment. 

A haplotype example can be seen in Figure 7.11. Haplotypes were manually scored 

(Figure 7.12) and a total of 9 different haplotypes were found to be present across the 

42 PMiGAP lines. The calls were mostly homozygous, which was to be expected 

from inbred lines. This was the case with the exception of two lines – 3013 

(IP11346) and 2063 (IP11311), which contained heterozygous calls. This can be 

explained by residual heterozygosity. Since the PMiGAP lines used in this study 

were an F6 population, the heterozygosity has been reduced by 50% each time the 

plant was selfed and therefore may still remain in small numbers. 
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Table 7.4, Percentage of haplotypes corresponding to 42 high, low and medium 

Fe/Zn PMiGAP lines 

High Fe/Zn Low Fe/Zn Medium Fe/Zn 

Haplotype % Haplotype % Haplotype % 

1 28.57 1 38.46 1 35.71 

2 14.29 2 15.38 2 7.14 

3 7.14 3 0.00 3 0.00 

4 28.57 4 15.38 4 14.29 

5 0.00 5 15.38 5 21.43 

6 14.29 6 7.69 6 14.29 

7 7.14 7 0.00 7 7.14 

8 0.00 8 7.69 8 0.00 

9 0.00 9 0.00 9 7.14 

 

According to the data in Table 7.4, none of the haplotypes that cover the YUCCA11 

gene were particularly prominent in any group, suggesting that there was no 

haplotype potent enough to influence levels of Fe/Zn. The limited results seen here 

may also be attributable to the relatively small sample size (n=42) and the small 

effect size of the haplotypes. Some studies, albeit those using human population 

data, recommend sample sizes in excess of 725 subjects (Osabe et al., 2007). 

Although the literature reports little guidance on the determination of the sample size 

needed to achieve the desired power for haplotype association studies in plants, it 

may be beneficial to measure HTA’s in pilot studies in order to gain knowledge of 

the distribution of haplotypes in the target population. Therefore, it is recommended 

that this analysis should be repeated with at least 100 high/low Fe/Zn PMiGAP lines, 

and subsequent results should be analysed to determine whether more samples are 

needed, after that. 
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Table 7.5, Haplotype trait association within the gene YUCCA11: TASSEL v5.2.38 output. 

Trait Marker Df F P-Value 
Marker 

r2  
Trait Marker Df F P-Value 

Marker 
r2 

Zn 565 1 2.04822 0.160151 0.048711 
 

Zn 399 2 0.948191 0.396191 0.04637 

Fe 174 1 1.776248 0.190153 0.042518 
 

Fe 287 1 0.655247 0.423032 0.016117 

Fe 262 1 1.776248 0.190153 0.042518 
 

Fe 399 2 0.675917 0.514548 0.033501 

Fe 466_467 1 1.776248 0.190153 0.042518 
 

Zn 1156 1 0.305241 0.58369 0.007573 

Fe 577_578 1 1.776248 0.190153 0.042518 
 

Fe 494 2 0.520595 0.598238 0.026003 

Fe 942_943 1 1.776248 0.190153 0.042518 
 

Zn 494 2 0.470342 0.628286 0.023552 

Fe 970 1 1.776248 0.190153 0.042518 
 

Fe 444_445 1 0.168529 0.683613 0.004196 

Zn 287 1 1.454579 0.23488 0.035089 
 

Fe 464 1 0.08295 0.774826 0.002069 

Zn 174 1 1.373734 0.248105 0.033203 
 

Zn 464 1 2.72E-04 0.986921 6.80E-06 

Zn 942_943 1 1.373734 0.248105 0.033203 
       

Zn 262 1 1.373734 0.248105 0.033203 
       

Zn 466_467 1 1.373734 0.248105 0.033203 
       

Zn 577_578 1 1.373734 0.248105 0.033203 
       

Zn 970 1 1.373734 0.248105 0.033203 
       

Fe 565 1 1.218557 0.276241 0.029563 
       

Zn 444_445 1 1.195941 0.280677 0.029031 
       

Fe 513 1 0.923354 0.342369 0.022563 
       

Zn 513 1 0.90635 0.346802 0.022157 
       

Fe 1156 1 0.74836 0.392155 0.018365 
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The HTA data in Table 7.5 for individual variants revealed that there were no 

significant p-values (P≤0.001), indicative of the lack of correspondence with the trait 

value. Although disappointing, this result was predicted due to the weak MTA’s 

from the GWAS (that did not exceed the Bonferroni corrected threshold), as 

indicated in Chapter 6. Thus, further demonstrating the importance of resolving 

known issues with phenotype data in the early stages of research, including lack of 

replicates and small sample size so that they do not affect the downstream analysis, 

as was the case in this study.  

For YUCCA11, there was also no association in terms of haplotypes distributed per 

geographical location (Figure 7.13). This coincides with the lack of population 

structure in the PMiGAP, as per the results in Chapter 6. 
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Figure 7.13, Cladogram tree image built in the TASSEL v5.2.38 environment plus origin data. High/Med/Low = Group to which each genotype 

belongs in terms of combined Fe/Zn level. 



316 
 

7.5 Conclusions 

Even though the literature clearly demonstrates that GWAS greatly benefit from 

haplotype-based analyses in terms of statistical power (N’Diaye et al., 2017), the 

results from this study reveal no apparent advantage of haplotype-based analysis 

over individual SNP analysis. However, the results here are limited, attributable to a 

small population size and do not apply to a highly significant candidate gene, as a 

result of weak MTAs from GWAS. Although no HTAs were found, the research 

contributes to the development of methods that, with minor improvements are fully 

compatible with a larger data set, with more candidate genes. Reasons for the lack of 

HTAs point to known issues with the phenotype data, which in turn affected the 

GWAS confidence levels. Therefore, it is recommended that robust phenotype data 

with at least three replicates is generated for the improvement of downstream 

genotypic analysis. 

This study represents the first attempt to verify a candidate gene associated with Zn 

uptake in pearl millet using haplotypes. Although we could not determine any 

favourable haplotypes using association analysis, it is possible to gain insights as to 

why this was the case from other haplotype verification studies in the literature. For 

example, in a study by Zhang et al., (2017), candidate genes were verified by testing 

the significant differences among major haplotypes for important QTLs associated 

with Fe or Zn toxicity tolerance. Haplotype analysis was carried out for 22 candidate 

genes in 10 important QTL regions and results indicated that several haplotypes were 

found to be associated with phenotypic differences, which verified the candidate 

genes in many cases. The positive results are likely due to efficient experimental 

design, including a favourable sample size (10 plants per 211 accessions, with 2 

replicates for both control and stress conditions) and a large abundance of markers 

used for GWAS (395,553 SNP markers). At the genotype level, other parameters 

were also in place. For example, haplotype analysis was only carried out if more than 

two significant SNPs were distributed in one gene. 
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Chapter 8: Discussion, Conclusions and Future Work 

8.1 Aims and Background 

Increased grain Fe and Zn content in pearl millet is an important breeding target for 

food and nutrition security of people living in poverty stricken areas within India and 

Africa.  

The study detailed in this thesis was undertaken to decipher genomic regions 

associated with elevated grain Fe and Zn levels in pearl millet using genetic 

association studies. This involved assessment of grain from a germplasm diversity 

panel of pearl millet (the PMiGAP) for mineral content by ICPAES (Chapter 3), as 

well as the presence of anti-nutrients, including phytate and metal-chelating soluble 

phenolics (Chapters 4 and 5, respectively), that might hinder the bioavailability of Fe 

and Zn. GBS libraries were prepared for high-density genotyping and the resulting 

SNPs were used, in addition to SNPs from the recently published pearl millet 

genome, to conduct GWAS of the phenotype data for the identification of MTAs and 

in turn candidate genes (Chapter 6). In addition, haplotypes covering the most 

significant candidate gene were identified and their association with the trait data 

was assessed (Chapter 7).  

The research detailed within this thesis lay down a foundation for future studies and 

discoveries, not only within the fields of molecular genetics, plant biotechnology and 

nutrition for human health but also with respect to analytical chemistry, for the 

consideration of anti-nutrients. Without this ground work, future endeavours may not 

be possible. 

8.2 Overview and Outcomes 

8.2.1 Plant Material 

Chapter 2 describes the plant material used within this thesis and three seed 

multiplication trials that took place under glasshouse conditions for the production of 

selfed and OP seed.  

Matured seed was harvested for phenotyping purposes (Table 2.3), as well as young 

leaf tissue for DNA extractions (Chapter 7, Section 7.3.2). Lessons learned from the 
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first glasshouse trial facilitated the optimisation of conditions for good growth and 

yield during subsequent trials. 

8.2.2 Phenotyping the PMiGAP 

In Chapters 3, 4 and 5, extensive phenotypic analysis by ICPAES, phytate assays 

and HPLC-MS was conducted to quantify levels of minerals, phytate and soluble 

phenolics in PMiGAP grain samples, respectively. The ICPAES data generated in 

Chapter 3 is considered to be reliable and precise as the analysis was conducted by 

an accredited service within IBERS, Aberystwyth University. The Megazyme® 

Phytic Acid (Phytate)/Total Phosphorus assay kit was used to quantify levels of 

phytate in Chapter 4 and has been extensively tested by British Geological Survey, 

Centre for Environmental Geochemistry. According to the performance 

characteristics attained, the kit was found to give accurate, reproducible and reliable 

data. For example, reproducibility for wheat grain samples was demonstrated with a 

precision of 10% between separate runs, meeting validation criteria (Reason et al., 

2015). Furthermore, the HPLC-MS data generated in Chapter 5 is extremely robust 

due to the extensive improvements to the compound extraction protocol, 

implemented during method development process, as discussed.  

Upon analysis of the ICPAES mineral data, grain Fe and Zn content was highly 

variable and consistently positively correlated when grown in different 

environments. However, upon analysis of the mean mineral concentrations across 

multi-environments, there were major differences, which indicated that the 

environment had a stronger effect on mineral uptake than the genetics. Therefore, the 

data should be approached with caution due to an unstable phenotype. Furthermore, 

the mineral content of OP and selfed seed was also compared and it was found that 

mineral levels were significantly higher in selfed populations, which may be 

indicative of seed concentration effects. Levels of phytate also differed between two 

populations grown in different environments. This may be attributable to the effects 

of cultivars, environment and their interactions with phytate being highly significant. 

Interestingly, there was no significant correlation between grain Fe/Zn content and 

phytate, thus indicative of the possibility of breeding pearl millet lines with low 

phytate content and high grain Fe/Zn levels. Research by Al Hasan et al., (2016) 

suggests two ‘critical values’ based on molar ratios of phytate: Fe/Zn of 1 and 15 
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respectively, where when exceeded may result in poor Fe/Zn bioavailability (Al 

Hasan et al., 2016). Analysis of 235 PMiGAP lines revealed that 100% of the 

population exceeded the critical value for Fe and 69% exceeded the critical value for 

Zn. This suggests that the vast majority of the PMiGAP population is limited in 

bioavailability of Fe and Zn. 

In terms of metal-chelating soluble phenolics, the research in Chapter 5 primarily 

focused on two flavonone glycosides; apigenin and luteolin (and their derivatives). 

These compounds were extracted using MeOH from raw pearl millet grain and peak 

areas from HPLC chromatograms (as a measure of relative abundance) were 

identified, quantified and compared. Findings revealed that the content of all 

compounds were highly variable between lines. The correlation between polyphenol 

content and micronutrients was also investigated and although no significant 

correlations were observed, upon application of a statistical filter, some clustering 

was revealed between apigenin and luteolin derivatives.  

8.2.3 GWAS for the Identification of Markers/Candidate Genes Associated with 

Fe and Zn Uptake 

In Chapter 6, three GWAS were conducted using different marker sets for the 

identification of MTAs and in turn candidate genes that may be associated with 

elevated Fe/Zn levels. Prior to GWAS, population structure and LD were accounted 

for to safeguard against confounding factors that may lead to a type 1 error, i.e. false 

positive MTAs. Population structure was insignificant in all cases, which was the 

pattern expected from inbred lines derived from a highly allogamous species 

(Varshney et al., 2017). LD and LD decay differed between the marker sets. For 

example, where low numbers of markers were used, only a small amount of marker 

pairs were in LD based on r2 values and LD decay was extremely rapid. Whereas 

when marker density was high, LD was more prominent and decayed at a slower 

rate, indicating an adequate number of markers for GWAS. The three GWAS 

facilitated the selection of 35 MTAs and when the regions surrounding each 

significant SNP were BLASTed against the most annotated Setaria italica reference 

genome (because a complete pearl millet genome was not available on the NCBI 

genome sequence viewer at the time of this research), 6 candidate genes were found 

to be directly associated with mineral uptake including: V-type proton ATPase 

subunit D, 3 × cytochrome P450 family members, ERECTA and YUCCA11. The 
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YUCCA11 gene had the lowest P-value (P = 6.84E-06). The reported 

MTAs/candidate genes may be useful in MAS programs, for genomic selection and 

for population improvement programs for the creation of elite lines. 

8.2.4 Haplotype analysis of the YUCCA11 gene 

In Chapter 7, a total of 9 haplotypes in 42 high, medium and low Fe/Zn PMiGAP 

lines were detected, and findings revealed no significant association between any 

haplotype and Fe/Zn uptake. This may be attributable to known issues with the 

phenotype data affecting the downstream analysis or the relatively small sample size. 

Furthermore, no particular haplotype was found to be associated with any 

geographical region, which reflects the lack of population structure in the PMiGAP. 

8.3 General Discussion 

Pearl millet is a climate change ready crop with excellent nutritional value, as 

compared to many other staples (Varshney et al., 2017). It serves as a traditional 

staple grain for millions of people living in dry, semi-arid regions within Africa and 

India (areas where micronutrient malnutrition is prominent). To utilise the nutritional 

value of this crop, biofortification based research has been initiated to mitigate the 

challenges associated with micronutrient malnutrition (Kumar et al., 2018).  

Pearl millet biofortification has been most successful in India and it is thought that 

similar achievements could be realised for Western and Central Africa (Pfeiffer et 

al., 2018). In particular, most of the research for the development of Fe/Zn-rich 

varieties has taken place at ICRISAT headquarters, Patencheru where similar to this 

study, a positive correlation between grain Fe and Zn content was observed, 

indicating good prospects for simultaneous selection for both micronutrients (Velu et 

al., 2008). Furthermore, Fe and Zn are largely under additive genetic control, thus 

Fe/Zn hybrids require that both parental lines have high Fe/Zn density (Govindaraj et 

al., 2016). The most recently biofortified OP pearl millet variety, Dhanashakti (71 

mg/kg Fe density and 40 mg/kg Zn density) was released by ICRISAT in 2014 and 

was rapidly adopted by over 65,000 farmers in 2015. Currently, several pearl millet 

hybrids, with up to 75 mg/kg Fe density and 25-35% higher grain yield have been 

developed, and are at various stages of testing in national agricultural trials in India 

(ICRISAT, 2016). A breeding target of >77 mg/kg is now the goal of many 
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institutes. This target will be achieved when markers/genes associated with elevated 

grain Fe/Zn levels are identified and incorporated via breeding-based biofortification 

programmes. Therefore, the research detailed within this thesis, coupled with the 

recently published pearl millet genome will certainly help with such endeavours not 

only in terms of breeding for elevated grain Fe and Zn content, but also in 

accounting for mineral bioavailability in terms of metal-chelating antinutrient 

compounds.   

8.3.1 Challenges and Future Research 

No Seed, No Science 

PMiGAP seed from Indian field trails was obtained directly from ICRISAT 

headquarters in Patencheru, although difficulty in obtaining the seed was 

experienced as there was several years delay due to shipping restrictions and 

quarantine issues. The seed multiplication trials described in Chapter 2 were vital for 

the investigations into phenotype stability, as described in Chapter 3. The biggest 

challenge for bulking seed was maintaining optimal conditions within the glasshouse 

environment. This was overcome by carefully observing plants on a daily basis and 

quickly responding to possible stress factors e.g. insect infestations and 

overcrowding during the early growth stages. As discussed, when a new trial was 

conducted, observations from the previous trial were taken into account for an 

improved success rate.  

Despite the best intentions, limited seed availability meant that subsets of the 

PMiGAP had to be used in many cases for phenotyping purposes and findings were 

generalised to the whole population. Furthermore, there was not enough seed to 

replicate the majority of the analysis. Although care was taken to ensure that bias 

was minimal, some subsets were as small as 20 lines (Table 2.3). A sample size that 

is too small may reduce the statistical power of the study and increase the margin of 

error, which could render the study meaningless. Thus, many of the findings in this 

thesis should be approached with caution and analysis should be repeated with as 

many samples as possible. 

Good, robust trait data is required for GWAS and the contribution of a gene to a trait 

may vary depending on the environmental conditions (Korte and Farlow, 2013). If 
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this study were to be improved the most important objective would be to resolve the 

known issues with the phenotype data and to obtain more stable phenotypes, where 

GEI effects would be minimal. Throughout this study, the lack of replicated 

phenotype data has been a recurrent problem, the causes of which have been 

discussed in previous chapters. This has undoubtedly affected the downstream 

analysis and GWAS.  

The use of selfed PMiGAP lines are ideal for GWAS as they can be maintained as 

inbred lines via continued self-fertilisation, thus it is possible to repeatedly 

phenotype genetically identical individuals and assign MTAs to individual lines. 

Phenotyping the same lines many times, under different environmental conditions 

increases precision of the trait mean, but also allows the estimation of phenotypic 

variance. In the scope of this thesis, there was only a limited amount of time to 

conduct seed multiplication trials. In addition, the seed produced from the trials was 

shared among other projects. Ideally, to evaluate phenotypic variation in terms of 

mineral concentration in pearl millet, a minimum of 3 environments should be used, 

which would take a number of years to achieve. The environments should reflect all 

the possible conditions in which pearl millet is grown within field trials conducted in 

India and Africa. Repetitively phenotyping the same genotype in this many 

environments would allow a robust investigation into phenotypic stability, where 

stable phenotypes could hopefully be identified. This would improve the statistical 

power of GWAS. For example, in a study by Sun et al., (2017) excellent phenotypic 

data was achieved as a result of cotton field trials conducted in 8 environments over 

2 years. From the data, stable phenotypes could be selected with increased 

confidence; this in turn resulted in highly significant MTAs from GWAS.  

Phenotypic Analysis 

The extraction of trace elements and phytate from pearl millet grain, as described in 

Chapters 3 and 4 was targeted in that known compounds were extracted and 

quantified. However in Chapter 5, the extraction process was untargeted and as a 

result, a wide range of soluble phenolics were extracted and investigated (16 

different compounds in total) thanks to an extensive and robust MeOH extraction 

protocol. It was considered that other solvents such as ethyl acetate, acetone or 

chloroform may facilitate the extraction of different classes of compounds or 



323 
 

different yields. For example, oil extracted with a non-polar solvent is reported to be 

different in fatty acid composition as compared with oil from extraction procedures 

using polar solvents (Jellum and Powell, 1971). Thus, future research should be 

conducted to compare the efficiency of different extraction solvents in extracting 

phytochemicals from matured pearl millet grain. Other studies suggest that MeOH 

was indeed the best choice of extraction solvent and can be used for the extraction of 

many phytochemicals from leaves/grain. This has been proven by Dhawan and 

Gupta (2017), where the effect of different extraction solvents including distilled 

water, MeOH, acetone, chloroform, ethyl acetate and hexane were compared for the 

extraction of bioactive components such as alkaloids, flavonoids, saponins, steroids 

and tannins from dried leaves of Devil’s Trumpet (Datura metel). Phytochemical 

screening tests were performed to detect the presence of bioactive components in 

plant extracts and findings revealed that MeOH was the most efficient solvent in 

extracting phytochemicals as per percentage yield. In terms of flavonoid extraction, 

MeOH was again the most efficient solvent. However, maximum phenol 

concentration was observed when ethyl acetate was used as the solvent for 

extraction. Interestingly, when chloroform and distilled water were used as 

extraction solvents, phenol extraction was poor (Dhawan and Gupta, 2017). 

Increasing the Power of GWAS  

The aim of GWAS is to evaluate the association between each genotyped marker and 

a trait of interest that has been scored across a large number of individuals (Korte 

and Farlow, 2013). The PMiGAP was an ideal population to conduct GWAS on as it 

included many geographically distant accessions, thus maximising the genetic 

variance. However, many samples had to be excluded from the 663 SNP dataset (as 

described in Chapter 6) due to missing/low quality data. Excluding poorly genotyped 

variants often introduces an unequal sample size across sites, making the 

downstream statistical analysis more complex.  

GWAS are largely suited to the identification of traits that are underpinned by simple 

genetic architecture, i.e. a small number of loci with large effect sizes. However, 

many traits may possess more complex architectures that may complicate GWAS, 

which could be the reason for the lack of well-known Fe/Zn uptake genes found 

within this study. In addition to the reasons described in Chapters 6 and 7, two 
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additional possibilities are that a trait of interest may be controlled by; i) many rare 

variants, with large effect size on the phenotype, or ii) many common variants with 

small phenotypic effect. In both scenarios the causative variants may be clustered in 

one, a small number of genes, or across many genes (Korte and Farlow, 2013). 

Future research studies should investigate the possibility of increasing the power of 

GWAS to locate true associations when variants are either at low frequency or have 

a small effect size. Several necessary considerations include; adequate sample size, 

incomplete genotyping, genetic heterogeneity and accounting for confounding 

genetic factors (Korte and Farlow, 2013).  

According to the literature, GWAS is routinely conducted in many major, minor and 

orphan crop species for the identification of a wide variety of traits. It is hoped that 

increasing the population size will improve the power of GWAS to reveal 

meaningful associations. Although, some studies have found that sample sizes as 

little as 100 lines can produce significant MTAs (Atwell et al., 2010), this suggests 

that the traits considered were underpinned by only a few loci that explain a large 

portion of the phenotypic variance. In contrast, human genetics based GWAS differ 

considerably with respect to sample size where typically a large number of small 

effect loci are revealed and most analyses require >2000 individuals for detection 

(Manolio et al., 2009).  

It is necessary to consider multiple statistical testing when conducting GWAS since 

a decision in whether a MTA is true is based on the result of more than one test. In a 

typical GWAS, thousands of tests are simultaneously conducted for each marker and 

each generates a false positive probability. This creates a cumulative likelihood of 

detecting multiple false associations over the whole analysis. The most routinely 

used correction for multiple testing is a 5% Bonferroni threshold, which was used in 

this study. However, this is considered aggressive by many researchers and as a 

result only 3 out of 35 markers remained significant after the threshold was applied. 

A more relaxed approach such as False Discovery Rate (FDR) may be used in some 

cases. When considering the aims of a study, a high FDR may be considered for 

some investigations (e.g. investigating the genetic architecture of a trait) and a low 

FDR for others (e.g. identifying candidate loci for follow-up studies) (Korte and 

Farlow, 2013).  
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Improved Haplotyping 

For the reasons previously discussed in Chapter 7, single SNP analysis from GWAS 

is not always reliable and often suffers from low replication and validation rates. 

This has been recognised and is the reason why the haplotype-based analysis was 

conducted as a follow-up to GWAS. However, better experimental design is needed 

for future work. For example, phenotype data with replications and DNA extractions 

from a larger PMiGAP population would be required for the haplotype trait analysis 

and more genes should be considered. Thus, the original objective of following up 

combinations of genes rather than individual genes to find associations with Fe/Zn 

uptake should be resumed. This would strengthen the conclusions that these genes 

are associated with a certain trait. The research in Chapter 7 should therefore be 

viewed as method development that should motivate and pave the way for future 

research. 

Beyond the Genes 

Following the suggested improvements to the work conducted within this thesis, it is 

hoped that any resulting genes associated with increased grain Fe/Zn content would 

be incorporated into elite lines via biofortification-based breeding programmes to 

benefit women and children living in resource poor areas. As previously discussed, 

accessibility of such lines to farmers living in remote areas is paramount. Thus, 

whilst it is recognised that GM is an important approach in improving/introducing 

beneficial traits of interest, the cost of this would make the seed largely inaccessible 

to smallholder farmers (Horna et al., 2008). Therefore traditional plant breeding, 

which relies on natural genetic variation, is highly attractive in this respect as prices 

are kept more affordable. However, since micronutrient malnutrition is an ongoing 

challenge that is largely exacerbated by an increasing population, climate change and 

increasing food prices, getting biofortified lines out to communities in need is seen 

as a matter of urgency. In light of this, more timely solutions should be considered 

since conventional breeding relies on time-consuming extensive back-crossing 

programs to introgress the selected traits into elite lines and vast amounts of land.  

Additionally, the availability of beneficial alleles in nature also limits what can be 

achieved using this approach (Hou et al., 2014). The CRISPR/Cas9 system offers a 

more timely solution that is safe, simple, efficient, and highly specific. Furthermore, 
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multiple traits can be modified simultaneously and fewer off-target events are 

produced than in traditional plant breeding, which is largely based on chance. It is 

thus considered a promising tool for gene editing in plants and should provide a 

more efficient approach to accelerated plant breeding (Bortesi and Fischer, 2015). 

Gene editing allows precise, rapid and predictable genome modifications directly in 

elite lines, saving time-consuming backcrossing procedures required in traditional 

breeding programmes. The CRISPR system relies on the endonuclease enzyme 

Cas9, which uses a guide RNA molecule to target specific DNA sequences, and then 

edits, deletes or replaces the target DNA, leading to genome modifications during the 

repair process or the insertion of new sequences (Ledford, 2015). Due to the orphan 

status of pearl millet, little work has been performed so far on the nutritional 

enhancement of grain via gene editing – thus presenting a significant gap in the 

literature. However, work on major cereals and reliable techniques have 

demonstrated that genetic improvements are possible using gene editing approaches 

(O’Kennedy et al., 2006).  

Factors that may influence micronutrient uptake in the soil should also be 

investigated in future research. In particular, plant-associated microorganisms 

present in the soil may stimulate growth and influence yield and quality of edible 

parts by affecting nutrient mobilisation and transport (Pii et al., 2016). Because of 

this, the root rhizosphere microbiome is considered to be one of the key determinants 

of productivity and plant health (Manwaring et al., 2016). Investigations into 

Arbuscular mycorrhizal fungi, soil inhabitants which are obligate symbionts that 

require plant host roots to complete their life cycle (Borde et al., 2011), would be a 

good place to start. Arbuscular mycorrhizal fungi have been most recently 

characterised in pearl millet as alleviators of the adverse effects of salt on growth. A 

study by Borde et al., (2011) revealed that total chlorophyll content in pearl millet 

was significantly higher in Arbuscular mycorrhizal inoculated plants, which lead to 

increased growth and nutrient uptake capacity. This could be investigated further 

with the aim of enhancing Fe/Zn status even more so when elite lines have been 

developed for efficient micronutrient uptake. Root exudates are also thought to play 

a significant role in efficient micronutrient uptake, including that of Fe and Zn. For 

example, a variety of low and high molecular weight organic compounds are 

triggered if plants are exposed to certain abiotic stressors (Dakora and Phillips, 2002) 
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and due to their solubilising, chelating, redox capacities, they play a fundamental 

role in enhancing nutrient bioavailability, uptake, translocation and allocation 

(Manwaring et al., 2016). 

Although increasing Fe and Zn content through biofortification is an important and 

necessary approach to mitigate the challenges associated with micronutrient 

malnutrition, it was considered that Fe and Zn levels could also be toxic when 

present at high concentrations. For example, unregulated high affinity binding of Zn 

to S-, N- and O- containing functional groups in biological molecules and 

uncontrolled displacement of cofactor metal cations, e.g. Mn2+ and Fe2+
,
 can cause 

serious damage (Palmgren et al., 2008). Additionally, the physiological range 

between deficiency and toxicity of Fe/Zn is narrow (Maret and Sandstead, 2006). To 

guard against damage, plants have the ability to balance the uptake, utilisation and 

storage of these metals in an effort to maintain metal homeostasis (Le and An, 2009). 

For example, with respect to Fe, once taken up into the cells, Fe is subjected to tight 

control to avoid cellular toxicity and ferritin (an Fe storage unit) is believed to play a 

key role in this process (Briat and Lobreaux, 1997). However, metal homeostasis in 

plants still remains incompletely understood, as discussed in Chapter 1. In light of 

this, before the effect of biofortification strategies can be predicted, more research is 

needed regarding the biological processes that govern the uptake and distribution of 

Fe and Zn in pearl millet and future research should also work towards pin-pointing 

the exact concentration where Fe/Zn uptake becomes toxic in pearl millet. 

 

 

 

 

 

 

 

 



328 
 

Chapter 9: References 

Abdurakhmonov, I.Y. and Abdukarimov, A., 2008. Application of association mapping to 
understanding the genetic diversity of plant germplasm resources. International Journal of 
Plant Genomics, 2008.  

Al Hasan, S.M., Hassan, M., Saha, S., Islam, M., Billah, M. and Islam, S., 2016. Dietary 
phytate intake inhibits the bioavailability of iron and calcium in the diets of pregnant women 
in rural Bangladesh: a cross-sectional study. BMC Nutrition, 2(1), p.24. 

Alloway, B.J., 2004. Zinc in soils and crop nutrition. 

Al-Sa'aidi, J., The anti-hyperglycemic effect of Solenostemma argel compared with 
Glibenclamide. 

Andersson, M.S., Saltzman, A., Virk, P.S. and Pfeiffer, W.H., 2017. Progress update: crop 
development of biofortified staple food crops under HarvestPlus. African Journal of Food, 
Agriculture, Nutrition and Development, 17(2), pp.11905-11935. 

Andrews, D.J. and Kumar, K.A., 1996. Use of the West African pearl millet landrace Iniadi in 
cultivar development. Plant Genetic Resources Newsletter, 105, pp.15-22. 

Anon (2018). Millets make their presence felt on mid-day meal plates. Available: 
https://www.thehindubusinessline.com/economy/agri-business/millets-make-their-presence-
felt-on-midday-meal-plates/article10030563.ece. Last accessed 07/03/2018. 

Anuradha, N., Satyavathi, C.T., Bharadwaj, C., Nepolean, T., Sankar, S.M., Singh, S.P., 
Meena, M.C., Singhal, T. and Srivastava, R.K., 2017. Deciphering genomic regions for high 
grain iron and zinc content using association mapping in pearl millet. Frontiers in plant 
science, 8, p.412. 

Atwell, S., Huang, Y.S., Vilhjálmsson, B.J., Willems, G., Horton, M., Li, Y., Meng, D., Platt, 
A., Tarone, A.M., Hu, T.T. and Jiang, R., 2010. Genome-wide association study of 107 
phenotypes in Arabidopsis thaliana inbred lines. Nature, 465(7298), p.627. 

Badau, M.H., Nkama, I. and Jideani, I.A., 2005. Phytic acid content and hydrochloric acid 
extractability of minerals in pearl millet as affected by germination time and cultivar. Food 
Chemistry, 92(3), pp.425-435. 

Bailey, R.L., West Jr, K.P. and Black, R.E., 2015. The epidemiology of global micronutrient 
deficiencies. Annals of Nutrition and Metabolism, 66(Suppl. 2), pp.22-33. 

Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S. and Vivanco, J.M., 2006. The role of root 
exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant 
Biol., 57, pp.233-266. 

Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. and Feyereisen, R., 2001. CYP83B1, a 
cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate 
biosynthesis in Arabidopsis. The Plant Cell, 13(1), pp.101-111. 

Bantilan, M.C.S. and Joshi, P.K., 1998. Assessing joint research impacts: proceedings of an 
International Workshop on Joint Impact Assessment of NARS/ICRISAT Technologies for the 
Semi-Arid Tropics, 2-4 Dec 1996, ICRISAT, Patancheru, India. International Crops Research 
Institute for the Semi-Arid Tropics. 

Bänziger, M. and Long, J., 2000. The potential for increasing the iron and zinc density of 
maize through plant-breeding. Food and Nutrition Bulletin, 21(4), pp.397-400. 

Barendse, W., 2011. Haplotype analysis improved evidence for candidate genes for 
intramuscular fat percentage from a genome wide association study of cattle. PLoS 
One, 6(12), p.e29601. 



329 
 

Basford, K.E. and Cooper, M., 1998. Genotypexenvironment interactions and some 
considerations of their implications for wheat breeding in Australia. Australian Journal of 
Agricultural Research, 49(2),  

Bassoli, B.K., Cassolla, P., Borba‐Murad, G.R., Constantin, J., Salgueiro‐Pagadigorria, C.L., 
Bazotte, R.B., da Silva, R.S.D.S. and de Souza, H.M., 2008. Chlorogenic acid reduces the 
plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release 
and glycaemia. Cell biochemistry and function, 26(3), pp.320-328. 

Bedhomme, M., Hoffmann, M., McCarthy, E.A., Gambonnet, B., Moran, R.G., Rébeillé, F. 
and Ravanel, S., 2005. Folate metabolism in plants an arabidopsis homolog of the 
mammalian mitochondrial folate transporter mediates folate import into chloroplasts. Journal 
of Biological Chemistry, 280(41), pp.34823-34831. 

Begum, M.C., Islam, M., Sarkar, M.R., Azad, M.A.S., Huda, A.N. and Kabir, A.H., 2016. 
Auxin signaling is closely associated with Zn-efficiency in rice (Oryza sativa L.). Journal of 
Plant Interactions, 11(1), pp.124-129. 

Belozersky, M.A., Sarbakanova, S.T. and Dunaevsky, Y.E., 1989. Aspartic proteinase from 
wheat seeds: isolation, properties and action on gliadin. Planta, 177(3), pp.321-326. 

Bennett, M.D., Bhandol, P. and Leitch, I.J., 2000. Nuclear DNA amounts in angiosperms and 
their modern uses—807 new estimates. Annals of botany, 86(4), pp.859-909. 

Bertin, I., Zhu, J.H. and Gale, M.D., 2005. SSCP-SNP in pearl millet—a new marker system 
for comparative genetics. Theoretical and Applied Genetics, 110(8), pp.1467-1472.  

Berwal, M.K., Chugh, L.K., Goyal, P., Kumar, R. and Vart, D., 2017. Protein, Micronutrient, 
Antioxidant Potential and Phytate Content of Pearl Millet Hybrids and Composites Adopted 
for Cultivation by Farmers of Haryana, India. Int. J. Curr. Microbiol. App. Sci, 6(3), pp.376-
386. 

Bhattacharjee, R., Bramel, P., Hash, C., Kolesnikova-Allen, M. and Khairwal, I., 2002. 
Assessment of genetic diversity within and between pearl millet landraces. TAG Theoretical 
and Applied Genetics, 105(5), pp.666-673. 

Bhattacharjee, R., Khairwal, I.S., Bramel, P.J. and Reddy, K.N., 2007. Establishment of a 
pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical 
distribution and quantitative traits. Euphytica, 155(1-2), pp.35-45. 

Black, R.E., Victora, C.G., Walker, S.P., Bhutta, Z.A., Christian, P., De Onis, M., Ezzati, M., 
Grantham-McGregor, S., Katz, J., Martorell, R. and Uauy, R., 2013. Maternal and child 
undernutrition and overweight in low-income and middle-income countries. The 
lancet, 382(9890), pp.427-451. 

Blackmore, T., Thorogood, D., Skøt, L., McMahon, R., Powell, W. and Hegarty, M., 2016. 
Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic 
variation in Lolium perenne. Scientific reports, 6. 

Borde, M., Dudhane, M. and Jite, P., 2011. Growth photosynthetic activity and antioxidant 
responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under 
salinity stress condition. Crop Protection, 30(3), pp.265-271. 

Bortesi, L. and Fischer, R., 2015. The CRISPR/Cas9 system for plant genome editing and 
beyond. Biotechnology advances, 33(1), pp.41-5 

Bouis, H., Biofortification Progress Briefs August 2014. Washington DC.: Harvest Plus; 2014 
August 2014. 82 p. 

Bouis, H.E., Hotz, C., McClafferty, B., Meenakshi, J.V. and Pfeiffer, W.H., 2011. 
Biofortification: a new tool to reduce micronutrient malnutrition. Food and nutrition 
bulletin, 32(1_suppl1), pp.S31-S40. 



330 
 

Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. and Buckler, E.S., 
2007. TASSEL: software for association mapping of complex traits in diverse 
samples. Bioinformatics, 23(19), pp.2633-2635. 

Briat, J.F. and Lobréaux, S., 1997. Iron transport and storage in plants. Trends in plant 
science, 2(5), pp.187-193. 

Brnić, M., Hurrell, R.F., Songré-Ouattara, L.T., Diawara, B., Kalmogh;o-Zan, A., Tapsoba, 
C., Zeder, C. and Wegmüller, R., 2016. Effect of phytase on zinc absorption from a millet-
based porridge fed to young Burkinabe children. European Journal of Clinical Nutrition.  

Broadley, M.R., Hammond, J.P., King, G.J., Astley, D., Bowen, H.C., Meacham, M.C., Mead, 
A., Pink, D.A., Teakle, G.R., Hayden, R.M. and Spracklen, W.P., 2008. Shoot calcium and 
magnesium concentrations differ between subtaxa, are highly heritable, and associate with 
potentially pleiotropic loci in Brassica oleracea. Plant Physiology, 146(4), pp.1707-1720. 

Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and Lux, A., 2007. Zinc in plants. New 
Phytologist, 173(4), pp.677-702. 

Brune, M., Rossander, L. and Hallberg, L., 1989. Iron absorption and phenolic compounds: 
importance of different phenolic structures. European journal of clinical nutrition, 43(8), 
pp.547-557. 

Buck, H.T., Nisi, J.E. and Salomón, N. eds., 2007. Wheat Production in Stressed 
Environments: Proceedings of the 7th International Wheat Conference, 27 November-2 
December 2005, Mar Del Plata, Argentina (Vol. 12). Springer Science & Business Media. 

Bundock, P., Christopher, J., Eggler, P., Ablett, G., Henry, R. and Holton, T., 2003. Single 
nucleotide polymorphisms in cytochrome P450 genes from barley. TAG Theoretical and 
Applied Genetics, 106(4), pp.676-682. 

Burton, G.W., 1952. The immediate effect of gametic relationship upon seed production in 
pearl millet, Pennisetum glaucum. Agronomy Journal, 44(8), pp.424-427. 

Bush, W.S. and Moore, J.H., 2012. Genome-wide association studies. PLoS computational 
biology, 8(12), p.e1002822. 

Busk, P.K. and Møller, B.L., 2002. Dhurrin synthesis in sorghum is regulated at the 
transcriptional level and induced by nitrogen fertilization in older plants. Plant 
Physiology, 129(3), pp.1222-1231. 

Butte, N.F., Wong, W.W., Treuth, M.S., Ellis, K.J. and Smith, E.O.B., 2004. Energy 
requirements during pregnancy based on total energy expenditure and energy 
deposition. The American journal of clinical nutrition, 79(6), pp.1078-1087. 

Cai, H., Hudson, E.A., Mann, P., Verschoyle, R.D., Greaves, P., Manson, M.M., Steward, 
W.P. and Gescher, A.J., 2004. Growth-inhibitory and cell cycle-arresting properties of the 
rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in 
vivo. British journal of cancer, 91(7), pp.1364-1371. 

Carriaga, M.T., Skikne, B.S., Finley, B., Cutler, B. and Cook, J.D., 1991. Serum transferrin 
receptor for the detection of iron deficiency in pregnancy. The American journal of clinical 
nutrition, 54(6), pp.1077-1081. 

Casas, M.I., Duarte, S., Doseff, A.I. and Grotewold, E., 2014. Flavone-rich maize: an 
opportunity to improve the nutritional value of an important commodity crop. Frontiers in 
plant science, 5, p.440. 

Caulfield, L.E. and Black, R.E., 2004. Zinc deficiency. Comparative quantification of health 
risks: global and regional burden of disease attributable to selected major risk factors, 1, 
pp.257-280. 



331 
 

Cercamondi, C.I., Egli, I.M., Mitchikpe, E., Tossou, F., Zeder, C., Hounhouigan, J.D. and 
Hurrell, R.F., 2013. Total iron absorption by young women from iron-biofortified pearl millet 
composite meals is double that from regular millet meals but less than that from post-harvest 
iron-fortified millet meals. The Journal of nutrition, 143(9), pp.1376-1382. 

Cha, B.Y., Shi, W.L., Yonezawa, T., Teruya, T., Nagai, K. and Woo, J.T., 2009. An inhibitory 
effect of chrysoeriol on platelet-derived growth factor (PDGF)-induced proliferation and 
PDGF receptor signaling in human aortic smooth muscle cells. Journal of pharmacological 
sciences, 110(1), pp.105-110. 

Chandrasekara, A. and Shahidi, F., 2011. Determination of antioxidant activity in free and 
hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-
DAD-ESI-MS n. Journal of Functional Foods, 3(3), pp.144-158. 

Chapple, C., 1998. Molecular-genetic analysis of plant cytochrome P450-dependent 
monooxygenases. Annual review of plant biology, 49(1), pp.311-343. 

Chardonnens, A.N., Koevoets, P.L., van Zanten, A., Schat, H. and Verkleij, J.A., 1999. 
Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene 
vulgaris. Plant Physiology, 120(3), pp.779-786. 

Chasapis, C.T., Loutsidou, A.C., Spiliopoulou, C.A. and Stefanidou, M.E., 2012. Zinc and 
human health: an update. Archives of toxicology, 86(4), pp.521-534. 

Chen, J., Ding, J., Ouyang, Y., Du, H., Yang, J., Cheng, K., Zhao, J., Qiu, S., Zhang, X., 
Yao, J. and Liu, K., 2008. A triallelic system of S5 is a major regulator of the reproductive 
barrier and compatibility of indica–japonica hybrids in rice. Proceedings of the National 
Academy of Sciences, 105(32), pp.11436-11441. 

Chen, W., Wang, W., Peng, M., Gong, L., Gao, Y., Wan, J., Wang, S., Shi, L., Zhou, B., Li, 
Z. and Peng, X., 2016. Comparative and parallel genome-wide association studies for 
metabolic and agronomic traits in cereals. Nature communications, 7. 

Cheng, N.H., Liu, J.Z., Nelson, R.S. and Hirschi, K.D., 2004. Characterization of CXIP4, a 
novel Arabidopsis protein that activates the H+/Ca2+ antiporter, CAX1. FEBS letters, 559(1-
3), pp.99-106. 

Chiba, Y., Shimizu, T., Miyakawa, S., Kanno, Y., Koshiba, T., Kamiya, Y. and Seo, M., 2015. 
Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of 
transporting plant hormones. Journal of plant research, 128(4), pp.679-686. 

Cichy, K.A., Caldas, G.V., Snapp, S.S. and Blair, M.W., 2009. QTL analysis of seed iron, 
zinc, and phosphorus levels in an Andean bean population. Crop Science, 49(5), pp.1742-
1750. 

Clark, A.G., 2004. The role of haplotypes in candidate gene studies. Genetic 
epidemiology, 27(4), pp.321-333. 

Clausen, M., Kannangara, R.M., Olsen, C.E., Blomstedt, C.K., Gleadow, R.M., Jørgensen, 
K., Bak, S., Motawie, M.S. and Møller, B.L., 2015. The bifurcation of the cyanogenic 
glucoside and glucosinolate biosynthetic pathways. The Plant Journal, 84(3), pp.558-573. 

Colangelo, E.P. and Guerinot, M.L., 2004. The essential basic helix-loop-helix protein FIT1 
is required for the iron deficiency response. The Plant Cell, 16(12), pp.3400-3412. 

Cook, N.C. and Samman, S., 1996. Flavonoids—chemistry, metabolism, cardioprotective 
effects, and dietary sources. The Journal of nutritional biochemistry, 7(2), pp.66-76. 

Costa, A., Barbaro, M.R., Sicilia, F., Preger, V., Krieger-Liszkay, A., Sparla, F., De Lorenzo, 
G. and Trost, P., 2015. AIR12, a b-type cytochrome of the plasma membrane of Arabidopsis 
thaliana is a negative regulator of resistance against Botrytis cinerea. Plant Science, 233, 
pp.32-43. 



332 
 

Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., 
Gillespie, M., Kamdar, M.R. and Jassal, B., 2013. The Reactome pathway 
knowledgebase. Nucleic acids research, 42(D1), pp.D472-D477. 

Crozier, A., Burns, J., Aziz, A. A., Stewart, A. J., Rabiasz, H. S., Jenkins, G. I., ... & LEAN, 
M. E. (2000). Antioxidant flavonols from fruits, vegetables and beverages: measurements 
and bioavailability. Biological Research,33(2), 79-88.  

Crozier, A., Clifford, M.N. and Ashihara, H. eds., 2008. Plant secondary metabolites: 
occurrence, structure and role in the human diet. John Wiley & Sons. 

Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Misson, J., Schikora, A., 
Czernic, P. and Mari, S., 2009. Metal movement within the plant: contribution of 
nicotianamine and yellow stripe 1-like transporters. Annals of botany, 103(1), pp.1-11. 

Cuyckens, F. and Claeys, M., 2004. Mass spectrometry in the structural analysis of 
flavonoids. Journal of Mass Spectrometry, 39(1), pp.1-15. 

Dakora, F.D. and Phillips, D.A., 2002. Root exudates as mediators of mineral acquisition in 
low-nutrient environments. In Food Security in Nutrient-Stressed Environments: Exploiting 
Plants’ Genetic Capabilities (pp. 201-213). Springer, Dordrecht. 

De Morais Cardoso, L., Pinheiro, S.S., Martino, H.S.D. and Pinheiro-Sant'Ana, H.M., 2017. 
Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on 

human health. Critical reviews in food science and nutrition, 57(2), pp.372-390. 

Deschamps, S., Llaca, V. and May, G.D., 2012. Genotyping-by-sequencing in 
plants. Biology, 1(3), pp.460-483. 

Desjardins, A.E., McCormick, S.P. and Corsini, D.L., 1995. Diversity of sesquiterpenes in 46 
potato cultivars and breeding selections. Journal of agricultural and food chemistry, 43(8), 
pp.2267-2272. 

Devos, K.M., 2005. Updating the ‘crop circle’. Current opinion in plant biology, 8(2), pp.155-
162. 

Devos, K.M., Pittaway, T.S., Reynolds, A. and Gale, M.D., 2000. Comparative mapping 
reveals a complex relationship between the pearl millet genome and those of foxtail millet 
and rice. Theoretical and Applied Genetics, 100(2), pp.190-198. 

Dhawan, D. and Gupta, J., 2017. Comparison of Different Solvents for Phytochemical 
Extraction Potential from Datura metel Plant Leaves. International Journal of Biological 
Chemistry, 11, pp.17-22. 

Dickin, E., Steele, K., Frost, G., Edwards-Jones, G. and Wright, D., 2011. Effect of genotype, 
environment and agronomic management on β-glucan concentration of naked barley grain 
intended for health food use. Journal of Cereal Science, 54(1), pp.44-52. 

Dietz, K.J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S.S., Harris, G.C., Chardonnens, 
A.N. and Golldack, D., 2001. Significance of the V‐type ATPase for the adaptation to 
stressful growth conditions and its regulation on the molecular and biochemical 
level. Journal of experimental botany, 52(363), pp.1969-1980. 

Dong, X., Gao, Y., Chen, W., Wang, W., Gong, L., Liu, X. and Luo, J., 2015. Spatiotemporal 
distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl 
spermidine in rice. Molecular plant, 8(1), pp.111-121. 

Douchkov, D., Gryczka, C., Stephan, U.W., Hell, R. and Bäumlein, H., 2005. Ectopic 
expression of nicotianamine synthase genes results in improved iron accumulation and 
increased nickel tolerance in transgenic tobacco. Plant, Cell & Environment, 28(3), pp.365-
374. 



333 
 

Du, J. and Du, W., 2009. Correlation of mineral elements between milled and brown rice and 
soils in Yunnan studied by ICP-AES. Spectroscopy and Spectral Analysis, 29(5), pp.1413-
1417. 

Dunn, L.L., Rahmanto, Y.S. and Richardson, D.R., 2007. Iron uptake and metabolism in the 
new millennium. Trends in cell biology, 17(2), pp.93-100. 

Dunwell, J.M. and Gane, P.J., 1998. Microbial relatives of seed storage proteins: 
conservation of motifs in a functionally diverse superfamily of enzymes. Journal of molecular 
evolution, 46(2), pp.147-154. 

Dykes, L. and Rooney, L.W., 2007. Phenolic compounds in cereal grains and their health 
benefits. Cereal foods world, 52(3), pp.105-111. 

Egli, I., Davidsson, L., Zeder, C., Walczyk, T. and Hurrell, R., 2004. Dephytinization of a 
complementary food based on wheat and soy increases zinc, but not copper, apparent 
absorption in adults. The Journal of nutrition, 134(5), pp.1077-1080. 

Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S. and Mitchell, 
S.E., 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity 
species. PloS one, 6(5), p.e19379.  

Eltayeb, M.M., Hassn, A.B. and Babiker, E.E., 2016. Effect of processing followed by 
fermentation on antinutritional factors content of pearl millet (Pennisetum glaucum L.) 
cultivars. University of Khartoum, staff publication. 

Engström, K., Widmark, A.K., Brishammar, S. and Helmersson, S., 1999. Antifungal activity 
toPhytophthora infestans of sesquiterpenoids from infected potato tubers. Potato 
Research, 42(1), pp.43-50. 

Ernst, W.H.O. and Nelissen, H.J.M., 2000. Life-cycle phases of a zinc-and cadmium-
resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine 

soils. Environmental Pollution, 107(3), pp.329-338. 

Etcheverry, P., Grusak, M.A. and Fleige, L.E., 2012. Application of in vitro bioaccessibility 
and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, 
zinc, and vitamins B6, B12, D, and E. Frontiers in physiology, 3. 

Eyzaguirre, R.Z., Nienaltowska, K., De Jong, L.E., Hasenack, B.B. and Nout, M.J., 2006. 

Effect of food processing of pearl millet (Pennisetum glaucum) IKMP‐5 on the level of 
phenolics, phytate, iron and zinc. Journal of the Science of Food and Agriculture, 86(9), 
pp.1391-1398. 

Feil, B. and Fossati, D., 1997. Phytic acid in triticale grains as affected by cultivar and 
environment. Crop science, 37(3), pp.916-921. 

Feil, B., Moser, S.B., Jampatong, S. and Stamp, P., 2005. Mineral composition of the grains 
of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen 
fertilization. Crop Science, 45(2), pp.516-523. 

Felgines, C., Texier, O., Morand, C., Manach, C., Scalbert, A., Régerat, F., & Rémésy, C. 
(2000). Bioavailability of the flavanone naringenin and its glycosides in rats. American 
Journal of Physiology-Gastrointestinal and Liver Physiology, 279(6), G1148-G1154. 

Fernandez, M.T., Mira, M.L., Florencio, M.H. and Jennings, K.R., 2002. Iron and copper 
chelation by flavonoids: an electrospray mass spectrometry study. Journal of Inorganic 
Biochemistry, 92(2), pp.105-111. 

Ferreres, F., Gil-Izquierdo, A., Andrade, P. B., Valentão, P., & Tomás-Barberán, F. A. 
(2007). Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography–
tandem mass spectrometry. Journal of Chromatography A, 1161(1), 214-223. 



334 
 

Ferreres, F., Ribeiro, V., Izquierdo, A. G., Rodrigues, M. Â., Seabra, R. M., Andrade, P. B., & 
Valentão, P. (2006). Rumex induratus leaves: interesting dietary source of potential 
bioactive compounds. Journal of agricultural and food chemistry, 54(16), 5782-5789. 

Fitzgerald, S.L., Gibson, R.S., de Serrano, J.Q., Portocarrero, L., Vasquez, A., De Zepeda, 
E., Lopez-Palacios, C.Y., Thompson, L.U., Stephen, A.M. and Solomons, N.W., 1993. Trace 
element intakes and dietary phytate/Zn and Ca x phytate/Zn millimolar ratios of periurban 
Guatemalan women during the third trimester of pregnancy. The American journal of clinical 
nutrition, 57(2), pp.195-201. 

Gale, M.D. and Devos, K.M., 1998. Comparative genetics in the grasses. Proceedings of the 
National Academy of Sciences, 95(5), pp.1971-1974. 

Gan, Y., Kumimoto, R., Liu, C., Ratcliffe, O., Yu, H. and Broun, P., 2006. GLABROUS 
INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal 
differentiation and shoot maturation in Arabidopsis. The Plant Cell, 18(6), pp.1383-1395. 
Gershater, M.C. and Edwards, R., 2007. Regulating biological activity in plants with 
carboxylesterases. Plant science, 173(6), pp.579-588. 

Garris, A.J., McCOUCH, S.R. and Kresovich, S., 2003. Population structure and its effect on 
haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa 
L.). Genetics, 165(2), pp.759-769. 

Garvin, D.F., Welch, R.M. and Finley, J.W., 2006. Historical shifts in the seed mineral 

micronutrient concentration of US hard red winter wheat germplasm. Journal of the 
Science of Food and Agriculture, 86(13), pp.2213-2220. 

Ghandilyan, A., Ilk, N., Hanhart, C., Mbengue, M., Barboza, L., Schat, H., Koornneef, M., El-
Lithy, M., Vreugdenhil, D., Reymond, M. and Aarts, M.G., 2009. A strong effect of growth 
medium and organ type on the identification of QTLs for phytate and mineral concentrations 
in three Arabidopsis thaliana RIL populations. Journal of Experimental Botany, 60(5), 
pp.1409-1425. 

Ghandilyan, A., Vreugdenhil, D. and Aarts, M.G., 2006. Progress in the genetic 
understanding of plant iron and zinc nutrition. Physiologia Plantarum, 126(3), pp.407-417. 

Ghanem, M.E., Albacete, A., Martínez-Andújar, C., Acosta, M., Romero-Aranda, R., Dodd, 
I.C., Lutts, S. and Pérez-Alfocea, F., 2008. Hormonal changes during salinity-induced leaf 
senescence in tomato (Solanum lycopersicum L.). Journal of Experimental Botany, 59(11), 
pp.3039-3050. 

Gibson, R.S., Bailey, K.B., Gibbs, M. and Ferguson, E.L., 2010. A review of phytate, iron, 
zinc, and calcium concentrations in plant-based complementary foods used in low-income 
countries and implications for bioavailability. Food and nutrition bulletin, 31(2_suppl2), 
pp.S134-S146. 

Gibson, R.S., Hotz, C., Temple, L., Yeudall, F., Mtitimuni, B. and Ferguson, E., 2000. Dietary 
strategies to combat deficiencies of iron, zinc, and vitamin A in developing countries: 
development, implementation, monitoring, and evaluation. Food and Nutrition Bulletin, 21(2), 
pp.219-231.  

Gibson, S.W. and Todd, C.D., 2015. Arabidopsis AIR12 influences root 
development. Physiology and Molecular Biology of Plants, 21(4), pp.479-489. 

Gingerich, D.J., Gagne, J.M., Salter, D.W., Hellmann, H., Estelle, M. and Vierstra, R.D., 
2005. Cullin 3A and B assemble with members of the broad complex/tramtrack/bric-A-brac 
(BTB). Journal of Biological Chemistry. 

Godiard, L., Sauviac, L., Dalbin, N., Liaubet, L., Callard, D., Czernic, P. and Marco, Y., 1998. 
CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive 
and developmental cell death. FEBS letters, 438(3), pp.245-249. 



335 
 

Goldman, J.J., Hanna, W.W., Fleming, G. and Ozias-Akins, P., 2003. Fertile transgenic pearl 
millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile 
bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and 
immature embryo-derived embryogenic tissues. Plant cell reports, 21(10), pp.999-1009. 

Gomez-Becerra, H.F., Yazici, A., Ozturk, L., Budak, H., Peleg, Z., Morgounov, A., Fahima, 
T., Saranga, Y. and Cakmak, I., 2010. Genetic variation and environmental stability of grain 
mineral nutrient concentrations in Triticum dicoccoides under five 

environments. Euphytica, 171(1), pp.39-52. 

Goto, F., Yoshihara, T., Shigemoto, N., Toki, S. and Takaiwa, F., 1999. Iron fortification of 
rice seed by the soybean ferritin gene. Nature biotechnology, 17(3), pp.282-286. 

Govindaraj, M., Rai, K.N. and Shanmugasundaram, P., 2016. Intra-population genetic 
variance for grain iron and zinc contents and agronomic traits in pearl millet. The Crop 
Journal, 4(1), pp.48-54.  

Govindaraj, M., Rai, K.N., Shanmugasundaram, P., Dwivedi, S.L., Sahrawat, K.L., Muthaiah, 
A.R. and Rao, A.S., 2013. Combining ability and heterosis for grain iron and zinc densities in 
pearl millet. Crop Science, 53(2), pp.507-517. 

Graham, R.D., Welch, R.M. and Bouis, H.E., 2001. Addressing micronutrient malnutrition 
through enhancing the nutritional quality of staple foods: principles, perspectives and 
knowledge gaps. Advances in agronomy, 70, pp.77-142. 

Grandbastien, M.A., 1998. Activation of plant retrotransposons under stress 
conditions. Trends in plant science, 3(5), pp.181-187. 

Gray, D. and STECKEL, J.R., 1986. Self‐and open‐pollination as factors influencing seed 
quality in leek (Allium porrum). Annals of applied biology, 108(1), pp.167-170. 

Green, D.I., Agu, R.C., Bringhurst, T.A., Brosnan, J.M., Jack, F.R. and Walker, G.M., 2015. 

Maximizing alcohol yields from wheat and maize and their co‐products for distilling or 
bioethanol production. Journal of the Institute of Brewing, 121(3), pp.332-337. 

Grillet, L., Mari, S. and Schmidt, W., 2014. Iron in seeds–loading pathways and subcellular 
localization. Frontiers in plant science, 4, p.535. 

Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M.L. and Eide, D., 1998. Identification of 
a family of zinc transporter genes from Arabidopsis that respond to zinc 
deficiency. Proceedings of the National Academy of Sciences, 95(12), pp.7220-7224. 

Guerinot, M.L., 2000. The ZIP family of metal transporters. Biochimica et Biophysica Acta 
(BBA)-Biomembranes, 1465(1), pp.190-198. 

Guerrero, F. and Mullet, J.E., 1986. Increased abscisic acid biosynthesis during plant 
dehydration requires transcription. Plant Physiology, 80(2), pp.588-591. 

Gugler, R., Leschik, M. and Dengler, H.J., 1975. Disposition of quercetin in man after single 
oral and intravenous doses. European journal of clinical pharmacology, 9(2), pp.229-234. 

Gupta, S.K., Rai, A.K., Kanwar, S.S. and Sharma, T.R., 2012. Comparative analysis of zinc 
finger proteins involved in plant disease resistance. PLoS One, 7(8), p.e42578. 

Gupta, S.K., Velu, G., Rai, K.N. and Sumalini, K., 2009. Association of grain iron and zinc 
content with grain yield and other traits in pearl millet (Pennisetum glaucum (L.) R. Br.). Crop 
Improvement, 36(2), pp.4-7. 

Gurmu, F., Mohammed, H. and Alemaw, G., 2009. Genotype x environment interactions and 
stability of soybean for grain yield and nutrition quality. African Crop Science Journal, 17(2). 



336 
 

Hallberg, L., Brune, M. and Rossander, L., 1989. Iron absorption in man: ascorbic acid and 
dose-dependent inhibition by phytate. The American journal of clinical nutrition, 49(1), 
pp.140-144. 

Hambidge, K.M., Huffer, J.W., Raboy, V., Grunwald, G.K., Westcott, J.L., Sian, L., Miller, 
L.V., Dorsch, J.A. and Krebs, N.F., 2004. Zinc absorption from low-phytate hybrids of maize 
and their wild-type isohybrids. The American journal of clinical nutrition, 79(6), pp.1053-
1059. 

Hambidge, M., 2000. Human zinc deficiency. The Journal of nutrition, 130(5), pp.1344S-
1349S. 

Han, S.K., Song, J.D., Noh, Y.S. and Noh, B., 2007. Role of plant CBP/p300‐like genes in 
the regulation of flowering time. The Plant Journal, 49(1), pp.103-114. 

Hanna, W.W., 1986, April. Utilization of wild relatives of pearl millet. In Proceedings of the 
international pearl millet workshop (pp. 7-11). 

Hardie, D.G., 1999. Plant protein serine/threonine kinases: classification and 
functions. Annual review of plant biology, 50(1), pp.97-131. 

Hash, C.T., Sharma, A., Kolesnikova-Allen, M.A., Singh, S.D., Thakur, R.P., Raj, A.B., Rao, 
M.R., Nijhawan, D.C., Beniwal, C.R., Sagar, P. and Yadav, H.P., 2006. Teamwork delivers 
biotechnology products to Indian small-holder crop-livestock producers: Pearl millet hybrid 
“HHB 67 Improved” enters seed delivery pipeline. Journal of SAT Agricultural 
Research, 2(1), pp.1-3. 

Hattan, J., Kanamoto, H., Takemura, M., YOKOTA, A. and KOHCHI, T., 2004. Molecular 
characterization of the cytoplasmic interacting protein of the receptor kinase IRK expressed 
in the inflorescence and root apices of Arabidopsis. Bioscience, biotechnology, and 
biochemistry, 68(12), pp.2598-2606. 

Hawksworth, G., Drasar, B.S., and Hill, M.J. (1971) Intestinal bacteria and the hydrolysis of 
glycosidic bonds. Journal of Medical Microbiology. 4: 451-459. 

Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B. and Bailey, P.C., 2003. The 
basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein 
structure and functional diversity. Molecular biology and evolution, 20(5), pp.735-747. 

Hill, W.G. and Weir, B.S., 1988. Variances and covariances of squared linkage disequilibria 
in finite populations. Theoretical population biology, 33(1), pp.54-78. 

Hindu, V., Palacios-Rojas, N., Babu, R., Suwarno, W.B., Rashid, Z., Usha, R., Saykhedkar, 
G.R. and Nair, S.K., 2018. Identification and validation of genomic regions influencing kernel 
zinc and iron in maize. Theoretical and Applied Genetics, pp.1-15. 

Hirschi, K.D., 1999. Expression of Arabidopsis CAX1 in tobacco: altered calcium 
homeostasis and increased stress sensitivity. The Plant Cell, 11(11), pp.2113-2122. 

Hoddinott, J., 2013. The economic cost of malnutrition. In The Road to Good Nutrition (pp. 
64-73). Karger Publishers. 

Horna, D., Smale, M., Al-Hassan, R., Falck-Zepeda, J. and Timpo, S.E., 2008. Insecticide 
use on vegetables in Ghana: Would GM seed benefit farmers?. Intl Food Policy Res Inst. 

Hornick, S.B., 1992. Factors affecting the nutritional quality of crops. American Journal of 
Alternative Agriculture, 7(1-2), pp.63-68. 

Horton, J.S., Wakano, C.T., Speck, M. and Stokes, A.J., 2015. Two-pore channel 1 interacts 
with citron kinase, regulating completion of cytokinesis. Channels, 9(1), pp.21-29. 



337 
 

Hou, H., Atlihan, N. and Lu, Z.X., 2014. New biotechnology enhances the application of 
cisgenesis in plant breeding. Frontiers in plant science, 5, p.389. 

Hsieh, M.H. and Goodman, H.M., 2002. Molecular characterization of a novel gene family 
encoding ACT domain repeat proteins in Arabidopsis. Plant physiology, 130(4), pp.1797-
1806. 

Hu, Z., Mbacké, B., Perumal, R., Guèye, M.C., Sy, O., Bouchet, S., Prasad, P.V. and Morris, 
G.P., 2015. Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): 
Comparative analysis of global accessions and Senegalese landraces. BMC 
genomics, 16(1), p.1048. 

Huang, X. and Han, B., 2014. Natural variations and genome-wide association studies in 
crop plants. Annual review of plant biology, 65, pp.531-551. 

Huang, X., Kurata, N., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., Guo, 
Y. and Lu, Y., 2012. A map of rice genome variation reveals the origin of cultivated rice. 
Nature, 490(7421), p.497. 

Huehn, M., 1990. Nonparametric measures of phenotypic stability. Part 1: 
Theory. Euphytica, 47(3), pp.189-194. 

Hurrell, R. and Egli, I., 2010. Iron bioavailability and dietary reference values. The American 
journal of clinical nutrition, 91(5), pp.1461S-1467S. 

Hurrell, R.F., 1997. Preventing iron deficiency through food fortification. Nutrition 
reviews, 55(6), pp.210-222. 

Hurrell, R.F., 2003. Influence of vegetable protein sources on trace element and mineral 
bioavailability. The Journal of nutrition, 133(9), pp.2973S-2977S. 

Hyder, S.Z., Persson, L.Å., Chowdhury, M., Lönnerdal, B.O. and Ekström, E.C., 2004. 
Anaemia and iron deficiency during pregnancy in rural Bangladesh. Public health 
nutrition, 7(08), pp.1065-1070. 

Hyten, D.L. and Lee, D.J., 2016. Plant Genetic Mapping Techniques. eLS. 

ICRISAT (International Crops Research Institute for the Semi- arid Tropics). 2016. Pearl 
millet. [2016-01-20]. http:// exploreit.icrisat.org/page/pearl_millet/680/274 2016. 

ICRISAT. (2016). ADDRESSING MALNUTRITION BY MAINSTREAMING PEARL MILLET 
BIOFORTIFICATION BREEDING. Available: http://www.icrisat.org/addressing-malnutrition-
by-mainstreaming-pearl-millet-biofortification-breeding/. Last accessed 09/07/2018. 

Inoue, H., Higuchi, K., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K., 2003. 
Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed 
in cells involved in long‐distance transport of iron and differentially regulated by iron. The 
Plant Journal, 36(3), pp.366-381. 

Iqbal, T.H., Lewis, K.O. and Cooper, B.T., 1994. Phytase activity in the human and rat small 
intestine. Gut, 35(9), pp.1233-1236. 

Ito, O., O'Toole, J.C. and Hardy, B. eds., 1999. Genetic improvement of rice for water-limited 
environments. Int. Rice Res. Inst.. 

Iwahashi, H., Akata, K., Sunaga, A., Tone, Y., Yamada, N. and Iijima, K., 2004. The 
inhibitory effect of luteolin-7-O-glucoside on the formation of pentyl and 7-carboxyheptyl 
radicals from 13-hydroperoxy-9, 11-octadecadienoic acid in the presence of iron (II) 
ions. Free radical research, 38(8), pp.869-876. 



338 
 

Jalaja, N., Maheshwari, P., Naidu, K.R. and Kavi Kishor, P.B., 2016. In vitro regeneration 
and optimization of conditions for transformation methods in Pearl millet, Pennisetum 
glaucum (L.). International Journal of Clinical and Biological Sciences, 1(1), pp.34-52. 

James, C., 2015. Global status of commercialized biotech/GM crops: 2014. ISAAA brief, 49. 

Jaspers, P., Brosché, M., Overmyer, K. and Kangasjär, J., 2010. The transcription factor 
interacting protein RCD1 contains a novel conserved domain. Plant signaling & 
behavior, 5(1), pp.78-80. 

Jellum, M.D. and Powell, J.B., 1971. Fatty Acid Composition of Oil from Pearl Millet Seed 1. 
Agronomy Journal, 63(1), pp.29-33. 

Jiao, Y., Zhao, H., Ren, L., Song, W., Zeng, B., Guo, J., Wang, B., Liu, Z., Chen, J., Li, W. 
and Zhang, M., 2012. Genome-wide genetic changes during modern breeding of 
maize. Nature genetics, 44(7), pp.812-815. 

Jin, L., Lu, Y., Xiao, P., Sun, M., Corke, H. and Bao, J., 2010. Genetic diversity and 
population structure of a diverse set of rice germplasm for association mapping. Theoretical 
and Applied Genetics, 121(3), pp.475-487. 

Jones, E.R.L., 1997. Brown rust of wheat. Tellus, 2, p.1. 

Jones, E.S., Breese, W.A., Liu, C.J., Singh, S.D., Shaw, D.S. and Witcombe, J.R., 2002. 
Mapping quantitative trait loci for resistance to downy mildew in pearl millet. Crop 
Science, 42(4), pp.1316-1323. 

Jun, H. K., Park, K. Y., & Jo, J. B. (1989). Inhibitory effects of Ginseng saponins on Aflatoxin 
production in culture. In Chem. Abstr (Vol. 106, pp. 116-199). 

Kalinowski, S.T., 2011. The computer program STRUCTURE does not reliably identify the 
main genetic clusters within species: simulations and implications for human population 
structure. Heredity, 106(4), pp.625-632. 

Kanatti, A., Rai, K.N., Radhika, K., Govindaraj, M., Sahrawat, K.L. and Rao, A.S., 2014. 
Grain iron and zinc density in pearl millet: combining ability, heterosis and association with 
grain yield and grain size. SpringerPlus, 3(1), p.763. 

Kannan, B., Senapathy, S., Bhasker Raj, A.G., Chandra, S., Muthiah, A., Dhanapal, A.P. 
and Hash, C.T., 2014. Association analysis of SSR markers with phenology, grain, and 
stover-yield related traits in Pearl Millet (Pennisetum glaucum (L.) R. Br.). The scientific 
world journal, 2014. 

Kaplan, B., Davydov, O., Knight, H., Galon, Y., Knight, M.R., Fluhr, R. and Fromm, H., 2006. 
Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related 
sequences as Ca2+-responsive cis elements in Arabidopsis. The Plant Cell, 18(10), 
pp.2733-2748. 

Kapur, M., Wang, W., Maloney, M.T., Millan, I., Lundin, V.F., Tran, T.A. and Yang, Y., 2012. 
Calcium tips the balance: a microtubule plus end to lattice binding switch operates in the 
carboxyl terminus of BPAG1n4. EMBO reports, 13(11), pp.1021-1029. 

Kassebaum, N.J., Jasrasaria, R., Naghavi, M., Wulf, S.K., Johns, N., Lozano, R., Regan, M., 
Weatherall, D., Chou, D.P., Eisele, T.P. and Flaxman, S.R., 2014. A systematic analysis of 
global anemia burden from 1990 to 2010. Blood, 123(5), pp.615-624. 

Kato, Y., Murakami, S., Yamamoto, Y., Chatani, H., Kondo, Y., Nakano, T., Yokota, A. and 
Sato, F., 2004. The DNA-binding protease, CND41, and the degradation of ribulose-1, 5-
bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta, 220(1), pp.97-
104. 



339 
 

Kato-Noguchi, H., 2011. Convergent or parallel molecular evolution of momilactone A and B: 
Potent allelochemicals, momilactones have been found only in rice and the moss Hypnum 
plumaeforme. Journal of plant physiology, 168(13), pp.1511-1516. 

Kaur, R. and Soodan, A.S., 2017. Reproductive biology of Sorghum halepense (L.) 
Pers.(Poaceae; Panicoideae; Andropogoneae) in relation to invasibility. Flora, 229, pp.32-
49. 

Khairwal, I.S. and Hash, C.T., 2007. HHB 67-improved–The first product of marker-assisted 
crop breeding in India. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB) e-
News. 

Khairwal, I.S., Rai, K.N., Diwakar, B., Sharma, Y.K., Rajpurohit, B.S., Nirwan, B. and 
Bhattacharjee, R., 2007. Pearl Millet Crop Management and Seed Production Manual. 

Khairwal, I.S., Yadav, S.K., Rai, K.N., Upadhyaya, H.D., Kachhawa, D., Nirwan, B., 
Bhattacharjee, R., Rajpurohit, B.S. and Dangaria, C.J., 2007. Evaluation and identification of 
promising pearl millet germplasm for grain and fodder traits. Journal of SAT Agricultural 
Research, 5(1), pp.1-6. 

Khatkar, B.S., Bell, A.E. and Schofield, J.D., 1995. The dynamic rheological properties of 
glutens and gluten sub-fractions from wheats of good and poor bread making 
quality. Journal of Cereal Science, 22(1), pp.29-44. 

Kim, J.H., Cheon, Y.M., Kim, B.G. and Ahn, J.H., 2008. Analysis of flavonoids and 
characterization of theOsFNS gene involved in flavone biosynthesis in Rice. Journal of Plant 
Biology, 51(2), p.97. 

Klaassen, C.D. and Rozman, K. (1991) Absorption, distribution, and excretion of toxicants. 
In: Casarett and Doull's Toxicology - the Basic Science of Posions, 4th Edition ( Amdur, 
M.O., Doull, J. and Klaassen C.D., eds), pp. 50-87. Pergamon Press, Elmsford, NY.  

Klug, A. and Schwabe, J.W., 1995. Protein motifs 5. Zinc fingers. The FASEB journal, 9(8), 
pp.597-604. 

Knip, M., de Pater, S. and Hooykaas, P.J., 2012. The SLEEPER genes: a transposase-
derived angiosperm-specific gene family. BMC plant biology, 12(1), p.192. 

Knox, J., Hess, T., Daccache, A. and Wheeler, T., 2012. Climate change impacts on crop 
productivity in Africa and South Asia. Environmental Research Letters, 7(3), p.034032. 

Knuckles, B.E., Kuzmicky, D.D. and Betschart, A.A., 1985. Effect of phytate and partially 
hydrolyzed phytate on in vitro protein digestibility. Journal of Food Science, 50(4), pp.1080-
1082. 

Kobayashi, T. and Nishizawa, N.K., 2012. Iron uptake, translocation, and regulation in higher 
plants. Annual review of plant biology, 63, pp.131-152. 

Kodkany, B.S., Bellad, R.M., Mahantshetti, N.S., Westcott, J.E., Krebs, N.F., Kemp, J.F. and 
Hambidge, K.M., 2013. Biofortification of pearl millet with iron and zinc in a randomized 
controlled trial increases absorption of these minerals above physiologic requirements in 
young children. The Journal of nutrition, 143(9), pp.1489-1493. 

Kolbe, W., 1970. Further studies on the reduction of cereal yields by aphid 
infestation. Pflanzenschutz-Nachrichten Bayer, 23(2), pp.144-162. 

Komaki, S., Abe, T., Coutuer, S., Inzé, D., Russinova, E. and Hashimoto, T., 2010. Nuclear-
localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J 
Cell Sci, 123(3), pp.451-459. 

Korte, A. and Farlow, A., 2013. The advantages and limitations of trait analysis with GWAS: 
a review. Plant methods, 9(1), p.29. 



340 
 

Kulp, K. ed., 2000. Handbook of Cereal Science and Technology, revised and expanded. 
CRC Press. 

Kumar, A.L.P.A.N.A. and Chauhan, B.M., 1993. Effects of phytic acid on protein digestibility 
(in vitro) and HCl-extractability of minerals in pearl millet sprouts. Cereal chemistry, 70, 
pp.504-504. 

Kumar, S., 2011. Development of new mapping population and marker-assisted 
improvement of iron and zinc grain density in pearl millet [Pennisetum glaucum (L.) R. 
Br.]. Bikaner: Dissertation, Swami Keshwanand Rajasthan Agricultural University. 

Kumar, S., Hash, C.T., Nepolean Thirunavukkarasu, G.S., Rajaram, V., Rathore, A., 
Senapathy, S., Mahendrakar, M.D., Yadav, R.S. and Srivastava, R.K., 2016. Mapping 
Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated 
Grains of Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in plant science, 7. 

Kumar, S., Hash, C.T., Nepolean, T., Mahendrakar, M.D., Satyavathi, C.T., Singh, G., 
Rathore, A., Yadav, R.S., Gupta, R. and Srivastava, R.K., 2018. Mapping Grain Iron and 
Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. 
Genes, 9(5), p.248. 

Kumar, S., Hash, T., Nepolean, T., Mahendrakar, M., 2, Satyavathi, C.T., Singh, G., 
Rathore, A., Yadav, Y., Gupta, R.,. 2018. Mapping Grain Iron and Zinc Content Quantitative 
Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet. Genes. 9 (5), pp248 

Lamberti, L.M., Fischer Walker, C.L. and Black, R.E., 2016. Zinc Deficiency in Childhood 
and Pregnancy: Evidence for Intervention Effects and Program Responses. In Hidden 
Hunger (Vol. 115, pp. 125-133). Karger Publishers. 

Langewisch, T., Zhang, H., Vincent, R., Joshi, T., Xu, D. and Bilyeu, K., 2014. Major 
soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean 
genomes. PloS one, 9(4), p.e94150. 

Lasat, M.M. and Kochian, L.V., 2000. Physiology of Zn hyperaccumulation in Thlaspi 
caerulescens. Phytoremediation of contaminated soil and water, pp.159-169. 

Ledford, H., 2015. CRISPR, the disruptor. Nature News, 522(7554), p.20. 

Lee, S. and An, G., 2009. Over‐expression of OsIRT1 leads to increased iron and zinc 
accumulations in rice. Plant, cell & environment, 32(4), pp.408-416. 

Lee, S., Jeon, U.S., Lee, S.J., Kim, Y.K., Persson, D.P., Husted, S., Schjørring, J.K., Kakei, 
Y., Masuda, H., Nishizawa, N.K. and An, G., 2009. Iron fortification of rice seeds through 
activation of the nicotianamine synthase gene. Proceedings of the National Academy of 
Sciences, 106(51), pp.22014-22019. 

Leff, B., Ramankutty, N. and Foley, J.A., 2004. Geographic distribution of major crops 
across the world. Global Biogeochemical Cycles, 18(1). 

Lestari, P., Lee, G., Ham, T.H., Woo, M.O., Piao, R., Jiang, W., Chu, S.H., Lee, J. and Koh, 
H.J., 2011. Single nucleotide polymorphisms and haplotype diversity in rice sucrose 
synthase 3. Journal of Heredity, 102(6), pp.735-746. 

Lestienne, I., Besançon, P., Caporiccio, B., Lullien-Péllerin, V. and Tréche, S., 2005. Iron 
and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, 
tannin, and fiber contents. Journal of agricultural and food chemistry, 53(8), pp.3240-3247. 

Lestienne, I., Icard-Vernière, C., Mouquet, C., Picq, C. and Trèche, S., 2005. Effects of 
soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food 
chemistry, 89(3), pp.421-425. 



341 
 

Limagrain Europe. (2015). REVELATION WINTER WHEAT. Available: 
http://www.lgseeds.co.uk/uploads/Revelation-Technical-Summary.pdf. Last accessed 
05/11/2016 

Lind, T., Lönnerdal, B., Stenlund, H., Gamayanti, I.L., Ismail, D., Seswandhana, R. and 
Persson, L.Å., 2004. A community-based randomized controlled trial of iron and zinc 
supplementation in Indonesian infants: effects on growth and development. The American 
journal of clinical nutrition, 80(3), pp.729-736. 

Linthorst, H.J., Melchers, L.S., Mayer, A., Van Roekel, J.S., Cornelissen, B.J. and Bol, J.F., 
1990. Analysis of gene families encoding acidic and basic beta-1, 3-glucanases of 
tobacco. Proceedings of the National Academy of Sciences, 87(22), pp.8756-8760. 

Liotta, L.J. and James-Pederson, M., 2008. Identification of an Unknown Compound by 
Combined Use of IR, 1H NMR, 13C NMR, and Mass Spectrometry: A Real-Life Experience 
in Structure Determination. Journal of chemical education, 85(6), p.832. 

Liu, H., Zhou, H., Wu, Y., Li, X., Zhao, J., Zuo, T., Zhang, X., Zhang, Y., Liu, S., Shen, Y. 
and Lin, H., 2015. The impact of genetic relationship and linkage disequilibrium on genomic 
selection. PloS one, 10(7), p.e0132379. 

Liu, H.C., Liao, H.T. and Charng, Y.Y., 2011. The role of class A1 heat shock factors 
(HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, cell & 
environment, 34(5), pp.738-751. 

Liu, N., Zhang, K. and Zhao, H., 2008. Haplotype‐association analysis. Advances in 
genetics, 60, pp.335-405. 

Liu, X., Cui, H., Li, A., Zhang, M. and Teng, Y., 2015. The nitrate transporter NRT1. 1 is 
involved in iron deficiency responses in Arabidopsis. Journal of Plant Nutrition and Soil 
Science, 178(4), pp.601-608. 

Lo, S.F., Yang, S.Y., Chen, K.T., Hsing, Y.I., Zeevaart, J.A., Chen, L.J. and Yu, S.M., 2008. 
A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development 
in rice. The Plant Cell, 20(10), pp.2603-2618. 

Lönnerdal, B.O., 2000. Dietary factors influencing zinc absorption. The Journal of 
nutrition, 130(5), pp.1378S-1383S. 

Lopez, A., Cacoub, P., Macdougall, I.C. and Peyrin-Biroulet, L., 2016. Iron deficiency 
anaemia. The Lancet, 387(10021), pp.907-916. 

Loqué, D., Ludewig, U., Yuan, L. and von Wirén, N., 2005. Tonoplast intrinsic proteins 
AtTIP2; 1 and AtTIP2; 3 facilitate NH3 transport into the vacuole. Plant physiology, 137(2), 
pp.671-680. 

Lu, Y., Xu, J., Yuan, Z., Hao, Z., Xie, C., Li, X., Shah, T., Lan, H., Zhang, S., Rong, T. and 
Xu, Y., 2012. Comparative LD mapping using single SNPs and haplotypes identifies QTL for 
plant height and biomass as secondary traits of drought tolerance in maize. Molecular 
Breeding, 30(1), pp.407-418. 

Lucht, J.M., 2015. Public acceptance of plant biotechnology and GM crops. Viruses, 7(8), 
pp.4254-4281. 

Ma, G., Jin, Y., Piao, J., Kok, F., Guusje, B. and Jacobsen, E., 2005. Phytate, calcium, iron, 
and zinc contents and their molar ratios in foods commonly consumed in China. Journal of 
Agricultural and Food Chemistry, 53(26), pp.10285-10290. 

Madaule, P., Furuyashiki, T., Reid, T., Ishizaki, T., Watanabe, G., Morii, N. and Narumiya, 
S., 1995. A novel partner for the GTP-bound forms of rho and rac. FEBS letters, 377(2), 
pp.243-248. 



342 
 

Maestre, M., Poole, N. and Henson, S., 2017. Assessing food value chain pathways, 
linkages and impacts for better nutrition of vulnerable groups. Food Policy, 68, pp.31-39. 

Mahadevan, B., Sivakumar, S., Dinesh Kumar, D. and Ganeshram, K., 2013. Redesigning 
midday meal logistics for the Akshaya Patra Foundation: OR at work in feeding hungry 
school children. Interfaces, 43(6), pp.530-546. 

Makanya, Z., 2004. Twelve reasons for Africa to reject GM crops. Seedling magazine, 17. 

Mamo, B.E., Barber, B.L. and Steffenson, B.J., 2014. Genome-wide association mapping of 
zinc and iron concentration in barley landraces from Ethiopia and Eritrea. Journal of Cereal 
Science, 60(3), pp.497-506. 

Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L., 2004. Polyphenols: food 
sources and bioavailability. The American journal of clinical nutrition, 79(5), pp.727-747. 

Manach, C., Williamson, G., Morand, C., Scalbert, A. and Rémésy, C., 2005. Bioavailability 
and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The 
American journal of clinical nutrition, 81(1), pp.230S-242S. 

Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., 
McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A. and Cho, J.H., 2009. Finding the 
missing heritability of complex diseases. Nature, 461(7265), p.747. 

Manwaring, H.R., Bligh, H.F.J. and Yadav, R., 2016. The Challenges and Opportunities 
Associated with Biofortification of Pearl Millet (Pennisetum glaucum) with Elevated Levels of 
Grain Iron and Zinc. Frontiers in Plant Science, 7. 

Maret, W. and Sandstead, H.H., 2006. Zinc requirements and the risks and benefits of zinc 
supplementation. Journal of Trace Elements in Medicine and Biology, 20(1), pp.3-18. 

Markham, K.R., Ryan, K.G., Bloor, S.J. and Mitchell, K.A., 1998. An increase in the luteolin: 
apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry, 48(5), 
pp.791-794. 

Marroni, F., Pinosio, S., Zaina, G., Fogolari, F., Felice, N., Cattonaro, F. and Morgante, M., 
2011. Nucleotide diversity and linkage disequilibrium in Populus nigra cinnamyl alcohol 
dehydrogenase (CAD4) gene. Tree genetics & genomes, 7(5), pp.1011-1023. 

Marschner, H. and Rimmington, G., 1988. Mineral nutrition of higher plants. Plant Cell 
Environ, 11, pp.147-148. 

Marshall, S.D., Putterill, J.J., Plummer, K.M. and Newcomb, R.D., 2003. The 
carboxylesterase gene family from Arabidopsis thaliana. Journal of molecular 
evolution, 57(5), pp.487-500. 

Matus-Cadiz, M.A., Hucl, P., Perron, C.E. and Tyler, R.T., 2003. Genotype× environment 
interaction for grain color in hard white spring wheat. Crop Science, 43(1), pp.219-226. 

Maurel, C., Javot, H., Lauvergeat, V., Gerbeau, P., Tournaire, C., Santoni, V. and Heyes, J., 
2002. Molecular physiology of aquaporins in plants. International review of cytology, 215, 
pp.105-148. 

McCabe, C.D. and Innis, J.W., 2005. A genomic approach to the identification and 
characterization of HOXA13 functional binding elements. Nucleic acids research, 33(21), 
pp.6782-6794. 

McCarty, M.F., 2005. A chlorogenic acid-induced increase in GLP-1 production may mediate 
the impact of heavy coffee consumption on diabetes risk. Medical hypotheses, 64(4), 
pp.848-853. 



343 
 

Messina, M. J. (1999). Legumes and soybeans: overview of their nutritional profiles and 
health effects. The American journal of clinical nutrition, 70(3), 439s-450s. 

Meza, F.J. and Silva, D., 2009. Dynamic adaptation of maize and wheat production to 
climate change. Climatic change, 94(1), pp.143-156. 

Miean, K.H. and Mohamed, S., 2001. Flavonoid (myricetin, quercetin, kaempferol, luteolin, 
and apigenin) content of edible tropical plants. Journal of agricultural and food 
chemistry, 49(6), pp.3106-3112. 

Mira, L., Tereza Fernandez, M., Santos, M., Rocha, R., Helena Florêncio, M., & Jennings, K. 
R. (2002). Interactions of flavonoids with iron and copper ions: a mechanism for their 
antioxidant activity. Free radical research,36(11), 1199-1208. 

Miret, S., Tascioglu, S., van der Burg, M., Frenken, L. and Klaffke, W., 2009. In vitro 
bioavailability of iron from the heme analogue sodium iron chlorophyllin. Journal of 
agricultural and food chemistry, 58(2), pp.1327-1332. 

Miyagishima, S.Y., Nishida, K., Mori, T., Matsuzaki, M., Higashiyama, T., Kuroiwa, H. and 
Kuroiwa, T., 2003. A plant-specific dynamin-related protein forms a ring at the chloroplast 
division site. The Plant Cell, 15(3), pp.655-665. 

Moghaddam, M.J. and Pourdad, S.S., 2009. Comparison of parametric and non-parametric 
methods for analysing genotypexenvironment interactions in safflower (Carthamus tinctorius 
L.). The Journal of Agricultural Science, 147(5), p.601. 

Monteiro, M., Farah, A., Perrone, D., Trugo, L.C. and Donangelo, C., 2007. Chlorogenic acid 
compounds from coffee are differentially absorbed and metabolized in humans. The Journal 
of nutrition, 137(10), pp.2196-2201. 

Morohashi, K., Casas, M.I., Ferreyra, M.L.F., Mejía-Guerra, M.K., Pourcel, L., Yilmaz, A., 
Feller, A., Carvalho, B., Emiliani, J., Rodriguez, E. and Pellegrinet, S., 2012. A genome-wide 
regulatory framework identifies maize pericarp color1 controlled genes. The Plant 
Cell, 24(7), pp.2745-2764. 

Morrissey, J. and Guerinot, M.L., 2009. Iron uptake and transport in plants: the good, the 
bad, and the ionome. Chemical reviews, 109(10), pp.4553-4567. 

Moumouni, K.H., Kountche, B.A., Jean, M., Hash, C.T., Vigouroux, Y., Haussmann, B.I.G. 
and Belzile, F., 2015. Construction of a genetic map for pearl millet, Pennisetum glaucum 
(L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Molecular breeding, 35(1), 
p.5. 

Muthamilarasan, M., Dhaka, A., Yadav, R. and Prasad, M., 2016. Exploration of millet 
models for developing nutrient rich graminaceous crops. Plant Science, 242, pp.89-97. 

N’Diaye, A., Haile, J.K., Cory, A.T., Clarke, F.R., Clarke, J.M., Knox, R.E. and Pozniak, C.J., 
2017. Single marker and haplotype-based association analysis of semolina and pasta colour 
in elite durum wheat breeding lines using a high-density consensus map. PloS one, 12(1), 
p.e0170941. 

National Research Council, 2011. Advancing the science of climate change. National 
Academies Press. 

Neggers, Y.H., Cutter, G.R., Acton, R.T., Alvarez, J.O., Bonner, J.L., Goldenberg, R.L., Go, 
R.C. and Roseman, J.M., 1990. A positive association between maternal serum zinc 
concentration and birth weight. The American journal of clinical nutrition, 51(4), pp.678-684. 

Nekohashi, M., Ogawa, M., Ogihara, T., Nakazawa, K., Kato, H., Misaka, T., Abe, K. and 
Kobayashi, S., 2014. Luteolin and quercetin affect the cholesterol absorption mediated by 
epithelial cholesterol transporter Niemann–Pick C1-Like 1 in caco-2 cells and rats. PloS 
one, 9(5), p.e97901. 



344 
 

Nelson, R.J., Naylor, R.L. and Jahn, M.M., 2004. The role of genomics research in 
improvement of" orphan" crops. Crop Science, 44(6), p.1901. 

Nestel, P., Bouis, H. E., & Meenakshi, J. V. (2015). Biofortification of staple food crops: Six 
questions. 

Neuffer, M.G., Coe, E.H. and Wessler, S.R., 1997. Mutants of maize Cold Spring Harbor 
Laboratory Press. 

Nielsen, A.V., Tetens, I. and Meyer, A.S., 2013. Potential of phytase-mediated iron release 
from cereal-based foods: a quantitative view. Nutrients, 5(8), pp.3074-3098. 

Nodine, M.D., Yadegari, R. and Tax, F.E., 2007. RPK1 and TOAD2 are two receptor-like 
kinases redundantly required for Arabidopsis embryonic pattern formation. Developmental 
cell, 12(6), pp.943-956. 

O’Kennedy, M.M., Grootboom, A. and Shewry, P.R., 2006. Harnessing sorghum and millet 
biotechnology for food and health. Journal of Cereal Science, 44(3), pp.224-235. 

Okubo K, Kudou S, Uchida T, Yoshiki Y, Yoshikoshi M, Tonomura M (1994). Soybean 
saponin and isoflavonoids: Structure and antiviral activity against Human Immunodeficiency 
virus in-vitro. A Cs.Symp.Ser.1994, Food Phytochem. Cancer Prevent. I. 330-339 

Oladosu, Y., Rafii, M.Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H.A., Miah, G. and 
Usman, M., 2016. Principle and application of plant mutagenesis in crop improvement: a 
review. Biotechnology & Biotechnological Equipment, 30(1), pp.1-16. 

Oldach, K., Morgenstern, A., Rother, S., Girgi, M., O'Kennedy, M. and Lörz, H., 2001. 
Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet 
[Pennisetum glaucum (L.) R. Br.] and Sorghum bicolor (L.) Moench. Plant cell reports, 20(5), 
pp.416-421. 

Olenichenko, N.A., Ossipov, V.I. and Zagoskina, N.V., 2006. Effect of cold hardening on the 
phenolic complex of winter wheat leaves. Russian Journal of Plant Physiology, 53(4), 
pp.495-500. 

Olsen, L.I. and Palmgren, M.G., 2014. Many rivers to cross: the journey of zinc from soil to 
seed. Front Plant Sci, 5, pp.79-84. 

Ortiz-Monasterio, J.I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R. and Pena, 
R.J., 2007. Enhancing the mineral and vitamin content of wheat and maize through plant 
breeding. Journal of Cereal Science, 46(3), pp.293-307. 

Osabe, D., Tanahashi, T., Nomura, K., Shinohara, S., Nakamura, N., Yoshikawa, T., Shiota, 
H., Keshavarz, P., Yamaguchi, Y., Kunika, K. and Moritani, M., 2007. Evaluation of sample 
size effect on the identification of haplotype blocks. BMC bioinformatics, 8(1), p.200. 

Oshodi, HN Ogungbenle, MO Oladimeji, A.A., 1999. Chemical composition, nutritionally 
valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet 
(Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours. International journal of 
food sciences and nutrition, 50(5), pp.325-331. 

Oumar, I., Mariac, C., Pham, J.L. and Vigouroux, Y., 2008. Phylogeny and origin of pearl 
millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theoretical and 
Applied Genetics, 117(4), pp.489-497. 

Pahlavani, M.H. and Abolhasani, K., 2006. Xenia effect on seed and embryo size in cotton 
(Gossypium hirsutum L.). Journal of applied genetics, 47(4), pp.331-335. 

Palmgren, M.G., Clemens, S., Williams, L.E., Krämer, U., Borg, S., Schjørring, J.K. and 
Sanders, D., 2008. Zinc biofortification of cereals: problems and solutions. Trends in plant 
science, 13(9), pp.464-473. 



345 
 

Panoutsopoulou, K. and Zeggini, E., 2009. Finding common susceptibility variants for 
complex disease: past, present and future. Briefings in Functional Genomics and 
Proteomics, 8(5), pp.345-352. 

Patil, J.V. ed., 2016. Millets and Sorghum: Biology and Genetic Improvement. John Wiley & 
Sons 

Patterson, C., 2002. A new gun in town: the U box is a ubiquitin ligase domain. Science 
Signaling, 2002(116), pp.pe4-pe4. 

Peiter, E., Maathuis, F.J., Mills, L.N. and Knight, H., 2005. The vacuolar Ca2+-activated 
channel TPC1 regulates germination and stomatal movement. Nature, 434(7031), p.404. 

Peleg, Z., Cakmak, I., Ozturk, L., Yazici, A., Jun, Y., Budak, H., Korol, A.B., Fahima, T. and 
Saranga, Y., 2009. Quantitative trait loci conferring grain mineral nutrient concentrations in 
durum wheat× wild emmer wheat RIL population. Theoretical and Applied Genetics, 119(2), 
pp.353-369. 

Persson, D.P., Hansen, T.H., Laursen, K.H., Schjoerring, J.K. and Husted, S., 2009. 
Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues 
using SEC-ICP-MS and IP-ICP-MS. Metallomics, 1(5), pp.418-426. 

Pfeiffer, W., Andersson, M., Govindaraj, M., Parminder, V., Cherian, B., Illona, P., Magezi, S. 
and Mulambu, J., 2018. Biofortification in Underutilized Staple Crops for Nutrition in Asia and 
Africa. 

Philpott, C.C., 2014. Pumping iron. Elife, 3, p.e03997. 

Pii, Y., Borruso, L., Brusetti, L., Crecchio, C., Cesco, S. and Mimmo, T., 2016. The 
interaction between iron nutrition, plant species and soil type shapes the rhizosphere 
microbiome. Plant Physiology and Biochemistry, 99, pp.39-48. 

Pitt, S.J., Lam, A.K., Rietdorf, K., Galione, A. and Sitsapesan, R., 2014. Reconstituted 
human TPC1 is a proton-permeable ion channel and is activated by NAADP or 
Ca2+. Science signaling, 7(326), pp.ra46-ra46. 

Pletsch-Rivera, L.A. and Kaeppler, S.M., 2007. Phosphorus accumulation in maize grain is 
not influenced by xenia (Zea mays L.). Maydica, 52(2), p.151. 

Poland, J.A. and Rife, T.W., 2012. Genotyping-by-sequencing for plant breeding and 
genetics. The Plant Genome, 5(3), pp.92-102. 

Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á. and Lareu, M.V., 2013. 
An overview of STRUCTURE: applications, parameter settings, and supporting 
software. Frontiers in genetics, 4. 

Preger, V., Tango, N., Marchand, C., Lemaire, S.D., Carbonera, D., Di Valentin, M., Costa, 
A., Pupillo, P. and Trost, P., 2009. Auxin-responsive genes AIR12 code for a new family of 
plasma membrane b-type cytochromes specific to flowering plants. Plant physiology, 150(2), 
pp.606-620. 

Prentice, A.M., Mendoza, Y.A., Pereira, D., Cerami, C., Wegmuller, R., Constable, A. and 
Spieldenner, J., 2017. Dietary strategies for improving iron status: balancing safety and 
efficacy. Nutrition Reviews, 75(1), pp.49-60. 

Primikyri, A., Mazzone, G., Lekka, C., Tzakos, A.G., Russo, N. and Gerothanassis, I.P., 
2014. Understanding zinc (II) chelation with quercetin and luteolin: a combined NMR and 
theoretical study. The Journal of Physical Chemistry B, 119(1), pp.83-95. 

Primm, T.P. and Gilbert, H.F., 2001. Hormone binding by protein disulfide isomerase, a high 
capacity hormone reservoir of the endoplasmic reticulum. Journal of Biological 
Chemistry, 276(1), pp.281-286. 



346 
 

Pritchard, J.K., Stephens, M. and Donnelly, P., 2000. Inference of population structure using 
multilocus genotype data. Genetics, 155(2), pp.945-959. 

Qu, L.Q., Yoshihara, T., Ooyama, A., Goto, F. and Takaiwa, F., 2005. Iron accumulation 
does not parallel the high expression level of ferritin in transgenic rice seeds. Planta, 222(2), 
pp.225-233. 

Raboy, V., Below, F.E. and Dickinson, D.B., 1989. Recurrent selection for maize kernel 
protein and oil has altered phytic acid levels. J Heredity, 80, pp.311-315. 

Raboy, V., Dickinson, D.B. and Below, F.E., 1984. Variation in seed total phosphorus, phytic 
acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. soja. Crop 
Science, 24(3), pp.431-434. 

Ragaee, S., Abdel-Aal, E.S.M. and Noaman, M., 2006. Antioxidant activity and nutrient 
composition of selected cereals for food use. Food Chemistry, 98(1), pp.32-38. 

Rai, K.N., Govindaraj, M., Pfeiffer, W.H. and Rao, A.S., 2015. Seed set and xenia effects on 
grain iron and zinc density in pearl millet. Crop Science, 55(2), pp.821-827. 

Rai, K.N., Kumar, K.A., Andrews, D.J., Rao, A.S., Raj, A.G.B. and Witcombe, J.R., 1990. 
Registration of'ICTP 8203'pearl millet. Crop Science, 30(4), pp.959-959. 

Rai, K.N., Yadav, O.P., Rajpurohit, B.S., Patil, H.T., Govindaraj, M., Khairwal, I.S. and Rao, 
A.S., 2013. Breeding pearl millet cultivars for high iron density with zinc density as an 
associated trait. Journal of SAT Agricultural Research, 11, pp.1-7. 

Ramirez-Wong, B., Sweat, V.E., Torres, P.I. and Rooney, L.W., 1994. Cooking time, 
grinding, and moisture content effect on fresh corn masa texture. Cereal chemistry (USA). 

Rani, S., Singh, R., Sehrawat, R., Kaur, B.P. and Upadhyay, A., 2018. Pearl millet 
processing: a review. Nutrition & Food Science, (just-accepted), pp.00-00. 

Rao, N.K. and Bramel, P.J., 2000. Manual of genebank operations and procedures. 
International Crops Research Institute for the Semi-Arid Tropics. 

Rao, P.P., Birthal, P.S., Reddy, B.V., Rai, K.N. and Ramesh, S., 2006. Diagnostics of 
sorghum and pearl millet grains-based nutrition in India. International Sorghum and Millets 
Newsletter, 47, pp.93-96. 

Rasmussen, S.K. and Hatzack, F., 1998. Identification of two Low‐Phytate Barley (Hordeum 
Vulgare l.) Grain Mutants by TLC and Genetic Analysis. Hereditas, 129(2), pp.107-112. 

Rawat, N., Neelam, K., Tiwari, V.K. and Dhaliwal, H.S., 2013. Biofortification of cereals to 
overcome hidden hunger. Plant Breeding, 132(5), pp.437-445. 

Ray, S., Mondal, W.A. and Choudhuri, M.A., 1983. Regulation of leaf senescence, 
grain‐filling and yield of rice by kinetin and abscisic acid. Physiologia Plantarum, 59(3), 
pp.343-346. 

Reason, D.A., Watts, M.J. and Devez, A., 2015. Quantification of phytic acid in grains. 

Reddy, A.S., Ali, G.S., Celesnik, H. and Day, I.S., 2011. Coping with stresses: roles of 
calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell, 23(6), pp.2010-
2032. 

Reddy, B.V., Ramesh, S. and Longvah, T., 2005. Prospects of breeding for micronutrients 
and b-carotene-dense sorghums. International Sorghum and Millets Newsletter, 46, pp.10-
14. 

Reddy, N.R., Pierson, M.D., Sathe, S.K. and Salunkhe, D.K., 1989. Phytates in cereals and 
legumes. CRC Press. 



347 
 

Reddy, N.R., Sathe, S.K. and Salunkhe, D.K., 1982. Phytates in legumes and 
cereals. Advances in food research, 28, pp.1-92. 

Reusch, W. (2013). Nuclear Magnetic Resonance Spectroscopy. Available: 
https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/nmr/nmr1.htm. Last 
accessed 09/05/2018. 

Ricachenevsky, F.K., Menguer, P.K. and Sperotto, R.A., 2013. kNACking on heaven’s door: 
how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to 
seeds?. Frontiers in plant science, 4, p.226. 

Ricachenevsky, F.K., Menguer, P.K., Sperotto, R.A., Williams, L.E. and Fett, J.P., 2013. 
Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in 
biofortification strategies. Frontiers in plant science, 4, p.144. 

Riveras, E., Alvarez, J.M., Vidal, E.A., Oses, C., Vega, A. and Gutiérrez, R.A., 2015. The 
calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. Plant 
physiology, 169(2), pp.1397-1404. 

Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and 
safety. Annual review of Nutrition, 22(1), 19-34. 

Ross, J., Li, Y., Lim, E.K. and Bowles, D.J., 2001. Higher plant 
glycosyltransferases. Genome Biology, 2(2), pp.reviews3004-1. 

Rossander-Hultén, L., Brune, M., Sandström, B., Lönnerdal, B. and Hallberg, L., 1991. 
Competitive inhibition of iron absorption by manganese and zinc in humans. The American 
journal of clinical nutrition, 54(1), pp.152-156. 

RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA 
URL http://www.rstudio.com/. 

Saltzman, A., Birol, E., Bouis, H.E., Boy, E., De Moura, F.F., Islam, Y. and Pfeiffer, W.H., 
2013. Biofortification: progress toward a more nourishing future. Global Food Security, 2(1), 
pp.9-17. 

Salunkhe, D. K., Jadhav, S. J., Kadam, S. S., Chavan, J. K., & Luh, B. S. (1983). Chemical, 
biochemical, and biological significance of polyphenols in cereals and legumes. Critical 
Reviews in Food Science & Nutrition, 17(3), 277-305. 

Samia, M., AbdelRahaman, B. and Elfadil, E., 2005. Effect of malt pretreatment followed by 
fermentation on antinutritional factors and HCl extractability of minerals of pearl millet 
cultivars. Journal of food technology, 3(4), pp.529-534. 

Sampedro, J. and Cosgrove, D.J., 2005. The expansin superfamily. Genome biology, 6(12), 
p.242. 

Sandberg, A.S. and Andlid, T., 2002. Phytogenic and microbial phytases in human 
nutrition. International journal of food science & technology, 37(7), pp.823-833. 

Sanders, D., Pelloux, J., Brownlee, C. and Harper, J.F., 2002. Calcium at the crossroads of 
signaling. The Plant Cell, 14(suppl 1), pp.S401-S417. 

Sandström, B., Davidsson, L., Cederblad, Å. and Lönnerdal, B., 1985. Oral iron, dietary 
ligands and zinc absorption. The Journal of nutrition, 115(3), pp.411-414. 

Scalbert, A., Morand, C., Manach, C. and Rémésy, C., 2002. Absorption and metabolism of 
polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy, 56(6), 
pp.276-282. 

Schmidhuber, J. and Tubiello, F.N., 2007. Global food security under climate 
change. Proceedings of the National Academy of Sciences, 104(50), pp.19703-19708. 



348 
 

Sehgal, D., Skot, L., Singh, R., Srivastava, R.K., Das, S.P., Taunk, J., Sharma, P.C., Pal, R., 
Raj, B., Hash, C.T. and Yadav, R.S., 2015. Exploring potential of pearl millet germplasm 
association panel for association mapping of drought tolerance traits. PloS one, 10(5), 
p.e0122165. 

Senthilvel, S., Jayashree, B., Mahalakshmi, V., Kumar, P.S., Nakka, S., Nepolean, T. and 
Hash, C.T., 2008. Development and mapping of simple sequence repeat markers for pearl 
millet from data mining of expressed sequence tags. BMC Plant Biology, 8(1), p.119. 

Seo, P.J., Lee, S.B., Suh, M.C., Park, M.J., Go, Y.S. and Park, C.M., 2011. The MYB96 
transcription factor regulates cuticular wax biosynthesis under drought conditions in 
Arabidopsis. The Plant Cell, 23(3), pp.1138-1152. 

Shanmuganathan, M., Gopalan, A. and Mohanraj, K., 2006. Genetic analysis of pearl millet 
for phytic acid content. Journal of Agricultural Sciences, 2(2). 

Sharma, A. and Kapoor, A.C., 1996. Levels of antinutritional factors in pearl millet as 
affected by processing treatments and various types of fermentation. Plant Foods for Human 
Nutrition, 49(3), pp.241-252. 

Sharma, C.B., Goel, M. and Irshad, M., 1978. Myoinositol hexaphosphate as a potential 
inhibitor of α-amylases. Phytochemistry, 17(2), pp.201-204. 

Shekhar, Hossain Uddin, Howlader, Zakir Hossain, Kabir, Yearul (2016). Exploring the 
Nutrition and Health Benefits of Functional Foods. IGI Global. 278. 

Sheu, J.R., Hsiao, G., Shen, M.Y., Chou, C.Y., Lin, C.H., Chen, T.F. and Chou, D.S., 2003. 
Inhibitory mechanisms of kinetin, a plant growth-promoting hormone, in platelet 
aggregation. Platelets, 14(3), pp.189-196. 

Shimizu, A., Guerta, C.Q., Gregorio, G.B., Kawasaki, S. and Ikehashi, H., 2005. QTLs for 
nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication 
to tolerance to iron-toxicity. Plant and Soil, 275(1), pp.57-66. 

Shimura, K., Okada, A., Okada, K., Jikumaru, Y., Ko, K.W., Toyomasu, T., Sassa, T., 
Hasegawa, M., Kodama, O., Shibuya, N. and Koga, J., 2007. Identification of a biosynthetic 
gene cluster in rice for momilactones. Journal of Biological Chemistry, 282(47), pp.34013-
34018. 

Simwemba, C.G., Hoseney, R.C., Varriano-Marston, E. and Zeleznak, K., 1984. Certain B 
vitamin and phytic acid contents of pearl millet [Pennisetum americanum (L.) Leeke]. Journal 
of agricultural and food chemistry, 32(1), pp.31-34. 

Singh, P. and Raghuvanshi, R.S., 2012. Finger millet for food and nutritional 
security. African Journal of Food Science, 6(4), pp.77-84. 

Singh, R., Singh, D.P. and Tyagi, P.K., 2003. Effect of Azotobacter, farmyard manure and 
nitrogen fertilization on productivity of pearl millet hybrids (Pennisetum glaucum (l) r. br) in 
semi-arid tropical environment. Archives of Agronomy and Soil Science, 49(1), pp.21-24 

Slatkin, M., 2008. Linkage disequilibrium—understanding the evolutionary past and mapping 
the medical future. Nature reviews. Genetics, 9(6), p.477. 

Snyder, L.R., Kirkland, J.J. and Glajch, J.L., 2012. Practical HPLC method development. 
John Wiley & Sons. 

Soetan KO, Oyekunle MA, Aiyelaagbe OO, Fafunso MA (2006). Evaluation of the 
antimicrobial activity of saponins extract of Sorghum bicolor L. Moench. African journal of 
Biotechnology. 5(23): 2405-2407. 

Soetan, K. O. (2008). Pharmacological and other beneficial effects of antinutritional factors 
in plants-A review. African journal of Biotechnology,7(25). 



349 
 

Solomons, N.W. and Jacob, R.A., 1981. Studies on the bioavailability of zinc in humans: 
effects of heme and nonheme iron on the absorption of zinc. The American journal of clinical 
nutrition, 34(4), pp.475-482. 

Sperotto, R.A., Ricachenevsky, F.K. and Fett, J.P., 2007. Iron deficiency in rice shoots: 
identification of novel induced genes using RDA and possible relation to leaf 
senescence. Plant cell reports, 26(8), pp.1399-1411. 

Sperotto, R.A., Ricachenevsky, F.K., Williams, L.E., Vasconcelos, M.W. and Menguer, P.K. 
eds., 2014. From soil to seed: micronutrient movement into and within the plant. Frontiers E-
books. 

Stangoulis, J.C., Huynh, B.L., Welch, R.M., Choi, E.Y. and Graham, R.D., 2007. Quantitative 
trait loci for phytate in rice grain and their relationship with grain micronutrient 
content. Euphytica, 154(3), pp.289-294. 

Steele, K.A., Price, A.H., Shashidhar, H.E. and Witcombe, J.R., 2006. Marker-assisted 
selection to introgress rice QTLs controlling root traits into an Indian upland rice 
variety. Theoretical and Applied Genetics, 112(2), pp.208-221. 

Stich, B., Haussmann, B.I., Pasam, R., Bhosale, S., Hash, C.T., Melchinger, A.E. and 
Parzies, H.K., 2010. Patterns of molecular and phenotypic diversity in pearl millet 
[Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to 
geographical and environmental parameters. BMC plant biology, 10(1), p.216. 

Stone, S.L., Hauksdóttir, H., Troy, A., Herschleb, J., Kraft, E. and Callis, J., 2005. Functional 
analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant physiology, 137(1), 
pp.13-30. 

Stringer, S., Wray, N.R., Kahn, R.S. and Derks, E.M., 2011. Underestimated effect sizes in 
GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLoS 
One, 6(11), p.e27964. 

Stuart, B., 2005. Infrared spectroscopy. John Wiley & Sons, Inc.. 

Sun, Z., Wang, X., Liu, Z., Gu, Q., Zhang, Y., Li, Z., Ke, H., Yang, J., Wu, J., Wu, L. and 

Zhang, G., 2017. Genome‐wide association study discovered genetic variation and 
candidate genes of fibre quality traits in Gossypium hirsutum L. Plant biotechnology journal, 
15(8), pp.982-996. 

Symonowicz, M. and Kolanek, M., 2012. Flavonoids and their properties to form chelate 
complexes. 

Takahashi, S., Yeo, Y.S., Zhao, Y., O'Maille, P.E., Greenhagen, B.T., Noel, J.P., Coates, 
R.M. and Chappell, J., 2007. Functional characterization of premnaspirodiene oxygenase, a 
cytochrome P450 catalyzing regio-and stereo-specific hydroxylations of diverse 
sesquiterpene substrates. Journal of Biological Chemistry, 282(43), pp.31744-31754. 

Tako, E., Beebe, S. E., Reed, S., Hart, J. J., & Glahn, R. P. (2014). Polyphenolic compounds 
appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris 
L.). Nutrition journal, 13(1), 1. 

Tako, E., Reed, S. M., Budiman, J., Hart, J. J., & Glahn, R. P. (2015). Higher iron pearl millet 
(Pennisetum glaucum L.) provides more absorbable iron that is limited by increased 
polyphenolic content. Nutrition journal, 14(1), 11. 

Tedman‐Jones, J.D., Lei, R., Jay, F., Fabro, G., Li, X., Reiter, W.D., Brearley, C. and Jones, 
J.D., 2008. Characterization of Arabidopsis mur3 mutations that result in constitutive 
activation of defence in petioles, but not leaves. The Plant Journal, 56(5), pp.691-703. 



350 
 

Torheim, L.E., Ferguson, E.L., Penrose, K. and Arimond, M., 2010. Women in resource-poor 
settings are at risk of inadequate intakes of multiple micronutrients. The Journal of 
nutrition, 140(11), pp.2051S-2058S. 

Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F. and 
Komeda, Y., 1996. The Arabidopsis ERECTA gene encodes a putative receptor protein 
kinase with extracellular leucine-rich repeats. The Plant Cell, 8(4), pp.735-746. 

Turnlund, J.R., King, J.C., Keyes, W.R., Gong, B. and Michel, M.C., 1984. A stable isotope 
study of zinc absorption in young men: effects of phytate and alpha-cellulose. The American 
journal of clinical nutrition, 40(5), pp.1071-1077. 

Uehlein, N., Lovisolo, C., Siefritz, F. and Kaldenhoff, R., 2003. The tobacco aquaporin 
NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 425(6959), pp.734-
737. 

Ullah, A., Ahmad, A., Khaliq, T. and Akhtar, J., 2016. Recognizing production options for 
pearl millet in Pakistan under changing climate scenarios. 

Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K., 
2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-
dependent signal transduction pathway under drought and high-salinity 
conditions. Proceedings of the National Academy of Sciences, 97(21), pp.11632-11637. 

Upadhyaya, H.D., Bajaj, D., Das, S., Kumar, V., Gowda, C.L.L., Sharma, S., Tyagi, A.K. and 
Parida, S.K., 2016. Genetic dissection of seed-iron and zinc concentrations in 
chickpea. Scientific reports, 6. 

Upadhyaya, H.D., Pundir, R.P.S., Dwivedi, S.L. and Gowda, C.L.L., 2009. Mini Core 
Collections for Efficient Utilization of Plant Genetic Resources in Crop Improvement 
Programs. Information Bulletin No. 78. International Crops Research Institute for the Semi-
Arid Tropics. 

Urbano, G., Lopez-Jurado, M., Aranda, P., Vidal-Valverde, C., Tenorio, E. and Porres, J., 
2000. The role of phytic acid in legumes: antinutrient or beneficial function?. Journal of 
physiology and biochemistry, 56(3), pp.283-294. 

Van, A.E. and Young, A.E., 2014. Prevalence and impacts of genetically engineered 
feedstuffs on livestock populations. Journal of animal science, 92(10), pp.4255-4278. 

Varshney, R.K., Hoisington, D.A. and Tyagi, A.K., 2006. Advances in cereal genomics and 
applications in crop breeding. Trends in biotechnology, 24(11), pp.490-499. 

Varshney, R.K., Ribaut, J.M., Buckler, E.S., Tuberosa, R., Rafalski, J.A. and Langridge, P., 
2012. Can genomics boost productivity of orphan crops?. Nature Biotechnology, 30(12), 
pp.1172-1176. 

Varshney, R.K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., 
Wang, X., Rathore, A. and Srivastava, R.K., 2017. Pearl millet genome sequence provides a 
resource to improve agronomic traits in arid environments. Nature Biotechnology, pp.1-13. 

Vasil, V. and Vasil, I.K., 1981. Somatic embryogenesis and plant regeneration from tissue 
cultures of Pennisetum americanum, and P. americanum x P. purpureum hybrid. American 
Journal of Botany, pp.864-872. 

Velu, G., Bhattacharjee, R., Rai, K.N., Sahrawat, K.L. and Longvah, T., 2008. A simple and 
rapid screening method for grain zinc content in pearl millet. Journal of SAT Agricultural 
Research, 6, pp.1-4. 

Velu, G., Rai, K.N., Muralidharan, V., Kulkarni, V.N., Longvah, T. and Raveendran, T.S., 
2007. Prospects of breeding biofortified pearl millet with high grain iron and zinc 
content. Plant Breeding, 126(2), pp.182-185. 



351 
 

Velu, G., Rai, K.N., Muralidharan, V., Longvah, T. and Crossa, J., 2011. Gene effects and 
heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. 
Br). Euphytica, 180(2), pp.251-259. 

Viana, J.M.S., Mundim, G.B., Silva, F.F. and Garcia, A.A.F., 2016. Efficiency of genome-
wide association study in open-pollinated populations. bioRxiv, p.050955. 
Vom Brocke, K., Christinck, A., Weltzien, R.E., Presterl, T. and Geiger, H.H., 2003. Farmers' 
seed systems and management practices determine pearl millet genetic diversity patterns in 
semiarid regions of India. Crop Science, 43(5), pp.1680-1689. 

Voorrips, R.E., 2002. MapChart: software for the graphical presentation of linkage maps and 

QTLs. Journal of heredity, 93(1), pp.77-78. 

Vos, P.G., Paulo, M.J., Voorrips, R.E., Visser, R.G., van Eck, H.J. and van Eeuwijk, F.A., 
2017. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array 
data of tetraploid potato. Theoretical and Applied Genetics, 130(1), pp.123-135. 

Vreugdenhil, D., Aarts, M.G.M., Koornneef, M., Nelissen, H. and Ernst, W.H.O., 2004. 
Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis 
thaliana. Plant, Cell & Environment, 27(7), pp.828-839. 

Vukics, V., & Guttman, A. (2010). Structural characterization of flavonoid glycosides by 
multi‐stage mass spectrometry. Mass Spectrometry Reviews,29(1), 1-16. 

Walker, D.R., Scaboo, A.M., Pantalone, V.R., Wilcox, J.R. and Boerma, H.R., 2006. Genetic 
mapping of loci associated with seed phytic acid content in CX1834-1-2 soybean. Crop 
science, 46(1), pp.390-397. 

Wang, H., Qi, Q., Schorr, P., Cutler, A.J., Crosby, W.L. and Fowke, L.C., 1998. ICK1, a 

cyclin‐dependent protein kinase inhibitor fromArabidopsis thalianainteracts with both Cdc2a 
and CycD3, and its expression is induced by abscisic acid. The Plant Journal, 15(4), pp.501-
510. 

Wang, H., Zhou, Y., Gilmer, S., Whitwill, S. and Fowke, L.C., 2000. Expression of the plant 

cyclin‐dependent kinase inhibitor ICK1 affects cell division, plant growth and 
morphology. The Plant Journal, 24(5), pp.613-623. 

Wang, Z., Zhao, X., Wang, B., Liu, E., Chen, N., Zhang, W. and Liu, H., 2016. 
Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, 
affects plant growth and reduces plant tolerance to drought and salt stresses. Biochemical 
and biophysical research communications, 472(2), pp.353-359. 

Welch, R.M. and Graham, R.D., 2004. Breeding for micronutrients in staple food crops from 
a human nutrition perspective. Journal of experimental botany, 55(396), pp.353-364. 

White, P.J. and Broadley, M.R., 2009. Biofortification of crops with seven mineral elements 
often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and 
iodine. New Phytologist, 182(1), pp.49-84. 

White, P.J. and Broadley, M.R., 2011. Physiological limits to zinc biofortification of edible 
crops. Frontiers in plant science, 2, p.80. 

Williamson, G., & Manach, C. (2005). Bioavailability and bioefficacy of polyphenols in 
humans. II. Review of 93 intervention studies. The American journal of clinical 
nutrition, 81(1), 243S-255S. 

Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, 
cell biology, and biotechnology. Plant physiology, 126(2), pp.485-493. 

World Health Organization, 2001, Geneva, 2001, Iron deficiency anaemia assessment, 
prevention, and control: a guide for programme managers 



352 
 

World Health Organization, 2008. Worldwide prevalence of anaemia 1993-2005: WHO 
global database on anaemia. 

World Health Organization, Food and Agricultural Organization of the United Nations (2006). 
Guidelines on Food Fortification with Micronutrients. Available at: 
http://www.who.int/nutrition/publications/micronutrients/9241594012/en/ (accessed 
December 15, 2016). 

Wu, J., Li, L.T., Li, M., Khan, M.A., Li, X.G., Chen, H., Yin, H. and Zhang, S.L., 2014. High-
density genetic linkage map construction and identification of fruit-related QTLs in pear using 
SNP and SSR markers. Journal of experimental botany, 65(20), pp.5771-5781. 

Wu, J., Yuan, Y.X., Zhang, X.W., Zhao, J., Song, X., Li, Y., Li, X., Sun, R., Koornneef, M., 
Aarts, M.G. and Wang, X.W., 2008. Mapping QTLs for mineral accumulation and shoot dry 
biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. 
pekinensis). Plant and Soil, 310(1-2), pp.25-40. 

Wu, Y., Fan, H., Wang, Y., Zhang, L., Gao, X., Chen, Y., Li, J., Ren, H. and Gao, H., 2014. 
Genome-wide association studies using haplotypes and individual SNPs in Simmental 
cattle. PloS one, 9(10), p.e109330. 

Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S. 1995. Bioavailability of soybean 
isoflavones depends upon gut microflora in women. Journal of Nutrition. 125:2307–15 

Xu, X. (1995). Human bioavailability and health protective effects of soy isoflavones. 

Yadav, O.P. and Rai, K.N., 2013. Genetic improvement of pearl millet in India. Agricultural 
Research, 2(4), pp.275-292. 

Yadav, R.S., Sehgal, D. and Vadez, V., 2010. Using genetic mapping and genomics 
approaches in understanding and improving drought tolerance in pearl millet. Journal of 
experimental botany, 62(2), pp.397-408. 

Yang, A.H., Shi, X.Y., Li, X., Li, F.F., Zhang, Q.Q., Jiang, S.X., Cui, J.Z. and Gao, H.L., 
2014. Spectroscopic and electrochemical studies on the evaluation of the radical scavenging 
activities of luteolin by chelating iron. RSC Advances, 4(48), pp.25227-25233. 

You J, Wang X, Yan Y, Jin F, Huang B (1993). Effects of active constituents of Chinese 
herbal medicine on HMG-CA Reductase. Chemical Abstracts. 120(7): 70. 

Zhang, J., Chen, K., Pang, Y., Naveed, S.A., Zhao, X., Wang, X., Wang, Y., Dingkuhn, M., 
Pasuquin, J., Li, Z. and Xu, J., 2017. QTL mapping and candidate gene analysis of ferrous 
iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association 
study. BMC genomics, 18(1), p.828. 

Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., Xie, M., Zeng, P., Yue, Z., Wang, 
W. and Tao, Y., 2012. Genome sequence of foxtail millet (Setaria italica) provides insights 
into grass evolution and biofuel potential. Nature biotechnology, 30(6), p.549. 

Živanović, T., Branković, G., Zorić, M., Momirović, G.Š., Janković, S., Vasiljević, S. and 
Pavlov, J., 2012. Effect of recombination in the maize breeding population with exotic 
germplasm on the yield stability. Euphytica, 185(3), pp.407-417. 

Zollman, S., Godt, D., Prive, G.G., Couderc, J.L. and Laski, F.A., 1994. The BTB domain, 
found primarily in zinc finger proteins, defines an evolutionarily conserved family that 
includes several developmentally regulated genes in Drosophila. Proceedings of the 
National Academy of Sciences, 91(22), pp.10717-10721. 

 

 



353 
 

Chapter 10: Appendices 

Table 10.1: PMiGAP passport data. 

Entry Genotype Origin 

1001 IP 10820 Sudan 

1002 IP 10964 Kenya 

1006 IP 9407 Ghana 

1007 IP 20349 Yemen 

1008 IP 11229 Zimbabwe 

1009 IP 13370 Tanzania 

1010 IP 11353 Burkina Faso 

1012 IP 18157 Mali 

1013 IP 13964 Zimbabwe 

1014 IP 4965 Uganda 

1015 ICMB 90111-P6 ICRISAT- Patencheru 

1016 IP 17690 Togo 

1017 IP 6101 Niger 

1018 IP 10488 Zimbabwe 

1019 IP 13149 Niger 

1020 IP 15533 Burkina Faso 

1021 IP 10140 Mali 

1022 IP 12925 Unknown 

1023 IP 3890 India 

1024 IP 11677 Sudan 

1025 IP 11984 Nigeria 

1026 IP 3175 India 

1027 W 504-1-P1 India 

1028 IP 22455 ICRISAT- Patencheru 

1029 IP 16096 India 

1030 IP 6060 Central African Republic 

1031 IP 7633 India 

1032 IP 19386 Namibia 

1033 IP 6112 Niger 

1035 IP 3757 India 

1036 IP 18147 Pakistan 

1037 IP 19448 Namibia 

1038 ICMS 7703 ICRISAT- Patencheru 

1039 IP 11577 Burkina Faso 

1040 GB 8735 ICRISAT- Patencheru 

1042 OKASHANA (ICMV 88908) ICRISAT- Patencheru 

1043 IP 9446 Ghana 

1044 IP 21155 USA 

1045 IP 11211 India 

1046 IP6745 Malawi 

1048 IP 10705 Mali 
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1049 GICKV 93191 (=ICMP 93191) India 

1050 AIMP 92901 India 

1051 IP 18132 Pakistan 

1052 PRLT 2/89-33 ICRISAT- Patencheru 

1053 IP4020 India 

1054 IP 13971 Zimbabwe 

1055 IP 8767 Botswana 

1057 863B-P2 ICRISAT- Patencheru 

1058 ICTP 8203 ICRISAT- Patencheru 

1059 IP4542 India 

1060 IP17720 Togo 

1061 H 77/833-2-P5 (NT) ICRISAT- Patencheru 

1062 843B ICRISAT- Patencheru 

2001 IP 6102 Niger 

2002 IP 3616 India 

2003 IP 18389 Namibia 

2004 IP 9824 Mozambique 

2005 IP 18293-P152 Unknown 

2006 IP 22419 ICRISAT- Patencheru 

2007 IP 11765 South Africa 

2008 IP 6869 Kenya 

2010 IP 10394 India 

2011 IP 21517 Niger 

2012 ICMV-IS 92222 ICRISAT- Patencheru 

2013 IP 12839 Botswana 

2014 IP 3732 India 

2015 IP 8210 ICRISAT- Patencheru 

2016 IP 7108 India 

2017 IP 5272 Niger 

2018 IP 7910 Niger 

2019 IP 9391 Ghana 

2020 IP 3471 India 

2021 IP 3636 India 

2022 IP 9710 Nigeria 

2023 IP 3132 India 

2024 IP 6037 Central African Republic 

2025 IP 5713 Nigeria 

2026 IP 6146 Cameroon 

2027 ICMB89111-P2 ICRISAT- Patencheru 

2029 IP 6460 Mali 

2030 ICMV 221= ICMV88904 ICRISAT- Patencheru 

2031 IP 4979 Nigeria 

2032 IP 9351 Ghana 

2033 IP 10539 Senegal 

2035 IP 11310 Burkina Faso 
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2036 IP 15344 India 

2037 IP 12058 Nigeria 

2038 IP 19626 Niger 

2039 Tift 186 USA 

2040 IP 16403 Zimbabwe 

2041 IP 2058 Nigeria 

2043 IP 12845 Burkina Faso 

2044 IP 5695 Nigeria 

2045 IP 4962 Uganda 

2046 IP 15320 India 

2048 IP 8280 ICRISAT- Patencheru 

2050 IP 3557 India 

2051 IP 10271 Nigeria 

2052 IP 8761 Botswana 

2053 IP 9532 Ghana 

2054 IP 8955 Togo 

2057 IP 8344 India 

2058 IP 8275 ICRISAT- Patencheru 

2059 IP 10379 Nigeria 

2060 IP 7095 India 

2061 IP 9406 Ghana 

2062 IP 17554 Togo 

2063 IP 11311 Burkina Faso 

3001 IP8166 ICRISAT- Patencheru 

3002 IP 9969 Zambia 

3003 IP 10543 Mali 

3004 IP 7930 ICRISAT- Patencheru 

3005 WSIL-P8 ICRISAT- Patencheru 

3006 IP 18090 Pakistan 

3007 P 1449-2-P1 Unknown 

3008 IP 4927 Senegal 

3009 IP 6882 Kenya 

3010 IP 5253 Niger 

3011 IP 18500 Namibia 

3012 IP 8863 Zambia 

3013 IP 11346 Burkina Faso 

3014 IP 8069 India 

3015 IP 4828 India 

3016 IP 19584 Niger 

3017 IP 5207 Niger 

3018 IP 11275 Burkina Faso 

3019 SOSAT-C88 ICRISAT- Patencheru 

3020 IP6417 Mali 

3021 IP 14439 Cameroon 

3022 IP 9651 Nigeria 
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3023 LGD1-B-10 Unknown 

3024 IP 5131 Niger 

3025 IP 8187 ICRISAT- Patencheru 

3026 WC-C75 ICRISAT- Patencheru 

3027 81-B-P6 ICRISAT- Patencheru 

3028 IP 13927 Zimbabwe 

3029 IP 12967 Malawi 

3030 ICMP 451-P8 ICRISAT- Patencheru 

3031 ICMP 85410-P7 ICRISAT- Patencheru 

3032 IP 15872 Tanzania 

3033 IP 9971 Zambia 

3034 IP 22420 ICRISAT- Patencheru 

3035 IP 8074 ICRISAT- Patencheru 

3036 Tift 383 USA 

3038 IP 13817 Burkina Faso 

3039 IP 13180 Nigeria 

3041 IP 10701 Mali 

3042 IP 21169 ICRISAT- Patencheru 

3043 IP 8129 ICRISAT- Patencheru 

3044 ICMP 451-P6 ICRISAT- Patencheru 

3045 IP 11593 Burkina Faso 

3046 IP 10471 Zimbabwe 

3047 IP 7952 ICRISAT- Patencheru 

3048 IP 9282 Togo 

3049 IP 17611 Togo 

3050 IP 7886 India 

3051 ICMV-IS 89305 ICRISAT- Patencheru 

3052 Raj 171 (ICMV 85404=RBC-IC 9) ICRISAT- Patencheru 

3053 IP 13384 Uganda 

3054 IP 13344 Sudan 

3055 IP 16638 Zimbabwe 

3056 IP 8972 Togo 

3057 IP 7967 ICRISAT- Patencheru 

3058 IP 5441 Niger 

3059 IP 16289 Zimbabwe 

3060 IP 6682 Malawi 

3061 IP 3138 India 

3062 IP 11584 Burkina Faso 

3063 IP 8172 ICRISAT- Patencheru 

4001 IP 11218 Zimbabwe 

4002 IP 18412 Namibia 

4003 IP 8174 ICRISAT- Patencheru 

4004 IP 6110 Niger 

4005 IP 5438 Niger 

4006 IP 11378 Burkina Faso 
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4007 IP 13608 India 

4008 IP 8647 Sudan 

4009 IP 7364 Tanzania 

4010 IP 10759 Sudan 

4011 IP 15536 Burkina Faso 

4012 IP 6125 Cameroon 

4013 IP 14624 Cameroon 

4014 IP 12020 Nigeria 

4015 IP 13290 Senegal 

4016 IP 11763 South Africa 

4017 IP 13520 India 

4019 IP 12128 Nigeria 

4020 IP 14311 Cameroon 

4021 IP 15857 Tanzania 

4022 IP 12364 Nigeria 

4023 IP 18292 ICRISAT- Patencheru 

4024 IP 13840 Burkina Faso 

4025 IP 5931 Senegal 

4027 IP 11929 Sierra Leone 

4028 IP 10945 Sudan 

4029 IP 7941 ICRISAT- Patencheru 

4030 IP 17150 Zimbabwe 

4031 IP 13459 India 

4032 IP 8182 ICRISAT- Patencheru 

4033 IP 14849 Cameroon 

4034 IP 5900 Senegal 

4035 IP 19334 Namibia 

4036 IP 3110 India 

4037 IP 7536 India 

4038 IP 12395 South Africa 

4039 IP 14418 Cameroon 

4040 IP 17493 Togo 

4041 IP 6415 Mali 

4042 IP 16120 India 

4043 IP 5560 Niger 

4044 IP 12138 Nigeria 

4045 IP15512 Burkina Faso 

4046 IP 10579 Mali 

4048 IP 13324 Sudan 

4049 IP 19405 Chad 

4050 IP 17125 Zimbabwe 

4051 IP 5031 Nigeria 

4052 IP 11358 Burkina Faso 

4053 IP 7660 India 

4054 IP 15553 Burkina Faso 
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4055 IP 18168 Burkina Faso 

4056 IP 13363 Tanzania 

4057 IP 6310 Mali 

4058 IP 20679 Nigeria 

4059 IP 10339 Nigeria 

4060 IP 3201 India 

4061 P 310-17-B ICRISAT- Patencheru 

4062 IP 14148 Zimbabwe 

4063 IP 4952 Uganda 
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Table 10.2: October 2014 seed multiplication trial, seed emergence per day (Section 2.4.1).  

Genotype IP. No. Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

1001 IP 10820 1 4 6 6 7 7 7 7 

1002 IP 10964 0 5 6 7 8 8 8 8 

1006 IP 9407 0 9 9 9 9 9 9 9 

1007 IP 20349 0 7 8 9 9 9 10 10 

1008 IP 11229 3 8 9 9 9 9 9 9 

1009 IP 13370 2 5 5 5 5 5 5 5 

1010 IP 11353 1 2 7 9 9 9 9 9 

1012 IP 18157 0 6 8 9 9 9 9 9 

1013 IP 13964 0 1 1 1 1 1 1 1 

1014 IP 4965 3 8 10 10 10 10 10 10 

1015 ICMB 90111-P6 0 7 7 7 7 7 7 7 

1016 IP 17690 4 4 9 9 9 9 9 9 

1017 IP 6101 0 2 2 4 5 5 5 5 

1018 IP 10488 0 3 4 4 4 5 5 5 

1019 IP 13149 2 7 10 10 10 10 10 10 

1020 IP 15533 3 9 9 9 9 9 9 9 

1021 IP 10140 3 6 7 9 9 9 9 10 

1022 IP 12925 3 5 5 5 5 5 5 7 

1023 IP 3890 0 4 8 8 8 8 8 8 

1024 IP 11667 0 1 1 1 1 1 1 1 

1025 IP 11984 0 6 6 6 6 6 7 7 

1026 IP 3175 0 6 7 8 8 8 8 8 

1027 W 504-1-P1 0 6 7 7 7 7 7 7 
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1028 IP 22455 0 1 7 7 7 7 7 8 

1029 IP 16096 0 6 8 10 10 10 10 10 

1030 IP 6060 0 8 9 9 9 9 9 9 

1031 IP 7633 0 3 3 3 5 6 6 6 

1032 IP 19386 1 5 6 7 8 8 8 8 

1033 IP 6112 1 2 4 5 6 6 6 7 

1035 IP 3757 1 5 5 7 7 7 7 7 

1036 IP 18147 1 4 5 7 7 7 8 9 

1037 IP 19448 1 1 2 4 5 6 6 6 

1038 ICMS 7703 0 9 10 10 10 10 10 10 

1039 IP 11577 0 0 6 8 8 8 8 8 

1040 GB 8735 3 5 8 9 9 9 9 9 

1042 OKASHANA (ICMV 88908) 3 3 5 8 9 9 9 9 

1043 IP 9446 3 3 5 6 6 6 6 6 

1044 IP 21155 6 9 9 10 10 10 10 10 

1045 IP 11211 0 2 4 4 4 4 4 4 

1046 IP6745 0 2 4 5 8 9 9 9 

1048 IP 10705 6 8 8 9 9 9 9 9 

1049 GICKV 93191 (=ICMP 93191) 0 6 6 7 8 8 8 8 

1050 AIMP 92901 3 9 9 9 9 9 9 9 

1051 IP 18132 1 7 7 8 9 9 9 9 

1052 PRLT 2/89-33 1 9 9 9 9 9 9 9 

1053 IP4020 1 3 3 3 4 4 4 4 

1054 IP 13971 1 5 6 6 6 6 6 6 

1055 IP 8767 0 3 3 3 3 3 3 4 

1057 863B-P2 0 3 3 3 3 3 3 3 
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1058 ICTP 8203 0 6 8 8 8 8 8 8 

1059 IP4542 0 2 2 2 2 2 2 2 

1060 IP17720 0 4 8 8 9 9 9 9 

1061 H 77/833-2-P5 (NT) 0 8 10 10 10 10 10 10 

1062 843B 0 7 7 7 8 8 8 8 

2001 IP 6102 2 4 6 7 7 7 7 7 

2002 IP 3616 1 1 4 5 5 7 7 7 

2003 IP 18389 0 1 9 10 10 10 10 10 

2004 IP 9824 0 4 9 9 9 9 9 9 

2005 IP 18293-P152 0 4 4 4 5 5 5 5 

2006 IP 22419 0 3 5 8 8 8 8 8 

2007 IP 11765 3 6 10 10 10 10 10 10 

2008 IP 6869 3 7 7 7 7 7 7 8 

2010 IP 10394 0 2 2 2 2 2 3 3 

2011 IP 21517 0 7 8 8 8 8 8 8 

2012 ICMV-IS 92222 0 0 0 1 1 2 2 2 

2013 IP 12839 4 8 8 8 8 8 8 8 

2014 IP 3732 4 4 5 5 8 8 8 8 

2015 IP 8210 0 3 6 7 8 9 9 9 

2016 IP 7108 0 1 7 8 9 9 9 9 

2017 IP 5272 4 6 7 7 9 9 9 9 

2018 IP 7910 0 2 6 7 7 7 7 7 

2019 IP 9391 0 1 1 1 5 6 6 6 

2020 IP 3471 4 4 6 6 6 7 7 8 

2021 IP 3636 1 3 4 5 5 5 5 6 

2022 IP 9710 4 7 7 8 8 10 10 10 
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2023 IP 3132 0 0 3 7 7 7 8 8 

2024 IP 6037 0 3 6 9 9 10 10 10 

2025 IP 5713 0 1 2 2 2 2 2 2 

2026 IP 6146 0 6 6 8 9 10 10 10 

2027 ICMB89111-P2 1 5 8 9 8 9 9 9 

2029 IP 6460 0 8 10 10 10 10 10 10 

2030 ICMV 221= ICMV88904 2 8 10 10 10 10 10 10 

2031 IP 4979 0 3 4 6 6 7 7 7 

2032 IP 9351 2 2 6 7 7 7 7 8 

2033 IP 10539 0 3 6 8 8 9 9 10 

2035 IP 11310 1 7 10 10 10 10 10 10 

2036 IP 15344 0 6 9 9 10 10 10 10 

2037 IP 12058 5 7 8 8 9 9 9 10 

2038 IP 19626 0 2 2 3 5 5 6 6 

2039 Tift 186 0 5 6 6 7 7 7 7 

2040 IP 16403 0 0 1 1 1 1 1 1 

2041 IP 2058 0 7 7 8 8 8 8 8 

2043 IP 12845 0 4 5 9 9 9 9 9 

2044 IP 5695 2 9 10 10 10 10 10 10 

2045 IP 4962 2 5 8 8 9 10 10 10 

2046 IP 15320 0 0 0 0 0 0 0 0 

2048 IP 8280 5 6 6 6 6 7 7 8 

2050 IP 3557 7 10 10 10 10 10 10 10 

2051 IP 10271 0 2 2 2 2 3 3 3 

2052 IP 8761 0 1 2 3 3 3 3 3 

2053 IP 9532 0 9 9 9 9 9 9 9 
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2054 IP 8955 0 4 4 8 8 8 8 8 

2057 IP 8344 0 2 3 3 3 3 3 3 

2058 IP 8275 0 4 4 5 6 6 6 6 

2059 IP 10379 8 10 10 10 10 10 10 10 

2060 IP 7095 0 1 1 7 7 7 7 7 

2061 IP 9406 0 3 5 5 7 7 7 7 

2062 IP 17554 0 9 10 10 10 10 10 10 

2063 IP 11311 0 3 2 4 4 4 4 4 

3001 IP8166 1 1 1 1 1 1 1 1 

3002 IP 9969 7 7 9 9 9 9 9 9 

3003 IP 10543 6 9 10 10 10 10 10 10 

3004 IP 7930 0 3 4 4 4 4 4 4 

3005 WSIL-P8 0 0 2 3 3 3 3 3 

3006 IP 18090 0 0 0 0 0 0 0 0 

3007 P 1449-2-P1 2 6 9 9 9 9 9 9 

3008 IP 4927 1 3 5 6 6 6 6 6 

3009 IP 6882 1 2 6 7 7 7 7 7 

3010 IP 5253 1 5 9 9 9 9 9 9 

3011 IP 18500 7 8 8 9 9 10 10 10 

3012 IP 8863 0 2 3 3 4 4 4 4 

3013 IP 11346 0 1 3 3 3 3 3 4 

3014 IP 8069 0 4 8 8 9 9 9 9 

3015 IP 4828 0 2 2 2 2 3 3 3 

3016 IP 19584 0 5 6 6 6 7 7 7 

3017 IP 5207 2 3 4 6 6 6 6 7 

3018 IP 11275 2 5 6 6 7 7 7 8 
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3019 SOSAT-C88 0 8 10 10 10 10 10 10 

3020 IP6417 0 4 8 9 10 10 10 10 

3021 IP 14439 0 4 6 6 6 6 6 6 

3022 IP 9651 0 2 6 6 8 8 8 8 

3023 LGD1-B-10 0 3 7 8 8 8 8 8 

3024 IP 5131 0 7 8 8 8 8 8 8 

3025 IP 8187 2 9 10 10 10 10 10 10 

3026 WC-C75 0 4 7 7 9 9 9 9 

3027 81-B-P6 0 3 6 6 7 7 7 7 

3028 IP 13927 0 5 9 9 10 10 10 10 

3029 IP 12967 4 7 9 9 9 9 9 9 

3030 ICMP 451-P8 0 3 4 4 5 5 5 5 

3031 ICMP 85410-P7 0 1 6 6 6 6 6 6 

3032 IP 15872 0 2 2 2 2 2 2 2 

3033 IP 9971 0 0 3 5 5 5 5 5 

3034 IP 22420 1 4 6 6 7 7 7 7 

3035 IP 8074 1 7 8 8 9 9 9 9 

3036 Tift 383 0 5 5 5 5 5 5 5 

3038 IP 13817 0 5 6 7 7 7 7 7 

3039 IP 13180 0 8 10 10 10 10 10 10 

3041 IP 10701 3 7 10 10 10 10 10 10 

3042 IP 21169 0 4 8 8 9 9 9 9 

3043 IP 8129 0 6 8 8 8 8 8 8 

3044 ICMP 451-P6 0 5 6 6 6 6 6 6 

3045 IP 11593 0 3 6 6 6 6 6 6 

3046 IP 10471 0 6 7 7 7 7 7 7 
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3047 IP 7952 0 5 6 6 7 7 7 7 

3048 IP 9282 0 0 0 0 0 0 0 0 

3049 IP 17611 0 5 7 7 8 8 8 8 

3050 IP 7886 0 3 4 4 4 4 4 4 

3051 ICMV-IS 89305 6 9 10 10 10 10 10 10 

3052 Raj 171 0 3 4 4 9 9 9 9 

3053 IP 13384 0 8 10 10 10 10 10 10 

3054 IP 13344 0 1 1 1 1 1 1 1 

3055 IP 16638 0 5 8 8 8 8 8 8 

3056 IP 8972 0 9 10 10 10 10 10 10 

3057 IP 7967 0 3 4 4 7 7 7 7 

3058 IP 5441 0 3 4 6 7 7 7 7 

3059 IP 16289 2 8 8 8 9 9 9 9 

3060 IP 6682 2 6 10 10 10 10 10 10 

3061 IP 3138 0 5 6 6 8 8 8 8 

3062 IP 11584 0 6 7 7 9 9 9 9 

3063 IP 8172 0 3 8 8 8 8 8 8 

4001 IP 11218 0 1 3 3 4 4 4 4 

4002 IP 18412 0 1 3 3 6 6 6 6 

4003 IP 8174 0 2 6 6 7 7 7 7 

4005 IP 5438 1 1 2 2 2 2 2 2 

4006 IP 11378 3 7 8 8 8 8 8 8 

4007 IP 13608 0 0 2 2 2 2 2 2 

4008 IP 8647 1 5 7 7 7 7 7 7 

4009 IP 7364 0 1 3 3 3 3 3 3 

4010 IP 10759 0 5 9 9 9 9 9 9 
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4011 IP 15536 0 4 7 7 9 9 9 9 

4012 IP 6125 0 1 5 5 6 6 6 6 

4013 IP 14624 8 9 9 9 9 9 9 9 

4014 IP 12020 0 4 6 6 9 9 9 9 

4015 IP 13290 0 4 5 5 8 8 8 8 

4016 IP 11763 3 8 8 8 8 8 8 8 

4017 IP 13520 0 5 8 8 8 8 8 8 

4019 IP 12128 0 3 6 6 8 8 8 8 

4020 IP 14311 0 1 3 3 5 5 5 5 

4021 IP 15857 0 5 9 9 9 9 9 9 

4022 IP 12364 0 3 7 7 7 7 7 7 

4023 IP 19292 1 4 7 7 7 7 7 7 

4024 IP 13840 2 4 7 7 10 10 10 10 

4025 IP 5931 0 4 8 8 8 8 8 8 

4027 IP 11929 1 4 6 6 8 8 8 8 

4028 IP 10945 0 0 0 0 0 0 0 0 

4029 IP 7941 3 8 8 8 8 8 8 8 

4030 IP 17150 2 5 7 7 8 8 8 8 

4031 IP 13459 1 8 8 8 9 9 9 9 

4032 IP 8182 0 3 6 6 8 8 8 8 

4033 IP 14849 0 2 3 3 6 6 6 6 

4034 IP 5900 0 0 3 3 9 9 9 9 

4035 IP 19334 1 6 6 6 6 6 6 6 

4036 IP 3110 0 2 4 4 6 6 6 6 

4037 IP 7536 0 2 4 4 5 5 5 5 

4038 IP 12395 0 4 8 8 8 8 8 8 
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4039 IP 14418 0 3 4 4 4 4 4 4 

4040 IP 17493 1 4 9 9 10 10 10 10 

4041 IP 6415 0 0 2 3 4 4 4 4 

4042 IP 16120 0 3 7 7 7 7 7 7 

4043 IP 5560 1 5 6 7 7 7 7 7 

4044 IP 12138 0 1 2 2 5 5 5 5 

4045 IP15512 0 3 7 8 8 8 8 8 

4046 IP 10579 0 1 5 5 5 5 5 5 

4048 IP 13324 1 3 3 3 3 3 3 3 

4049 IP 19405 0 1 3 8 8 8 8 8 

4050 IP 17125 0 2 6 8 8 8 8 8 

4051 IP 5031 0 3 5 5 5 5 5 5 

4052 IP 11358 0 3 6 6 6 6 6 6 

4053 IP 7660 0 0 1 4 4 4 4 4 

4054 IP 15553 0 6 9 9 9 9 9 9 

4055 IP 18168 2 7 8 8 8 8 8 8 

4056 IP 13363 0 7 8 8 8 8 8 8 

4057 IP 6310 0 0 5 5 5 5 5 5 

4058 IP 20679 0 1 6 7 7 7 7 7 

4059 IP 10339 0 0 3 3 3 3 3 3 

4060 IP 3201 0 1 3 3 3 3 3 3 

4061 P 310-17-B 0 1 7 8 8 8 8 8 

4062 IP 14148 0 4 6 7 7 7 7 7 

4063 IP 4952 0 0 3 4 5 5 5 5 
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Table 10.3: Seed yield - October 2014, February 2015 and August 2015 growth trials (Section 2.4.2). 

Genotype SMT1 S SMT1 OP SMT2 S SMT2 OP SMT3 S SMT3 OP Total S Total OP Total S+OP 

1001 0 0 0 0 11.09 0 11.09 0 11.09 

1002 0 4.7 3.96 19.16 15.05 3.65 19.01 27.51 46.52 

1006 0 7.56 23.44 11.5 13.03 1.09 36.47 20.15 56.62 

1007 6.66 0.44 0 0 0 13.75 6.66 14.19 20.85 

1008 0.13 3.76 6.63 5.48 6.8 2.64 13.56 11.88 25.44 

1009 2.9 5.41 13.96 3.22 31.24 8.52 48.1 17.15 65.25 

1010 0 0.9 7.14 23.59 2.84 12.24 9.98 36.73 46.71 

1012 1.1 4.12 9.49 0 6.37 0 16.96 4.12 21.08 

1013 0 0.38 8.8 0 8.61 2.59 17.41 2.97 20.38 

1014 1.6 5.69 16.67 28.98 17.2 2.3 35.47 36.97 72.44 

1015 0.86 8.48 10.45 18.64 14.85 4.15 26.16 31.27 57.43 

1016 3.28 0 25.69 2.28 4.09 0 33.06 2.28 35.34 

1017 0 0 3.6 0 3.94 2.04 7.54 2.04 9.58 

1018 0.16 0 3.38 0 21.87 0 25.41 0 25.41 

1019 3.43 20.92 26.4 5.67 4.59 0 34.42 26.59 61.01 

1020 0 0 0 0 0 2.52 0 2.52 2.52 

1021 2.5 13.39 3.06 0.59 1.03 0 6.59 13.98 20.57 

1022 2.77 0 15.34 0 27.44 10.18 45.55 10.18 55.73 

1023 0 0 0 0 15.4 12.63 15.4 12.63 28.03 

1024 0 1.66 0 0 0 0 0 1.66 1.66 

1025 1.05 5.08 24.33 8.17 0 0 25.38 13.25 38.63 

1026 6.6 5.15 33.33 2.8 11.66 0 51.59 7.95 59.54 

1027 0 1.45 4.37 3.54 10.76 10.54 15.13 15.53 30.66 
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1028 0 1.24 10.27 4.95 0 0 10.27 6.19 16.46 

1029 0 1.47 37.36 24.58 25.05 5.22 62.41 31.27 93.68 

1030 0.64 3.24 32.8 13.41 0 0 33.44 16.65 50.09 

1031 0 0 19.24 2.41 0 3.15 19.24 5.56 24.8 

1032 2.5 15.14 1.17 8.15 12.82 5.95 16.49 29.24 45.73 

1033 0 0 0 4.39 7.79 5.13 7.79 9.52 17.31 

1035 1.1 0 7.31 0.34 12.4 0 20.81 0.34 21.15 

1036 0 0 0 0 17.83 0 17.83 0 17.83 

1037 0 4.35 4.16 8.05 2.76 0 6.92 12.4 19.32 

1038 0 0 2.1 0 24.1 4.18 26.2 4.18 30.38 

1039 0 0 0 0 0 0 0 0 0 

1040 0 0.42 1.27 12.74 6.66 17.24 7.93 30.4 38.33 

1042 0 0 2.7 0 18.63 2.18 21.33 2.18 23.51 

1043 3.48 12.58 9.7 0.28 5.47 2.77 18.65 15.63 34.28 

1044 2.34 1.66 0 0 29 14.06 31.34 15.72 47.06 

1045 2.31 0 0 0 11.93 0 14.24 0 14.24 

1046 6.13 1.44 3.2 0 2.12 0 11.45 1.44 12.89 

1048 13.37 10.78 27.6 18.93 16 22.57 56.97 52.28 109.25 

1049 0.45 0 24.75 3.5 9.1 0 34.3 3.5 37.8 

1050 3.16 3.82 9.95 0 22.23 0 35.34 3.82 39.16 

1051 7.09 11.98 18.3 0 31.32 0 56.71 11.98 68.69 

1052 2.15 4.93 12.8 0 0 0 14.95 4.93 19.88 

1053 1.05 11.78 17.67 0 12.3 6.02 31.02 17.8 48.82 

1054 4.75 11.1 1.78 4.9 2.07 0 8.6 16 24.6 

1055 5.89 2.85 14.8 24.21 4.71 27.8 25.4 54.86 80.26 

1057 4.09 17.17 15.07 0 18.95 4.69 38.11 21.86 59.97 
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1058 0 1.06 0 0 17.3 0 17.3 1.06 18.36 

1059 6.99 0 1.95 0 7.34 0 16.28 0 16.28 

1060 2.56 1.58 12.11 0 0.99 0 15.66 1.58 17.24 

1061 1.12 2.45 7.08 2.62 17.03 2.42 25.23 7.49 32.72 

1062 0.85 1.61 0 0 10.77 0 11.62 1.61 13.23 

2001 0 0 0 0 5.15 0 5.15 0 5.15 

2002 0.02 0.87 4.08 0 7.04 0 11.14 0.87 12.01 

2003 0 0 2.89 0 0 0 2.89 0 2.89 

2004 0 0 2.36 2.72 1.31 0 3.67 2.72 6.39 

2005 0 0 1.79 10.57 4.25 0 6.04 10.57 16.61 

2006 5.78 18.81 3.06 0 10.86 6.96 19.7 25.77 45.47 

2007 0 0 10.35 1.95 0 0 10.35 1.95 12.3 

2008 0 0.9 0 0 7.4 0 7.4 0.9 8.3 

2010 0 2.79 0 0 4.18 0 4.18 2.79 6.97 

2011 6.16 0 14.28 20.63 14.48 7.2 34.92 27.83 62.75 

2012 0 0 1.67 10.76 3.02 0 4.69 10.76 15.45 

2013 0 4.7 4.9 6.25 2.84 6.63 7.74 17.58 25.32 

2014 0 18.3 12.44 9.95 7.14 0 19.58 28.25 47.83 

2015 0 0 0 0 21.08 0 21.08 0 21.08 

2016 0 0.82 0 0 0 0 0 0.82 0.82 

2017 2.12 8.3 25.19 31.03 69.12 5.31 96.43 44.64 141.07 

2018 0 0 13.4 0 8.26 3.37 21.66 3.37 25.03 

2019 3.1 5.26 3.05 10.18 1.28 0 7.43 15.44 22.87 

2020 0 0 2.19 0 0 2.94 2.19 2.94 5.13 

2021 7.35 14.73 14.01 9.19 7.75 0 29.11 23.92 53.03 

2022 5.74 25.46 9.32 0 12.32 22.48 27.38 47.94 75.32 
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2023 3.87 13.81 5.66 1.16 6.68 5.35 16.21 20.32 36.53 

2024 3.86 12.16 14.18 6.34 13 15.93 31.04 34.43 65.47 

2025 6.22 0 11.33 2.44 12.98 0 30.53 2.44 32.97 

2026 0 0 0 0 0 5.48 0 5.48 5.48 

2027 1.15 0.96 0.78 0 6.2 0 8.13 0.96 9.09 

2029 1.05 21.88 0 0 9.64 8.37 10.69 30.25 40.94 

2030 6.85 7.86 2.18 0 2.01 0 11.04 7.86 18.9 

2031 0 0 0 0 0 0 0 0 0 

2032 6.17 0 5.22 0 5.8 15.33 17.19 15.33 32.52 

2033 4.23 11.91 32.23 3.39 18.47 0 54.93 15.3 70.23 

2035 3.54 7.47 19.02 9.68 16.01 5.71 38.57 22.86 61.43 

2036 0 2.64 0 0 0 0 0 2.64 2.64 

2037 5.16 27.68 14.47 6.95 5.8 0 25.43 34.63 60.06 

2038 2.89 3.64 9.51 19.15 27.26 14.17 39.66 36.96 76.62 

2039 0 6.54 1.94 0.79 4.37 0 6.31 7.33 13.64 

2040 0 1.13 0 19.84 46.1 8.87 46.1 29.84 75.94 

2041 0.52 0 1.11 0 9.6 0 11.23 0 11.23 

2043 0 0 0 8.22 9.07 0 9.07 8.22 17.29 

2044 1.05 0.78 1.82 6.19 2.21 0 5.08 6.97 12.05 

2045 0 0 0 0 0 0 0 0 0 

2046 0 0 0 0 11.93 4.13 11.93 4.13 16.06 

2048 1.45 7.15 2.35 0.87 1.14 6.74 4.94 14.76 19.7 

2050 0 0 0 0 0 0 0 0 0 

2051 0 0 0 10.23 0 0 0 10.23 10.23 

2052 10.34 0 7.28 8.19 4.76 0 22.38 8.19 30.57 

2053 0.65 0 3.53 0 4.13 3.25 8.31 3.25 11.56 
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2054 1.46 24.05 0.44 0 0 0 1.9 24.05 25.95 

2057 0 2.5 0 0 0 0 0 2.5 2.5 

2058 0 0 0 1.88 7.31 3.99 7.31 5.87 13.18 

2059 0.53 0 7.96 5.81 11.39 3.85 19.88 9.66 29.54 

2060 3.11 2.42 10.44 7.74 5.91 0 19.46 10.16 29.62 

2061 0 0 1.87 0 0 0 1.87 0 1.87 

2062 0.37 6.04 0 20.12 3.03 12.15 3.4 38.31 41.71 

2063 1.23 4.1 3.4 14.55 6.09 0 10.72 18.65 29.37 

3001 0 0 0 7.32 1.46 0 1.46 7.32 8.78 

3002 0 0 0.9 7.47 5.65 0 6.55 7.47 14.02 

3003 0 0.78 6.68 0 0 0 6.68 0.78 7.46 

3004 0.53 4.32 5.46 11.19 5 0 10.99 15.51 26.5 

3005 0 0 1.54 0.13 7.72 4.05 9.26 4.18 13.44 

3006 0 0 0 0 0 0 0 0 0 

3007 0 0 0 0 23.92 2.69 23.92 2.69 26.61 

3008 0 0.48 9.59 0 6.11 0 15.7 0.48 16.18 

3009 3.93 1.66 4.28 10.4 41.82 0 50.03 12.06 62.09 

3010 0 0.29 0.92 16 26.99 5.35 27.91 21.64 49.55 

3011 0.34 30.2 5.05 2.74 14.61 0 20 32.94 52.94 

3012 0 0 0 0 0 0 0 0 0 

3013 0 0 2.16 0 0 0 2.16 0 2.16 

3014 0 0.48 0 0 0 0 0 0.48 0.48 

3015 2.01 2.97 0 4.99 3.18 9.55 5.19 17.51 22.7 

3016 0 0.39 0 0 10.1 0 10.1 0.39 10.49 

3017 0.42 0 0 0 19.8 3.96 20.22 3.96 24.18 

3018 0 0.32 0 0 0 0 0 0.32 0.32 
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3019 1.28 2.38 0 0 0 0 1.28 2.38 3.66 

3020 0 0 20 17.83 16.71 4.65 36.71 22.48 59.19 

3021 0 0 0 0 0 0 0 0 0 

3022 0 0 37.56 5.05 9.23 2.58 46.79 7.63 54.42 

3023 0 0 0 0 2.65 0 2.65 0 2.65 

3024 0.33 1.5 12.76 9.95 2.16 0 15.25 11.45 26.7 

3025 3.2 0.53 7.55 0 9.59 6.52 20.34 7.05 27.39 

3026 0.33 5.33 4.63 2.08 5.3 0 10.26 7.41 17.67 

3027 0 0 0 0 0.97 0 0.97 0 0.97 

3028 0 0.49 0 0 7.8 0 7.8 0.49 8.29 

3029 0.06 2.52 0 0 0 0 0.06 2.52 2.58 

3030 0 0 15.88 0 10.54 7.17 26.42 7.17 33.59 

3031 0 0 4.92 0 0 0 4.92 0 4.92 

3032 0.01 0 0 0 1.59 0 1.6 0 1.6 

3033 0 4.69 0 0 0 0 0 4.69 4.69 

3034 0 4.91 13.85 0 22.69 5.01 36.54 9.92 46.46 

3035 0 0.35 6.46 0 2.01 0 8.47 0.35 8.82 

3036 0 0 12.34 0 14.8 0 27.14 0 27.14 

3038 0 3.48 3.13 0 0 0 3.13 3.48 6.61 

3039 0 8.19 29.98 0 10.14 5.49 40.12 13.68 53.8 

3041 1.92 6.26 0 2.81 2.17 9.8 4.09 18.87 22.96 

3042 0 0 1.66 0 4.05 10.8 5.71 10.8 16.51 

3043 0 0 0 0 17.8 0 17.8 0 17.8 

3044 0 2.4 3.47 3.44 0 10.53 3.47 16.37 19.84 

3045 0 0 0 0 0 0 0 0 0 

3046 0 0 2.24 12.6 27.3 0 29.54 12.6 42.14 
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3047 0 0 0 0 14.05 6.32 14.05 6.32 20.37 

3048 0 0 0 0 0 0 0 0 0 

3049 0 4.19 9.53 0 7.6 0 17.13 4.19 21.32 

3050 0 10.63 0 0 15.73 6.65 15.73 17.28 33.01 

3051 2.18 0 8.45 33.03 53.8 0 64.43 33.03 97.46 

3052 0 0 0 0 0 0 0 0 0 

3053 0 2.22 8.88 10.03 0 10.07 8.88 22.32 31.2 

3054 0 0.71 4.11 7.9 2.85 0 6.96 8.61 15.57 

3055 0.27 0 6.65 0 0 0 6.92 0 6.92 

3056 8.28 27.29 12.23 0 17.8 0 38.31 27.29 65.6 

3057 0 15.43 22.42 6.2 12.15 2.67 34.57 24.3 58.87 

3058 0 0 0 13.97 5.06 0 5.06 13.97 19.03 

3059 1.01 1.38 7.5 6.5 3.79 0 12.3 7.88 20.18 

3060 0.73 2.14 14.2 0 17.57 0 32.5 2.14 34.64 

3061 1.27 6.58 0 0 0 13.5 1.27 20.08 21.35 

3062 0 0 0 0 0 0 0 0 0 

3063 1.56 1.67 11.53 0 6.61 3.34 19.7 5.01 24.71 

4001 0 0 0 0 0 0 0 0 0 

4002 0 0 2.46 0 0 0 2.46 0 2.46 

4003 0 26.3 14.3 6.58 4.6 0 18.9 32.88 51.78 

4004 0 0 0 0 0 0 0 0 0 

4005 0 0 0 0 0 0 0 0 0 

4006 0 0 0 0 0 0 0 0 0 

4007 0 0 0 0 0 4.3 0 4.3 4.3 

4008 0 0 7.55 0 1.59 0 9.14 0 9.14 

4009 0 0 0 0 6.56 0 6.56 0 6.56 
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4010 0 0 0 0 0 0 0 0 0 

4011 0 0 0 0 0 0 0 0 0 

4012 0 0 0 0 0 0 0 0 0 

4013 0 28.61 8.89 0 3.55 0 12.44 28.61 41.05 

4014 0 0 0 0 0 0 0 0 0 

4015 3.97 6.88 5.22 10.68 7 2.07 16.19 19.63 35.82 

4016 0.3 4 4.74 0 34.9 0 39.94 4 43.94 

4017 0 0 1.44 0 0 0 1.44 0 1.44 

4019 0 0 0 0 0 0 0 0 0 

4020 0 0 0 0 23.8 0 23.8 0 23.8 

4021 0 0 6.77 15.07 39.8 0 46.57 15.07 61.64 

4022 0 0 10.83 3.95 24.39 0 35.22 3.95 39.17 

4023 0 0 0 0 27.8 11.62 27.8 11.62 39.42 

4024 0 8 0 0 15.8 3.22 15.8 11.22 27.02 

4025 0 0 13.72 0 5.39 0 19.11 0 19.11 

4027 0 0 3.49 0 0 0 3.49 0 3.49 

4028 0 0 0 0 0 0 0 0 0 

4029 0 0 4.57 8.45 0 1.11 4.57 9.56 14.13 

4030 0.68 28.35 5.82 16.55 43.67 13.25 50.17 58.15 108.32 

4031 0 0 0 0 8.8 0 8.8 0 8.8 

4032 0 0 0 0 4.76 0 4.76 0 4.76 

4033 0 0 9.91 0 0 0 9.91 0 9.91 

4034 0 0 6.41 0 22.8 3.81 29.21 3.81 33.02 

4035 0 5.92 10.67 23.28 2.36 38.8 13.03 68 81.03 

4036 0 1.91 7.93 0 9.8 0 17.73 1.91 19.64 

4037 0 0 0 0 9.42 0 9.42 0 9.42 
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4038 0.48 2.56 0 0 9.73 10.96 10.21 13.52 23.73 

4039 0.88 3.8 0 0 20.72 2.59 21.6 6.39 27.99 

4040 0 0 0 0 0 0 0 0 0 

4041 0 0.7 0 0 0 0 0 0.7 0.7 

4042 0 0 0 0 12.76 5.94 12.76 5.94 18.7 

4043 0 0 0 0 5.8 0 5.8 0 5.8 

4044 0 0 0 0 11.31 0 11.31 0 11.31 

4045 0 0 5.55 2.73 7.8 22.98 13.35 25.71 39.06 

4046 0 0 0 0 3.81 0 3.81 0 3.81 

4048 2.43 9.74 14.13 20.58 9.4 8.32 25.96 38.64 64.6 

4049 0 6.49 0 29.51 16.55 14.17 16.55 50.17 66.72 

4050 0 1.51 3.26 10.26 0 2.9 3.26 14.67 17.93 

4051 5.66 9.07 0 0 8.8 0 14.46 9.07 23.53 

4052 0 0 0 0 0 0 0 0 0 

4053 2.34 2.54 23.27 33.42 15.64 4.09 41.25 40.05 81.3 

4054 1.66 11.34 3.79 15.89 0 0 5.45 27.23 32.68 

4055 5.85 0 0 0 25.16 0 31.01 0 31.01 

4056 2.75 4.86 21.32 5.41 0 0 24.07 10.27 34.34 

4057 0.84 0 0 0 14.01 0 14.85 0 14.85 

4058 0 0 0 0 0 0 0 0 0 

4059 0 0 0 0 0 0 0 0 0 

4060 0 0 0 0 2.37 0 2.37 0 2.37 

4061 4.4 0 17.6 17.62 37.4 0 59.4 17.62 77.02 

4062 0 0 12.73 11.44 0 0 12.73 11.44 24.17 

4063 0 0 3.99 0 3.9 0 7.89 0 7.89 

SMT 1, 2 and 3 = Seed Multiplication Trials October 2014, February 2015 and August 2015; S = Selfed; OP = Open Pollinated 
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Table 10.4: ICPAES data, 229 PMiGAP lines grown in field conditions at ICRISAT, 

2013 (Section 3.4.2). 

Analyte Ca K Mg Na Fe Zn 

Units mg/100g mg/100g mg/100g mg/100g mg/kg mg/kg 

Genotype             

1001 31.00 369.5 116.3 7.33 106.91 54.47 

1002 30.91 374.3 124.7 4.32 59.82 29.53 

1006 38.65 417.8 113.0 4.36 95.55 55.70 

1007 32.21 362.0 125.4 4.23 92.23 45.04 

1008 40.49 319.8 110.5 4.97 64.94 42.51 

1009 34.89 348.7 143.4 3.42 66.28 53.90 

1010 41.89 378.2 126.2 8.75 55.76 38.75 

1012 48.81 370.0 141.3 14.50 75.71 49.38 

1013 19.89 329.2 129.5 6.66 93.37 59.18 

1014 23.57 392.4 127.8 4.61 65.06 59.18 

1015 45.00 488.0 111.3 13.21 61.48 34.86 

1016 - - - - - - 

1017 42.38 418.0 147.0 5.31 78.25 59.56 

1018 47.67 384.9 113.0 7.17 83.60 70.74 

1019 25.23 452.9 115.3 13.09 69.32 44.79 

1020 29.09 438.5 123.5 10.62 45.52 31.32 

1021 33.49 466.8 147.5 9.84 95.99 58.38 

1022 26.98 342.9 121.7 5.02 98.96 69.76 

1023 30.06 391.2 126.5 4.20 66.90 49.53 

1024 39.73 457.1 166.7 5.05 61.26 43.46 

1025 22.92 364.5 122.8 6.65 54.39 51.95 

1026 23.04 316.4 119.0 5.59 76.30 56.30 

1027 39.94 415.2 113.2 4.32 54.68 38.28 

1028 50.16 467.0 130.3 10.41 50.61 32.83 

1029 28.98 372.0 127.5 3.73 60.13 34.97 

1030 23.99 337.2 131.2 5.07 73.23 48.73 

1031 34.53 360.6 129.0 6.28 86.25 39.45 

1032 35.03 326.2 110.6 4.66 73.70 47.16 

1033 47.17 289.2 137.1 4.55 72.62 47.31 

1035 35.87 323.9 104.3 4.13 90.24 71.22 

1036 31.81 456.7 125.8 7.51 65.70 44.28 

1037 19.87 382.6 121.2 6.83 52.03 41.00 

1038 28.48 387.6 114.5 5.12 43.69 33.79 

1039 35.69 519.6 116.7 6.37 45.18 34.12 

1040 23.16 383.3 132.4 4.22 102.88 69.40 

1042 23.73 425.0 109.5 3.84 57.07 41.69 

1043 49.65 488.7 157.3 4.00 111.40 44.41 

1044 24.51 379.7 98.5 4.25 69.63 52.89 

1045 22.36 345.6 94.5 4.29 61.76 48.83 
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1046 19.52 444.9 135.0 9.12 54.73 36.66 

1048 36.75 445.5 127.4 5.96 76.21 63.52 

1049 21.86 490.8 107.3 3.21 53.97 32.41 

1050 42.33 343.1 121.5 3.81 64.50 53.84 

1051 17.05 398.7 115.6 5.90 44.09 38.09 

1052 20.81 413.9 148.1 3.46 60.80 52.18 

1053 21.47 381.9 108.9 3.53 60.86 54.53 

1054 33.55 359.6 135.9 3.60 36.87 34.62 

1055 34.75 473.1 129.7 4.87 43.50 36.89 

1057 32.62 374.2 104.3 6.43 117.84 54.15 

1058 70.50 468.0 119.1 5.72 135.27 79.31 

1059 22.62 346.2 132.4 5.33 86.67 52.71 

1060 23.42 412.6 150.3 3.78 96.67 65.51 

1061 35.02 379.6 146.7 5.19 58.66 47.00 

1062 35.54 519.2 153.5 5.34 58.46 51.99 

2001 26.01 423.6 136.2 4.62 75.13 59.24 

2002 23.57 458.7 129.5 3.44 37.11 23.46 

2003 - - - - - - 

2004 - - - - - - 

2005 25.23 395.1 150.0 3.54 85.44 79.39 

2006 40.48 416.0 141.0 5.66 40.77 34.94 

2007 37.95 378.8 131.8 3.33 37.24 32.19 

2008 17.85 297.1 123.2 3.00 60.64 49.40 

2010 10.94 272.5 121.6 3.26 52.94 33.90 

2011 27.57 386.5 114.3 3.92 55.18 38.71 

2012 26.26 412.3 133.4 8.83 65.47 36.01 

2013 15.63 313.6 141.9 3.97 65.44 59.42 

2014 38.41 425.8 146.9 4.89 56.97 54.56 

2015 21.98 466.9 120.3 4.10 79.96 53.29 

2016 32.13 458.0 160.4 4.25 81.58 70.29 

2017 20.69 318.4 124.5 2.97 66.27 53.08 

2018 32.14 424.9 135.4 2.61 34.55 25.74 

2019 54.52 428.1 148.4 2.76 86.79 65.85 

2020 29.12 386.1 149.2 4.52 48.28 36.89 

2021 22.70 351.5 127.3 2.95 43.05 54.16 

2022 29.36 366.3 128.2 7.65 77.95 74.12 

2023 26.47 413.9 138.4 4.62 68.19 43.45 

2024 34.27 386.4 138.2 3.79 35.94 26.57 

2025 25.97 324.5 108.0 3.42 71.77 57.50 

2026 37.72 539.7 142.0 4.24 38.59 25.81 

2027 31.21 469.9 140.5 4.63 48.51 44.10 

2029 40.75 483.1 145.3 3.65 100.23 70.76 

2030 23.98 436.3 124.3 2.84 51.58 40.05 

2031 35.25 315.2 136.5 8.61 67.69 77.37 

2032 31.02 463.5 119.4 4.63 79.35 62.54 
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2033 27.71 435.0 124.2 6.98 58.11 50.05 

2035 26.62 526.5 122.9 4.49 62.72 50.66 

2036 42.05 347.5 129.3 2.85 111.41 82.76 

2037 28.76 424.8 135.0 5.43 51.60 37.65 

2038 20.50 386.2 126.9 3.41 47.22 45.44 

2039 22.80 399.2 140.5 3.07 72.27 60.02 

2040 20.52 373.4 141.2 3.17 70.45 57.30 

2041 33.14 418.2 138.0 3.39 56.26 57.04 

2043 32.45 346.7 135.1 3.88 56.93 33.90 

2044 35.71 489.6 128.8 5.57 59.86 47.27 

2045 - - - - - - 

2046 35.39 344.4 116.9 5.26 41.95 32.51 

2048 16.59 353.9 123.3 3.18 56.63 45.60 

2050 32.63 401.3 134.9 3.19 56.56 43.23 

2051 18.50 375.5 129.4 2.47 45.84 50.74 

2052 17.72 341.0 125.2 3.90 57.96 61.73 

2053 21.06 356.2 132.3 1.66 77.34 63.78 

2054 31.97 378.8 135.5 2.14 124.59 93.28 

2057 23.45 422.0 132.6 2.27 87.05 62.64 

2058 21.47 371.1 126.1 5.56 57.31 46.71 

2059 24.35 375.4 122.2 3.37 49.49 43.67 

2060 25.25 418.4 118.3 3.21 44.35 36.62 

2061 52.00 372.1 129.3 2.76 113.95 62.72 

2062 37.50 397.2 139.4 2.14 68.74 59.00 

2063 21.99 352.0 125.7 2.23 36.78 36.10 

3001 24.32 470.6 153.4 2.32 39.12 39.03 

3002 32.18 454.5 141.8 2.20 40.43 30.49 

3003 27.21 441.1 133.1 2.16 51.22 51.09 

3004 24.45 354.6 141.9 4.51 50.91 55.25 

3005 16.02 529.3 126.5 5.18 49.24 50.20 

3006 23.84 389.5 127.3 2.28 41.97 42.50 

3007 18.50 466.5 124.3 2.56 50.68 46.49 

3008 21.99 414.1 130.5 2.12 53.92 49.09 

3009 18.80 359.4 136.9 2.04 69.94 56.68 

3010 31.85 376.8 151.8 1.77 69.64 57.09 

3011 23.28 378.8 152.7 1.26 51.73 52.74 

3012 24.38 429.9 136.8 2.67 37.06 35.84 

3013 16.99 429.0 128.5 4.62 39.25 26.42 

3014 25.94 400.0 141.9 2.61 70.88 46.59 

3015 30.79 392.8 136.8 3.00 70.08 57.29 

3016 14.37 332.9 162.8 2.24 71.43 68.07 

3017 35.73 473.4 147.7 2.68 60.95 46.19 

3018 14.44 382.9 111.6 2.55 45.64 43.40 

3019 23.67 389.2 126.6 2.40 49.61 37.72 

3020 16.40 421.4 133.5 4.61 56.29 48.51 
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3021 29.48 438.6 135.9 2.47 47.99 27.82 

3022 33.93 392.3 112.9 4.32 34.33 39.55 

3023 24.35 462.4 121.2 2.96 59.97 56.37 

3024 49.33 457.7 122.4 2.61 56.22 43.03 

3025 24.66 397.5 135.5 2.70 42.79 44.34 

3026 28.84 410.7 158.4 3.44 67.51 80.80 

3027 62.81 510.6 145.5 3.49 50.07 54.01 

3028 29.24 375.0 142.4 2.26 54.86 47.57 

3029 19.18 393.9 144.8 2.52 53.38 58.58 

3030 40.12 384.6 128.7 4.52 72.34 55.24 

3031 30.19 461.5 134.0 2.93 36.69 30.71 

3032 20.62 388.6 157.8 2.82 56.89 56.60 

3033 38.98 328.3 143.2 2.31 94.00 82.90 

3034 73.71 448.0 150.6 4.84 52.47 43.59 

3035 43.44 466.5 150.1 3.08 64.53 64.46 

3036 18.80 373.6 129.2 2.37 53.34 56.21 

3038 13.86 379.8 119.5 1.76 59.74 54.69 

3039 31.94 445.1 126.3 2.14 62.20 46.08 

3041 26.60 376.1 132.5 4.71 69.63 64.39 

3042 43.29 418.1 148.7 2.95 62.37 45.53 

3043 18.76 390.9 130.8 2.43 43.19 43.97 

3044 31.59 406.8 130.0 1.64 64.30 44.63 

3045 35.59 469.7 109.2 2.76 54.48 39.54 

3046 35.04 370.2 151.4 1.46 73.39 64.91 

3047 21.02 360.0 138.7 2.33 38.58 43.41 

3048 13.50 319.4 111.9 2.59 111.01 66.22 

3049 25.90 466.2 135.0 2.86 51.48 51.02 

3050 19.98 364.0 140.8 3.65 93.74 66.95 

3051 27.05 466.6 122.8 6.23 55.35 51.54 

3052 68.88 359.4 141.9 4.51 89.45 79.16 

3053 39.91 444.8 139.8 2.30 70.48 74.47 

3054 22.52 372.9 115.9 2.00 33.63 34.83 

3055 32.30 415.6 112.9 1.78 83.29 56.56 

3056 18.54 345.7 119.3 2.08 49.21 38.49 

3057 16.97 376.0 104.3 3.61 50.76 42.29 

3058 30.71 327.4 122.6 2.08 33.27 34.71 

3059 17.08 329.9 125.3 5.97 44.03 40.03 

3060 33.81 366.0 138.3 3.93 71.66 36.84 

3061 35.20 360.3 139.5 4.26 82.16 76.80 

3062 19.85 437.0 107.0 3.40 43.55 34.32 

3063 35.03 325.2 113.0 4.16 79.79 50.94 

4001 22.65 438.1 154.9 3.42 64.25 45.96 

4002 16.71 320.6 138.3 3.75 69.51 56.74 

4003 16.52 382.1 145.3 4.02 67.13 48.80 

4005 27.80 419.3 143.8 6.01 84.16 44.60 
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4006 34.72 497.0 122.9 7.11 55.01 47.68 

4007 20.18 490.8 157.9 3.92 65.01 46.80 

4008 27.99 336.8 120.9 4.27 96.16 46.72 

4009 31.84 403.8 133.7 3.93 76.27 68.14 

4010 - - - - - - 

4011 33.68 371.9 119.9 3.83 39.65 22.07 

4012 17.07 413.9 133.2 3.64 74.93 66.05 

4013 24.96 372.7 143.1 4.58 58.75 45.91 

4014 26.69 395.4 120.0 8.54 86.08 44.80 

4015 29.48 370.5 117.8 6.81 75.95 56.16 

4016 23.06 340.0 110.4 4.57 64.56 47.22 

4017 26.01 451.0 158.2 4.44 55.73 55.83 

4019 33.69 568.1 151.0 4.76 54.36 28.66 

4020 46.38 476.4 152.7 4.98 97.81 47.44 

4021 26.12 466.9 133.1 5.08 58.60 50.92 

4022 18.49 409.5 123.9 3.58 55.01 57.03 

4023 18.78 348.3 126.8 4.13 36.61 42.54 

4024 26.27 501.7 123.9 8.15 53.71 43.54 

4025 - - - - - - 

4027 25.90 356.8 124.5 4.75 57.90 62.97 

4028 15.48 348.2 109.4 3.94 49.10 33.97 

4029 32.81 486.1 150.5 4.08 44.94 54.73 

4030 13.20 384.0 131.7 4.11 75.57 49.00 

4031 23.91 346.5 125.9 3.43 41.53 29.51 

4032 24.51 333.9 164.7 4.22 51.99 44.18 

4033 21.71 374.8 139.5 6.68 72.16 50.91 

4034 41.31 429.6 153.5 3.56 64.50 47.11 

4035 26.02 407.0 132.3 2.39 41.06 32.67 

4036 19.60 363.3 161.2 3.87 48.62 40.18 

4037 25.12 371.9 141.4 2.29 93.40 64.64 

4038 28.08 418.6 130.0 2.30 56.94 36.09 

4039 44.16 380.7 139.3 1.74 68.59 55.14 

4040 33.01 474.6 151.7 1.91 44.01 40.89 

4041 41.28 393.5 123.3 2.56 35.02 24.81 

4042 32.62 335.8 128.3 6.56 43.40 28.85 

4043 34.06 395.4 135.5 2.74 54.57 32.71 

4044 34.87 431.5 141.0 2.42 41.74 33.90 

4045 35.13 450.7 133.3 2.13 50.66 39.63 

4046 27.05 430.1 136.3 1.64 60.00 56.22 

4048 18.34 475.1 119.2 1.95 43.11 38.37 

4049 33.90 369.8 126.2 2.74 102.28 78.52 

4050 32.66 383.3 111.7 2.22 29.18 33.87 

4051 28.87 359.4 118.3 2.08 49.11 47.65 

4052 41.16 429.2 152.0 5.00 61.36 43.97 

4053 25.47 373.8 151.9 3.29 53.60 54.63 
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4054 51.37 451.4 157.7 2.71 84.04 64.22 

4055 27.26 376.5 127.7 3.70 37.00 28.74 

4056 26.43 369.3 127.6 3.57 34.96 27.61 

4057 23.94 499.8 154.3 2.44 50.61 43.51 

4058 22.88 469.6 141.5 2.21 51.07 57.45 

4059 32.98 414.9 149.6 3.02 45.13 40.88 

4060 13.77 354.7 165.3 2.27 62.71 46.66 

4061 48.78 460.6 124.2 4.12 62.91 40.91 

4062 24.11 365.5 131.3 4.14 46.23 45.05 

4063 27.08 397.1 144.3 4.62 103.82 70.09 

 

Table 10.5: ICPAES data used to test GEI effects (Section 3.4.3). 

Analyte Ca K Mg Na Fe Zn 

Units mg/100g mg/100g mg/100g mg/100g mg/kg mg/kg 

Genotype             

4056 SELF OCT '14 71.65 387.7 124.5 18.29 35.52 27.23 

4015 SELF OCT '14 58.71 583.3 135.2 15.95 62.24 47.55 

1019 SELF OCT '14 47.92 501.8 106.4 18.88 62.69 41.23 

1014 SELF OCT '14 44.66 457.5 124.6 16.73 60.43 39.79 

1032 SELF OCT '14 51.39 485 145.3 16.9 64.88 51.67 

2037 SELF OCT '14 67.18 367.9 135.6 17.51 41.3 29.16 

1055 SELF OCT '14 60.15 582 156.7 20.32 79.54 37.64 

2021 SELF OCT '14 56.9 378.2 131.4 19.86 56.61 33.84 

2038 SELF OCT '14 49.32 365.6 145.4 16.03 137.16 42 

1048 SELF OCT '14 55.06 526.1 147.6 21.69 77.99 73.34 

2023 SELF OCT '14 35.79 276.3 97.4 15.25 42.04 31.47 

1009 SELF OCT '14 55.03 399.5 152.2 16.1 58.97 50.04 

2063 SELF OCT '14 65.74 468.4 116.2 19.48 39.09 25.37 

2060 SELF OCT '14 34.64 220.5 65.4 14.41 17.04 14.36 

1021 SELF OCT '14 44.64 455.9 141.5 16.6 54.93 29.14 

1061 SELF OCT '14 38.52 533.6 137.4 17.6 107.27 78.12 

2035 SELF OCT '14 40.59 554.7 147.8 19.44 21.09 15.78 

2019 SELF OCT '14 47.1 361.4 123.2 21.12 87.75 64.17 

2024 SELF OCT '14 40.24 242.5 106.5 17.49 25.81 18.61 

1054 SELF OCT '14 59.62 363.9 147.6 20.31 44.26 39.6 

4056 OP OCT '14 52.71 295.6 126.7 18.69 31.67 26.95 

4015 OP OCT '14 44.88 358.9 108.9 20.15 52.86 36.17 

1019 OP OCT '14 50.4 382 112.3 15.28 35.56 39.84 

1014 OP OCT '14 51.02 425.7 124.5 18.32 35.75 25.18 

1032 OP OCT '14 48.94 369.6 128.1 19.75 50.39 30.74 

2037 OP OCT '14 46.63 375 145.4 16.53 39 17.29 

1055 OP OCT '14 47.31 376.8 151.1 16.27 38.78 17.32 

2021 OP OCT '14 56.86 467 148.7 17.45 38.89 26.69 
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2038 OP OCT '14 56.55 324.5 130.2 20.6 49.43 32.85 

1048 OP OCT '14 43.78 314.1 136.8 14.56 50.46 45.64 

2023 OP OCT '14 47.62 402.3 125.4 19.25 56.42 31.25 

1009 OP OCT '14 52.85 341.3 138.4 16.54 54.05 36.2 

2063 OP OCT '14 48.83 357.4 140.9 16.27 47.53 39.44 

2060 OP OCT '14 64.14 474.7 144.9 15.81 45.47 30.88 

1021 OP OCT '14 48.46 363.5 120.2 16.71 38.66 20.89 

1061 OP OCT '14 60.8 427.3 142.6 17.08 58.98 53.44 

2035 OP OCT '14 50.96 577.2 155.7 20.22 73.15 65.14 

2019 OP OCT '14 53.31 504.5 126.6 17.12 52.61 44.86 

2024 OP OCT '14 46.55 379.9 119.3 15.98 23.4 17.58 

1054 OP OCT '14 52.15 303.9 131.1 16.04 35.6 37.98 

4056 SELF FEB '15 52.7 294 126.3 11.42 39.63 25.91 

4015 SELF FEB '15 60.17 377.6 131.7 14.3 101.34 61.7 

1019 SELF FEB '15 30.38 355.5 114 10.02 41.85 26.64 

1014 SELF FEB '15 50.31 337.9 134.3 17.41 45.8 34.68 

1032 SELF FEB '15 65.9 377.2 152.1 13.4 102.2 63.27 

2037 SELF FEB '15 55.69 347.5 128.3 15.33 38.07 22.81 

1055 SELF FEB '15 58.1 445.3 141.1 15.33 35.98 28.16 

2021 SELF FEB '15 44.57 308.4 114.6 11.68 34.14 31.33 

2038 SELF FEB '15 56.34 320.5 129.7 15.28 56.27 50.29 

1048 SELF FEB '15 44.92 365.1 137.7 12.23 95.01 53.16 

2023 SELF FEB '15 183.51 237.5 104.3 25.2 80.93 38.04 

1009 SELF FEB '15 62.13 326 163.5 13.93 45.8 39.07 

2063 SELF FEB '15 58.55 379.9 130 14.25 43.82 31.98 

2060 SELF FEB '15 53.01 307.8 108.2 16.98 49.21 30.51 

1021 SELF FEB '15 63.97 406.3 132.9 14.64 65.28 44.25 

1061 SELF FEB '15 59.14 326.4 134.9 15.5 56.85 42.16 

2035 SELF FEB '15 60.01 630.4 144.8 20.59 96.7 81.98 

2019 SELF FEB '15 72.48 340.3 137.3 16.39 77.87 40.47 

2024 SELF FEB '15 66.28 353.8 147.3 15.14 30.88 23.38 

1054 SELF FEB '15 70.76 253.5 150.2 14.61 35.65 41.59 

4056 OP FEB '15 55.37 287.7 123.1 13.97 46.43 32.48 

4015 OP FEB '15 50.98 251.3 115.2 14.76 69.82 30.75 

1019 OP FEB '15 47.41 293.8 122.3 15.19 52.9 37.88 

1014 OP FEB '15 63.56 355.8 120.2 18.49 46.16 57.77 

1032 OP FEB '15 52.64 309.3 128.9 14.57 54.32 30.75 

2037 OP FEB '15 52.35 313.4 133.6 13.75 58.18 32.38 

1055 OP FEB '15 58.73 368.3 130.3 20.11 31.47 23.99 

2021 OP FEB '15 56.63 296.1 116.5 17.83 53.68 38.93 

2038 OP FEB '15 44.82 319 126.9 13.94 78.15 46.93 

1048 OP FEB '15 49.98 350.5 120.5 16.43 70.02 44.55 

2023 OP FEB '15 57.66 371.8 135.6 18.63 70.55 42.23 

1009 OP FEB '15 53.47 319.7 144.3 15.1 65.01 54.19 

2063 OP FEB '15 58.4 320.2 129.7 21.49 50.29 36.13 
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2060 OP FEB '15 64.05 338 125.1 18.47 58.53 41.42 

1021 OP FEB '15 51.45 345.4 126.7 15.22 55.12 45.58 

1061 OP FEB '15 64.54 290.1 142.2 17.31 61.2 38.02 

2035 OP FEB '15 56.52 406.3 138.7 16.93 123.11 47.24 

2019 OP FEB '15 64.5 348.7 127.6 17.55 82.29 51.09 

2024 OP FEB '15 53.58 301.9 131.8 14.95 48.05 30.61 

1054 OP FEB '15 65.71 288.8 142.9 15.98 61.8 39.88 

 

Table 10.6: ICPAES data from the August 2015 seed multiplication trial used to 

compare glasshouse and field grown seed (Section 3.4.4)  

Analyte Ca K Mg Na Fe Zn 

Units mg/100g mg/100g mg/100g mg/100g mg/kg mg/kg 

Genotype 
      

1001 16.82 296.71 118.07 5.01 92.42 81.53 

1002 14.42 384.52 100.45 5.65 34.43 24.05 

1006 30.83 440.45 154.39 5.01 133.36 114.54 

1009 21.4 435 160.63 5.81 53.3 49.5 

1013 23.89 364.5 127.16 5.36 52.9 42.29 

1014 19.84 329.2 124.29 5.32 53.47 56.08 

1015 28.19 414.5 119.93 5.19 49.14 36.35 

1018 30.36 380.54 121.1 4.81 84.66 86.12 

1022 17.94 339.88 126.61 5.49 99.27 75.11 

1023 50.19 438.88 131.3 5.04 43.26 78.39 

1026 41.11 310.56 121 5.07 66.44 83.31 

1027 27.21 361.76 125 5.06 71.01 59.36 

1029 19.37 305.41 126.38 4.88 79.66 54.34 

1032 23.19 340.09 121.16 5.33 68.08 55.05 

1033 24.86 303.15 120.13 4.84 65.04 62.9 

1035 36.42 332.81 128.8 5.3 145.5 161.06 

1036 21.64 376.18 130.58 7.46 70.58 64.6 

1038 31.69 463.99 148.37 6.93 76.15 54.06 

1042 21.92 378.23 114.88 4.71 88.03 68.13 

1044 23.27 351.1 122.83 5.78 126.25 89.57 

1045 14.36 325.6 114.19 6.15 63.85 55.64 

1048 24.83 361.35 129.51 5.25 107.95 85.17 

1049 17.99 576.8 109.63 10.39 50.34 29.67 

1050 22.07 363.26 107.37 5.05 99.27 92.47 

1051 18.14 435.88 115.06 6.12 69.89 56.01 

1053 I.S 400.69 137.94 7.36 134.75 IS 

1057 29.97 372.61 105.58 5.75 84.66 98.19 

1058 16.66 428.37 115.54 5.03 88.53 60.02 

1059 20.41 343.17 121.09 4.57 80.95 75.51 

1061 27.73 365.02 153.36 5.58 81.63 93.11 

1062 27.99 613.23 157.63 7.28 121.6 149.63 
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2002 37.97 558.85 155.04 5.75 37.41 26.31 

2006 28.47 316.18 116.66 5.07 37.79 30.35 

2008 15.66 320.97 111.59 5.6 56.31 49.21 

2011 35.14 352.59 129.87 4.68 52.74 60.52 

2014 18.25 415.21 138.32 6.26 51.5 65.93 

2015 10.11 429.19 120.63 6.55 58.03 67.48 

2017 20.72 339.05 128.09 5.1 61.49 58.44 

2018 17.06 363.91 112.09 5.28 86.75 76.26 

2021 19.59 370.88 120.88 4.87 68.83 70.77 

2022 17.84 332.66 125.26 5.38 108.63 88.22 

2024 19.07 365.95 144.6 5 32.55 26.09 

2025 20.75 316.15 118.25 5.05 113.01 97.22 

2029 26.98 365.7 118.99 5.67 67.18 46.56 

2033 16.69 349.09 109.07 5.35 97.32 87.29 

2035 21.8 463.38 127.48 6.47 138.08 131.9 

2038 17.9 314.06 108.51 4.85 84.6 69.67 

2040 16.3 373.95 144.81 5.55 85.53 91.31 

2041 32.32 353.27 115.97 4.51 121.95 111.27 

2043 29.47 372.01 125.45 5.64 71.87 54.32 

2046 35.18 369.16 150.88 5.85 68.15 50.2 

2058 11.98 378.52 110.66 7.33 61.32 40.22 

2059 21.23 428.71 132.58 6.06 106.9 95.42 

3005 13.39 408.8 106.62 5.49 69.43 47.77 

3007 7.78 388.32 123.27 5.96 65.81 66.48 

3009 12.38 290.46 121.96 5.66 94.26 82.52 

3010 11.65 427.96 134.57 6.03 75.54 86.12 

3011 23.91 360.63 136.75 5.08 76.98 73.78 

3016 10.31 368.57 175.43 5.61 94.99 120.12 

3017 27.49 459.14 134.11 5.19 56.78 52.51 

3020 16.69 371.77 129.51 7.01 70.54 56.11 

3022 15.8 327.25 104.3 5.59 37.7 33.93 

3025 21.17 339.3 137.67 5.91 97.05 82.03 

3028 32.33 399.79 167.64 5.98 69.09 80.43 

3030 29.51 366.66 143.55 4.94 69.95 47.65 

3034 36.89 360.59 121 5.23 41.7 40.3 

3036 33.81 323.52 141.76 5.8 97.02 79.55 

3039 38.66 455.13 139.81 4.97 72.37 53.18 

3043 26.8 366.37 126.46 5.56 49.64 56.44 

3046 28.19 321.13 129 6.2 96.07 76.63 

3047 28.77 322.61 128.74 7.19 48.17 50.51 

3049 32.52 473.7 118.09 6.44 70.96 55.93 

3050 35.42 404.28 145.55 6.48 68.36 78.95 

3051 26.6 360.13 105.65 5.46 64.85 73.89 

3056 34.7 577.67 137.01 8.91 79.58 61.94 

3057 32.9 395.19 115.51 6.36 90.66 81.66 
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3060 47.03 361.64 136.35 9.3 78.09 57.59 

4016 27.92 257.92 116.98 10.05 92.44 85.74 

4020 29.01 389.19 134.67 5.75 74.31 61.56 

4021 32.97 405.27 136.76 5.86 60.53 75.95 

4022 29.22 367.42 121.95 8.5 67.68 81.46 

4023 31.82 361.5 133.21 4.67 94.96 110.22 

4024 22.85 390.81 113.75 5.02 83.93 90.11 

4030 27.36 407.05 119.04 6.51 83.91 69.07 

4031 47.43 446.01 148.31 7.16 78.71 63.39 

4034 24.54 342.46 126.57 6.72 73.3 63.48 

4036 25.54 410.97 170.94 8.08 82.99 80.81 

4037 28.34 358.67 158.58 7.31 182 159.18 

4038 43.75 526.96 146.33 9.52 101.24 91.98 

4039 42.94 444.92 140.68 6.65 84.05 61.52 

4042 35.32 371.22 127.37 6.99 56.66 36.77 

4044 44.65 440.09 103.18 8.7 70.16 67.15 

4045 40.05 453.38 115.44 8.76 66.96 57.56 

4048 34.27 420.8 112.81 13.11 69.31 71.11 

4049 32.83 360.73 120.39 5.17 141.09 135.75 

4051 33.12 281.57 108.68 9.4 100.06 92.09 

4053 34.24 296.87 145.18 5.7 85.68 107.79 

4055 29.61 366.01 136.26 8.53 66.65 52.29 

4057 37.02 367.92 157.18 8.78 90.74 94.27 

4061 53.08 422.38 143.57 9.14 71.2 61.66 

 

Table 10.7: ICPAES data of OP PMiGAP lines grown at ICRISAT, 2013 (Section 

3.4.5) 

Analyte Ca K Mg Na Fe Zn 

Units mg/100g mg/100g mg/100g mg/100g mg/kg mg/kg 

IP No. 
      

22295 33.31 410.2 172.2 12.4 55.66 65.37 

4545 27.26 325 144.5 5 72.8 65.3 

16403 23.13 338 130 7.29 43.43 40.06 

7846 19.19 311.7 112.5 4.41 49.29 50.99 

17720 - - - - - - 

15917 23.58 313.1 145 5.63 42.22 36.11 

8767 27.42 334.5 122.9 8.52 38.45 30.7 

12298 23.93 286.9 114.6 6.78 34.08 35.25 

2058 30.7 336.7 129.9 4.62 45.6 47.6 

3125 21.49 335.7 129.6 5.52 41.96 42.99 

6584 18.24 295.1 128.4 4.91 51.66 43.9 

4020 27.38 403.1 138 7.13 62.33 55.52 

18132 22.69 367.6 128.4 6.78 46.21 40.5 

16082 23.63 410.6 105.6 3.57 35.5 31.28 
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18062 19.74 345.3 120.1 5.15 49.24 36.95 

22549 17.73 350.9 106.5 5.76 42.08 42.33 

6745 18.17 371.9 134.1 9.49 45.12 30.29 

9595 24.07 388.1 123.3 5.34 50.44 36.24 

11211 21.81 358.3 110 4.79 56.07 41.66 

10705 21.16 339.8 110.5 3.79 74.87 46.36 

22274 18.35 392.5 113.2 5.12 43.76 36.69 

22272 18.36 257.3 95.1 2.97 42.11 33.11 

9426 24.77 363.9 131.3 4.58 57.86 46.39 

7762 23.28 386 143.7 5.8 54.49 42.86 

15551 28.42 387.7 132.9 5.46 64.9 44.46 

9446 19.91 333.4 119 4.5 77.9 40.36 

21155 21.13 290.3 97.1 3.48 54.88 38.5 

10811 28.09 370 117.3 4.09 57.58 34.97 

17632 19.65 275 105.7 3.26 36.46 34.98 

11577 26.48 428.9 124.7 6.01 41.12 36.2 

22454 15.04 334.3 115.3 4.09 66.43 45.65 

22279 20.81 332.9 111.8 4.66 40.57 33.64 

9351 - - - - - - 

15947 37.39 375.6 132.8 10.41 62.9 47.07 

7970 26.11 310.7 126.1 10.14 40.47 35.73 

3735 31.78 362.3 112.9 5.34 62.15 67.1 

6112 28.88 302.7 127 3.23 47.57 41.84 

19448 16.9 321.8 116.4 4.24 41.32 40.29 

9242 19.9 365.6 118.4 4.37 28.57 32.92 

22569 18.13 342 97 3.99 57.18 42.82 

16096 17.72 289.3 114.8 3.24 58.29 33.53 

7633 20.49 303.2 127 5.62 53.89 33.77 

8198 - - - - - - 

6060 19.8 292.1 122.6 2.84 40.27 39.24 

8276 16.63 360.6 118.8 3.27 41.8 43.34 

22423 21.21 324.3 114.1 5.2 45.73 52.85 

7848 30.98 298.4 131.2 2.69 36.71 36.75 

9347 24.98 370.7 118.5 4.7 49.52 40.38 

22455 23.02 342.4 117.2 4.65 23.78 28.64 

3175 20.15 324.3 122.5 9.38 44.59 47.55 

12840 20.2 371.5 120.4 7.11 42.21 43.2 

19386 30.73 339.9 120.8 4.5 52.2 49.9 

9710 18.78 310.5 123.2 2.65 69.32 63.61 

5389 14 325.8 109.1 3.87 30.59 32.43 

3890 21.69 384.7 129.1 5.81 48.41 40.59 

11677 46.26 448.3 179.6 4.8 45.09 44.17 

11984 23.47 329.3 126.4 3.9 42.39 48.58 

17690 24.1 337 118.4 3.33 74.15 57.87 
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12925 17.39 302.2 114.8 4.3 65.63 50.45 

10140 17.92 313 113.3 3.03 41.39 39.85 

6037 - - - - - - 

3122 19.3 327.3 115.2 2.86 37.22 31.17 

6146 29.27 462.4 133 6.56 34.4 25.62 

15533 20.97 371.4 120.5 4.85 31.97 27.33 

7942 24.36 351.7 140.8 4.52 50.15 42.61 

9301 15.1 300.8 94.6 3.85 80.31 64.35 

11311 20.23 318.2 119.4 4.26 36.38 37.33 

9407 23.99 321 126.2 4.47 71.68 60.04 

13154 14.13 353.7 107.7 4.57 33.06 33.9 

19388 19.11 329.7 114.1 4.02 43.13 42.52 

17554 24.88 329.9 128.8 4.59 46.26 46.98 

9840 18.44 337 118.8 3.39 30.27 35.09 

3098 21.27 369.4 132.6 2.31 41.87 46.4 

22383 16.7 380.9 143.2 3.66 43.05 37.41 

11353 24.03 335 113.5 3.47 38.49 34.48 

10964 17.91 330.1 118.7 3.58 28.62 22.07 

18157 26.05 278.1 128.6 2.41 50.4 40.16 

4965 20.71 330.1 120 3.8 43.11 40.53 

9496 22.03 309 97.5 3.77 38.74 44.12 

10820 18.1 330.6 115.4 3.12 51.37 42.2 

8949 16.89 344.6 135.7 4 49.12 52.54 

8949 - - - - - - 

8181 21.44 334.5 141.9 5.27 44.84 43.05 

11229 29.25 320.7 124.1 3.17 41.77 39.42 

10343 23.48 389 121.9 4.94 35.49 30 

15946 25.94 384.6 132.1 5.46 32.96 33.76 

20349 18.46 335.3 121.8 2.81 51.28 35.19 

13016 15.28 349.3 128.5 2.56 44.58 43.18 

3865 19.56 329.6 134.3 3.45 65.21 62.28 

10486 19.45 349.3 140.5 7.3 42.93 44.71 

3557 29.72 405.2 136.5 4.29 43.62 35.24 

4962 26.35 379.4 137.7 3.19 49.42 40.14 

8344 23.78 368 119 2.62 39.59 37.45 

5713 25.68 360.1 119.5 4.11 56.77 53.84 

5695 28.68 456.6 121.3 8.12 60.48 51.65 

12768 30.33 434.5 118.1 5.13 57.89 45.11 

6179 21.06 315.5 103.3 3.95 37.78 31.52 

7095 33.42 446.2 120.1 12.43 44.79 40.04 

8761 15.47 290.8 120 2.67 42.56 48.86 

8955 20.27 337.5 119.2 3.74 84.49 71.11 

9406 46.36 310.4 125.8 2.18 112.8 64.04 

9532 18.49 301 116.6 6.06 57.01 57.38 
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8275 18.94 356.4 126.9 5.18 44.34 47.65 

8280 16.94 401 127.6 4.86 45.48 48.47 

10379 21.98 287.7 116.1 2.51 44.37 49.21 

10271 14.87 335.2 128.2 2.09 44.15 48.83 

12322 18.18 362.1 124.4 3.13 42.51 46.68 

19626 20.94 323.5 129.5 3.57 50.25 56.26 

3564 19.28 281.7 116.7 3.02 37.75 45.48 

6111 19.63 364.6 126.4 2.59 73.1 47.53 

15320 - - - - - - 

12845 22.53 329.4 127.1 2.22 42.16 49.74 

10953 24.51 388.4 120 1.94 36.1 34.36 

22276 23.82 421.6 126.2 2.21 32.1 33.19 

21206 12.88 355.5 107.3 3.33 29.15 32.2 

3636 19.39 321.5 113.4 2.85 29.31 52.12 

6099 19.38 378.6 129.3 3.67 36.47 38.78 

10613 33.66 534.6 154.4 4.42 32.62 37.53 

11310 23.83 445.6 122.2 4.64 49.63 47.93 

10085 14.99 379.9 112.7 3.87 46.44 43.83 

12839 15.79 285.4 139.3 2.81 50.82 50.62 

10394 13.25 325.2 113 3.48 34.06 36.71 

3732 18.34 356.4 133.2 3.17 47.03 52.07 

9391 25.06 340.7 113 3.48 63.59 56.21 

21020 16.87 358 119.4 2.12 41.26 45.86 

3138 28.08 362.7 153.6 2.12 68.89 70.11 

7952 16.97 315.8 135.1 2.23 34.77 38.84 

16638 25.18 369.7 109.9 2.37 85.27 56.52 

4974 15.86 323.1 124.8 2.18 38.85 43.06 

8972 - - - - - - 

8426 25.2 352.3 125.1 2.98 46.4 47.35 

7470 21.64 362.9 138.3 5.47 44.39 45.07 

18389 36.23 370.1 137.9 3.86 39.11 46.45 

7886 17.62 298.6 130.4 4.8 54.62 57.44 

16289 28.77 356.7 133.5 15.51 76.31 45.67 

6682 28.72 312.3 130.7 5.48 41.47 33.46 

13384 22.38 323.9 117.5 3.53 55.35 54.42 

22527 18.25 389.5 119.9 4.52 31.28 32.92 

22424 19.93 334.6 115.3 4.83 30.31 30.65 

22281 22.08 300.1 116.2 3.99 50.01 50.88 

9282 17.27 283.6 122.1 2.75 110.85 66.05 

22494 16.41 352.2 130.2 2.8 45.61 47.34 

9824 - - - - - - 

3616 17.53 373.3 122.3 2.68 27.67 22.62 

6102 19.64 368.7 123.4 3.81 63.21 47.84 

18434 18.82 355 116.2 2.87 37.3 36.95 
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17611 14.67 351 112.5 2.81 43.81 39.78 

7967 19.98 376.7 121.9 4.76 44.48 43.14 

8172 21.55 350.1 111.5 3.59 44.32 40.25 

13344 20.05 337.9 106.1 2.46 26.09 28.14 

22419 25.07 336.7 132.9 2.75 34.97 37.18 

13180 21.55 374.1 124.2 3.31 42.35 37.95 

16402 18.69 253.9 120.6 2.94 50.64 43.07 

3389 20.35 330 125.5 2.37 50.92 47.37 

8074 24.41 417.7 147.5 3.66 39.37 41.58 

21169 30.29 372.4 135.4 2.52 37.41 33.64 

22420 42.78 385.2 131.6 4.18 30.68 30.07 

7953 19.6 255.2 84.5 1.61 53.99 38.45 

10701 18.23 323.5 132.8 2.41 54.18 51.95 

10632 18.01 371.4 121.8 2.14 30.25 31.98 

13817 15.65 336.1 108.7 2.8 46.68 44.57 

8129 - - - - - - 

10471 19.91 348.7 114 2.97 44.5 39.31 

11593 42.72 530.6 122.5 4.41 50.7 33.33 

5131 17.54 304.6 101.7 2.6 31.48 29.89 

22283 14.63 342.6 141.2 2.91 50.54 53.03 

5923 22.68 342.4 127.2 1.97 38.54 35.93 

8187 15.91 319.2 120.5 2.85 46.23 43.06 

13927 15.43 287.3 115.2 2.48 39.87 38.63 

15872 29.74 336.2 113.4 2.96 67.5 56.41 

9692 29.06 341.9 117.9 2.71 55.96 50.03 

9651 24.05 321.2 103.6 2.83 31.02 31.41 

14439 21.18 412.6 131.2 3.63 35.59 25.08 

7922 19.21 295.6 119.2 2.98 41.83 42.41 

10761 28.19 450.2 144.1 3.48 40.62 41.48 

4828 21.1 347.4 137.4 4.37 55 56.57 

11275 14.49 356.7 105.7 2.12 40.93 46.6 

22458 17.42 298.5 99.9 2.15 31.96 33.42 

6417 13.49 351.9 125.4 2.24 42.52 46.8 

4952 13.72 332.8 114.5 2.17 52.14 49.11 

10543 - - - - - - 

9969 25.95 389.8 133.7 5.73 36.72 34.11 

6882 16.09 307.1 115.6 4.64 37.18 38.66 

14148 18.23 297.2 129.8 3.14 50.18 50.41 

5816 19.63 324.1 124.4 3.16 41.84 44.09 

8069 18.3 287.3 114.1 3.98 41.31 41.73 

14497 21.05 382.5 139.7 3.06 36.08 34.34 

18090 21.6 306 132.5 3.87 47.62 51.04 

6329 33.62 382.9 119 2.8 47.07 43.06 

7930 17.47 287 124.3 2.69 55.32 55.62 
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4927 19.23 308.3 113.7 1.91 43.55 43.71 

5253 - - - - - - 

11346 20.32 287.2 100.3 2.55 40.73 34.59 

6310 20.29 327.2 133.5 2.55 57.82 57.5 

5031 23.03 301.2 107.2 2.04 41.16 46.25 

11358 26.24 338.1 134.3 2.56 55.22 43.46 

17125 20.27 318.3 101.4 2.26 25.38 31.75 

17099 25.29 398.2 122.7 4.31 44.25 38.46 

5121 37.15 351.7 139.4 4.81 52.45 44.25 

18168 17.18 333.5 128.3 3.78 27.7 28.87 

18246 13.91 338.7 112.5 2.97 26.17 30.62 

15553 22.95 346.8 137 1.88 68.03 54.3 

7660 19.8 297.9 139.1 3.18 52.93 53.78 

12370 20.4 410.5 133 6.93 34.46 43.16 

20679 25.03 375.5 126.9 2.1 49.61 54.86 

8294 19.46 313.7 117.8 3.04 33.51 36.14 

13324 24.1 358.8 114.8 2.08 56.88 43 

3201 14.1 291.7 145.9 1.97 39.14 42.74 

13363 - - - - - - 

12116 29.12 358.2 139.9 3.45 53.85 52.44 

10339 28.69 374.3 146.9 2.27 43.43 38.75 

18293 23.77 348.5 131.9 1.88 42.94 40.72 

6415 31.57 327.4 96.9 2.94 36.6 27.91 

17493 24.7 366.8 124.9 1.64 35.52 37.93 

16120 24.6 331.9 138.9 1.69 42.39 36.99 

12138 17.35 392.1 122.6 4.32 34.38 32.32 

5560 26.98 436.7 136 3.61 38.79 30.94 

10446 15.19 313.6 121.6 1.74 37.39 43.41 

14418 26.2 348 129.2 3.23 47.24 44.75 

7536 18.01 321.6 134.2 1.98 103.17 65.96 

12395 23.17 341.9 120.7 4.98 51.32 45.27 

13459 18.1 301.5 118.7 5.14 34.69 32.1 

7941 23.92 469.7 143.3 3.01 44.55 55.25 

17150 - - - - - - 

11929 23.66 295.4 120.9 1.5 50.5 57.16 

5900 24.04 385.6 126.9 3.88 40.37 36.56 

13840 16.84 469.6 119.7 3.38 32.73 41.04 

5931 31.94 353.2 128 1.72 44.45 39.58 

4378 24.97 371 132.7 2.94 57.97 49.35 

8786 24.94 357.2 123.9 2.48 46.62 47.25 

19361 28.48 321.1 102.8 2.83 42.99 40.49 

6892 29.05 434.5 130.9 4.49 59.54 45.11 

18292 19.52 354 124.8 2.93 46.79 47.55 

14311 21.53 387 130.6 3.55 47.26 38.87 
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10456 21.46 437.3 135.1 5.18 43.17 31.99 

13520 19.23 349.3 143.8 2.72 40.55 44.94 

6098 25.29 345.4 111.9 1.84 43.08 38.73 

13290 22.48 367 105.7 1.93 21.9 20.72 

8647 26.74 326.5 110.6 1.51 60.3 43.4 

11763 - - - - - - 

6125 32.55 335.8 116.4 2.16 39.7 33.07 

14624 18.14 324.9 134.3 2.41 52.69 45.37 

17028 18.45 317 111.1 2.57 39.59 39.6 

14210 22.95 387.1 125.9 2.82 35.12 31.47 

9981 33.59 486.9 111.1 3.25 40.05 30.82 

11379 26.03 454.7 111.2 2.61 40.67 41.17 

14398 20.98 466.3 111.9 1.91 28.27 27.48 

10759 25.96 336.3 129.4 3.05 43.52 38.31 

15536 27.29 311.7 117.8 1.79 57.93 47.55 

 

Table 10.8: Phytate data used for comparison between grown trials conducted in 

October 2014 and August 2015 (Section 4.4) 

  
Phytic Acid Content (g/100g) 

Genotype IP No. Oct-14 Aug-15 

1006 IP 9407 1.125455864 0.561938706 

1009 IP 13370 1.167267795 1.102690628 

1016 IP 17690 1.020384431 0.771198944 

1019 IP 13149 0.68155614 1.024625478 

1021 IP 10140 1.370044829 0.907609239 

1022 IP 12925 0.907080597 0.833292519 

1032 IP 19386 1.159698623 1.494403812 

1044 IP 21155 1.26939685 1.319794751 

1045 IP 11211 1.007229169 1.293312736 

1046 IP6745 1.535110331 1.63844014 

1048 IP 10705 1.623090525 1.18415516 

1050 AIMP 92901 0.891769016 0.972083736 

1051 IP 18132 0.721912118 1.09243696 

1052 PRLT 2/89-33 1.049837573 0.990814918 

1053 IP4020 0.984768276 1.304938986 

1054 IP 13971 1.152996216 1.430674734 

1055 IP 8767 1.524565713 1.357041813 

1057 863B-P2 1.43628572 1.144755088 

1059 IP4542 1.193664527 1.056342934 

1060 IP17720 1.35911512 0.999455199 

2011 H 77/833-2-P5 (NT) 1.312693731 0.862562803 

2019 IP 9391 1.003416184 1.117452021 

2021 IP 3636 1.248616343 1.082073076 

2022 IP 9710 1.047456989 1.02156704 
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2023 IP 3132 1.045810938 1.196049564 

2024 IP 6037 1.219714811 1.121673373 

2025 IP 5713 1.134155697 0.979956576 

2030 ICMV 221= ICMV88904 1.170568065 0.983172843 

2032 IP 9351 1.370338647 1.21233192 

2033 IP 10539 1.027505267 0.915832238 

2052 IP 8761 1.379690457 0.913799895 

2060 IP 7095 0.96562414 0.838824221 

3009 IP 6882 1.006612925 1.338722266 

3015 IP 4828 1.715360749 0.513447865 

3025 IP 8187 1.495294748 0.934034293 

3056 IP 8972 0.840668039 1.191300219 

4015 IP 13290 1.378894558 1.039722893 

4034 IP 5900 1.173154735 0.630518314 

4035 IP 19334 1.450127495 0.901695388 

4048 IP 13324 1.206184533 0.365664489 

4051 IP 5031 1.222102508 0.85020607 

4054 IP 15553 1.152262394 0.861949248 

 

Table 10.9: Phytate data from 249 PMiGAP lines (Section 4.4). 

IP No. Phytic Acid (g/100g) IP No. Phytic Acid (g/100g) 

22295 1.0411 22424 0.6118 

4545 0.8659 22281 0.4811 

16403 0.6753 9282 0.3779 

7846 0.6784 22494 0.6528 

17720 0.7552 9824 0.5943 

15917 0.7019 3616 0.7495 

8767 0.6639 6102 0.7485 

12298 0.7049 18434 0.6297 

2058 0.7629 17611 0.6009 

3125 0.7621 7967 0.6667 

6584 0.7786 8172 0.5594 

4020 0.6478 13344 0.6595 

18132 0.8107 22419 0.285 

16082 0.7892 13180 0.5023 

18062 0.7077 16402 0.4237 

22549 0.7701 3389 0.6786 

6745 0.9296 8074 0.931 

9595 0.9382 21169 0.4924 

11211 0.7054 22420 0.6262 

10705 0.84 7953 0.5275 

22274 0.9244 10701 0.6159 

22272 0.7253 10632 0.6033 
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9426 1.1315 13817 0.2614 

7762 1.0826 8129 0.3154 

15551 0.8577 10471 0.337 

9446 0.7214 11593 0.5281 

21155 0.6841 5131 0.4952 

10811 0.6954 22283 0.8118 

17632 0.8267 5923 0.8756 

11577 0.7751 8187 0.3438 

22454 0.5558 13927 0.7045 

22279 0.6637 15872 0.7846 

9351 0.8343 9692 0.8009 

15947 0.4722 9651 0.6936 

7970 0.6769 14439 0.9083 

3735 0.9135 7922 0.9661 

6112 1.0248 10761 0.9109 

19448 0.6447 4828 0.7547 

9242 0.3828 11275 0.6854 

22569 0.585 22458 0.7012 

16096 0.775 6417 0.987 

7633 0.4854 4952 0.9009 

8198 0.6556 10543 1.0054 

6060 0.7139 9969 1.0784 

8276 0.3107 6882 1.0359 

22423 0.6079 14148 1.0451 

7848 0.7807 5816 1.0972 

9347 0.7107 8069 1.0361 

22455 0.6731 14497 1.1406 

3175 0.7043 18090 1.0948 

12840 0.7758 6329 1.0675 

19386 0.6743 7930 1.3032 

9710 0.75 4927 1.0361 

5389 0.6857 5253 1.0194 

3890 0.8973 11346 0.9319 

11677 0.9245 6310 1.1988 

11984 0.7893 5031 1.0545 

17690 0.7266 11358 0.7235 

12925 0.7223 17125 0.7027 

10140 0.7338 17099 0.7488 

6037 0.7864 5121 0.7055 

3122 0.8617 18168 0.7889 

6146 1.1344 18246 0.6772 

15533 0.8964 15553 0.7895 

7942 0.9425 7660 0.8382 

9301 0.7943 12370 0.9969 

11311 0.8098 20679 0.8994 
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9407 0.9023 8294 0.7089 

13154 0.786 13324 0.8824 

19388 0.7068 3201 0.8964 

17554 0.5014 13363 0.7921 

9840 0.7771 12116 1.0071 

3098 0.8518 10339 1.2028 

22383 0.6811 18293 0.7968 

11353 0.2493 6415 0.6629 

10964 0.6322 17493 0.6881 

18157 0.2691 16120 0.793 

4965 0.7139 12138 0.8273 

9496 0.3907 5560 0.9782 

10820 0.769 10446 0.6486 

8949 0.7804 14418 0.7715 

8949 0.58 7536 0.7609 

8181 0.5377 12395 0.623 

11229 0.689 13459 0.7105 

10343 0.7049 7941 0.836 

15946 0.5563 17150 0.7134 

20349 0.6888 11929 0.7934 

13016 0.6206 5900 0.672 

3865 0.7055 13840 0.6928 

10486 0.6018 5931 0.6668 

3557 0.6365 4378 0.7723 

4962 0.7098 8786 0.7318 

8344 0.6448 19361 0.8395 

5713 0.801 6892 0.8277 

5695 0.6161 18292 0.8206 

12768 0.629 14311 0.8879 

6179 0.4994 10456 1.1076 

7095 0.6249 13520 0.8596 

8761 0.6415 6098 0.6685 

8955 0.6205 13290 0.6857 

9406 0.5235 8647 0.7423 

9532 0.6413 11763 0.782 

8275 0.7992 6125 0.3609 

8280 0.531 14624 1.0221 

10379 0.3951 17028 0.9929 

10271 1.0714 14210 0.7079 

12322 0.7414 9981 0.7202 

19626 0.7074 11379 0.9028 

3564 0.5423 14398 0.6917 

6111 0.8772 10759 0.7715 

15320 0.6848 15536 0.6543 

12845 0.8113 21020 0.8289 
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10953 0.7507 3138 1.0357 

22276 0.7189 7952 0.8473 

21206 0.7363 16638 0.7197 

3636 0.6773 4974 0.7304 

6099 0.7731 8972 0.7786 

10613 0.8163 8426 0.7985 

11310 0.6874 7470 0.8686 

10085 0.8907 18389 0.8072 

12839 0.7205 7886 0.9599 

10394 0.6293 16289 0.9802 

3732 0.7484 6682 0.4105 

9391 0.6662 13384 0.6855 

22527 0.6957   

 

Table 10.10 Key for Table 10.11. 

Genotype number G .No 

Apigenin7-glucoside A 

Ethyl Ferulate B 

P-Coumaric Acid C 

Apigenin D 

Luteolin E 

Vitexin F 

Orientin G 

Lut-7-O-β-D-glucoside H 

Hydroxy Apigenin I 

Dicaffeoyl Spermidine J 

2"-O-Hex-C-Hex-Ap K 

C-O-Dihexosyl-Lut L 

C-Hex-C-Pent-Ap M 

Ap-GlucGluc N 
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Table 10.11: HPLCMS peak area data for 55 PMiGAP lines (Section 5.6.3). 

G.no A B C D E F G H I J K L M N 

2046 424.0 229.1 17201.2 - 60.4 33907.6 6679.5 158.9 2255.5 34235.7 27334.8 31588.8 513.4 59.5 

1027 251.5 592.5 74729.8 - 215.9 6975.5 13715.4 407.4 3184.1 44520.3 117852.1 54398.7 62.4 90.8 

3022 2301.3 792.0 98035.0 - 518.7 54726.9 3804.9 461.8 5350.8 30520.5 391483.3 53931.4 425.0 1112.5 

1023 48.7 677.7 63335.5 - 
 

18209.6 15296.0 138.0 4281.3 40422.9 74397.8 43416.5 294.8 286.9 

1045 3211.7 350.9 135688.5 - 114.2 12013.0 6624.6 100.4 2094.0 27923.5 169570.0 53359.8 314.1 76.7 

3043 
 

563.4 71039.2 - 86.2 5117.0 6673.2 344.8 4256.7 20447.9 77732.4 49202.4 71.3 41.3 

3030 20479.7 138.8 98336.2 33.7 50.9 593035.4 3824.8 372.5 726.2 49584.9 337953.7 40782.8 5299.9 301.0 

3047 504.3 54.3 25534.5 - 53.6 31433.5 88648.6 326.9 2122.0 78139.4 136176.9 52690.5 339.9 168.4 

1013 83.9 103.7 189613.5 - 36.2 10202.4 3638.1 346.7 1500.7 39095.3 74112.7 44186.1 86.0 8.1 

2011 24154.7 219.2 39785.2 - 261.1 363544.8 3766.1 1010.3 1341.1 15526.8 434175.6 52094.8 1906.5 654.0 

2015 7473.0 271.7 19061.8 65.8 123.0 375957.1 3139.7 507.9 4339.9 17052.6 476228.8 45521.5 3247.0 609.0 

1048 1005.9 115.3 68020.6 - 219.5 25935.2 101350.0 783.8 5104.0 32376.4 186428.0 57102.6 64.7 578.6 

3020 4117.0 197.1 56187.0 - 185.1 133691.7 4615.8 544.2 3647.8 24225.0 230870.1 49825.7 931.2 104.1 

3056 621.2 92.1 12426.9 - 24.8 73093.6 2788.0 126.2 383.5 38944.3 289777.9 34417.4 2188.2 134.0 

1061 184.5 130.0 41673.3 - 79.1 38092.3 52606.4 510.4 824.2 28986.5 127786.4 54358.0 310.6 109.0 

2018 165.1 185.2 15809.2 - 102.5 5640.7 5067.4 314.6 2503.8 52004.2 31148.2 49095.7 123.5 75.1 

3007 709.9 183.8 23083.4 - 147.7 40294.3 6423.1 285.7 4577.8 13884.2 112275.6 43474.9 751.5 360.0 

1014 4759.1 153.6 56426.0 - 128.3 176989.9 8535.4 811.5 2716.6 56574.7 443996.2 56790.9 864.2 676.5 

3017 596.2 119.5 21150.7 - 69.8 72869.9 6244.3 612.9 4785.6 34790.7 372253.9 54004.5 1255.1 920.4 

2043 1270.1 123.4 48786.9 - 36.2 162073.4 3070.7 440.6 3739.7 49056.1 327935.3 49020.0 1863.9 585.2 

3046 666.1 169.2 28968.5 - 95.6 10220.4 4385.7 457.2 1882.5 40796.9 65550.6 49532.2 185.6 90.7 

1022 7204.7 233.3 33530.9 - 285.2 480180.1 5778.7 751.4 9371.1 21539.7 330773.9 49494.3 2379.7 623.5 

3010 231.6 156.8 13302.0 - 214.3 40986.5 13379.9 565.3 34653.6 22057.1 225290.1 59949.8 208.5 133.6 
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3036 760.3 125.9 22069.5 - 29.8 10270.0 4947.5 234.4 2225.7 37185.4 148666.8 50514.5 187.0 68.2 

2038 5723.2 121.9 37875.3 - 26.9 227228.4 2926.8 288.8 776.4 39522.0 420142.0 46971.9 1790.4 437.5 

1026 891.0 84.8 37053.2 - 31.6 68200.4 2823.8 373.0 3031.7 12336.9 355665.2 52692.5 1369.0 281.3 

3025 1667.6 236.6 118517.9 - 158.7 50524.1 4079.1 656.5 1550.8 58588.5 326567.1 45142.5 881.4 195.4 

2029 408.7 156.2 28493.9 - 204.1 49755.3 40570.4 398.6 3869.9 33439.5 47130.1 40594.4 442.9 119.1 

1001 694.0 170.8 53073.4 - 2819.6 24966.9 67630.4 2195.4 2079.1 27337.5 210104.3 59362.8 11.1 708.0 

1018 858.5 74.3 27967.2 - 357.2 26290.7 10863.4 935.6 3017.3 10326.5 225794.3 59025.3 56.1 275.6 

2025 1270.9 167.2 54492.5 - 138.7 51458.4 24758.8 610.1 610.2 15721.8 115410.8 45831.5 422.5 149.0 

1042 5748.0 179.9 30148.9 - 107.7 262104.0 2522.4 97.3 1185.8 26395.8 411582.7 49106.8 2880.6 1293.3 

2014 200.7 211.5 90112.9 - 21.1 11134.0 10408.6 776.2 2578.9 28390.8 25949.2 49668.9 237.6 105.0 

2041 16876.3 100.9 36667.2 52.0 318.8 409002.8 5747.0 615.1 2291.7 16999.6 357546.0 29031.7 4384.3 190.3 

1044 1254.1 187.2 25330.6 - 60.8 88426.0 3006.0 222.7 1967.5 15795.9 354650.8 41770.0 2104.2 368.5 

2017 1630.4 139.4 51380.3 - 67.3 32220.7 8251.3 452.7 3640.5 53539.0 239085.4 58602.1 293.9 217.5 

2040 2176.9 170.4 27177.6 - 176.2 177382.9 5534.4 401.8 3323.3 40498.1 398872.3 46180.3 2763.0 471.7 

1002 2657.2 409.8 14850.6 - 41.5 251793.3 4957.2 264.4 4739.5 23326.3 382808.4 49366.0 2619.4 390.7 

3057 562.6 88.4 104313.3 - 900.2 11057.6 31495.7 566.7 3994.1 58585.8 164514.2 62154.0 37.2 210.1 

3011 24493.5 266.0 46392.1 - 242.3 635497.1 1778.5 859.9 1098.5 10865.7 428213.2 51136.8 4398.0 650.4 

3050 99.1 170.8 84967.7 - 123.2 51665.6 4806.7 622.5 1644.7 60203.4 284934.9 46201.5 1491.0 250.2 

2059 1112.4 132.0 71768.2 - 15.2 18660.5 4990.0 224.8 678.5 25689.3 251153.8 50200.9 384.7 68.4 

2002 1075.0 184.1 20766.9 - 49.5 27964.7 5266.7 181.7 2034.5 70506.0 385321.5 54400.0 640.2 376.1 

3051 2284.9 129.8 49356.0 25.8 37.0 52742.8 2431.3 351.3 10147.2 21425.0 399192.5 55330.1 527.5 645.7 

2022 3579.1 133.8 35203.7 - 409.1 312035.1 49794.2 580.5 2899.2 16429.4 344693.7 56481.3 932.2 499.2 

3016 175.4 119.1 38468.8 - 38.1 16821.8 7481.0 769.0 3917.7 46893.1 87764.9 57927.4 96.0 225.2 

1049 1229.6 110.1 17614.0 - 17.6 41080.3 3393.5 262.9 2912.0 30937.3 300090.7 36618.8 1489.2 1040.0 

1006 1270.4 256.0 186661.5 20.9 87.0 18906.0 4750.1 347.3 1989.1 46417.7 74773.6 52609.6 193.7 47.3 

1029 545.8 157.8 34863.9 - 34.8 81563.6 6290.3 297.3 1316.2 21729.7 335314.3 46188.1 941.8 340.5 
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3060 950.0 206.9 41193.1 - 36.4 118706.9 5575.2 492.5 1617.7 20013.8 355946.3 53586.5 408.2 295.6 

1009 1568.2 149.1 46917.8 - 64.3 206769.7 12884.7 1570.1 1125.5 25979.1 307489.8 22460.1 2477.8 118.5 

3005 2257.7 183.4 67571.2 - 73.3 111157.6 2606.7 260.2 2860.4 29346.1 388121.4 49292.3 653.4 409.4 

2058 56.9 150.5 166853.1 - 46.0 14786.5 6665.6 173.8 4130.5 19222.3 57951.8 49953.1 83.4 111.5 

3009 2287.0 166.8 178494.8 - 39.3 118931.3 15145.6 522.3 1238.6 29075.8 184425.4 46196.1 828.1 275.5 

1062 5226.1 166.5 31565.5 - 47.8 468331.0 1120.9 55.0 1922.2 56879.1 392365.5 34001.8 4852.3 126.8 
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Table 10.12: Raw data used to generate calibration curves (Section 5.6.5) 

Apigenin 7 

glucoside  
Luteolin 7 

Glucoside 
 

  
  

Concentration 

(µg/ml) 
Peak Area 

Concentration 

(µg/ml) 
Peak Area 

0.1 22615.721 0.1 268.435 

0.5 45453.418 0.5 687.745 

1 74052.766 1 685.819 

5 151270.547 5 1902.898 

10 700406.188 10 5032.957 

  
Biochanin A 

 
Vitexin  

  
  

Concentration 

(µg/ml) 
Peak Area 

Concentration 

(µg/ml) 
Peak Area 

0.1 57158.617 0.1 5903.256 

0.5 107928.664 0.5 25767.549 

1 148859.406 1 22072.801 

5 349052.188 5 129518.633 

10 1172363.375 10 388052.906 

  
P-Coumaric 

Acid  
Luteolin  

  
  

Concentration 

(µg/ml) 
Peak Area 

Concentration 

(µg/ml) 
Peak Area 

0.1 5172.164 0.1 992.997 

0.5 8398.861 0.5 2110.707 

1 13695.444 1 2885.103 

5 39441.992 5 7642.998 

10 147107.75 10 23313.98 
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Table 10.13: HPLCMS peak area data for 185 PMiGAP lines (Section 5.6.5). 

IP No. 
Apigenin7-

glucoside 

Biochanin 

A 

P-

Coumaric 

Acid 

Luteolin Vitexin Orientin 

Lut-7-O-

β-D-

glucoside 

Hydroxy 

Apigenin 

Dicaffeoyl 

Spermidine 

2"-O-

Hex-C-

Hex-Ap 

C-O-

Dihexosyl-

Lut 

C-Hex-C-

Pent-Ap 

Ap-Gluc-

Gluc 

IP6329 1645.145 157835.4 80575.09 227.784 81204.06 14246.7 101.572 837.689 43016.82 115979.2 33002.26 113.47 0 

IP6417 5003.049 180632.8 52390.47 380.267 37705.36 13155.73 238.003 1368.97 31581.55 128904.2 41103.62 244.47 32.612 

IP6099 6319.898 195225.9 38296.41 290.8 211105.7 8346.151 277.402 495.338 35593.92 307642.8 27857.49 1923.208 68.662 

IP6098 18699.53 164301.6 70459.22 242.518 105526.5 8039.368 531.81 985.112 34185.68 386792.7 39442.2 841.276 97.186 

IP6415 10517.37 144185.5 82468.57 303.029 22516.75 26278.87 450.511 5419.644 30208.53 75251.21 55315.27 96.135 38.172 

IP6310 2962.382 183759.9 116200.5 215.273 83539.8 10299.25 290.875 1065.033 62601.68 171982.1 37188.86 284.057 41.604 

IP2058 83538.67 154166.2 61716.51 1061.264 178430.8 5252.119 918.736 560.195 49998.56 188792.1 23361.01 1077.077 0 

IP6060 17652.2 166254.7 72094.98 281.424 111282.5 5686.311 523.042 392.357 39120.18 329220.7 35358.03 882.144 68.465 

IP5560 7414.483 177198.8 60767.47 225.357 35685.72 14541 87.126 852.112 39059.55 144002.4 39146.93 290.749 2.917 

IP5441 1429.784 157520.5 98492.66 152.256 470494.8 14467.12 168.174 608.006 86162.92 220413.8 25982.7 2821.273 37.179 

IP6179 1937.378 142076 95936.05 142.243 54561.88 18845.76 138.178 351.287 54468.01 68098.36 25965.08 391.615 22.193 

IP6112 1922.672 169617.6 37400.56 156.683 154238.2 9263.37 87.86 774.592 41885.19 232628.6 24436.59 1095.635 43.298 

IP6111 9414.957 174671.5 74724.66 58.935 55559.27 4693.494 103.52 372.925 65375.63 90544.05 22915.59 608.229 41.197 

IP5438 2503.355 157014.5 127092.5 680.501 101439.2 254014.8 461.474 821.594 69375.4 55026.99 49615.77 585.34 89.868 

IP5900 11681.23 144395.3 94021.38 299.459 146959.6 30573.75 412.308 531.527 84027.82 249400 24042.62 1577.78 165.545 

IP6101 8332.442 161952.4 64916.23 153.041 610366.2 15972.42 139.542 368.9 48273.28 357224.6 19267.64 5464.148 51.061 

IP10471 3159.563 200025.9 51492.6 218.717 218296.4 127203.1 201.817 1100.392 39607.24 247083.9 37961.07 1442.23 35.51 

IP6125 305.261 154074.4 82436.88 91.151 24142.95 28299.45 327.533 543.317 49405.17 37788.33 30837.79 411.2 0 

IP6146 6329.711 166812 69435.83 225.522 358316.3 12219.37 148.597 539.397 64896.75 418920.2 31046.57 2314.129 149.059 

IP6110 7278.802 158723.3 62485.78 168.559 175137.7 4074.576 352.401 627.121 38111.15 410008 34488.52 3138.28 219.071 

IP5931 13142.13 183924.9 42555.67 307.367 77508.35 8462.107 269.378 1197.863 68366.31 143312.7 28208.56 804.865 9.468 

IP5121 8962.738 186978.5 45058.47 171.855 55111.47 7993.11 234.673 1055.339 36000.42 165755 31334.49 1159.449 104.675 
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IP5931 9154.813 176933.5 51005.25 522.366 527420.1 54179.22 408.889 921.297 50236.05 317209.6 40390.81 2110.928 165.973 

IP5695 17212.48 166207 38665.91 149.935 332293.4 26302.79 241.45 636.688 53629.44 328095.2 23069.68 3046.258 23.094 

IP10632 4220.88 163230.8 96142.75 187.074 49861.09 32843.8 98.611 1172.417 40093.51 78465.29 27289.41 298.484 86.892 

IP6102 2024.556 189894.3 32809.36 185.828 48247.41 40044.45 223.434 856.776 22631.23 49794.09 36510.07 238.641 27.503 

IP5272 3522.62 180193.9 80197.72 357.376 18470.49 19733.67 323.424 856.682 49681.08 50038.54 37883.15 291.647 38.265 

IP10701 6028.233 176214 66180.09 244.988 14073.67 11823.02 250.424 894.936 45937.37 57677.06 32645.35 270.734 31.711 

IP10456 1658.552 202576.9 72247.01 145.735 25714.18 23967.81 247.396 1378.979 83844.38 105992.3 39161.32 75.754 33.477 

IP10579 3240.084 160137.9 146026.8 317.046 36707.36 34373.91 332.112 4347.632 40882.7 177015.9 53812.72 129.604 27.476 

IP5031 1589.509 184008.8 44476.44 342.022 12635.93 12752.55 278.24 1140.284 16087.93 64459.7 36940.59 247.67 29.588 

IP5207 24683.44 138550.4 98364.06 331.879 379192.2 24688.59 221.8 496.108 49155.16 374409.5 25879.76 2517.239 48.692 

IP10271 5240.07 180420.8 59891.88 148.002 137462.1 7124.015 132.299 357.54 99951.66 266065.9 25190.09 1614.781 17.885 

IP10343 6580.595 184698.2 66599.44 117.695 265956.4 4272.171 257.89 643.465 49942.59 296404.8 21788.73 3023.188 66.789 

IP10705 7672.576 218242.8 48229.1 742.059 67824.49 19584.77 452.804 1221.1 28909.66 262327.9 49570.87 746.94 69.471 

IP10394 5102.194 202426.8 65810.73 269.922 46482.8 4146.73 188.093 1044.67 78096.74 201403.4 26330.64 453.663 49.35 

IP5816 3825.25 194662.9 68115.88 258.924 335316.9 68644.41 792.652 5112.968 37408.51 212687 49711.11 414.052 58.517 

IP10486 14479.87 202773.4 59900.99 174.552 118888.5 10210.3 295.696 640.262 46819.61 254247.6 27282.53 1931.852 95.775 

IP10446 5092.985 231691.6 74955.03 206.209 44980.73 6608.597 233.722 894.001 62050.22 186100.6 27344.26 723.613 54.275 

IP10539 25434.83 194342 46551.51 445.175 34545.34 60651.14 323.227 2908.119 39603.07 90706.09 48802.96 280.83 174.399 

IP10379 5770.098 200155.7 80463.01 213.584 16068.18 11741.74 169.668 538.313 49818.25 87990.83 36078.14 225.31 31.19 

IP5131 2968.269 195494.1 36523.47 226.791 184436.7 13970.7 254.119 866.86 42376.33 393847.8 39052.11 2125.942 274.962 

IP4020 6763.792 235745.3 38115.51 350.718 69207.23 17671.11 509.337 750.172 49311.77 243689 48659.13 511.317 72.827 

IP4979 6555.727 198044.2 149250 270.454 28993.44 10342.2 355.659 669.283 109233.2 138830.2 40321.74 276.232 62.862 

IP4962 1818.82 226741.3 116181.8 74.059 18747.1 4440.772 74.368 461.416 93921.26 214498.3 28661.66 233.24 0 

IP3557 13035.93 242731.4 67008.02 92.875 269113.8 3189.452 122.987 636.323 8395.161 247743.3 22498.58 37.194 42.005 

IP4378 2309.795 210288.2 101739.5 453.242 39052.4 65527.15 435.51 666.353 58361.32 59691.85 43369.96 333.999 47.87 

IP4952 2902.195 199265.4 67830.87 275.142 65069.49 73412.25 306.034 3158.046 42488.17 124028.4 51316.06 516.098 59.424 
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IP4927 8634.646 242025 77868.4 432.978 67965.9 16810.51 488.57 2351.406 65668.77 311157.5 48436.36 621.278 97.49 

IP3757 1406.107 241572 55122.97 57.286 23807.77 64225.14 111.11 823.929 110597.4 62430.66 36075.69 355.32 12.506 

IP3389 4216.125 205222.4 116047.4 122.985 93529.57 8720.015 339.898 424.683 112039.4 239525.3 40040.99 881.97 29.592 

IP4542 1489.926 208935.1 74153.56 240.274 28369.13 25499.54 292.507 919.697 88801.06 115582.8 50722.47 168.71 50.858 

IP3636 1891.067 221914 85279.6 70.418 12513.39 10915.88 221.77 1207.079 94941.89 61271.66 30752.4 247.885 7.757 

IP3175 2391.021 211009.5 48693.02 309.55 44308.1 15328.24 321.944 1072.545 76217.99 150532.5 46537 386.01 39.077 

IP3616 30592.7 198404.2 108241.9 246.607 82946.39 6717.936 217.404 737.564 100501.9 433902.3 41566.39 1219.107 81.484 

IP3732 3959.671 200804.7 69726.8 100.404 16509.85 7110.624 230.362 430.836 43175.19 122126.2 21499.73 463.732 72.153 

IP3890 3104.463 206089.3 116210.5 181.615 278136.6 87828.87 194.487 860.763 72832.2 121058 31321.99 1771.813 50.175 

IP3138 2704.086 192090.2 44901.69 160.763 43414.72 15292.51 198.861 422.567 28770.41 154503.5 37385.88 387.73 0 

IP3471 7596.9 201629.1 62277.58 112.547 197956.4 7621.892 274.632 716.083 116938.5 295924.6 24917.59 706.563 17.321 

IP3201 1331.492 174096.2 75327.56 153.179 28241.73 7365.746 214.501 518.542 33946.7 94827.86 32604.63 118.414 63.429 

IP3122 4759.418 184740.8 63854.88 178.71 48578.07 4745.147 327.101 513.187 69965.85 328217.3 39703.58 551.866 70.098 

IP3865 4875.609 196755.7 102049.5 239.54 111470.6 24464.21 289.905 1004.099 62925.32 243489 33382.1 679.876 84.75 

IP3125 11789.8 185772.2 77347.49 313.867 67073.93 26546.48 270.1 873.101 74282.7 227187.6 36961.51 540.426 95.775 

IP3110 1472.853 186655.9 86915.06 168.042 25098.42 19801.27 300.504 1268.399 44553.38 155697 44981.24 117.14 34.108 

IP4828 1333.767 188241 108014.3 75.863 13877.52 10911.65 195.577 360.702 72665.74 40174.24 31832.52 196.338 25.324 

IP4965 8935.301 208429.3 61932.77 145.794 91895.59 5654.749 236.167 529.928 75129.31 342293.2 27516.23 1075.402 124.591 

IP3564 14664.53 213669 75051.34 300.363 181473 9395.413 448.569 3079.156 64477.77 379704.8 41523.94 1141.087 131.164 

IP3098 13738.54 170378.7 43904.79 104.184 127338.1 6882.664 172.958 2042.03 35367.29 328974.7 34053.52 1654.949 47.897 

IP7967 3067.153 196306.9 66686.13 602.729 56614.33 36135.78 301.588 1262.059 114682 161765.1 54874.51 222.62 57.947 

IP11218 9414.066 188899 149893.4 264.177 50599.88 32683.85 383.429 1028.087 99983.73 144306.6 43273.72 375.752 18.229 

IP7952 4642.054 190491.4 101248 344.602 50407.27 76653.11 138.75 548.926 86535.46 55264.06 35916.94 937.371 25.255 

IP7886 2761.229 183598.4 59562.24 177.265 129186.5 9212.189 565.302 881.209 151069.8 304094.2 32782.57 1858.68 71.548 

IP7941 1208.789 194369.9 66518.84 0 19955.55 4108.629 88.729 191.066 52099.52 70571.59 14418.64 431.24 0 

IP7470 2261.882 213100.8 80880.16 149.906 44423.64 8344.684 305.099 1485.34 108047.6 158737.5 33796.82 692.171 0 
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IP7762 1959.472 188772.3 61469.56 147.494 151002.1 9610.339 126.991 590.308 27931.14 232998.5 28824.51 668.438 39.416 

IP7910 2579.752 200417.2 93539.62 4211.053 82363.34 97104.62 878.845 1292.382 158454.7 152825.7 61105.19 79.473 190.069 

IP7660 4234.715 208202.8 132600.9 727.77 34255.38 41612.5 811.219 783.811 93605.56 184821.2 60558.66 119.65 84.126 

IP7922 1658.554 220279.3 119070.7 174.2 25526.98 14230.17 183.887 884.95 98451.95 111037.4 42929.74 148.169 13.857 

IP7108 1438.132 177759.7 119447.3 128.761 15143.84 6783.913 181.195 451.077 129104.9 55879.77 26957.9 85.111 14.007 

IP7095 472.656 169267.8 50467.61 132.756 258522.5 11450.66 99.039 1194.1 83766.51 278413.3 31012.63 2111.994 67.398 

IP7970 9221.104 186347 81493.26 341.068 559916.6 13984.19 13834.47 1134.339 66362.34 288650.7 34341.77 3356.496 105.845 

IP7942 1831.092 194109.2 101499.8 173.616 84555.04 28358.73 1294.527 927.53 54134.91 54998.33 27865.52 653.986 45.314 

IP7633 6239.901 237719.5 50770.57 110.088 192858.5 4354.096 386.375 453.774 150981.7 336852.9 23296.25 1832.689 83.734 

IP7536 1673.346 206163.4 45719.04 95.4 33819.34 7317.267 228.771 598.908 70487.06 90540.96 36255.53 273.221 20.634 

IP7846 9472.941 186152.4 28619.01 196.026 385305 4507.557 248.399 807.555 77464.97 313119.7 33132.43 3506.309 209.788 

IP6882 1632.131 202910.8 28813.44 285.239 154235.3 47020.48 3253.322 2418.844 64125.75 115198.4 39171.25 349.819 52.336 

IP6892 1812.398 201951.6 24140.67 211.997 232376 55733.48 418.414 1048.26 65171.47 234115.5 36461.4 1080.672 54.575 

IP6682 2302.592 226591.3 24962.39 122.047 90771.77 10237.97 611.331 458.731 90617.84 312427.2 38854.82 558.376 151.441 

IP9242 26628.76 220648.2 68605.55 409.544 370906.1 26931.02 279.964 1063.227 125859.9 382719 43394.44 1880.106 258.557 

IP7930 3434.901 224252.7 54236.03 120.056 163437 3665.486 250.556 1521.395 88801.6 245868.1 27500.24 1400.402 46.155 

IP8767 6765.158 197239.8 66877.07 215.477 354125.8 2348.639 215.515 611.88 131182.8 252595.7 18459.19 3350.708 0 

IP6869 1274.189 170860.9 34599.73 172.56 19557.29 8298.262 530.429 1279.195 57337.27 59870.83 42760.87 152.176 24.296 

IP9407 21346.38 196631.1 32964.81 129.881 523561.2 2837.802 196.078 798.757 50490.76 393691.4 23533.83 6683.259 111.835 

IP9406 4189.62 167346.4 38831.04 249.512 96017.33 48629.04 307.224 1302.026 6580.998 193676 38786.45 842.606 46.955 

IP8955 3499.345 182273.1 24353.07 80.951 137935.8 6890.48 107.282 905.203 23742.86 248733.8 20644.06 4303.639 81.932 

IP6584 6001.411 185576.1 38391.89 172.359 163736.9 6522.635 207.901 357.341 90749.59 286362.1 26055.87 1135.446 59.359 

IP8426 2997.566 199488.3 48747.26 117.266 59629.74 7722.847 362.061 648.355 80998.68 199289.3 23017.35 1481.272 24.84 

IP7848 4566.865 183483.1 24379.01 81.905 33334.31 4742.471 94.588 557.024 80535.48 102314.7 27048.44 442.971 0 

IP9391 35400.95 241999.1 29668.46 105.139 728385.8 4492.913 291.847 696.262 44961.8 433519.5 23365.78 5293.864 123.378 

IP9347 3189.438 232218.1 27465.55 148.88 306243.9 26488.69 210.827 796.184 48411.63 288094.8 29439.23 1654.068 18.629 
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IP8786 12637.96 202214 75687.91 385.826 340993.9 13324.76 458.799 976.427 78399.84 354420.8 32626.87 3510.823 113.343 

IP6460 3086.071 187967.5 36546.64 285.963 107798.5 110874.9 317.93 695.085 45434.31 181315.9 37462.82 802.912 10.955 

IP9301 7432.429 189826 112354.1 103.37 485938.6 4405.161 203.794 502.769 91207.99 363311.2 22495.9 3961.554 80.037 

IP6745 1398.786 160362.6 41524.06 111.3 21301.63 6709.332 350.208 757.052 113440 64842.59 31908.13 502.302 24.87 

IP8210 6751.364 200970 58844.58 267.787 40827.48 42774.24 219.271 1156.151 82217.91 126182.3 49118.67 316.865 18.163 

IP8182 843.277 230383.5 41807.32 245.979 10652.96 9288.616 192.039 879.723 2445.384 58604.86 32238.01 237.942 46.569 

IP8172 3861.242 196022.9 74396.66 283.453 550735.1 20116.17 413.842 902.252 90842.71 248364.8 44581.78 2132.938 0 

IP8276 4719.157 194628.1 58672.63 88.352 53662.7 4863.119 531.334 647.799 116944.2 288315.9 26205.42 1072.821 65.812 

IP9282 6671.009 177849 54660.61 115.652 154256.7 6143.858 895.676 594.787 59770.56 271724.7 29400.23 1007.301 138.666 

IP8181 2231.829 213209 59645.32 119.296 155606 4104.254 107.796 389.551 87493.42 227922 19088.75 1243.574 51.439 

IP8166 51041.3 186368.5 85937.64 726.594 782306.1 64986.25 13598.67 733.145 134512.9 362103.3 27998.35 5669.229 221.053 

IP8174 5553.342 182990.5 64107.31 112.358 73927.49 5777.571 1122.564 431.69 34649.01 237174.3 29405.02 823.732 15.906 

IP8294 4739.466 226915.9 67571.01 345.997 112743.9 10668.54 358.338 729.736 82270.76 306994.8 36165.02 683.22 33.501 

IP8275 3331.176 211978.8 143944.5 274.121 25863.02 7046.626 233.387 711.086 101064.3 96801.65 29439.07 357.861 38.793 

IP8863 28735.09 192181.2 83654.13 75.802 77107.99 2919.968 239.122 396.564 118975 346302.2 19449.17 2149.644 0 

IP8187 10249.52 185658.5 49022.4 303.653 109366.6 6791.334 235.944 570.697 115222.3 299961.8 28667.12 1212.176 65.272 

IP8647 103979.8 203502.6 115485.8 387.879 693728.5 5094.607 201.141 243.355 141148.2 348549.1 18932.79 8279.042 80.349 

IP8761 9800.999 191311.7 104994.9 380.039 49864.81 12096.6 165.594 681.598 46937.21 94470.35 32611.1 583.386 48.03 

IP8280 5179.019 195349.2 62222.26 414.899 21762.92 4978.492 238.833 830.682 136981.2 60208.88 25543.31 480.186 17.585 

IP10085 2354.525 177314.9 48697.71 170.521 10726.29 4256.678 127.611 528.624 38398.47 28649.86 17437.28 268.956 4.544 

IP9840 1789.349 181530.1 121458.9 103.978 31058.58 14558.77 110.969 1038.891 112018 31788.18 25957.87 271.478 56.697 

IP9496 10949.87 189833.8 57867.23 247.037 252573.2 12243.92 394.71 1059.627 45929.84 311731.2 34907.65 1299.606 177.113 

IP9446 792.224 174418.5 33143.36 91.546 51893.94 19595.61 250.021 349.063 22633.05 97754.35 24019.53 534.385 6.131 

IP9692 4441.453 192807.5 59414.38 79.002 43675.4 9362.751 195.744 233.026 28335.14 110252.2 21370.91 480.508 44.28 

IP9426 4935.589 195035.4 79230.78 194.383 248815.4 5937.634 355.699 386.034 71254.14 281393.5 22744.15 1345.197 83.376 

IP10339 7758.763 184334.5 67540.87 72.864 102590.6 2629.785 144.526 191.361 50156.47 314732.3 15047.49 734.795 93.746 
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IP9710 2380.661 172936.3 101898.5 226.735 29834.67 13634.13 420.921 1079.963 61253.08 113863.3 37167.31 182.196 23.842 

IP9651 15736.07 237451.3 94743.71 356.577 156953.2 14476.73 1102.511 974.697 67935.72 368978.7 37452.22 523.204 329.389 

IP9595 12618.8 195510.5 89666.84 406 153792.7 156563.8 393.391 1936.707 98537.05 113570.5 36679.53 621.465 0 

IP8074 4109.07 227685.6 119249 204.758 291993.5 35758.02 250.639 377.393 141557.2 198011.2 26376.09 1465.881 163.883 

IP10820 4283.882 222974.9 84170.27 895.528 284763.8 74645.14 488.618 339.213 77053.31 146271.8 48066.84 139.673 226.406 

IP11229 3775.3 205896.2 60186.59 223.611 56094.73 17630.41 217.749 435.669 69446.38 184968 28322.34 323.667 23.889 

IP9981 2655.77 213922.6 33798.06 652.331 145400.8 34396.52 414.124 3014.835 77035.47 227434.2 43642.35 423.898 44.235 

IP9532 574.529 192326.3 61613.93 131.978 32992.95 10038.45 300.516 1438.39 43501.66 93657.2 38790.9 128.127 26.812 

IP10964 9472.102 221082.3 44268.81 290.994 231052.3 4893.832 98.031 487.695 34596.81 305028.7 26620.54 1627.862 43.281 

IP10759 36979.68 183366.8 44931.48 306.698 783605.8 3685.002 189.096 123.28 69661.13 379283 16716.95 4130.643 48.36 

IP9426 2752.439 214735.6 113266.1 547.909 85372.12 48556.59 632.457 2484.505 83745.93 174017.2 47004.49 260.939 102.9 

IP8069 1420.877 201099.5 61272.18 311.089 71515.74 32734.73 2017.218 942.889 48089.68 72835.2 28392.54 432.075 32.635 

IP11275 728.304 214714.3 99607.57 267.779 41092.36 86036.35 542.279 4160.947 6621.512 53992.93 50844.52 176.558 19.847 

IP10953 5084.763 199084 46221.02 839.496 86168.88 168183 557.316 3827.709 61948.9 144204.2 53980.22 279.417 0 

IP10945 13194.94 224451.2 88566.31 213.909 56048.67 26886.2 256.908 649.083 59218.98 312892.5 34906.54 460.547 73.156 

IP12128 3327.876 222160.6 95096.54 79.178 408059.2 28319.34 221.7 396.812 108031.6 317986.8 30623.01 57.884 18.15 

IP10140 3639.201 213357.9 68938.31 207.871 82601.2 24747.34 302.114 1899.35 57917.35 187045.1 44722.27 438.092 83.307 

IP9971 6223.98 240027.9 63128.95 320.231 66385.62 36516.22 464.655 703.687 131655.7 173678.5 48470.96 406.136 53.113 

IP10811 3308.762 224824.3 63001.27 211.59 91653.74 16198.42 337.759 1230.107 113019.1 259382.7 42512.35 775.292 33.453 

IP10761 1983.282 228933.3 115466.3 721.047 91657.91 103565.3 533.304 673.541 133836.6 204956.9 66022.91 313.32 27.903 

IP11929 10449.23 219381.9 95320.26 387.801 373227.7 12477.65 229.843 521.895 84867.45 297699.2 32752.36 1721.718 0 

IP9969 6496.104 250140.4 83500.53 171.791 85763.95 69582.29 503.264 1401.634 124557.6 120658.8 48590.19 375.981 0 

IP7953 9282.616 185885.8 143761.2 329.067 50125.29 71753.96 419.393 584.97 70357.43 54510.54 33271.51 457.635 76.932 

IP11311 2702.631 200186.4 99020.56 361.68 18453.64 17478.71 6505.937 551.811 85390.07 70283.46 26666 167.974 62.646 

IP11984 3419.987 205695.5 43180.56 116.017 56562.62 13283.93 407.835 419.65 84499.84 154955.5 23940.03 801.017 36.797 

IP11577 1930.148 187508.8 37213.26 202.106 94370.98 13160.14 431.901 567.142 90773.57 193901.8 31625.94 842.824 46.713 
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IP12116 15156.91 220305.6 44155.81 217.013 325577 9925.148 328.55 862.026 33909.1 442000.1 35598.24 806.356 389.794 

IP11310 4671.771 205659.9 37027.16 387.106 71469.64 18298.92 216.293 701.108 41902.32 205400.5 33689.3 391.293 152.523 

IP11353 8919.885 216727.6 121154.3 199.495 209644.3 7831.412 363.827 391.645 92975.5 345330.7 30902.24 1278.269 67.502 

IP11211 2805.648 210484.1 60270.91 570.714 67208.98 10027.91 202.618 1150.232 57171.01 285800 37246.47 505.777 79.739 

IP11584 10133.52 237274.6 142063.2 159.715 237153.2 3384.778 305.003 1311.692 136153.7 364798.8 26612.2 2237.844 0 

IP12138 32418.54 189165.1 56051.2 325.154 261219.5 5881.82 325.12 896.855 9566.629 401693 30639.7 1261.403 196.015 

IP11593 1812.938 213134.6 42289.31 386.751 52590.23 45703.52 321.39 4179.971 82281.19 171074.1 47582.49 307.619 19.371 

IP11358 2939.789 203690.4 64360.85 181.617 56486.65 6713.52 221.013 490.662 90246.86 87200.41 18260.43 411.02 14.11 

IP11765 4585.919 202204.5 48097.07 223.436 31234.37 32088.42 2309.592 1053.936 78667.22 104975.9 34820.31 211.465 0 

IP11378 1883.605 220253.9 87418.06 83.83 60522.6 35820.27 246.068 544.926 98310.23 182711.3 19305.54 931.387 20.504 

IP11346 9843.745 212752 48551.06 345.423 51433.54 85489.76 861.237 531.51 37853.45 49574.1 31059.89 902.217 88.519 

IP11584 5876.855 219233 38946.49 223.593 306299.8 13524.05 368.863 245.3 8269.553 335398.3 21365.66 1679.395 91.595 
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Illumina Sequencing FASTQ Quality Control / Quality Assurance Report (663 SNP 

data set from foxtail millet): 

Number of Samples: 343 

Total Reads in Project: 664058567 

Mean Reads per Sample: 1936030.8 

Median Reads per Sample: 1718170 

Read Goal per Sample: 1000000 

Std. Dev of Reads per Sample: 1663440.1 

Number of Samples Meeting Read Goals: 248 

Sequencing Coefficient of Variation: 0.86 

 

Figure 10.1: Sequencing distribution of 343 PMiGAP lines. 
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Figure 10.2 Individual sample sequencing performance of 343 PMiGAP lines 

sequenced at Floragenex, CA. 
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Tassel commands used in Section 6.3.8 to filter 32,901,665 SNPs downloaded from 

http://cegsb.icrisat.org/ipmgsc/: 

Filtering:  

0.05 minor allele frequency filter and a “minimum count’ threshold, where a call 

must be present in 80% of individuals at a given loci. 

> filterAlignMinFreq 0.05  

and  

> filterAlignMinCount 276 

The grep command was used to grab each line containing a specific word from a 

larger file e.g. "Fe" and then send these to a new file. 

> grep "Fe" total_results_file.txt > Fe_results 

The cat command was used to attach the column headings to the line grabbed 

previously using the grep command and then send this to another new file e.g. 

> cat  headings Fe_results > Fe_results_with_headings 
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The R script used to generate the LD decay plots in Sections 6.4.1 and 6.4.2 

(example uses the LD data generated in TASSEL 5.2.38 for >37,000 SNPs) and has 

been adapted from Marroni et al., (2011): 

 

 

 

 

> library(readr) 
> LD_37k_table <- read_delim("~/Aberystwyth University- 
PhD/GBS/SNPs/LD_37k_table.txt",  
+     "\t", escape_double = FALSE, trim_ws = TRUE) 
Parsed with column specification: 
cols( 
  Locus1 = col_integer(), 
  Position1 = col_integer(), 
  Site1 = col_integer(), 
  NumberOfStates1 = col_integer(), 
  States1 = col_character(), 
  Frequency1 = col_character(), 
  Locus2 = col_integer(), 
  Position2 = col_integer(), 
  Site2 = col_integer(), 
  NumberOfStates2 = col_integer(), 
  States2 = col_character(), 
  Frequency2 = col_character(), 
  Dist_bp = col_integer(), 
  RSQ = col_double(), 
  DPrime = col_double(), 
  pDiseq = col_double(), 
  N = col_integer() 
) 
|=========================================================================
=======| 100%  204 MB 
 
> View(LD_37k_table) 
> attach(subset(LD_37k_table, Locus1=='1')) 
> n=7 
> LD.data=(RSQ) 
> distance=(Dist_bp) 
> #n: sample size, i.e. number of sampled chromosomes, LD.data: estimates 
of LD as r2 between pair of markers, distance: the distance between pair 
of markers in bp. 
> HW.st<-c(C=0.1) 
> HW.nonlinear<-
nls(LD.data~((10+C*distance)/((2+C*distance)*(11+C*distance)))*(1+((3+C*di
stance)*(12+12*C*distance+(C*distance)^2))/(n*(2+C*distance)*(11+C*distanc
e))),start=HW.st,control=nls.control(maxiter=100)) 
> tt<-summary(HW.nonlinear) 
> new.rho<-tt$parameters[1] 
> fpoints<-
((10+new.rho*distance)/((2+new.rho*distance)*(11+new.rho*distance)))*(1+((
3+new.rho*distance)*(12+12*new.rho*distance+(new.rho*distance)^2))/(n*(2+n
ew.rho*distance)*(11+new.rho*distance))) 
> #HW.nonlinear: object obtained after fitting the non-linear model, 
new.rho: estimate of population recombination parameter, which is actually 
C/distance, fpoints: vector of LD obtained fitting the linear model. 
> ld.df<-data.frame(distance,fpoints) 
> ld.df<-ld.df[order(ld.df$distance),] 
> plot(distance,LD.data,pch=19,cex=0.9) 
> lines(ld.df$distance,ld.df$fpoints,lty=3,lwd=1.2) 
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Table 10.14: Phenotype data used for haplotype trait analysis (Section 7.4). 

Genotype Fe/Zn Score Fe (mg/kg) Zn (mg/kg) Haplotype Score 

1001 High 106.91 54.47 6 

1022 High 98.96 69.76 7 

1035 High 90.24 71.22 3 

1057 High 117.84 54.15 6 

1058 High 135.27 79.31 1 

2029 High 100.23 70.76 2 

2036 High 111.41 82.76 4 

2061 High 113.95 62.72 2 

3033 High 94 82.9 1 

3048 High 111.01 66.22 1 

3050 High 93.74 66.95 4 

4037 High 93.4 64.64 4 

2005 High 85.44 79.39 1 

4049 High 102.28 78.52 4 

1054 Low 36.97 34.62 5 

2007 Low 37.24 32.19 1 

2018 Low 34.55 25.74 8 

2024 Low 35.94 26.57 5 

2026 Low 38.59 25.81 1 

2063 Low 36.78 36.1 4A 

3012 Low 37.06 35.84 1 

3013 Low 39.25 26.42 2A 

3054 Low 33.63 34.83 4 

3058 Low 33.27 34.71 1 

4011 Low 39.65 22.07 2 

4041 Low 35.02 24.81 6 

4050 Low 29.18 33.87 1 

1025 Medium 54.39 51.95 2 

1061 Medium 58.66 47 4 

2033 Medium 58.11 50.05 9 

3004 Medium 50.91 55.25 4 

3017 Medium 60.95 46.19 6 

3020 Medium 56.29 48.51 1 

3036 Medium 53.34 56.21 1 

3039 Medium 62.2 46.08 5 

3044 Medium 64.3 44.63 1 

3051 Medium 55.35 51.54 1 

3060 Medium 71.66 36.84 6 

4052 Medium 61.36 43.97 1 

4053 Medium 53.69 54.63 5 

4058 Medium 51.07 57.48 7 

4060 Medium 62.71 46.66 5 

 


