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25

26 Abstract

27 Fish-jellyfish interactions are important factors contributing to fish stock success. Jellyfish can 

28 compete with fish for food resources, or feed on fish eggs and larvae, which works to reduce 

29 survivorship and recruitment of fish species. However, jellyfish also provide habitat and space for 

30 developing larval and juvenile fish which use their hosts as means of protection from predators and 

31 feeding opportunities, helping to reduce fish mortality and increase recruitment. Yet, relatively little 

32 is known about the evolutionary dynamics and drivers of such associations which would allow for 

33 their more effective incorporation into ecosystem models. Here, we found that jellyfish association 

34 is a probable adaptive anti-predator strategy for juvenile fish, more likely to evolve in benthic (fish 

35 living on the sea floor), benthopelagic (fish living just above the bottom of the seafloor) and reef-

36 associating species than those adapted to other marine habitats. We also found that jellyfish 

37 association likely preceded the evolution of a benthic, benthopelagic and reef-associating lifestyle 

38 rather than its evolutionary consequence, as we originally hypothesised. Considering over two thirds 

39 of the associating fish identified here are of economic importance, and the wide-scale occurrence 

40 and diversity of species involved, it is clear the formation of fish-jellyfish associations is an important 

41 but complex process in relation to the success of fish stocks globally.

42 Keywords: anti-predator strategies; demersal fishes; early life stages; evolution; fisheries
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43 Introduction

44 Over past decades, many studies have documented how jellyfish blooms (Phylum Cnidaria, Class 

45 Scyphozoa) have pronounced consequences for human endeavour (1,2). Be it impacts on coastal 

46 tourism, the clogging of fishing nets or the blocking of  power station cooling-water intakes (1), the 

47 result has been an overall negative perception of gelatinous species (3). While the scientific 

48 community has concentrated efforts on investigating the deleterious effects of large aggregations of 

49 jellyfish in our seas (2,4), the counterbalancing positive roles of jellyfish have typically received less 

50 attention (3,5). However, recent efforts to address this gap are gaining momentum and a more 

51 nuanced picture of jellyfish ecology is emerging (5). 

52 Broadly, jellyfish contribute to the four main categories of ecosystem services defined by the 

53 Millennium Ecosystem Assessment: regulating, provisioning, supporting and cultural services (3). 

54 Furthermore, the traditional view of jellyfish as trophic dead ends, i.e. energy and nutrients directed 

55 towards jellyfish are lost to taxa higher up the food chain, is now overturned thanks to numerous 

56 studies demonstrating how jellyfish are key prey for apex marine predators and species of 

57 commercial value (6). For example, predation on jellyfish by commercially important species in the 

58 Irish Sea is far from rare, with >20% of sampled Atlantic herring (Clupea harnegus) having jellyfish 

59 detected in their stomachs (7). Opportunistic jellyfish predators also include species such as mallard 

60 ducks (Anas platyrhynchos) (8), albatross (9), Adélie penguins (Pygoscelis adeliae) (10) and deep sea 

61 octopods (11). 

62 However, jellyfish also provide habitat for juvenile fishes in what is generally considered a facultative 

63 symbiotic relationship (Fig. 1), and greater food acquisition opportunities for the fish is often cited 

64 as an important causal factor in the formation of such interactions (12,13). Juvenile fish can feed on 

65 the zooplankton entrained by jellyfish swimming pulses or captured on their tentacles, or even on 

66 crustacean parasites on their jellyfish host (6,14,15). Moreover, stable isotope analysis has revealed 

Page 3 of 23

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



4

67 that associating juvenile Atlantic bumper (Chloroscombrus chrysurus) feed directly on their jellyfish 

68 hosts (Aurelia sp. and Drymonema larsoni), constituting up to 100% of their diet during this life stage 

69 (16). This study does not stand alone but reinforces previous evidence of how juvenile fish often feed 

70 on their jellyfish hosts  (17–20). Beyond food acquisition, protection from predators is also believed 

71 to be a key driver behind fish-jellyfish associations (12). For example, 0-group (<12 months old) 

72 gadoid fish avoid predation by retreating among jellyfish tentacles which may improve survival 

73 during this critical time in their development (21). Similarly, Sassa et al. (22) reported correlational 

74 evidence that the abundance of jack mackerel (Trachurus japonicus) juveniles in the North Pacific 

75 was higher when concurrent increases in jellyfish Pelagic noctiluca were recorded. The ability of 

76 juvenile associative fishes to feed directly on the host under which they are sheltering, arguably sets 

77 fish-jellyfish associations apart from the straightforward predator-prey relationship described 

78 previously, where marine predators consume the entire jellyfish. However, the benefits gained by 

79 associating with jellyfish may be broader and differ to some extent among fish species with diverse 

80 life histories, ecology and/or behaviour. 

81 Mansueti (17) proposed that fish-jellyfish associations persist when the host provides protection 

82 from predators on a sustaining basis. Larger juveniles or adults of benthic, benthopelagic and reef-

83 associating fish can achieve protection from predators by living on or close to the sea bed and 

84 structurally complex habitats such as coral reefs. However, these species often have an earlier 

85 pelagic developmental phase until they are of sufficient size to recruit into benthic or reef habitats 

86 (23). For fully pelagic species, schooling behaviour is a common anti-predator adaptation which 

87 typically begins after fin formation is complete, early in their development (24). There is currently 

88 little evidence that early life stages of demersal fish employ schooling behaviour in a similar way (24). 

89 Conversely, they are often found in association with jellyfish (12,17) or floating or static objects in 

90 the ocean. This tendency suggests that benthic and benthopelagic fish have evolved an alternative 

91 adaptive strategy against predation in the form of jellyfish association, where the jellyfish acts as a 

92 structured refuge in the pelagic habitat, before recruitment to other, e.g. benthic habitats. If anti-
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93 predator schooling behaviour in benthic, benthopelagic and reef associating fish is less common than 

94 in fully pelagic species, then the former species should gain a greater evolutionary advantage from 

95 displaying jellyfish association than pelagic species.  

96 Here, we test the hypothesis that jellyfish association was more likely to evolve in benthic, 

97 benthopelagic and reef-associating species (broadly defined here as demersal type fishes), than in 

98 species adapted to other marine habitats. To do this we compiled a global scale dataset of jellyfish-

99 fish associations to date and used phylogenetic comparative approaches, better suited to unravel 

100 generality of patterns and processes than studies based on one or few species (25,26). The 

101 hypothesis predicts that association with jellyfish and demersal type – are more likely to be found 

102 together than not (i.e. positively correlated). However, it is silent with regard to how pelagic non-

103 associating fish species have evolved into demersal type associating ones, and so whether they first 

104 evolved demersal type and next association with jellyfish, or the opposite. Our phylogenetic 

105 comparative approach specifically investigated which evolutionary pathway appeared more likely.

106 Methods

107 Data collection

108 Following Castro et al. (12), we defined fish-jellyfish association as a close spatial relationship 

109 between a larval or juvenile fish with gelatinous zooplankton species (‘jellyfish’) that span the Phyla 

110 Cnidaria (Class Scyphozoa, Cubozoa and Hydrozoa), Chordata (Class Thaliacea), and Ctenophora. We 

111 conducted a literature search in Web of Science using English keywords such as ‘jellyfish fish 

112 association’ and ‘gelatinous zooplankton AND juvenile fish’ to collate a list of fish species observed 

113 as associating with jellyfish during early developmental stages. Information on associating species 

114 was then extracted from peer-reviewed primary and review publications, and supplemented with 

115 data from unpublished datasets, personal observations and museum collections. To test whether 

116 fish that associate with jellyfish were more likely to be demersal type, we also needed to include 
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117 species in the dataset that are not known to associate with jellyfish and for which information on 

118 lifestyle was available. To this end we collected data on lifestyle (see below) for a randomly selected 

119 sample of fish species, which were not known to associate with jellyfish but that belong to the same 

120 families of those that do, leading to a total sample size of 145 fish species with and without 

121 associations with jellyfish. We extracted lifestyle data from online databases (27) on whether each 

122 species in our dataset was benthic, benthopelagic or reef associating (‘demersal’) or fully pelagic 

123 (‘pelagic’).  

124 The absence of an observed association between a given fish species and jellyfish in the literature 

125 may reflect either the true absence of such an association in nature, or the fact that it has not been 

126 observed yet, leading to a misclassification of some fish species. To account for this issue, we 

127 employed the commonly used procedure of using number of citations in WoS for a given species as 

128 a measure of the research intensity on that species (28–30), under the expectation that highly 

129 studied species should be more likely to be correctly classified as not associating with jellyfish. From 

130 our full dataset (n=145 fish species) we then excluded ‘non-associating’ fish species with fewer than 

131 10 citations (remaining species: n=130 fish species) or fewer than 25 citations (remaining species: 

132 n=119) as potentially misclassified. Results of all analyses were highly consistent between the two 

133 reduced data sets, suggesting that they are robust to sampling. Here we present results from the 

134 larger dataset of 130 taxa (jellyfish associating and demersal n=43, associating and pelagic n=18, non-

135 associating and demersal n=51, non-associating and pelagic n=18). The dataset is available as 

136 Supplementary File 1.  Finally, we coded each fish species for two behavioural traits: association with 

137 jellyfish (Yes=1/No=0) and lifestyle (Pelagic=0/Demersal=1). 

138 Evolutionary history of fish-jellyfish association

139 We first investigated the evolutionary history of the association with jellyfish and lifestyle separately 

140 to assess how frequently each trait evolved and was lost over time across the phylogeny. We thus 

141 ran ancestral state reconstructions for discrete data in maximum likelihood, using the R package 
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142 ‘ape’ (31) and a comprehensive fish phylogeny (32) (see Supplementary File 2). This analysis 

143 estimates the likely character states of ancestors in the phylogeny and the rates of transitions 

144 between states across the whole tree (i.e. the rate of gain and losses) (25,33). We fitted two 

145 alternative evolutionary models to the data; one in which the rate of gain and rate of loss were the 

146 same (Equal Rate model - ER), thus estimating one parameter (i.e. the rate of change), and the other 

147 in which the rates of gain and losses could differ, estimating two rate parameters (All Rates Different 

148 model - ARD). We then assessed the fit to the data of these two alternative models using a likelihood 

149 ratio test with degrees of freedom (DF) equalling the difference in the number of estimated 

150 parameters of the two competing models (here df = 1) (33).

151 Independent and dependent models of evolution 

152 We tested whether associating with jellyfish was evolutionary correlated with lifestyle using  

153 maximum likelihood estimation and the programme BayesTraits V.3 (34). Specifically, we compared 

154 the fit to the data of two alternative evolutionary models: the Independent Model of evolution 

155 where jellyfish association and lifestyle evolve independently of each other, and the Dependent 

156 Model of evolution in which they evolve in a correlated fashion (33). The independent model 

157 estimates four parameters (the rates of gain and losses for each of the two traits independently), 

158 while the dependent model estimates eight parameters which are the transition rates among the 

159 four combination of character states that the two traits can jointly take (i.e. non-associating pelagic 

160 0/0, non-associating demersal 0/1, associating pelagic 1/0, and demersal associating 1,1; see Figure 

161 4). We used a likelihood ratio test with four degrees of freedom to assess which model fitted the 

162 data significantly better. If the LR test is significant, this indicates that the dependent model had a 

163 significantly better fit to the data, and so the two traits are evolutionary correlated. The dependent 

164 model of evolution can also reveal the evolutionary pathway through which two traits have evolved 

165 together, and so whether the evolution of one trait precedes and facilitates the evolution of the 

166 other (33). Specifically, should the dependent model provide a better fit to the data, the examination 

Page 7 of 23

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



8

167 and comparison of the magnitude of the transition rates between the four combination of character 

168 states of the two traits can reveal whether associating with jellyfish in demersal fish species 

169 (condition 1,1, see Figure 4) evolved from non-associating pelagic fish (condition 0,0) by gaining first 

170 a demersal lifestyle (transition rates q12 to condition 0,1, see Figure 4) and subsequently the 

171 association with jellyfish (transition rates q24), or the other way round (transition rates q13 to 

172 condition 1,0, see Figure 4). Thus, if one evolutionary pathway is more likely, this indicates that the 

173 trait evolving first is more likely to promote the evolution of the other, which is evidence consistent 

174 with causation (33). Conversely, if the dependent model provides a better fit than the independent 

175 model but both evolutionary pathways exhibit transition rates of equal magnitude, we can infer that 

176 the two traits are evolutionary correlated but there is no specific evolutionary (causal) pathway. 

177 The analysis with dependent and independent models was run in triplicates and all runs produced 

178 identical results to the third decimal place for the model fit and all parameter estimates, suggesting 

179 that the analysis consistently converged on the same maximum likelihood estimates and are robust.

180 Results

181 Fish-jellyfish associations in the literature

182 In the literature we found 173 instances of specific fish-jellyfish associations from across the globe, 

183 involving 86 species of fish spanning 24 families and 84 jellyfish taxa. Fish species from the 

184 Carangidae family were most numerous (n=28) followed by the Centrolophidae, Nomeidae and 

185 Monacanthidae families (n=11, n=8 and n=7 respectively) (Figure 2a). 

186 Of all the jellyfish-fish associations, the Atlantic bumper (Chloroscrombrus chrysurus) and shrimp 

187 scad (Alepes djedaba), both from the family Carangidae, associated with the most diverse range of 

188 jellyfish species (both n=9), while Cyanea capillata and Aurelia aurita were the most common jellyfish 

189 species for which fish-jellyfish associations were recorded (Figure 2b). Indeed, fish associating with 
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190 Cyanea sp. accounted for 12.5% of the total associations documented. Demersal type fish species 

191 were recorded in 57% (n=49) of associations, with the remainder classified as fully pelagic (43%, 

192 n=37). 

193 Evolutionary history of fish-jellyfish association and lifestyle

194 An ARD model for the association with jellyfish did not improve the fit to the data relative to an ER 

195 model (LR=2.12, df = 1, p=0.15), thus gains and losses of the association with jellyfish occurred at 

196 equal rates (0.034±0.001) across the fish phylogeny. The ER model estimated at least two gains and 

197 seven losses of associations with jellyfish throughout the tree (Figure 3a). Conversely, the ARD model 

198 for lifestyle better fitted the data relative to the ER model (LR=7.34, df = 1, p=0.007), and indicated 

199 that the transition rate from demersal to pelagic was significantly lower than the reverse (demersal 

200 to pelagic: 0.004±0.001; pelagic to demersal: 0.013±0.004). This model identified at least five 

201 evolutionary origins and nine losses of the demersal lifestyle among the recent ancestors of extant 

202 fish species (Figure 3b). 

203 Correlated evolution between fish-jellyfish association and lifestyle

204 The analysis of correlated evolution between lifestyle and association with jellyfish revealed that 

205 these two traits evolved in a correlated fashion for the sample of fish species of our dataset, as the 

206 dependent model of evolution fitted the data better than the independent model (LR = 9.72, df = 4, 

207 p=0.045). The dependent model also estimated that from a condition of no association and pelagic 

208 lifestyle (0,0), the association with jellyfish was gained first while the gain of a demersal type lifestyle 

209 in the absence of association with jellyfish was estimated to be 0 (association first: q13=4.52; 

210 demersal first: q12=0; Figure 4). Once pelagic fish evolved an association with jellyfish (1,0), a 

211 demersal lifestyle was gained quickly (q34 = 8.13; Figure 4). This finding suggests that associating with 

212 jellyfish may be an important driver that facilitated the evolution of a demersal lifestyle. Finally, the 

213 dependent model showed that a demersal lifestyle without association with jellyfish (0,1) was likely 
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214 to evolve from associating demersal fish (1,1) by losing the association with jellies while retaining a 

215 demersal lifestyle (q42=9.78); however, this condition was highly likely to be reverted by regaining 

216 the association with jellyfish (q24=5.15) (Figure 4). Thus, the combined ‘associating’ and ‘demersal’ 

217 character state (1,1) was relatively evolutionary stable. 

218 Discussion

219 We tested the hypothesis that jellyfish association was more likely to evolve in benthic, 

220 benthopelagic and reef-associating species than species adapted to other marine habitats. We find 

221 support for this idea and show that both demersal type lifestyle and association with jellyfish traits 

222 have been gained and lost multiple times across the fish phylogeny. However, our analysis revealed 

223 that associating with jellyfish is more likely to be one evolutionary driver of adapting to a demersal 

224 lifestyle, rather than its evolutionary consequence as we find that fish-jellyfish association is very 

225 likely to precede, not follow, the evolution of a demersal lifestyle. This pattern is perhaps not 

226 surprising given that predation pressure is extremely high when larvae and juveniles are in the water 

227 column (35,36).  If the demersal fish lifestyle trait evolved first, but without the predatory defence 

228 mechanisms of jellyfish association or schooling, they would presumable face a very high risk of 

229 mortality. Larval mortality in fish is strongly size-related: modelling studies suggest that a significant 

230 proportion (56%-99%) of total larval mortality occurs before a critical size is achieved (fish total 

231 length), after which mortality due to predation decreases sharply (35). Thus, pre-settlement benthic 

232 or reef fish that lack schooling behaviour as anti-predator strategy (24) should be under intense 

233 selection to evolve or retain alternative adaptations that allow them to survive the high predation 

234 levels in the upper water column. Our analysis shows that associating with jellyfish might play an 

235 important evolutionary role in this context. Jellyfish offer a complex three-dimensional structure that 

236 provides juvenile fish with a refuge in an environment that is otherwise remarkably devoid of physical 

237 habitat (37). The presence of such physical structure has been linked strongly to increased larval 

238 recruitment in fishes (38). Our findings suggest that it is more likely that the association with jellyfish 
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239 evolves in pelagic species prior to the evolution of a demersal lifestyle. Therefore, other evolutionary 

240 drivers, rather than antipredator strategies in non-schooling juvenile fish, have promoted the 

241 evolutionary origin of jellyfish association in pelagic fishes. To investigate jellyfish association 

242 evolutionary drivers further, future studies should explore how fully benthic, reef-associating and 

243 benthopelagic fish as individual groups evolved with regard to the association with jellyfish given the 

244 potential for different evolutionary pathways leading to jellyfish association, once more data become 

245 available for a larger number of species.

246 While Mansueti (17) noted how only a very small proportion of pelagic fish globally are reported as 

247 displaying associative behaviour, the implication of dismissing the potential impact of such 

248 behaviours for the fishing industry may be great, considering over 72% of the jellyfish associating fish 

249 species in this study are of commercial value. Unlike benthic fishes, pelagic fish can rely on schooling 

250 to reduce predation risk when juveniles. We suggest that one potential driver of jellyfish associations 

251 is the enormous potential as a food source that jellyfish represent for juvenile fish, especially 

252 considering that jellyfish can often form large aggregations (39). Although jellyfish have a low 

253 calorific value compared to other prey items, their gonads can be very large, representing over 20% 

254 of their total body in some species and have higher energetic content than bell or oral arm tissues 

255 (40). Indeed, a recent study has revealed that jellyfish represent a highly rewarding food source to 

256 commercial fish (Boops boops) (41). In our dataset, many jellyfish associating species are carangids, 

257 a large and diverse family considered among the most economically important fishes in the world 

258 (42). The ability to exploit jellyfish as trophic resource may therefore offer a huge advantage to the 

259 growth and survival of both demersal type and pelagic juvenile fishes. 

260 Our ancestral state reconstruction showed that associating with jellyfish in extant fishes is likely to 

261 have independently evolved multiple times across the fish phylogeny. We propose that the 

262 evolutionary cost of evolving the suite of adaptations required to associate with jellyfish is small (i.e. 

263 ability to locate and move close to jellyfish host for protection and realising opportunistic food 
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264 acquisition opportunities). Furthermore, the immediate costs of associating with jellyfish (e.g. risk of 

265 injury/death from jellyfish nematocyst stings) are likely less than the consequences of not doing so; 

266 namely an increased predation risk and decreased food opportunities. Indeed, even momentary 

267 disturbances in fish-jellyfish associations that caused juvenile scads (Trachurus lathami) to desert 

268 their jellyfish hosts, resulted in immediate predation by grouper (Mycteroperca acutirostris)  (43). 

269 Our study highlights how large-scale comparative approaches can be used to answer important 

270 questions on the evolutionary ecology of fish-jellyfish associations, at least from the perspective of 

271 the fish. To fully understand the evolution of these associations however, we need to also study how 

272 such associations evolved from the perspective of the jellyfish and their characteristics. Our study 

273 has revealed that some jellyfish taxa are in fact far more frequently involved in fish-jellyfish 

274 associations than others. Thus, future studies could investigate whether the frequency of 

275 associations of juvenile fish with different jellyfish species reflect the relative abundance of different 

276 jellyfish species and distribution worldwide, or are determined by the jellyfish morphological 

277 characteristics, such as size, volume, tissue complexity or strength of nematocyst sting, that make it 

278 more likely for fish to associate with them. Jellyfish morphology varies hugely, from micro-through 

279 to macro-zooplankton species weighing >200kg (e.g. Nemopilmea nomurai), so their potential for 

280 providing shelter against predators and food resources should be very different (44). Furthermore, 

281 jellyfish also differ in swimming mode, foraging and feeding strategies; traits that could elucidate the 

282 role and importance of food acquisition in fish-jellyfish associations. Specifically the two main 

283 foraging modes that jellyfish exhibit, ambush or cruise predators, result in interspecific dietary 

284 differences (45) and may influence the success of associating juvenile fish that take advantage of 

285 prey entrained in the pulse of the jellyfish or prey captured in the tentacles. To address these 

286 questions over large comparative scale and exploit powerful phylogenetic comparative methods to 

287 reveal generality of principles, we urgently need to build comprehensive jellyfish phylogenies and 

288 collect data on a variety of jellyfish characteristics, including whether juvenile associating fish also 

289 associate with non-gelatinous Floating Aggregating Devices (FADs) or floating objects. A number of 
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290 jellyfishes associating fish species identified by Castro et al. (12) were also documented as associating 

291 with FADs or drift objects and it is possible that they may gain similar benefits from these types of 

292 association to some degree such as the redistribution of food and a change in the behaviour of 

293 predators (46). However, jellyfish precede human flotsam and FADs by millions of years and could 

294 provide better or additional  protection from predators by way of deterrence, as predators seek to 

295 avoid their nematocyst stinging cells (17). Furthermore, jellyfish may provide a greater range of 

296 indirect feeding opportunities by actively hunting for food which is subsequently stolen by 

297 associating fish before ingestion as well as direct feeding opportunities via their energy rich gonads 

298 (40).  Thus, when appropriate data for a large number of fish species become available, we can 

299 explore intricate ecological and evolutionary questions such as whether jellyfish are a uniquely 

300 important habitat for juvenile fish, or whether they are just one of the many floating structures in 

301 the sea which act as potential shelter and source of food for juvenile fishes, using phylogenetic 

302 comparative approaches as shown in this study. 

303 Together with recent studies (47–49), our findings suggest  that jellyfish have important evolutionary 

304 and ecological roles such as providing shelter from predators and trophic resources to juvenile fish, 

305 an ecological service with huge implications for the population dynamics and long term persistence 

306 of marine fish biodiversity. Here we propose the term ‘gingerbread house’ interaction from classic 

307 folklore (i.e. a house you can eat) to describe the specific coaction whereby juvenile fish benefit from 

308 the positive impacts offered to them via their association with jellyfish; shelter and food. Considering 

309 that pressure on fin-fish stocks is increasing globally and that 72% of the fish species identified in our 

310 study as displaying this association are economically important, understanding how and why fish-

311 jellyfish associations evolved we advocate further research to quantify the exact benefits of jellyfish 

312 to juvenile fish recruitment.
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464

465

466

467 Figures
468

469 Figure 1.  Examples of juvenile fish swimming associating with jellyfish; (a) juvenile Atlantic horse mackerel (Trachurus 

470 trachurus) around the oral arms of a large Rhizostoma octopus jellyfish off the South England coast, (b) juvenile gadoids 

471 shelter among the oral arms and tentacles of a compass jellyfish (Chrysaora hysoscella) in Irish coastal waters, (c) a single 

472 juvenile gadoid swimming above the bell of a blue jellyfish (Cyanea lamarcki) off the Isle of Man and, (d) three juvenile 

473 gadoids camouflaged (shown above by red asterisk) against the frilly oral arms of a compass jellyfish (Chrysaora hysoscella) 

474 off the North East coast of Ireland (photos courtesy of (a) Steve Trewhalla, (b) Sarah Tallon, (c) Sarah Bowen, and (d) Karen 

475 Patterson).

476 Figure 2. (a) The carangids, a family of fish which includes the jacks, pompanos, jack mackerels, runners and scads, are the 

477 most numerous with 28 individual species reported in the literature as displaying associative behaviour with jellyfish, (b) a 

478 broad range of jellyfish, including medusa and non-true jellyfishes such as ctenophores and salps, are involved in fish-

479 jellyfish associations (n=64). While Cyanea capillata, Aurelia aurita, Stomolophus meleagris and Nemopilema nomurai are 

480 the most widely reported species involved in these associations around the world, together accounting for 33.1% of the 

481 individual instances of fish-jellyfish associations in the literature, most associations are from single observations of specific 

482 interactions.

483 Figure 3.  Evolutionary history of fish-jellyfish association (a) and demersal type versus pelagic lifestyle (b) in a sample of 

484 130 fish species as estimated using Maximum Likelihood. In (a) the ancestral state reconstruction of fish associative 
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485 behaviour based on the Equal Rate model identifies at least 7 evolutionary losses and 2 evolutionary gains of association 

486 with jellyfish (associative behaviour with jellyfish is coded as black, non-associative as grey). In (b) the ancestral state 

487 reconstruction of lifestyle based on the All Rates Different model identifies at least 9 evolutionary events whereby the 

488 demersal lifestyle is likely lost and 5 gains (demersal is coded in black, pelagic in grey). In both (a) and (b) the area of the 

489 pie for the internal nodes is coloured in proportion of the probability that a node takes either of the two alternative states 

490 for the tested trait.

491 Figure 4. Dependent model of correlated evolution for the combined traits of association with jellyfish lifestyle. The 

492 arrows indicate the direction of change between the 4 possible combination of character states, with the arrow thickness 

493 proportional to the magnitude of transition rates estimated by the model (also reported as number). Transition rates 

494 estimated to be equal to 0 are indicated with dotted lines. Sample size of species by combination of character states as 

495 used in the analysis (jellyfish association and demersal type or pelagic): (0,0) n=18, (0,1) n=51, (1,0) n=18 and (1,1) n=43. 

496 Sample size of species by combination of character states based on lifestyle; associating and pelagic n=18, non-

497 associating and pelagic n=18, associating and benthic n=8, non-associating and benthic n=26, associating and reef 

498 associating n=21, non-associating and reef associating n=16, associating and benthopelagic n=14, non-associating and 

499 benthopelagic n=9.

500

501
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