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Abstract: 
 The thermal electromotive force (TEMF) and the thermal electromotive force 
coefficient (TEMFC) of the thermocouple consisting of a copper wire and an (X5CrNi1810) 
steel wire plastically deformed under tension or bending conditions were found to increase 
with increasing degree of plastic deformation. The increase in the degree of deformation 
disturbs the microstructure of steel due to increases in the density of chaotically distributed 
dislocations and internal microstress, resulting in a decrease in the electron density of states 
near the Fermi level. Through the effect of thermal energy, annealing at elevated 
temperatures up to 300 oC leads to microstructural ordering along with simultaneous 
increases in the free electron density of states, TEMF and TEMFC. Based on the temporal 
change of the TEMF, the kinetics of microstructural ordering was determined. During the 
initial time interval, the process is a kinetically controlled first-order reaction. In the second 
time interval, the process is controlled by the diffusion of reactant species. 
Keywords: Thermal electromotive force; Relative strain; Electron density of states; 
Activation energy; Steel. 
 
 
 
1. Introduction 
 

When subjected to mechanical stress, metals undergo deformation simultaneously 
with a change in their microstructure. The degree of short-range order decreases, while the 
density of chaotically distributed dislocations and internal microstress increase [1-3]. Some 
atoms make a transition to higher energy levels that exhibit a larger equilibrium distance 
between adjacent atoms and a smaller overlap of their valence orbitals, thus causing a 
decrease in the free electron density of states near the Fermi level [4-5]. The deformation-
induced changes in the electron density of states produce changes in both the TEMF and the 
TEMFC of the deformed metal – another metal thermocouple [6-9]. 

At room temperature, the metastable state of most deformed metals as well as of steel 
does not transform into a stable state at an appreciable rate since thermal energy is not large 
enough to overcome the activation energy for microstructural ordering [10-27]. At higher 
temperatures, thermal energy reaches the value of the activation energy. This leads to 
microstructural ordering, causing an increase in the free electron density of states and changes 
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in the TEMF and the TEMFC [27-31]. As temperature increases, structural relaxation occurs 
in metals and alloys at temperatures lower than crystallization temperatures. This results in 
short-range ordering, which causes changes in physical and chemical properties as well as in 
the TEMF [16-27]. When temperature is above the crystallization temperature, nanocrystals 
first appear in the amorphous matrix. These nanocrystals grow into larger crystals during 
crystallization. The appearance and growth of crystals induce microstructural changes that 
affect the mechanical, magnetic and chemical properties as well as the TEMF of the material 
[16-27]. H. Chiriac et al [32-34] observed a correlation between the TEMF and the evolution 
of the crystallization process from an amorphous state over a nanocrystalline to a crystalline 
state of Fe90Cu1Nb3Si13.5BB9, Fe90Hf7B3B , Fe90Zr7BB3 and Fe77.5Si7.5B15B  alloys. They showed that 
the TEMF value increased from the amorphous to the crystalline state and that the maximum 
value for Fe90Cu1Nb3Si13.5BB9 was higher than the maximum values obtained for Fe90Hf7B3B  and 
Fe90Zr7BB3 alloys at the final stage of crystallization. The nanocrystalline phase formation 
produces a sharp increase followed by a slow increase from the nanocrystalline to the 
crystalline state in the absolute value of the TEMF [32-34]. L. Nordheim and C. J. Gorter [35] 
found that the TEMF of an alloy is mainly affected by the concentration of elements in solid 
solutions. N. J. Luiggi et al [36], V. Massardier et al [37] and S. I. Vooijs et al [38] examined 
the precipitation process in Al alloys using the Nordheim-Gorter mathematical expression. 
Based on the effect of plastic deformation, annealing temperature, TEMF and electrical 
resistivity, S. I. Vooijs et al [38] monitored the precipitation kinetics in an Al-AA3104 alloy 
and a Mg- and Cu-rich alloy 3104. They found that Al2CuMg precipitates form at low 
annealing temperatures, irrespective of the extent of pre-deformation. During annealing at 
temperatures from 350 °C and higher, Mn-containing dispersoids are precipitated. 

The objective of this study was to assess the effect of relative strain and heating 
temperature on the TEMF and the TEMFC, and use this effect to establish the kinetics of 
microstructural ordering in deformed steel wires. Another aim was to examine the possibility 
of determining the degree of recovery using the temperature dependence of the TEMF, and 
evaluating the degree of deformation of annealed steel wires, in view of the fact that 
deformation after annealing cannot be determined due to specific shapes and positions. 
 
 
2. Materials and Experimental Procedures 
 

In this investigation, X5CrNi1810 steel wire specimens having a length l0 = 400 mm 
and a diameter ∅2.8 mm were tested. Some of the specimens were subjected to plastic strain 
under a tensile load of 2000 to 3600 N (accuracy: ±10 N). Thereafter, the length of the 
tensioned wire l was measured, and the absolute strain of the wire was calculated, Δl = l – l0, 
accuracy: ±10-2 mm. Then, the relative strain ε of each specimen was determined using the 
expression l

l
ε Δ

= . The other specimens were plastically deformed by bending the wire around 

a 10 mm-diameter cylinder. 
The deformed steel specimens and the copper wire (400 mm in length and 3 mm in 

diameter) were joined by a mechanical method (pressing) to form thermocouples.  
The compensation method in the temperature range of 0 to 300°C was used to measure 

TEMFs. During the measurement, a voltmeter with an internal impedance of 1010 Ω and a 
sensitivity of 10-5 V, and a microammeter of 0.5 μA sensitivity were used. One end of the 
thermocouple was immersed in a mixture of water and ice at 0 °C, and the other was placed in 
a furnace at a temperature of t ±1 ° C. 

The temperature supplied by the furnace was controlled by a copper-constantan 
thermocouple located in the vicinity of the other end of the steel-copper thermocouple. The 
furnace was filled with argon to avoid the oxidation of the thermocouple.  
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3. Results and Discussion 
 

The temperature dependence of the thermal electromotive force (TEMF) of 
thermocouples consisting of copper and steel wire specimens subjected to multiple levels of 
tensile strain is presented in Fig. 1.  

 

 
 
Fig. 1. Thermal electromotive force, E, of thermocouples consisting of copper and steel wire 

specimens subjected to multiple levels of tensile strain as a function of temperature, t, and 
relative strain, ε :  - 1.3%,  - 2.4%,  - 3.7%,  - 4.4%,  - 5.5%,  - 8.4%,  - 

10.7%, - 13.0%,  - 15.5%,  - 19.0%. 
Heating rate: 20 °C min-1. 

 
As shown in the Fig., the TEMF of all specimens increases with increasing 

temperature. The increase is greater than linear, and the deviation is more pronounced in 
samples subjected to a higher strain level. The annealing process can result in the formation of 
a new phase as well as in the precipitation of impurities and intermetallic compounds at 
crystal grain boundaries. Consequently, there is a change in the chemical composition of the 
grain and, hence, in the TEMF. However, transmission electron micrographs of deformed 
samples of steel before and after annealing showed neither new phase formation nor notable 
precipitation. This indicated that the change in the TEMF is a plausible consequence of short-
range ordering rather than phase or precipitate formation. This is the result of structural 
rearrangement in the material during annealing, with specimens undergoing microstructural 
ordering as the density of chaotically distributed dislocations and the internal microstress 
decrease, resulting in a better overlap of 3d and 4s orbitals, which increases the electron 
density of states in the conduction band near the Fermi level.  

The effect of annealing temperature on the TEMF of the copper – deformed steel wire 
thermocouple is presented in Fig. 2, resulting in a shape similar to the curves presented in Fig. 
1. 

The diagrams in Fig. 1. show the thermal electromotive force coefficient (TEMFC) as 
a function of annealing temperature and deformation degree. The TEMFC increases with 
increasing temperature since thermal energy enhances the short-range ordering of the 
structure and, hence, the generation of electrons near the Fermi level. 
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Fig. 2. Thermal electromotive force, E, of the copper - deformed loop-shaped steel wire 

thermocouple as a function of temperature, t. 
 

The TEMFC also increases with increasing degree of deformation of the steel wire. 
At higher levels of relative strain, the density of defects is increased and, accordingly, the rate 
of their annihilation and the rate of generation of free electrons at elevated temperatures are 
higher. Increasing the density of free electrons, , at the Fermi level in the steel wire causes 
an increase in both the TEMF and the TEMFC, in accordance with the equations: 

1n

( )1 2
2 1

2 12
n nkE T T T

e n n
α

⎛ ⎞
= − − = ⋅ Δ⎜ ⎟

⎝ ⎠
       (1) 

1 2

2 12
n nk

e n n
α

⎛
= −⎜

⎝ ⎠

⎞
⎟          (2) 

where: E (V) – thermal electromotive force (TEMF); α (V K-1) – thermal electromotive force 
coefficient (TEMFC); k = 1.3806505⋅10-23 J K-1 – Boltzmann's constant; e = 1.60217653⋅10-19 
C – elementary charge; 1(cmn -3) – density of states of free electrons in the steel wire; 2n (cm-3) 
– density of states of free electrons in the copper wire; (K) – temperature of the hot junction 
of the thermocouple; = 273 K – temperature of the cold junction of the thermocouple. 

1T

1T

 

 
Fig. 3. TEMFC, α, as a function of temperature, t, and relative strain, ε, of steel wire 

specimens plastically deformed by tension:  - 20°C,  - 40°C,  - 60°C,  - 80°C,  - 
100°C,  - 120°C, - 140°C,  - 160°C,  - 180°C,  - 200°C,  - 220°C. 
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The diagrams in Fig. 1. were used to determine the values of the TEMFC, α, for 
different temperatures and different relative strains of the steel wire plastically deformed by 
tension. Results are presented in Fig. 3. 

Fig. 4. presents the temperature, t, dependence of the TEMFC, α, for a steel wire 
specimen plastically deformed by tension up to a relative strain of ε = 19 %, and for a steel 
wire specimen plastically deformed by bending around a cylinder with a diameter of d = 10 
mm. 

 
Fig. 4. TEMFC, α, as a function of annealing temperature, t,  - steel wire specimen 

undergoing plastic deformation by tension up to a relative strain of ε = 19 %,  - steel wire 
specimen undergoing plastic deformation by bending around a cylinder with a diameter of     

d = 10 mm. 
 

 
Fig. 5. TEMF, E, of the steel wire deformed by bending around a cylinder with a diameter of 

d = 10 mm, as a function of annealing time, τ, at temperatures:  - 300 °C,  - 320 °C,       
 - 350 °C. 

 



I. Milićević et al. /Science of Sintering, 50 (2018) 421-432 
___________________________________________________________________________ 

 

426 
 

The diagrams in Fig. 4. show that, at lower temperatures, the TEMFC of the 
thermocouple employing a tensioned steel wire is higher than that of the thermocouple 
containing a bent steel wire, whereas the reverse is true at higher temperatures. This suggests 
that the activation energy of short-range structural ordering is lower in the tensioned wire than 
in the bent wire.  

The recovery kinetics of the deformed steel wire was observed by measuring changes 
in the TEMF over time at defined temperatures. Fig. 5 presents the results of measurement at 
temperatures 1= 300 °C, = 320 °C and = 350 °C for the wire subjected to plastic 
deformation by bending around a cylinder having a diameter of d = 10 mm.  

t 2t 3t

The structural ordering taking place during the annealing of the deformed steel 
increases the density of states of free electrons near the Fermi level, thus leading to an 
increase in the TEMF, as expressed by the equation: 

 

   (3) 
 

where: - TEMF at the temperature 2T for the time τ = 0; 1,0E 1,E τ - TEMF at the temperature 2T 
after annealing of the steel specimen for the time τ ; - density of states of free electrons in 
the deformed steel at the temperature 2T for the time τ =0; 

1,0n

1, 1,0n n nτΔ = −  - increment of the 
density of states of free electrons at the temperature 2T during annealing for the time τ. 
Rearranging Equation (3) gives: 
 

( )
( )

2 2
1,0 2 1,0

1,0 2 1,02

n n n n nkЕ T
e n n n n

Δ + +  Δ
Δ = Δ

 + Δ
      (4) 

Given that , the value 2
1,0 1,0 2n n n n Δ + 2

1,0n n Δ in the numerator can be neglected. Considering 
this assumption, as well as the assumption that 1,0 1,0n n n≈  + Δ , the following expressions are 
obtained: 

2 2
1,0 2

2
1,0 22
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        (5) 
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2
1,0 2
2 2
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k T n n
  

Δ =  Δ
 Δ +        (6) 

that is: 

1n ЕΔ = Κ  Δ          (7) 
Expression (7) shows that the change in the TEMF during annealing induced by structural 
ordering is a linear function of the change in the density of states of free electrons at the Fermi 
level.  
Let us assume that short-range structural ordering is a first-order reaction: 

A B p e→ +           (8) 
and that the electron density of states after annealing for the time τ and τ = ∞ is Bn p CΔ =   and 

, respectively. Using these assumptions and equations, the integral form of the 
kinetic expression of the rate of reaction (8) was obtained:  

max 0n p CΔ =  
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max

1
max

ln

n
p k

n n
p p

τ

Δ

=  
Δ Δ

−
        (9) 

where: – initial concentration of reactant species A; C0C B – concentration of species B 
generated after annealing time τ , 1k  – rate constant for the first-order reaction (8). 

B

If in Equation (9) and maxnΔ nΔ  are replaced respectively with 1 maЕ xΚ  Δ  and 1 ЕΚ  Δ  
(Equation 7), the following is obtained: 

( )max max 1ln lnЕ Е Е k τΔ − Δ − Δ =       (10) 
Based on the data presented in Fig. 5, values of ( )maxln Е ЕΔ − Δ  as a function of τ  at 

temperatures 300 °C, 320 °C and 350 °C were obtained. These values were used in plotting 
the diagrams presented in Fig. 6.  

 

 
Fig. 6. Dependence of ( maxln )Е Е− Δ − Δ  upon time τ at temperatures:  - 300 °C,  - 320 °C,  

- 350 °C. 
 

The diagrams in Fig. 6. indicate two intervals of the recovery time, with interval 
length depending on annealing temperature. As annealing temperature increases, the length of 
the first interval decreases, and that of the second one increases. In the first interval of time of 
0-180 s at 300 °C, 0-150 s at 320 °C and 0-120 s at 350 °C, there exists a linear dependence of 
ln(ΔEmax – ΔE) upon annealing time τ. In the second interval of time, 180-540 s at 300 °C, 150-
480 s at 320 °C and 120-420 s at 350 °C, there is a linear dependence of ΔE upon the square 
root of annealing time τ (Fig. 7). 

The linear dependence of ln(ΔEmax – ΔE) upon annealing time indicates that, in the 
first interval of time, structural ordering is a kinetically controlled first-order reaction. In the 
second interval exhibiting a linear dependence of ΔE upon τ , the recovery rate of deformed 
steel specimens is controlled by a slow diffusion of active species. This conclusion is derived 
from the fact that, when diffusion becomes a slow process, Δn is a linear function of τ , and 
since Δn = K1ΔE, then ΔE is also a linear function of τ . 
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Fig. 7. Dependence of ЕΔ  upon τ  at temperatures:  - 300 °C,  - 320 °C,  - 350 °C. 

 
The slopes of the lines presented in Figs. 5 and 6 give the recovery rate constants for the 

deformed steel wire. The rate constant of the kinetically controlled process was determined by 
the expression: 

( )max
1

ln Е Е
k

τ
Δ Δ − Δ

=
Δ        (11) 

and the rate constant of the diffusion process was determined by: 

2
Еk
τ

Δ
=

Δ          (12) 

Based on the values obtained for k1 and k2, lnk was plotted as a function of 1/T, and 
the dependence is graphically presented in Fig. 8.  

 

 
Fig. 8. Dependence of lnk upon 1/T for:  - the kinetically controlled process and  - the 

diffusion process. 
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Based on the slopes of the lines given in Fig. 8, activation energies were determined 
for both the kinetically controlled process and the diffusion process, using the expression: 

 
( )ln

1a

k
E R

T

Δ
=

Δ
         (13) 

where: R = 8.314 J mol-1
 K-1 – the universal gas constant 

The obtained values are: activation energy of the kinetically controlled process Eaa = 58.7 kJ 
mol-1; activation energy of diffusion Ead = 428.7 kJ mol-1. 
 The linear dependencies presented in Figs. 6, 7 and 8 and the values of the activation 
energies, Eaa and Ead, showed that changes in the TEMF of the Cu-X5CrNi1810 steel 
thermocouple during the plastic deformation of steel are mainly caused by changes in short-
range ordering. 
 
 
4. Conclusion 
 

The TEMF and the TEMFC of the thermocouple consisting of a copper wire and an 
(X5CrNi1810) steel wire plastically deformed under tension or bending conditions increase 
with increasing degree of plastic deformation and with rising annealing temperature. When 
steel is subjected to mechanical stress, the density of chaotically distributed dislocations and 
internal microstress increase, causing a decrease in the electron density of states at the Fermi 
level. Through the effect of thermal energy, short-range structural ordering takes place at 
elevated temperatures, accompanied by an increase in the density of states of free electrons, 
resulting in an increase in both the TEMF and the TEMFC. The analysis of the time 
dependence of the TEMF revealed that the recovery of steel is a kinetically controlled first-
order reaction in the first time interval, and a diffusion-controlled reaction in the second 
interval of time. Activation energies were determined for both the kinetic and the diffusion 
process. The results presented in this paper showed that the temperature dependence of the 
TEMF can be successfully used to determine the degree of recovery of deformed steel wire 
annealed at elevated temperatures. These examples demonstrated a correlation between the 
temperature dependence of the TEMF and structural changes in alloys. 
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Садржај: ТЕМС и ТКТЕМС термопара бакар-пластично деформисана (истезањем или 
савијањем) челична (X5CrNi1810) жица расту са порастом степена пластичне 
деформације и температуре загревања. Током механичког напрезања челика расте 
густина хаотично распоређених дислокација и унутрашња микронапрезања, што 
узрокује смањење густине стања електрона на Ферми нивоу. Дејством топлотне 
енергије на повишеним температурама уређује се структура на кратко уз повећање 
густине стања слободних електрона, што се одражава на повећање ТЕМС-а и 
ТКТЕМС-а. Анализом временске зависности ТЕМС-е установљено је да је опорављање 
челика у првом временском интервалу детерминисано кинетички контролисаном 
реакцијом првог реда, а у другом процесом дифузије. Одређене су енергије активације 
кинетичког и дифузионог процеса.  
Кључне речи: термоелектромоторна сила, напрезање, густина стања електрона, 
енергија активације, челик. 
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