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Advancement in brain computer interfaces (BCI) technology allows people to actively
interact in the world through surrogates. Controlling real humanoid robots using BCI
as intuitively as we control our body represents a challenge for current research in
robotics and neuroscience. In order to successfully interact with the environment the brain
integrates multiple sensory cues to form a coherent representation of the world. Cognitive
neuroscience studies demonstrate that multisensory integration may imply a gain with
respect to a single modality and ultimately improve the overall sensorimotor performance.
For example, reactivity to simultaneous visual and auditory stimuli may be higher than
to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet,
knowledge about whether audio-visual integration may improve the control of a surrogate
is meager. To explore this issue, we provided human footstep sounds as audio feedback
to BCI users while controlling a humanoid robot. Participants were asked to steer their
robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that
audio-visual synchrony between footsteps sound and actual humanoid’s walk reduces the
time required for steering the robot. Thus, auditory feedback congruent with the humanoid
actions may improve motor decisions of the BCI’s user and help in the feeling of control
over it. Our results shed light on the possibility to increase robot’s control through the
combination of multisensory feedback to a BCI user.
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INTRODUCTION
Walking through an environment, avoiding possible obstacles and
stopping close to a desired place and act upon objects are motor
decisions that people without any physical impairment can easily
plan and quickly achieve in various environments.

Current research in Brain-Computer Interface (BCI) with elec-
troencephalogram (EEG) shows the successful use of mobile
robots to accomplish complex tasks (Bell et al., 2008; Millán et al.,
2010; Choi and Jo, 2013). Nonetheless the possibility to achieve
a natural control of a real size humanoid robot within a real
environment (Gergondet et al., 2013) still represents a great chal-
lenge for computer science, neuroscience, and BCI research. Such
challenge is well illustrated by walking tasks that are typically
considered comparatively simply. However, although seemingly
simple, walking behavior is the outcome of a long-lasting learning
process, involves motor and intellectual skills and generates sen-
sory consequences we give very little attention to. For example,
under normal circumstances we barely pay attention to the sound
generated by our footsteps, possibly due to their high predictabil-
ity. However, imagine hearing footsteps not directly related to

your own walk (i.e., a sound that does not match the instant of hit
of your foot with the ground). It is highly likely you start think-
ing something unusual is happening to you or that someone is
following you. Footsteps sounds are directly related to our walk-
ing behavior and represent a sensory feedback that also informs
about the agent of the action. The present study aims at assessing
the importance and benefits of accurate auditory feedback relative
to footsteps sounds during a BCI-based steering of a humanoid
robotic surrogate.

The feeling of being in control of one’s actions and/or its
consequences is called sense of agency (SoA, Gallagher, 2000;
Synofzik et al., 2008; David, 2012). Importantly SoA is a multifac-
torial feeling (David, 2012) and can be manipulated by altering
temporal predictability between an action and its effect (Sato
and Yasuda, 2005). In particular, increasing the temporal inter-
val between an action and its effect decreases the perceived SoA.
Relevant to this study is the SoA over footstep sounds. In a study
conducted by Menzer et al. (2010), participants were asked to
indicate whether a footstep’s sound was self-produced or not.
More specifically follow a path while hearing through headphones
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a footstep sound either synchronous or asynchronous with
their real steps. The results show that SoA was significantly
higher in the former than the latter condition indicating the
temporal mismatch between actions and hearing the footstep
sounds influences the feeling of being the cause of an action’s
consequence.

BCI systems typically need a time window to decode reliably
the intended action and actually implement it. Time segments for
data analysis change according to the type of EEG signals the BCI
relies on and the method that is used to process them. For exam-
ple, to correctly classify the user’s intention motor imagery- (MI),
steady-state visually evoked potentials- (SSVEPs), and P300-BCI
one needs 4 s (Guger et al., 2003), 7 s (Guger et al., 2012), and
45 s (Guger et al., 2009; see also Table 2 in Guger et al., 2012 for
comparative purposes), respectively.

MI-based BCI devices can have a maximum of four out-
puts (right and left arm, foot and tongue movement imagery,
Naeem et al., 2006; but see Friedrich et al., 2013 for different
mental strategies). Yet, a high level of accuracy is achieved only
after lengthy period of training (Pfurtscheller et al., 2006; Onose
et al., 2012). P300-based BCI systems can have a higher num-
ber of outputs (Guger et al., 2009) and require less training.
However, these systems implies large and variable time windows
(that range from 5 s for a 4-choice system (Bell et al., 2008) to
45 s for 15 choices (Guger et al., 2012). In the present study we
used a SSVEPs BCI interface as the best compromise between the
number of outputs, the training duration, and the required time
window to classify user’s intention (see Materials and Methods).
We assessed BCI users’ performance and subjective experience
during a continuous whole-body control of a humanoid robot
(HRP-2). In particular participants (located in Italy) remotely
controlled through BCI a humanoid robot (located in Japan).
A pick-and-place scenario (Gergondet et al., 2013) was adopted.
The video from robot’s cameras was fed back on a 2D screen.
During the task, participants could observe or not HRP-2’s body
through a mirror and could hear a footstep sound that matched
(synchronous) or not (asynchronous) the actual robot’s move-
ments (see Materials and Methods). In this way we tested the
role of audio-visual feedback in an ecological scenario measuring
the BCI users’ performance (expressed by the time to complete
the task) and their perceived quality of the interaction with the
robot by means of a questionnaire (see section Quality of the
Interaction).

We expected faster walking time when audio-visual feedback
is congruent (synchronous condition) relative to when is not
(asynchronous condition) and better precision in dropping the
object when the robot’s body was visible through a mirror (mirror
condition) relative to when it was not (no-mirror condition).

MATERIALS AND METHODS
PARTICIPANTS
A total of 28 healthy subjects took part in the study. Nine subjects
(3 women; age range, 20–26 years) participated in the main exper-
iment and 19 subjects (12 women; age range, 21–33 years) were
tested in one of the two pilot studies. All the subjects were right-
handed according to a standard handedness inventory (Briggs and
Nebes, 1975), had normal or corrected-to-normal visual acuity in

both eyes, and were naive as to the purposes of the experiments.
None of the participants had any contraindication for the BCI
study (Fisher et al., 2005). Participants provided written informed
consent and the procedures were approved by the ethics com-
mittee at the Fondazione Santa Lucia and were in accordance
with the ethical standards of the 1964 Declaration of Helsinki.
Participants received reimbursement for their participation and
were debriefed on the purpose of the study at the end of the exper-
imental procedure. In the SSVEPs-BCI experiment no discomfort
or adverse effects were reported or noticed.

PILOT STUDIES—FOOTSTEPS SOUNDS SELECTION
Two independent groups of subjects have been tested in differ-
ent pilot studies (Group 1, 12 subjects, 7 female, range 21–33
years; Group 2, 7 subjects, 5 female, range 20–23 years). In Pilot
1, eight different human footsteps audio files were interleaved by
a variable number (min 5, max 10) of pure tones to avoid habit-
uation and randomly heard by participants. Subjects were asked
to guess what the sound was and type the answer within a text
box. Participants listened to each sound only once. The sound
represented two “hits” with the ground (e.g., right-left foot). In
Pilot 2 participants rated on a 0–100 Visual Analog Scale (VAS)
how much the sound they heard was reproducible by the human
body. The sounds were the same as in Pilot 1 and interleaved by
pure tones. The selected sound was freely categorized as “foot-
step” by 91% of the sample from Pilot 1 and rated as reproducible
by the human body at the 93.7 ± 2.57 (mean ± s.e.m.) on the
0–100 VAS scale from Pilot 2. In this way we chose the most rec-
ognizable footstep sound that was judged as highly reproducible
by the human body.

MAIN EXPERIMENT—TASK DESCRIPTION
Participants located in Rome (Italy) controlled an HRP-2
humanoid robot located in Tsukuba (Japan, see Figure 1) by a
SSVEPs-BCI system. The task had four sub-goals (SGs). First the
BCI user had to steer the robot from a starting position to a

FIGURE 1 | Participants located in Rome (Italy) controlled an HRP-2

humanoid robot located in Tsukuba (Japan) by a SSVEPs-BCI system.

The subjects guided the robot from a starting position to a fist table
(marked in green as “1”) to grasp the bottle and then drop the bottle as
close as possible to a target location marked with two concentric circles on
a second table (marked in green as “2”).

Frontiers in Neurorobotics www.frontiersin.org June 2014 | Volume 8 | Article 20 | 2

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Tidoni et al. Audio-visual feedback improves BCI performance

table (SG1) and command HRP-2 to grasp a bottle (SG2). Then,
the participant guided the robot as close as possible to a second
table (SG3) and tried to drop the bottle as close as possible to
a target location marked with two concentric circles (SG4, see
Figure 2A).

Participants were asked to complete the task as fast and accu-
rate as possible. An enforced- (for all SGs, see section Enforced
Selection) and a recursive-selection (SG4, see section Recursive
Selection) were adopted to allow the user to complete the task.
In half experimental conditions, we placed a mirror behind the
second table to provide additional information about the spa-
tial proximity between the table and the robot. During the task
the BCI user heard a footstep sound either synchronous or asyn-
chronous with the real footsteps of the robot (during SG1 and
SG3) and could see or not the robot’s body reflected in a mirror
placed behind the second table (SG3 and SG4). In this way we
had a 2 × 2 design with Footstep (Synchronous, Asynchronous)
and Mirror (Present, Absent) as within subjects factors for a total
of four experimental conditions. After each condition the sub-
ject answered questions concerning the experience they had (see
questionnaire section Quality of the Interaction). Importantly
auditory feedback was delivered in Italy. Data regarding robot’s
feet contact were streamed from Japan along with the video
stream. Hence when a foot touched the ground we could deliver
an auditory feedback to the user located in Italy synchronously or
asynchronously with the video feedback.

PROCEDURE
The user was comfortably sitting in an armchair about 75 cm
away from a 19′′ LCD screen operating at a refresh rate of 60 Hz
upon which the user interface was displayed. The SSVEP classifier
was trained on individual EEG data and a short video was pre-
sented to explain the goals to accomplish during the experiment.
A trial consisted of the execution of the entire demonstration:
from grasping to dropping the bottle on the second table. Two
concentric circles indicated the target position on the second
table. At the end of the trial, participants answered 4 ques-
tions to assess the quality of their interaction with the robot.
An initial practice trial was performed before the experimen-
tal conditions. Note that we have been able to set the classifier

error rate at 0% for all subjects. After training the error rate
was null after 7.52 ± 0.22 s (mean ± s.e.m.). All participants
completed successfully the training and were able to use the
SSVEP.

DATA ANALYSIS
The Total time to complete the task, Walking time (i.e., time to
steer the robot from the first table to the second one; SG3) and
Place Accuracy (i.e., displacement between the target location and
dropped bottle position; SG4) were used as measures of behav-
ioral performance. We discarded from the main analysis one
participant who did not follow task instructions and presented
a Walking time 202% higher relative to the other participants.
Thus, the final sample was of 8 subjects (2 female, 21.5 ± 1.06,
range 20–23 years). An ANOVA with Mirror (present, absent)
and Footstep sound (Synchronous, Asynchronous) as between
subjects’ factors was performed after checking for normality
distribution (using the Shapiro-Wilk test).

Subjective answers to the quality of the interaction were ana-
lyzed by means of non-parametric tests Friedman ANOVA and
Wilcoxon test for within-group comparisons.

HARDWARE AND SOFTWARE INTEGRATION
Brain computer interface
EEG signals were acquired at 256 Hz by means of a g.USBamp
(24 Bit biosignal amplification unit, g.tec Medical Engineering
GmbH, Austria). We applied a band-pass (0.5–30 Hz) and a notch
filter at 50 Hz. Eight Ag/AgCl active electrodes were placed on the
POz, PO3, PO4, PO7, PO8, O1, O2, and Oz positions of the inter-
national 10–20 system. Fpz was used as ground electrode and the
right earlobe as a reference.

Feature extraction
SSVEPs were extracted from the EEG signal using a minimum
energy classifier (Friman et al., 2007). The system categorized 6
different classes with 100% accuracy in all participants after a
short training (6 min). Five classes were implemented to steer the
robot (forward, 6 Hz; backward, 9 Hz; turn right, 8 Hz; turn left,
14 Hz; stop, 10 Hz) and an additional zero-class detected when
the user was not attending to any flashing stimuli. The frequencies

FIGURE 2 | (A) A sequence of images depicting the different sub-goals (SGs). (B) A state-flow diagram showing the Finite State Machine (FSM). Yellow arrows
represent transitions initiated by the user while green arrows represent transitions initiated by the robot.
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were selected to avoid first or second harmonics and to minimize
the risk of eliciting seizures in healthy subjects (Fisher et al., 2005).
Critical frequencies fall in the range of 15–25 Hz. It is worth
noting that some individuals may result sensitive also to higher
rapidity of the flashing stimuli (Fisher et al., 2005). Moreover,
frequencies higher than 25 Hz are difficult to render properly on
a 60 Hz monitor. Thus, the selected frequencies of the flashing
stimuli were 6, 8, 9, 10, and 14 Hz.

Graphical user interface
During walking phases, four flickering arrows allowed the partic-
ipant to send the robot instructions to move leftward, rightward,
backward, or forward. A fifth flashing square was added in the
bottom-left of the interface and was meant to stop the robot.
When the BCI recognized one of these possible commands, the
corresponding arrow or square’s border changed color (from
black to green, Figure 3).

From that moment, participants observed a change in robot’s
video feedback after nearly ∼800 ms (∼400 ms to send informa-
tion to Japan, ∼400 ms to receive robot’s cameras feedback in
Italy). Moreover, color-change signaled to the BCI users whether
the system was correctly or incorrectly categorizing their inten-
tions. This may be relevant for the experienced sense of control
over robot’s actions in addition to the audio-visual temporal
matching. It is also worth noting that distal intention increases
the sense of agency as measured by intentional binding (Haggard
et al., 2002; Vinding et al., 2013). Finally a simplified table-icon
changed color (from green to red) when the proximity of the
robot to the table was too close and potentially dangerous (see
Section HRP-2 Walking).

Enforced selection
Classification errors may interfere with robot’s control if noise is
introduced in the EEG data (e.g., the user gets distracted, makes
involuntarily moves or has lapses of attention). Since SSVEPs’
classification algorithm delivers a new output every 200 ms we
adopted an enforced selection procedure to avoid conveying sig-
nals to the robot when the user did not want to (“Midas Touch”
problem; Moore, 2003). This solution was meant for SG2 (grasp-
ing phase) and SG4 (dropping phase). Thus, with the enforced
selection, a command was sent to the robot if the user held

his selection for 2 s. This means that only after 10 equal and
consecutive outputs the robot grasped or dropped the bottle.
Based on our previous experience (in Gergondet et al., 2013 BCI-
users had to held the command for 3 s) we reasoned that this
solution could represent a good compromise between accuracy
and performance.

Recursive selection
In the SG4 the user had to drop the bottle as close as possible
to a target location. The dropping position was selected in two
steps. The user selected one of four quarters then, the selected
part was split again in 4 sub-parts. In this way the user had 16
alternatives to place the bottle. Importantly to reduce to num-
ber of errors (“Midas touch” problem, Moore, 2003) we coupled
this recursive selection with an enforced selection (see section
Enforced Selection; i.e., the user had to focus for 2 s on a stim-
ulus before triggering a level change). The process is shown in
Figure 4 and the four circles flashed at 6-8-14-10 Hz (upper-left
and -right, bottom-right and -left, respectively).

FIGURE 4 | Principle of the recursive and enforced selection during

SG4. For example the user first selects the “A” quarter which is then
zoomed in to allow the subject to select the “3” quarter. The resulting final
selection is “A.3.”

FIGURE 3 | Within the implemented graphical user interface whenever the BCI recognized a command (e.g., top arrow, forward-command), the

corresponding icon’s border changed color (from black to green).
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Sub-goals transition
Transitions between different phases of the SGs were achieved by
the implementation of a finite state machine (FSM, Figure 2B).
In this way we combined both user’ and robot’s auton-
omy. The BCI user freely decided for the robot’s walking
directions, the moment to grasp the bottle and the place
for dropping it. HRP-2 followed BCI-users’ intention and
autonomously implemented the correct movements for walk-
ing (SGs1-3, see section HRP-2 Walking), grasping (SG2, see
section Robot’s Grasping and Dropping Actions) and drop-
ping (SG4, see section Robot’s Grasping and Dropping Actions).
Therefore, transitions between different SGs were triggered
either by the user or the robot with a FSM as shown in
Figure 2.

HRP-2 walking
The robot’s head was slightly bent toward the ground (at a 25◦
angle) to allow the user to see upcoming obstacles. Participants
performed a continuous control over robot’s walking and the
steering was possible trough the flickering arrows (see Graphical
User Interface section). An Asus Xtion Pro Live was mounted on
top of HRP-2’s head. We adopted a Canny edge detection algo-
rithm and a Hough transformation on the image to locate the
corner of the tables in the depth map provided by the Xtion sen-
sor. Given the intrinsic and extrinsic parameters of the camera we
were then able to locate the position of the table within the robot’s
frame. As the robot approached the table it could be clearly seen
in the depth map of the robot’s camera and thus easily detected.
A simplified table icon changed color (green to red) according to
the proximity of the table (far or near). Overall we improved the
safety and stability of the robot’s walking by providing distance
information to the BCI user and restraining robot’s movements
when it was too close to the table (i.e., avoiding accidental
collision).

Robot’s grasping and dropping actions
During SG2 (grasping) steering commands were not visible and
the bottle, present within the field-of-view (FOV) of the robot,
started flickering at 6 Hz. The user focused her/his attention on
the bottle and instructed the robot to autonomously grasp it.
The robot automatically repositioned itself according to bot-
tle position and selected the arm to use. The arm followed a
checkpoint trajectory close to robot’s body. The robotic arm
stretched and HRP-2 grasped the bottle avoiding possible colli-
sions with the table. Then, after a small lift, the robot brought
the arm back to its body up to the initial position through a
checkpoint trajectory. During SG4 (dropping) we used an esti-
mation of the height of the drop spot through the image provided
by the RGBD camera mounted on the robot and implemented
a soft-drop strategy by controlling the arm’s speed using the
algorithm described in Table 1. Both solution for grasping and
dropping took advantage of HRP-2 capabilities to perform com-
plex tasks and motor actions and highlight the coupling of soft-
ware and hardware solution to combine both robot’s and user’s
autonomy.

Table 1 | z estim, is the estimated height from the vision.

Algorithm for soft dropping

if in force > force threshold or z current < z min
then Drop the object if a contact is detected or the
hand has reached a low position

Open the gripper
z speed = z speed

else. Lower the speed command as the hand approaches
the estimated contact height

if z current > z estimate + 0.1 then

z speed = z speed ref
else if z current > z estimate + 0.02 then

z speed = z speed ref / 2
else

z speed = z speed ref / 10
end if

end if

z current, is the current height of the robot’s hand. z min, is the minimum allowed

height, corresponding to the robot’s physical limitations. z speed, is the speed

command for the robot’s hand. z speed ref, is a reference speed given before-

hand. in force, is the force read from the wrist’s force sensor. force threshold,

is a force threshold defined before-hand obstacle detection during the phase

where the user steers the robot to ease the control.

RESULTS
PERFORMANCE ASSESSMENT
Total time
Data were normally distributed (Shapiro-Wilk test for all con-
ditions: p > 0.20). The ANOVA did not reveal any main effect
[all F(1, 7) < 0.62, p > 0.45, η2 < 0.08] or interaction [F(1, 7) =
4.53, p = 0.07, η2 = 0.39]. We performed an additional ANOVA
to check any learning effect with the Order of the conditions as
4 level factor (Trial1, Trial2, Trial3, Trial4). We did not observed
any learning effect [F(3, 21) = 1.38, p = 0.27, η2 = 0.16].

Walking time
Data were normally distributed (Shapiro-Wilk test for all condi-
tions: p > 0.15). The ANOVA revealed a main effect of Footstep
[F(1, 7) = 10.10, p = 0.01, η2 = 0.59] with faster time in the
Synchronous (mean ± S.E., 60.00 s ± 2.62) relative to the
Asynchronous condition (68.36 s ± 3.42; Figure 5). No main
effect of Mirror [F(1, 7) = 3.96, p = 0.09, η2 = 0.36] or interac-
tion [F(1, 7)z = 0.01, p = 0.97, η2 < 0.01] was found. We addi-
tionally checked for any learning effect. The ANOVA performed
with Order as a 4 level factor (Trial1, Trial2, Trial3, Trial4) did not
reveal any effect [F(3, 21) = 0.86, p = 0.47, η2 = 0.11]. To rule
out any role of distraction or drop of attention during the asyn-
chronous condition we checked the total commands sent to the
robot and the times the robot stopped (i.e., the BCI classifier cat-
egorized a “zero class”) as index of participants’ uncertainty that
may have explained the result.

Due to technical failure for one subject the number of com-
mands and stops sent to the robot were missing in the Sound
Asynchronous—Mirror Absent condition. The missing cell was
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substituted by the mean of commands and stops the subjects
(n = 7) sent to the robot in that condition. Neither the num-
ber of sent commands in the Synchronous (25.87 ± 4.00) and
Asynchronous (29.55 ± 3.00) condition [t(7) = −1.53, p = 0.16,
r = 0.06] nor the times the robot stopped in the Synchronous
(4.44 ± 0.89) and Asynchronous (4.29 ± 0.67) condition [t(7) =
0.27, p = 0.79, r = 0.28] did differ.

Place accuracy
Data were not normally distributed (Shapiro-Wilk test in two out
of four conditions: p < 0.05). Non-parametric Friedman ANOVA
did not reveal any differences in the Place accuracy (χ3 = 5.07,
p = 0.16).

QUALITY OF THE INTERACTION
We assessed the perceived quality of the interaction by means
of a questionnaire (Table 2). We assessed the felt agency (Q1)
over robot’s actions and no differences between experimental
conditions (Friedman ANOVA, χ3 = 3.08, p = 0.38) were found.

FIGURE 5 | Mean walking time to drive the robot from the first to the

second table and drop the bottle. Light-gray and dark-gray columns
represent Synchronous and Asynchronous footstep sound heard by
participants. Error bars represent s.e.m. Asterisk indicate significant
comparisons (p < 0.05).

Throughout all the experiment, participants did pay attention to
the images while they were controlling the robot (Q2, χ3 = 1.19,
p = 0.75) and found easy to steer HRP-2 (Q3, χ3 = 3.65, p =
0.30). Importantly, participants reported no discomfort due to
the flashing stimuli (Q4, χ3 = 1.26, p = 0.73) in any condition.

DISCUSSION
BCI systems based on MI, attentional selection (P300) or syn-
chronization of activity in the visual cortex (SSVEPs) can be
successfully used for walking and navigational purposes (for MI-
BCI see; Leeb and Pfurtscheller, 2004; Pfurtscheller et al., 2006;
Leeb et al., 2007a,b; for P300-BCI see Escolano et al., 2010; Curtin
et al., 2012; Escolano et al., 2012; Choi and Jo, 2013; for SSVEPs-
BCI see Bell et al., 2008; Prueckl and Guger, 2009; Diez et al., 2011;
Choi and Jo, 2013; Gergondet et al., 2013).

Since the SSVEPs BCI system is a rather stable one, we adopted
it to test the role of visual and auditory feedback during the
remote control of a humanoid robot (HRP-2). More specifically,
we explored whether temporal congruency of seen and heard
input can modify the ability to steer a robot and the perceived
quality of the human-robot interaction. We designed an easy way
to use graphical interface sending to participants information
about obstacles’ proximity. Participants continuously controlled
the walking directions of the robot by means of the SSVEPs flash-
ing commands. The manipulation of audio-visual feedback was
effective in modifying the participants’ performance. More specif-
ically, footstep auditory feedback delivered synchronously with
the seen robot’s steps allowed the participant to use less time for
correctly driving the robot from the first to the second table. This
effect was limited to the walking phase and did not generalize to
the total time required to complete the task. It is worth noting
that the overall time is composed of transitions autonomously
initiated by the robot and that only the walking phase required
an accurate control to turn and drive the robot to the second
table. These factors may have flattened the overall time required to
accomplish the task resulting in a non-statistical difference of the
total time between the experimental manipulations. Importantly
participants did not differ in the total number of commands and
stops sent to the robot. This indicates that participants were not
more imprecise or erroneous in sending commands to the robot
in the asynchronous relative to the synchronous condition. The
ability to efficiently decide when an action has to be performed
within a given environment may be affected by the reliabil-
ity of sensory information. Feedback uncertainty may indeed
affect this decision making process (Wolpert and Landy, 2012).

Table 2 | Participants answers to questions assessing the quality of the experience.

Sound Sync Sound Async

Mirror no-Mirror Mirror no-Mirror

Q1 I was in control of robot’s actions 66.88 ± 6.74 73.13 ± 5.08 67.50 ± 7.07 71.88 ± 5.50

Q2 I paid attention to the images displayed 71.88 ± 6.40 71.88 ± 6.54 74.38 ± 8.10 77.50 ± 7.91

Q3 It was easy to instruct the robot about the direction where to move 64.38 ± 7.99 68.75 ± 5.49 65.63 ± 10.41 62.50 ± 5.00

Q4 Looking at the flashing arrows was difficult 25.99 ± 8.02 27.50 ± 7.96 28.13 ± 9.54 28.13 ± 7.44

Numbers represent values comprised between 0 and 100 (mean ± s.e.m.)
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The sound of synchronous footsteps may have improved the
ability to decide “when” changing command. In other words, the
use of audio-visual synchrony may have helped BCI-controllers’
decisions to better coordinate the robot. This result is relevant for
current research in BCI the aim of which is to improve the human
control over artificial devices either physical (e.g., humanoids
robots) or virtual (e.g., avatars). Furthermore we showed that par-
ticipants could maximize the performance (faster walking) taking
advantage of audio-visual feedback. The observed advantage did
not parallel any change in the perceived effort as indicated by
the absence of differences in the questionnaire concerning the
synchronous vs. asynchronous experimental conditions.

Our data expand a previous study that showed that back-
ground noise did not affect the users’ BCI performance (Friedrich
et al., 2011). Indeed the overall performance (total time and place
accuracy) in the asynchronous conditions did not differ from syn-
chronous conditions. Importantly, the increased ability to move
the robot did not affect the dropping accuracy. Moreover the
mirror did influence neither the speed nor the drop accuracy sug-
gesting that spatial information from the mirror did not facilitate
dropping ability. It is worth noting, however, that participants
may need additional training or more time to actually learn to
use mirrored images for a better control of robot’s orientation
respect to the external environment. Related to this, we also note
that the relative narrow field-of-view (FOV) may indeed repre-
sent a limiting aspect of teleoperation (Gergondet et al., 2013).
FOV can affect the ability to discriminate distances and conse-
quently the ability of subjects to avoid obstacles and stop the robot
at the right distance to perform an action. Moreover we applied
recursive and enforced selection, a camera depth perception and
combined user and robot’s autonomy to facilitate the interaction
with the environment. All these advancements were implemented
in a graphical interface that allowed participants to pay attention
to the environment while controlling the robot.

Overall we obtained two main results: (i) maintaining a good
level of users’ experience and (ii) improving the navigational per-
formance. More specifically, the performance and quality of the
interaction were assessed in this study involving eight healthy
people who successfully teleoperated the robot through BCI.
Importantly it has been reported the automatic tendency of the
central nervous system to integrate tactile and auditory feedback
even when presented with a slight temporal asynchrony (Bresciani
et al., 2005). This may be in keeping with the result that in our
setup asynchronous auditory feedback did not affect the perceived
sense of agency. It is also worth noting that this result might also
have been positively influenced by the visual feedback provided
by coloring the selected command (see Graphical User Interface
section). The combination of these two factors may explain why
our participants maintained a good sense of agency throughout
the task and experimental conditions.

Finally we did not observe a learning effect as previously
reported (Gergondet et al., 2013) although the setups were differ-
ent. Participants were not faster in the last trials relative the initial
ones. This may indicate that the asynchronous auditory feed-
back may have disrupted a possible learning curve. Our results
are relevant for current BCI research in that they highlight how
congruent sensory information can improve human-machine
interaction without affecting the quality of the experience.

CONCLUSION
The continuous technological advancement in the field of
controlling external devices introduced several possibilities to
actually act on the environment through a surrogate. The
advancement of peripheral devices made possible the combina-
tion of BCI and eye tracking technologies (Zander et al., 2010;
Onose et al., 2012). Here we designed and tested an application
that used SSVEPs BCI system to decode user’s intentions. Future
works should combine EEG and eye tracker systems to integrate
robot’s navigation and action to interact in the world. An example
may be the use of eye gaze for navigation and object-integrated
SSVEPs for action. This would increase the options to perform
different actions on the same object. Eye tracker might indeed
perform a rough recognition of user’s navigational purposes and
SSVEPs, through recursive and enforced selections, might cate-
gorize the action to be executed on a specific object. This line of
improvement should also parallel the development of the same
application scenarios with more immersive systems like head
mounted displays and very immersive virtual reality experience
of the type one can experience in CAVE systems. Moreover, more
detailed questionnaire may shed new light about the feeling of
control and comfort that remote BCI users may experience during
similar human-robot interface. All in all, our data are important
for designing user-friendly interfaces that allow people who can-
not control their body anymore (e.g., spinal cord injured patients)
to re-enter to the world in the most efficient possible way.
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